
Allocating Isolation Levels to Transactions

Alan Fekete
School of Information Technologies

University of Sydney

fekete@it.usyd.edu.au

ABSTRACT
Serializability is a key property for executions of OLTP sys-
tems; without this, integrity constraints on the data can be
violated due to concurrent activity. Serializability can be
guaranteed regardless of application logic, by using a seri-
alizable concurrency control mechanism such as strict two-
phase locking (S2PL); however the reduction in concurrency
from this is often too great, and so a DBMS offers the DBA
the opportunity to use different concurrency control mech-
anisms for some transactions, if it is safe to do so. How-
ever, little theory has existed to decide when it is safe! In
this paper, we discuss the problem of taking a collection of
transactions, and allocating each to run at an appropriate
isolation level (and thus use a particular concurrency con-
trol mechanism), while still ensuring that every execution
will be conflict serializable. When each transaction can use
either S2PL, or snapshot isolation, we characterize exactly
the acceptable allocations, and provide a simple graph-based
algorithm which determines the weakest acceptable alloca-
tion.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Transaction
processing

Keywords
Concurrency Control, Serializability, Anomaly, Consistency,
Snapshot Isolation, Two-Phase Locking

1. INTRODUCTION
One major domain where DBMS are used in industry is

in on-line transaction processing (OLTP), where fast-acting
independently-coded application programs are executed to
carry out business activity (for example, modifying inven-
tory and financial and customer data to reflect that a sale
has occurred). In such systems, data integrity is very impor-
tant: this involves both the consistency of data values to the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS 2005June 13-15, 2005, Baltimore, Maryland.
Copyright 2005 ACM 1-59593-062-0/05/06. . . $5.00.

real-world state, and also the validity of constraints (such as
referential integrity, or the equality of summary data with
the aggregate of the data being summarized) that express
internal consistency between parts of the data. There are
many threats to the integrity of data in an OLTP system,
but one important threat comes from the concurrent ac-
tivity of separate applications; without careful control of
interleaving, called concurrency control, anomalies such as
Lost Update or Inconsistent Read can lead to data being
corrupted.

The abstraction of “ACID transactions”, and particularly
the understanding of how DBMS mechanisms can prevent
concurrency risks to data integrity, were among the great
contributions for which Jim Gray won the 1998 Turing Award.
These ideas have been expanded into a powerful theory, with
two main aspects. One aspect is the identification of those
interleavings that are considered correct (because they do
not threaten data integrity); the other aspect is in devel-
oping (and proving correct) algorithms which control the
interleavings.

Serializabilty has long been accepted as the appropriate
notion of correctness for executions of a collection of trans-
actions against a database. A serializable execution is one
in which each committed transaction sees the same values,
and the final state contains the same values, as in a serial or
batch execution, where the transactions are run one-by-one
with no concurrency at all. The great virtue of a serial-
izable execution is that we can be sure that any integrity
constraint holds for the final state of the data, provided
that it holds for the initial state, and that each transac-
tion program, when acting alone, from a state where the
constraint holds, produces another such state. That is, if
the application programs are checked one-by-one, the DBA
doesn’t need to worry about subtle problems arising from
their interleaving.

There are many concurrency control mechanisms in the
literature, which can ensure that all executions are serial-
izable (no matter what transactions are run). In practice,
however, it is clear that the strict two-phase locking mech-
anism (with index locking of some variety) is the dominant
way to guarantee serializability [6]. Many commercial sys-
tems, including IBM’s DB2, Microsoft’s SQL Server and
Sybase’s ASE have been built based on this algorithm. Un-
fortunately, even with all the wrinkles system designers have
been able to invent, the performance impact (from the re-
duced concurrency when executing with two-phase locking)
is still seen as heavy, and indeed most transactions on these
engines use lower isolation levels, where shared locks are

released early or not taken at all.
An alternative multiversion concurrency control approach

is found in systems including Oracle and PostgreSQL. This
approach avoids taking shared locks at all, by accessing old
versions of data (which may be kept anyway for rollback pur-
poses). This algorithm, called Snapshot Isolation (abbrevi-
ated as SI), avoids all the well-known concurrency anoma-
lies such as Inconsistent Read and Lost Update. However,
as proved in [2], this algorithm does not ensure serializable
execution for all transactions1 and it can lead to violation of
integrity constraints. In simplified terms, the Snapshot Iso-
lation concurrency control mechanism means that a trans-
action T sees the database state produced by all the trans-
actions that committed before T started. Thus if T1 and
T2 are concurrent transactions using the Snapshot Isolation
mechanism, neither will see the effects of the other (whereas
in a serial execution, and therefore also in a serializable ex-
ecution, one of the transactions would see the effects of the
other).

In this paper, we consider the problem of how to use the
DBMS’s capability to support different isolation levels (and
thus different concurrency control mechanisms) for different
transactions. While practioners frequently do this, there has
previously been little theory to guide them in making these
decisions wisely.

In particular, we consider a DBA who can choose to use
the strict two-phase locking mechanism for some transac-
tions, while other transactions are using the snapshot isola-
tion mechanism. This will be very easy in the forthcoming
Yukon release of Microsoft’s SQL Server, where the DBA
can include the “SET ISOLATION LEVEL” statement in
each program before the first other access to the database,
and the engine supports both “ISOLATION LEVEL SNAP-
SHOT” and “ISOLATION LEVEL SERIALIZABLE” (which
will use two-phase locking). In Oracle, a transaction pre-
ceded by “SET ISOLATION SERIALIZABLE” will use snap-
shot isolation, but two-phase locking can be obtained by
using the default “read committed” isolation and explicitly
setting shared locks by “LOCK TABLE name IN SHARE
MODE” before reading from a table.

We provide a theory that enables the DBA to decide, for
each possible allocation of concurrency mechanism to trans-
actions, whether or not the allocation is acceptable in the
sense that all executions that arise will be serializable (and
therefore will maintain the integrity of the data). Of course
there is always at least one acceptable allocation: use two-
phase locking for every transaction. However, as we will
show, our theory can prove whether other allocations are
also acceptable, and often the DBA will be able to prove
that many of the transactions can be allowed to use the
snapshot isolation mechanism.

In Section 2 we explain the details of the concurrency con-
trol mechanisms involved, and we summarize existing defini-
tions and theory on which we build. In Section 3 we analyze
the conflicts in a single execution, and show some properties
that hold in any non-serializable execution. Section 4 then
looks at a collection of transactions, and an allocation of
concurrency control mechanisms to those transactions; our
main result is Theorem 3 which characterizes exactly when
an allocation has the property that every execution that can

1Note that there are multiversion algorithms which ensure
serializability in all executions, as shown in ch 5 of [4]. The
Snapshot Isolation algorithm is different from these.

arise is conflict-serializable. Section 5 looks at the space of
all possible acceptable allocations, and shows operations on
allocations that preserve acceptability. Section 6 concludes.

1.1 Related Work
There is a huge literature on serializability theory and con-

currency control. See [4, 8, 6, 12] for expository accounts
and bibliographies. However, most of this prior work con-
siders only situations where correctness is guaranteed with-
out any knowledge of the application or of integrity con-
straints, which does not apply to SI. The Snapshot Isolation
mechanism was first described in the research literature in
[2], which also demonstrated that this mechanism does not
ensure correctness in all circumstances. Previous work [5]
showed ways to prove serializability for certain application
mixes when all the programs use SI for concurrency control.
Unlike the current paper, this work does not consider mixing
transactions running different algorithms.

There is a long research tradition that deals with the mix-
ing of different concurrency control techniques applied to dif-
ferent items among the data, either per object, or per site
in a federated system. [11] provided a detailed analysis of
when per-object concurrency control algorithms can be com-
bined, but each is required to guarantee local serializability
without specific application knowledge (unlike SI). This line
of work continued in many papers dealing with federated
or multi-database systems; there, as an added complication,
the mechanisms may be unknown or incompatible, so one
needs extra coordination such as accessing a ticket item. In
[10] this approach was applied to federations including some
sites using SI, while others used algorithms (such as two-
phase locking) that ensured local serializability. Note that
all of this work is incomparable to our discussion, where a
varying concurrency method is associated with each separate
transaction, rather than with separate parts of the data.

A quite different approach to ensuring correctness when
mixing isolation levels is in [3], which uses specific knowl-
edge of the integrity constraints that are required, and the
condition proved is that the given constraint is preserved,
rather than more general serializability as in this paper.

2. BACKGROUND MATERIAL
In this section we summarize the standard concepts and

definitions, on which we will build our results.

2.1 Combinatorics definitions
We collect here definitions we use of concepts from discrete

mathematics, especially combinatorics. The concepts are
all wide-spread, but terminology varies widely, so we give
definitions to prevent confusion.

A directed graph consists of a set of nodes and a set of
edges. Each edge is defined as an ordered pair of nodes,
called the source and target of the edge. Thus any binary
relation on a set can be used to define a directed graph,
whose edges are the pairs in the relation.

In a labelled directed graph, each edge is associated to a
non-empty subset of the labels. Thus the set of edges as-
sociated to a given label defines a subgraph of the original
directed graph. Note that we do allow an edge to have mul-
tiple labels.

A directed walk in a directed graph G is an alternating
sequence of nodes and edges, vα, eα, vβ , eβ , . . . , vη, such
that each edge e has as source the node v which immediately

precedes e in the walk, and as target the node v′ which im-
mediately follows e. A cycle is a directed walk whose initial
node and final node are equal, and where no other repeti-
tions occur among the nodes of the sequence. A directed
graph is called acyclic if it does not contain a cycle.

A cycle vα, eα, vβ , eβ , . . . , vα in the directed graph G is
called chord-free if for every pair of nodes (vψ and vφ, say)
which occur in the cycle and are not joined by an edge in
the cycle, then vψ and vφ are also not joined in G. Note
that our definition allows the case where successive nodes in
the chord-free cycle are joined by a reverse edge in G. If a
cycle is of minimal length in G, it is necessarily chord-free.

A partially ordered set (X, �) is a set X with a binary
relation � on X that is reflexive, antisymmetric and tran-
sitive. A partially ordered set is called a lattice if every pair
of elements x and y have a least upper bound (also called
join) x ∨ y and a greatest lower bound (also called meet)
x∧y. In a lattice (X, �), a set of the form {x ∈ X : x � a}
is called a principal ideal generated by a.

2.2 Concurrency Control Algorithms
The traditional state-of-the-practice for concurrency con-

trol has been based on locks [6]. Most products allow each
transaction to explicitly set and release some locks, and they
also provide implicit mechanisms based on the transaction
declaring an isolation level; the DBMS engine then sets locks
on various items accessed, and it ensures that conflicting
locks can’t be held on any item (a request for an unobtain-
able lock will block until the lock becomes available). There
are many subtle issues to ensure acceptable performance, in-
cluding detecting and handling deadlocks, using locks at sev-
eral granularities (with appropriate intention modes to keep
them coordinated) and also setting locks appropriately when
using indices in a predicate read, which calculates which
records match the where clause in a query (see section 7.8
of [6]). For full isolation, the key feature is that locks must
be held until the transaction completes (this implies that
locking obeys the “Two phase” rule where no new locks are
obtained by a transaction once it has released any lock). In
this paper we will refer to this as Strict Two-Phase Locking
(abbreviated as S2PL) concurrency control2.

The seminal paper [2] attacked the traditional view of iso-
lation definitions, in part by pointing to an algorithm that
avoids all the traditional anomalous executions, and yet it
allows interleavings that are not serializable, and lead to
violation of integrity constraints. This concurrency control
algorithm is called Snapshot Isolation (abbreviated as SI),
and it has been implemented in much-used DBMS engines,
for example in Oracle [7] and PostgreSQL (however, both
these products use the algorithm inappropriately for the

2The SQL standard uses the term “SERIALIZABLE” isola-
tion level, and it does not assume that the particular strict
two-phase locking algorithm is used. However, our the-
ory depends crucially on the particular mechanism, where
commit-duration locks are held, and so we will throughout
the paper refer to the S2PL isolation level. We reserve the
term Serializable for the standard theoretical definition of an
interleaved execution of many transactions, some of which
may be declared with different isolation levels, but which
are interleaved in a way that see the same values and leave
the same final state, as happens in a serial pattern of exe-
cution [8, 4, 12]. We note that when every transaction uses
the S2PL isolation mechanism, then the whole execution is
serializable.

situation when the application programmer declares that
a transaction should be “Serializable”). The forthcoming
Yukon release of Microsoft SQL Server will also provide this
algorithm, as a weaker alternative isolation level alongside
S2PL.

SI is a multiversion mechanism: it keeps several versions
of an item around at the same time, and allows a transaction
to access other versions as well as the most recent value for
the item. In many implementations, keeping the versions is
being done anyway, for support of possible rollback events.
When a transaction T using the SI mechanism wishes to
access an item, it sees the version which was most recently
committed at the time T started. (One exception to this
is when T has itself issued a modification to the item; in
that situation, T sees its own most recent version.) This
use of the state as it was when T started, called T’s snap-
shot, applies also to indices when evaluating where clauses.
In effect, T’s updates are kept in a private universe, not
visible to other transactions, until T’s commit, when the
versions it created become installed and visible to all. In or-
der to avoid lost updates, a transaction T running with the
SI mechanism, will not be allowed to commit if it will install
a version of some item x which overwrites a version which
was installed while T was active (and thus which was not
part of T’s snapshot). This is called the “First Committer
Wins” rule.

While it is not mentioned in [2], implementations of SI
such as Oracle’s ensure that a version of an item x produced
by an SI transaction T must be protected by an exclusive
lock from the time it leaves any private universe of T, until
(and including the instant when) the version is installed be-
cause T commits. The exclusive lock must be obtained fol-
lowing the normal rules for such locks (e.g. intention locks
must be obtained on enclosing granules, the lock can’t be
obtained if a conflicting lock is held by another transaction,
etc). We require this, as it ensures that SI and S2PL trans-
actions avoid lost update interleavings with one another.
Similarly, the check against overwriting a version which was
installed while an SI transaction T was active, will cover
versions produced by locking transactions as well as versions
produced by SI transactions.

We have described the SI mechanism quite broadly. Our
results will also apply to various special cases: for example,
some implementations of SI do not use a private universe for
an SI transaction T. Instead they have T do its update in-
place, with T taking an exclusive lock, and performing the
check against overwriting another version, at the time the
SI transaction creates the version; then T holds the lock till
commit. This has the properties stated above (the lock is
held from the time the version enters the public space until
T commits, and T doesn’t commit if it produces a version
that overwrites one installed while T was active) and so our
theory will apply to this implementation just as much as
to an implementation that works in a private universe for
each SI transaction, and only takes the lock and performs
the check and moves the version from private space to the
shared database, at the time T commits.

2.3 Multiversion serializability theory
In this paper we will follow the approach of [9], to define

the conflict serializability of a multiversion execution. This
differs slightly from [4, 12], which define serializability. One
difference is that [9] includes extra conflict edges between

all writes to an item, whereas [4, 12] don’t include edges
leading out of a version that is never observed (a situation
that can only arise if blind writes occur). Another difference
is that [9] deals with a specific version order (that defined
by commit times) whereas [4, 12] require only the existance
of an order on the versions of an item. For simplicity of the
theory, we only consider sequences (total orders) of activity;
we do not include in our model the possibility of events that
are unordered in time.

A transaction Ti is represented as a sequence of actions.
Each action is either a read ri[x] of some data item x, or
else a write wi[y] of an item y. The set of items on which
Ti has a read action is denoted as rset(Ti), and the set of
items on which Ti has a write action is wset(Ti). We usu-
ally omit explicit mention of it, but for precise definitions
we consider an initializing transaction T−∞ whch writes the
initial version of every item, and a finalizing transaction T∞
which reads the final version of every item.

For notational simplicity, but without serious loss of gen-
erality, this type of model does not allow for the the same
item to be accessed in the same way more than once within
the transaction; that is, the sequence Ti may not contain two
identical actions such as . . .wi[x] . . .wi[x] As an addi-
tional restriction in this paper, we will assume that if Ti
contains both ri[x] and wi[x], then the sequence places ri[x]
before wi[x]. This is not a serious limitation on expressive-
ness, however, since both SI and S2PL mechanisms ensure
that when a transaction tries to read an item which it previ-
ously wrote, the version observed is the one the transaction
itself created; thus the read has no impact on serializabil-
ity, and it can simply be omitted from the formal model,
with the advantage that all the remaining reads in an SI
transaction are taken from the transaction’s snapshot. To
represent an execution of the DBMS, which interleaves the
transactions, we use a sequence of operations. The opera-
tions which can occur in an execution are the following

• rj [xk], for some transactions Tj and Tk and some item
x, representing a read on item x invoked by Tj which
returns the value found in the version of x produced
by Tk

• wj [xj], for some transaction Tj and some item x, repre-
senting a write on item x invoked by Tj which produces
a new version

• start(Tj) which represents the beginning of execution
by transaction Tj

• commit(Tj) which represents the commit by transac-
tion Tj

• slockj [x] for some transaction Tj and some item x,
representing the obtaining of a shared lock on item x
on behalf of transaction Tj . (Note that locks are set
on items, rather than on versions.)

• xlockj [x] for some transaction Tj and some item x,
representing the obtaining of an exclusive lock on item
x on behalf of transaction Tj

A sequence H of such operations represents an execution
of the transactions T1, T2, . . . , Tn, provided the following
criteria are all met:

transaction structure For each transaction Ti, there is
a translation function hi that maps each action wi[x]
of Ti into an operation wi[xi] that occurs in H, and
maps each action ri[x] of Ti into an operation ri[xj]
that occurs in H, for some j such that wj [xj] occurs
in H.

transaction ordering For any transaction Ti, the opera-
tion start(Ti) occurs in H before any operation of the
form wi[xi], ri[xk] for some k, slocki[x] or xlocki[x];
the operation commit(Ti) occurs in H after every op-
eration of the given form; and for any actions o and o′

where o is ordered before o′ in the transaction Ti, the
operation hi(o) occurs before hi(o

′) in H.

lock rules The lock operations are allowed by usual lock-
ing rules: whenever o = slockj [x] occurs in H, it
is preceded by commit(Tk) for every transaction Tk
such that H contains xlockk[x] preceding o; and when-
ever o′ = xlockj [x] occurs in H, it is preceded by
commit(Tk) for every transaction Tk such that H con-
tains either xlockk[x] or slockk[x] preceding o′.

concurrency control The operations of each transaction
follow the concurrency control mechanism allocated
for that transaction. If Ti is running with SI, then
whenever H contains a write wi[xi], then H contains
xlocki[x], and whenever H contains ri[xk], then xk is
the version of x whose writer Tk committed most re-
cently before start(Ti) in H. On the other hand, if
Ti is running with S2PL, then whenever H contains a
write o = wi[xi], then H contains xlocki[x] before o,
and whenever H contains a read o′ = ri[xk], then H
contains slocki[x] before o, and also xk is the version
of x whose writer Tk committed most recently before
o′ in H.

Note that in our model, we do not include any operations
for transactions which do not commit. The assumption here
is that an underlying recovery mechanism will rollback any
activity of an aborted transaction. Both SI and S2PL ensure
that a transaction does not observe any version until the
writer of the version has committed.

In order to define the conflict graph for an execution, we
first define an order on the versions of a given item. If
H contains wj [xj] and wk[xk], then we say that the ver-
sion xj precedes the version xk (written xj � xk) provided
commit(Tj) occurs before commit(Tk) in H. Note that this
order is irreflexive, transitive and antisymmetric.

We now define the conflict serialization graph CSG(H).
The nodes of CSG(H) are the transactions that occur in H;
there are labelled edges which show the implied flow of infor-
mation (also called conflict) which is revealed in operations
that conflict, namely two operations which are on versions
of the same item, and where at least one version is a write.
When we do not need to distinguish between the labels, we
write Tj → Tk to indicate that at least one of the relations

holds: either Tj
wr→ Tk or Tj

ww→ Tk or Tj
rw→ Tk.

(wr edge) We say that Tj

wr
→
x Tk if H contains either an

operation rk[xj], or else it contains an operation rk[xm]

for a version xm where xj � xm. We say Tj
wr→ Tk if

there exists some item x such that Tj

wr
→
x Tk.

(ww edge) We say that Tj

ww
→
x Tk if H contains two opera-

tions wj [xj] and wk[xk], and xj � xk (recall that this
means commit(Tj) occurs before commit(Tk)). We say

Tj
ww→ Tk if there exists x such that Tj

ww
→
x Tk.

(rw edge) We say that Tj

rw
→
x Tk if H contains operations

rj [xm] and wk[xk] where xm � xk. Thus Tj reads a
version of x and does not see the changes introduced
by Tk. We say Tj

rw→ Tk if there exists some item x

such that Tj

rw
→
x Tk. In this case it is traditional to say

that there is an antidependency from Tj to Tk.

Two executions H and H ′ on the same set of transactions
are called conflict-equivalent if CSG(H) = CSG(H ′). Be-

cause an operation rk[xj] is captured by an edge Tj

rw
→
x Tk,

conflict equivalent executions must involve the same read
and write operations (in particular, a read must observe the
same version in each execution).

An execution is called 1-copy serial provided all the op-
erations associated to a given transaction Ti occur together
in the sequence with no operations of another transaction
interleaving, and every read of an item x sees the version of
x which was most recently written. This choice of version
means that the execution could occur in a system which in
fact updated each item in place, and did not allow access to
older versions. An execution which is conflict-equivalent to
a 1-copy serial execution is called conflict serializable.

The main result of serializability theory is that the conflict
graph provides a test for conflict serializability.

Theorem 1. An execution H is conflict serializable if
and only if CSG(H) is acyclic.

3. CONFLICT THEORY
In this section we use multiversion serializability theory to

identify certain conflict patterns which necessarily occur in
a non-serializable execution of a set of transactions, some of
which are running using SI while the others execute under
S2PL. All our statements refer to a particular execution H
of a collection of transactions. In the next section, we will
consider other “interference” facts, which refer to a set of
transactions each with an allocated isolation level, and to
the set of all possible executions of those transactions.

We begin this section by examining possible conflict edges
formed between two transactions, each of which is running
with SI or with S2PL. Next we show a particular pattern of
edges that appears in the conflict graph formed in the case
where H is an execution that is not conflict-serializable.

For the rest of this section, we will make the universal
assumption that H is an execution of a set of transactions
Ti for i from 1 to n, in which each transaction is using either
S2PL or SI as its concurrency control mechanism (of course,
we allow that some transactions are using one while others
use the alternative mechanism).

We begin with some simple observations about the possi-
ble conflict edges, and the order of operations in H.

Lemma 1. If H contains an operation o = rk[xj], then
commit(Tj) occurs before rk[xj] in H.

Proof. Since H contains rk[xj], by the transaction struc-
ture property it must contain an operation wj [xj] which

produced the version read by Tk, and by the concurrency
control property, that operation wj [xj] must be before o in
H.

If Tk is running with SI as its mechanism, then by def-
inition Tj must have been the last writer of x to commit
before start(Tk); in particular, commit(Tj) must occur be-
fore start(Tk) which is itself before rk[xj].

On the other hand, if Tk is running with S2PL as its
mechanism, then it holds a shared lock on x at the time of
rk[xj]. No matter whether Tj runs with SI or S2PL, it takes
an exclusive lock on the item x, before placing the version in
public space, and that exclusive lock is held till commit(Tj);
thus we see that rk[xj] must occur after the exclusive lock
is released, that is, after commit(Tj).

No matter which concurrency control mechanism is used
by Tk, we have shown that commit(Tj) occurs in H before
rk[xj].

Lemma 2. If commit(Tj) occurs in H before start(Tk)
(and therefore every operation of Tj occurs before every op-
eration of Tk), then there does not exist any edge Tk → Tj
in CSG(H).

Proof. We prove the contrapositive. Suppose Tk → Tj .
We must show commit(Tj) occurs after start(Tk). So con-
sider the three varieties of conflict.

(wr edge) The definition of this conflict shows that H con-
tains either an operation rj [xk], or else it contains an
operation rj [xm] for a version xm where xk � xm. IfH
contains rj [xk], then by Lemma 1, commit(Tk) occurs
before rj [xk]. On the other hand, if H contains rj [xm]
for a version xm where xk � xm, then again Lemma 1
shows that commit(Tm) occurs before rj [xm]; however
the definition of version order shows commit(Tk) is be-
fore commit(Tm). Thus no matter which operation

gives rise to the edge Tk
wr→ Tj , we have shown that

commit(Tk) is before an operation of Tj (either rj [xk]
or rj [xm]). However the transaction order property
shows that start(Tk) is before commit(Tk) and that
any operation of Tj is before commit(Tj). Combining
these facts shows that start(Tk) is before commit(Tj),
as required.

(ww edge) Here H must contain wk[xk] and wj [xj] for
some item x, where xk � xj . The definition of version
order shows that commit(Tj) must be after commit(Tk),
but commit(Tk) is after start(Tk) as H has the trans-
action order property.

(rw edge) In this case, H contains operations rk[xm] and
wj [xj] where xm � xj .

If Tk is using SI as its concurrency control mechanism,
then Tm must be the last transaction that writes a ver-
sion of x and commits before start(Tk). Since Tj does
write a version of x, and it commits after Tm commits,
Tj must not be leigible to form part of the snapshot
of Tk. That is, commit(Tj) must be after start(Tk) as
required. On the other hand, if Tk is using S2PL as its
concurrency control mechanism, then Tm must be the
last transaction that writes a version of x and com-
mits before rk(xm). Since Tj does write a version of
x, and it commits after Tm commits, Tj must not be
eligible to be seen by the read. That is, commit(Tj)
must be after rk[xm], which is itself after start(Tk) by

the transaction order property. Thus no matter which
concurrency control mechanism is used by Tk, we have
shown commit(Tj) must be after start(Tk), as required.

For each variety of conflict edge we have shown the re-
sult.

We now give the key technical results which will drive the
theory we develop.

Lemma 3. If CSG(H) contains a conflict edge Tj → Tk,
and if commit(Tk) occurs before commit(Tj) in H, then

(i) rset(Tj) ∩ wset(Tk) 6= ∅

(ii) wset(Tj) ∩ wset(Tk) = ∅

(iii) Tj is running at SI in H

Proof. We use case analysis on the different types of
conflict in the definition of Tj → Tk.

• Tj ww→ Tk.
Here Tj writes a version, say version xj of item x,
and Tk writes a later version xk, where xj � xk.
By the definition of version order, commit(Tk) is af-
ter commit(Tj) in H. This contradicts the hypothesis
of this lemma; thus this case can’t occur.

• Tj wr→ Tk.
Here Tj writes a version, say version xj of item x, and
Tk reads that version, or else Tk reads a later version.
That is, H contains rk[xj] or else H contains rk[xm]
for some m where xj � xm. If H contains rk[xj], then
by Lemma 1, in H the operation commit(Tj) occurs
before rk[xj], which itself occurs before commit(Tk).
On the other hand, if H contains rk[xm] for xj � xm,
then by Lemma 1, in H the operation commit(Tm) oc-
curs before rk[xm]; however, by the definition of ver-
sion ordering commit(Tj) occurs before commit(Tm),
and by the nature of transactions rk[xm] occurs be-
fore commit(Tk). Thus we see that again commit(Tj)
occurs in H before commit(Tk). This contradicts the
hypothesis of this lemma; and so this case can’t occur.

• Tj rw→ Tk.
Here H contains an operation rj [xn] and an operation
wk[xk], and xn � xk. That is, Tj reads an item x and
doesn’t see the version written by Tk. This already
proves (i), since x ∈ rset(Tj) ∩ wset(Tk).

If Tj is using S2PL as its concurrency control mecha-
nism, then it will keep the corresponding shared lock
on x till commit(Tj), so installation of version xk will
be later, after the shared lock is released, because Tk
must have an exclusive lock when its version is in-
stalled (this is so whether Tk uses S2PL or SI). Since
Tk’s version is installed at commit(Tk), this contradicts
the hypothesis that commit(Tk) precedes commit(Tj).
Thus we have proved (iii): that Tj is running under
SI.

Now because an SI transaction works on a snapshot
containing the committed state when the reader starts,
and because Tj does not observe the version written
by Tk, we must have that commit(Tk) is after start(Tj)
in H; combined with the hypothesis that commit(Tk)

is before commit(Tj) this says that commit(Tk) is dur-
ing the active period of Tj . Now if there is any item
in intersecting writesets, then the first committer wins
rule of SI will abort Tj . This contradicts the assump-
tion that Tj commits! Thus there is no item in the
intersection of the writesets of Tj and Tk, proving (ii).

For each variety of conflict edge we have shown the re-
sult.

Lemma 4. If in CSG(H) there is a conflict edge Tj → Tk
such that commit(Tj) occurs after start(Tk) in H, and Tk is
running at SI, then

(i) rset(Tj) ∩ wset(Tk) 6= ∅

(ii) wset(Tj) ∩ wset(Tk) = ∅
Proof. We use case analysis on the different types of

conflict in the definition.

• Tj ww→ Tk.
Tj writes a version xj of some item x and Tk writes
a later version xk, so by definition of version order,
commit(Tk) occurs in H after commit(Tj). Combined
with the hypothesis of this lemma, we have that commit(Tj)
occurs while Tk is running. That is, a version of x was
installed by Tj while Tk was running, and Tk also in-
stalled a version of the same item. This contradicts the
First Committer Wins rule for Tk which we recall is
hypothesized to be using SI as its concurrency control.
Thus this case can’t happen.

• Tj wr→ Tk.
Here Tj writes a version, say version xj of item x, and
Tk reads that version, or else Tk reads a later version.
That is, H contains rk[xj] or else H contains rk[xm]
for some m where xj � xm. Because Tk is using SI,
the version produced by Tj (or a later version) forms
part of Tk’s snapshot, which contradicts the hypothesis
that commit(Tj) is after start(Tk). Thus this case can’t
happen.

• Tj rw→ Tk.
Here H contains an operation rj [xn] and an operation
wk[xk], and xn � xk. That is, Tj reads an item x and
doesn’t see the version written by Tk. This already
proves (i) since x ∈ rset(Tj)∩wset(Tk). To prove (ii) we
divide the discussion based on the concurrency control
mechanism used by Tj .

– If Tj is using S2PL as its mechanism, then it
will keep the shared lock on x obtained for rj [xn]
till commit(Tj), so installation of the version xk
(which by the nature of Tk’s SI mechanism hap-
pens at commit(Tk) when Tk has an exclusive lock
on x) must be later. That is, commit(Tj) occurs
during execution of Tk. If there was any item in
intersection of writesets, the First committer wins
rule of SI transactions would abort Tk. Thus in
this case there is no item in intersection of write-
sets.

– If Tj is using SI, then either commit(Tj) is be-
fore commit(Tk) or vice versa. In the first case,
commit(Tj) is during execution of Tk, so if there
are any items in intersecting writesets, then first

committer wins rule of SI would abort Tk. Thus
in this case the intersection of writesets must be
empty. On the other hand, if commit(Tk) is be-
fore commit(Tj), then since Tj doesn’t see Tk in
it’s snapshot, we must have that commit(Tk) oc-
curs during execution of the SI transaction Tj .
Again, first committer wins implies that there is
no item in intersection of writesets.

In both cases we have proved (ii).

For each variety of conflict edge we have shown the re-
sult.

Based on these lemmas, we can state and prove the key
characterization of cycles in the conflict graph. This strength-
ens a result of [1] which showed that when all transactions
use SI, there are two consecutive anti-dependency edges in
a cycle. The importance of this theorem will appear in the
next section, where we will identify as “pivots” those trans-
actions which might fill the role of TB in the following.

Theorem 2. If H is not conflict-serializable, then the
conflict serialization graph CSG(H) contains a chord-free
cycle Tα → Tβ → . . . Tη → Tα, within which there are three
consecutive transactions which we will call TA, TB and TC
(here TC is allowed to equal TA, if the cycle has length 2)
such that

(i) TB runs with SI as its concurrency control mechanism

(ii) rset(TB) ∩ wset(TC) 6= ∅ and wset(TB) ∩ wset(TC) = ∅

(iii) rset(TA) ∩ wset(TB) 6= ∅ and wset(TA) ∩ wset(TB) = ∅

Proof. Since H is a multiversion history which is not
conflict-serializable, there must be at least one cycle in CSG(H).
Therefore, there is a cycle of minimal length, which we call
Tα, Tβ . . . Tη, Tα. Since this cycle has minimal length, it
must be chord-free. Choose TC to be the earliest to commit
among the transactions Tα . . . Tη that make up the cycle,
and then choose TA and TB to be its two immediate prede-
cessors in the cycle. By choice of TC , commit(TB) is after
commit(TC) so we apply Lemma 3 to conclude (i) and (ii).
We also note that start(TB) must be before commit(TC),
as otherwise Lemma 2 shows that TB could not have any
conflict to TC . But, by choice of TC , commit(TA) is after
commit(TC), hence we conclude that commit(TA) is after
start(TB), so we apply Lemma 4 and (i) to conclude (iii).

4. GLOBAL INTERFERENCE THEORY
In this section we consider a given set of transactions
T = T1, T2, . . . , Tn and a given allocation which chooses, for
each transaction, an appropriate concurrency control mech-
anism (either SI or S2PL). We will identify an allocation by
stating which subset S of transactions are allocated to run
with SI as their mechanism (this of course indicates that the
transactions in the complement T −S are each allocated to
run with S2PL as their mechanism). We say that the allo-
cation S for the set of transactions T is acceptable if every
execution H that can arise is conflict-serializable.

To characterize when an allocation for a set of transactions
is acceptable, we will produce a graph showing which trans-
actions interfere with which other transactions. This will

give a global3 directed graph called the interference graph
IG(T), with two varieties of edges. Certain nodes in the
graph will be distinguished as pivots, and our main result
will be that the allocation is acceptable (as defined in the
previous paragraph) exactly when the pivots are all allo-
cated to use S2PL as their concurrency control mechanism.

The interference graph, denoted as IG(T), has the trans-
actions T1, T2, . . . , Tn as nodes, and contains edges which

may be exposed (shown Tj
expo−→ Tk) or protected (shown as

Tj
prot−→ Tk). The definition of these concepts is inspired

by the conditions (ii) and (iii) in Theorem 2. When we do
not need to distinguish between varieties of edges, we use

the notation Tj
glob−→ Tk to indicate some interference edge

exists.
For any ordered pair of transactions we have one of the

following three situations.

(no edge) There is no interference edge from Tj to Tk when
all the following occur: rset(Tj)∩wset(Tk) = ∅, wset(Tj)∩
rset(Tk) = ∅, and wset(Tj) ∩ wset(Tk) = ∅. Thus the
only items accessed in both transactions are not mod-
ified in either.

(exposed edge) There is an exposed edge Tj
expo−→ Tk when

both rset(Tj) ∩ wset(Tk) 6= ∅, and also wset(Tj) ∩
wset(Tk) = ∅.

(protected edge) There is an protected edge Tj
prot−→ Tk

when one of two situations is found

• wset(Tj) ∩ wset(Tk) 6= ∅, or

• (rset(Tj)∩wset(Tk) = ∅, and wset(Tj)∩rset(Tk) 6=
∅).

We note that these cases are a partition: for any ordered
pair Tj and Tk, there will either be no edge, or exactly one
variety of interference edge, from Tj to Tk. Furthermore, we
note that the interference edges come in pairs: when there
is an edge from Tj to Tk then there is also an edge in the
reverse direction, from Tk to Tj . However, in such a pair,
the variety of edge in each direction can be the same, or it
can be different.

It is important to distinguish between the interference
edges of IG(T), which are written with long arrows and indi-
cate the potential for interference between the transactions
due to common access to some item, compared to the short
arrow conflict edges of a dynamic conflict graph CSG(H)
for a particular execution H. A relationship between these
is shown next, showing how the dynamic conflict graph is a
subgraph of the intereference graph, containing at least one
of the directions for each pair or reversed interference edges.

Lemma 5. If Tj → Tk in CSG(H) then Tj
glob−→ Tk in

IG(T). As a partial converse, if Tj
glob−→ Tk in IG(T), then

either Tj → Tk in CSG(H) or else Tj → Tk in CSG(H).

Proof. Suppose Tj → Tk. We proceed by cases, de-

pending on the variety of conflict. If Tj

ww
→
x Tk, then H con-

tains both wj [xj] and wk[xk]. By the transaction structure

3Global here indicates that the graph is determined by the
transactions and allocation, and not by any particular exe-
cution H. In fact, the definition we give will be independent
of the allocation, and determined only by the transactions.

property of an execution, this means that Tj contains wj [x],
and Tk contains wk[x]. Thus x ∈ wset(Tj) ∩ wset(Tk), so

Tj
glob−→ Tk. If Tj

wr
→
x Tk, then H contains either rk[xj] or else

rk[xm] where xj � xm. Whichever is present, transaction
structure shows that Tk contains rk[x]. Also, we deduce in
either case the existance of wj [xj] and so Tj contains wj [x].

Thus x ∈ (wset(Tj) ∩ rset(Tk)), and so Tj
glob−→ Tk. Similarly

if Tj

rw
→
x Tk, then x ∈ (rset(Tj) ∩ wset(Tk)), so Tj

glob−→ Tk.

For the partial converse, suppose Tj
glob−→ Tk in IG(T).

Thus there is some item x in one of the intersections rset(Tj)∩
wset(Tk), wset(Tj) ∩ rset(Tk), or wset(Tj) ∩ wset(Tk).

Suppose x ∈ wset(Tj) ∩ wset(Tk). Then by transaction
structure, H contains both wj [xj] and wk[xk]. Depending
on which transaction commits first, either xj � xk or else

xk � xj . In the first case, Tj
ww→ Tk (and so Tj → Tk),

while in the second case Tk
ww→ Tj (and so Tk → Tj). On the

other hand, suppose x ∈ rset(Tj)∩wset(Tk); then H contains
rj [xm] for some m, and also H contains wk[xk]. One of the
three following cases must hold: either Tm = Tk (in which

case Tk
wr→ Tj) or else Tm commits after Tk (in which case

also Tk
wr→ Tj) or else Tm commits before Tk (in which case

Tj
rw→ Tk). Finally, suppose x ∈ wset(Tj) ∩ rset(Tk); by the

same argument, we show either Tj

wr
→
x Tk or else Tk

rw
→
x Tj .

We say that a node TB in IG(T) is a pivot if there exist
transactions TA and TC (which may be equal to each other),
such that the following three properties all hold

• TA expo−→ TB

• TB expo−→ TC

• TA, TB and TC occur consecutively in a chord-free cy-

cle Tα
glob−→ Tβ

glob−→ . . . Tη
glob−→ Tα in IG(T).

As a special case, note that whenever there are reversed

exposed edges Tj
expo−→ Tk and Tk

expo−→ Tj , then the definition
declares both Tj and Tk to be pivots, in a chord-free cycle
of length 2 where both edges are exposed.

To further illustrate the definition of pivot, consider the
following transactions in a database with data items u, v, x,
y, and z.

• T1 = r1[x]r1[y]w1[x]

• T2 = r2[v]r2[y]r2[z]w2[v]w2[y]

• T3 = r3[u]r3[z]w3[u]w3[z]

• T4 = r4[u]r4[v]r4[x]w4[u]w4[v]

The graph IG(T1, T2, T3, T4) is shown in Figure 1. For
easier visualization, we draw exposed edges with dashed
lines, while protected edges are solid. Notice that the edge
from T4 to T1 is exposed because x is in rset(T4)∩wset(T1),
while wset(T4) ∩ wset(T1) is empty. The edge from T1 to
T4 is protected because (rset(T1) ∩ wset(T4) = ∅, and also
x ∈ wset(T1)∩rset(T4). The edge from T3 to T4 is protected
because u ∈ wset(T3) ∩ wset(T4).

In this example, T1 is a pivot, because of the chord-free

cycle T4
expo−→ T1

expo−→ T2
glob−→ T4. The other nodes are not

pivots. T3 is not a pivot because it has no outgoing exposed

����T1

����T2

����T3

����T4

�
�
�
�
�
�
�
��
�

�
�

�
�

�
�

�	

@
@

@
@

@
@

@
@I

@@

@@

@@

@
@R

expo

-
�

�
�

�
�

�
�

�
�	
��

��

��

�
��

expo

@
@
@
@
@
@
@
@R
@@

@@

@@

@
@I

expo

Figure 1: Example Interference Graph

edge; T4 is not a pivot because it has no incoming exposed
edge; and T2 is not a pivot because its incoming and out-

going exposed edges (namely T1
expo−→ T2

expo−→ T3) can’t be
joined in a chord-free cycle (the only walks from T3 back to
T1 go either though T2 which would give a repeated vertex,
or through T4 where there is a chord directly from T4 to T2).

We now present our main theorem, which shows exactly
when the allocation S ⊂ T is acceptable.

Theorem 3. For a set of transactions T , an allocation
S is acceptable if and only if none of the pivots of IG(T) is
in S.

Proof. We actually prove the contrapositive statement:
there exists an execution which is not conflict-serializable, if
and only if some pivot TB is in S and so is allocated to run
using SI as its mechanism.

So suppose that there is an execution H which is not
conflict-serializable. By Theorem 2, there is in CSG(H)
a chord-free cycle Tα → Tβ → . . . Tη → Tα, within which
there are three consecutive transactions TA, TB and TC such
that (i) TB runs with SI as its concurrency control mecha-

nism; (ii) TB
expo−→ TC in IC(T) (iii) TA

expo−→ TB in IC(T).
We note that Lemma 5 immediately allows us to find a cor-

responding cycle Tα
glob−→ Tβ

glob−→ . . . Tη
glob−→ Tα in IC(T),

and we claim that this cycle is also chord-free. Once we
have proved the claim, we are done, as this chord-free cycle
in IC(T) shows that TB is a pivot, and by (i) above TB runs
with SI.

Thus we must only prove the claim that the cycle is chord-
free. Suppose for the sake of contradiction that some chord

existed in IC(T), say Tφ
glob−→ Tψ. By Lemma 5, either

Tφ → Tψ in CSG(H), or else Tψ → Tφ. In either case,
the appropriate edge forms a chord in the cycle in CSG(H),
contradicting our choice as a chord-free cycle in CSG(H).

On the other hand, suppose that there is a transaction TB
which is a pivot and is in S. By definition of a pivot, there is
a chord-free cycle in IG(T) through TB where the edges into
and out of TB are exposed. That is, (since the cycle can be

written so it starts and ends at TB) we can identify TB
expo−→

Tβ
glob−→ Tγ . . . Tη

expo−→ TB . Consider the following sequence
of operations H in which every transaction except TB runs
serially, with all its operations together. H has start(TB)
as its first operation, followed by all the operations4 of Tβ ,
then all the operations of Tγ , then all the operations of each
other transaction from the chord-free cycle (in order as the
transactions appear in the cycle), then all the operations of
TB except for its start, then all the operations of each other
transaction that did not appear in the chord-free cycle (in
an arbitrary order of transactions).

We claim that H is an execution which can occur for the
given transactions and allocation. To prove the claim, notice
first that whenever transaction Ti is performing reads and
writes in H, then no other transaction can hold any locks
(because the only other transaction that might be running
is TB , and if so, it has performed no reads or writes).

So if Ti is using S2PL as its mechanism, its operations can
proceed without delay. On the other hand, if Ti is not equal
to TB and it is using SI as its mechanism, its reads can of
course proceed (since reads are never delayed in SI), and its
versions can be produced and take the exclusive locks they
need ready to be installed; furthermore, the First Commit-
ter Wins rule will not prevent its commit, since no other
transaction has committed while Ti was active. Finally, for
TB itself (which is using SI as its mechanism), its reads can
proceed, and its versions can be produced and obtain the
exclusive locks so they are ready to be installed; also TB
will not be aborted by the First Committer wins rule, since
none of the transactions that committed during TB ’s activ-
ity (namely Tβ , Tγ , . . . Tη) modify any item that TB wrote.
This last statement is justified by the fact that Tβ and Tη
have an exposed edge with TB (and so have empty intersec-
tion of write sets), while the other nodes in the cycle have no
interference edge at all with TB (because the cycle is chord-
free), and so they also have empty intersection of writesets
with TB .

Furthermore, H is not conflict serializable, since we claim
that the dynamic conflict graph CSG(H) contains a cycle
TB → Tβ → Tγ . . . Tη → TB . Here is the proof of the claim.

• For each edge in the cycle in IG(T) which does not

involve TB , say Tγ
glob−→ Tδ, Lemma 5 shows that either

Tγ → Tδ in CSG(H) or else Tδ → Tγ ; however the
latter is impossible by Lemma 2 since in H Tγ has
committed before any operation of Tδ occurs. Thus
we must have Tγ → Tδ in CSG(H).

• By choice of TB we have TB
expo−→ Tβ in IG(T), that

is, there is some item x in rset(TB) ∩ wset(Tβ). By
construction, start(TB) occurs in H before any trans-
action has committed, so the snapshot for TB (which
we recall is using SI as its mechanism) is the initial
state. Thus when TB reads x, it will see the initial
version, and not see the version written by Tβ . That

is, there is TB
rw→ Tβ in CSG(H).

• By choice of TB we have Tη
expo−→ TB in IG(T), that

is there is some item y in rset(Tη) ∩ wset(TB). By

4The operations of Tβ are start(Tβ), followed by all the read
and write actions of Tβ under appropriate translation func-
tion hβ (interspersed with needed locking operations of Tβ),
and concluded by commit(Tβ).

construction all operations of Tη occur in H before
wB [yB], and so whichever version of y is read by Tη
is not the version which will later be produced by TB .
That is, there is Tη

rw→ TB in CSG(H).

This completes the demonstration of a cycle in CSG(H),
showing that H is not conflict serializable.

For the set of transactions shown in Figure 1, we see that
any allocation is acceptable as long as T1 is allocated to
use S2PL as its concurrency control mechanism; the other
transactions T2, T3, and T4 can be allocated independently
and arbitrarily to use either SI or S2PL.

5. THE LATTICE OF ALLOCATIONS
In this section, we raise the level of abstraction, by think-

ing not of a particular allocation, but rather we look at the
structure of the space A consisting of all possible alloca-
tions. Clearly, we can put a partial order on A. If a1 and a2

are allocations, then we say a1 � a2 if for every transaction
Ti, a1 allocates Ti to an equal or weaker (more permissive)
isolation mechanism than a2 allocates for Ti.

Recall that we have identified each allocation with the
set of transactions which run with SI as their concurrency
control mechanism. So S1 � S2 means S1 ⊆ S2; that is,
the lesser allocation has fewer transactions using SI. Thus
the bottom element of this lattice is the allocation where all
transactions use S2PL; this is certainly acceptable. The top
element of A is the allocation where all transactions use SI;
this may or may not be acceptable, depending on the nature
of the transactions.

Now consider the subset of acceptable allocations, denoted
by ASR. Theorem 3 can be expressed as ASR = {S : S �
(T − P)} where P denotes the set of pivots in IG(T). In
the language of lattice theory, ASR is a principal ideal in A.

This has two consequences. The first says that if we are
given an acceptable allocation, and change some transac-
tions from using SI to using S2PL, then we still have an
acceptable allocation. That is, increasing the strength of
each transaction’s allocated concurrency mechanism can’t
introduce non-serializable executions. This is obvious, and
it could be proved directly, without using any of our new
results.

Corollary 1. If S1 is an acceptable allocation, and S2 ⊆
S1, then S2 is acceptable.

The second consequence is much more surprising. It says
that the join of acceptable allocations (which uses for each
transaction whichever mechanism is the weaker, among those
used in the given allocations) is itself acceptable. We are un-
aware of any way to prove this directly.

Corollary 2. If S1 and S2 are both acceptable alloca-
tions, then the allocation S1 ∪ S2 is also acceptable.

6. CONCLUSIONS AND FURTHER WORK
We have produced the first body of theory which allows

determining the serializability of all executions in a system
where different concurrency control mechanisms are used for
different transactions. We have also been able to character-
ize exactly which transactions need to be allocated to use
S2PL, and which can be allowed to use either SI or S2PL
These results can be used when running transactions in a

DBMS such as the forthcoming Yukon release of Microsoft
SQL Server, which offers both concurrency control mecha-
nisms; they can also be used when running on a platform
such as Oracle, where SI is provided but the application can
obtain S2PL by setting (and holding) explicit shared locks
before reading.

In future work, we intend to study the performance im-
plications of the different acceptable allocations. Intuition
would suggest the maximal acceptable allocation (using S2PL
as little as possible, and SI as much as possible) would
give the best throughput; however this needs to be care-
fully checked. We also will seek to incorporate our results
into tools that will examine a mix of application programs
(which are not explicit sequences of reads and writes, but
rather contain SQL statements and control flow) in order
to determine suitable choices of isolation level for each pro-
gram. In a more theoretical direction, we hope to extend
our work to characterize acceptable allocations where some
transactions use the Read Committed isolation level (that is,
they take short duration shared locks before reading) while
others use SI and still others use S2PL.

7. ACKNOWLEDGMENTS
The author thanks the University of Washington in Seat-

tle, which hosted the sabbatical during which the first stages
of this work occurred. He is also very grateful for construc-
tive feedback on these ideas from members of the Database
Research Group at Microsoft Research, especially from Phil
Bernstein. The presentation was greatly improved by com-
ments from Uwe Roehm and Shirley Goldrei.

8. REFERENCES
[1] A. Adya. Weak consistency: A generalized theory and

optimistic implementations for distributed
transactions (PhD thesis). Technical Report TR-786,
Laboratory for Computer Science, Massachusetts
Institute of Technology, March 1999.

[2] H. Berenson, P. Bernstein, J. Gray, J. Melton,
E. O’Neil, and P. O’Neil. A critique of ansi sql
isolation levels. In Proceedings of ACM SIGMOD
International Conference on Management of Data,
pages 1–10. ACM, June 1995.

[3] A. Bernstein, P. Lewis, and S. Lu. Semantic
conditions for correctness at different isolation levels.
In Proceedings of IEEE International Conference on
Data Engineering, pages 57–66. IEEE, February 2000.

[4] P. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database
Systems. Addison-Wesley, Reading, Massachusetts,
1987.

[5] A. Fekete. Serializability and snapshot isolation. In
Proceedings of Australian Database Conference, pages
201–210. Australian Computer Society, January 1999.

[6] J. Gray and A. Reuter. Transaction Processing:
Concepts and Techniques. Morgan Kaufmann, San
Francisco, California, 1993.

[7] K. Jacobs. Concurrency control: Transaction isolation
and serializability in SQL92 and Oracle7. Technical
report, Oracle White Paper, Part No A33745, July
1995.

[8] C. Papadimitriou. The Theory of Database
Concurrency Control. Computer Science Press, 1986.

[9] Y. Raz. Commitment ordering based distributed
concurrency control for bridging single and multi
version resources. In Proceedings of Third
International Workshop or Research Issues in Data
Engineering: Interoperability in Multidatabase Systems
(RIDE-IMS), pages 189–198. IEEE, June 1993.

[10] R. Schenkel and G. Weikum. Integrating snapshot
isolation into transactional federations. In Proceedings
of 5th IFCIS International Conference on Cooperative
Information Systems (CoopIS 2000), pages 90–101,
September 2000.

[11] W. Weihl. Local atomicity properties: Modular
concurrency control for abstract data types. ACM
Trans. Program. Lang. Syst., 11(2):249–283, April
1989.

[12] G. Weikum and G. Vossen. Transactional Information
Systems: Theory, Algorithms and the Practice of
Concurrency Control and Recovery. Morgan
Kaufmann, San Francisco, California, 2002.

