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Abstract

Publishing data about individuals without revealing sen-
sitive information about them is an important problem. In
recent years, a new definition of privacy calledk-anonymity
has gained popularity. In ak-anonymized dataset, each
record is indistinguishable from at leastk−1 other records
with respect to certain “identifying” attributes.

In this paper we show with two simple attacks that a
k-anonymized dataset has some subtle, but severe privacy
problems. First, we show that an attacker can discover the
values of sensitive attributes when there is little diversity
in those sensitive attributes. Second, attackers often have
background knowledge, and we show thatk-anonymity does
not guarantee privacy against attackers using background
knowledge. We give a detailed analysis of these two at-
tacks and we propose a novel and powerful privacy defi-
nition called ℓ-diversity. In addition to building a formal
foundation forℓ-diversity, we show in an experimental eval-
uation thatℓ-diversity is practical and can be implemented
efficiently.

1. Introduction

Many organizations are increasingly publishing micro-
data – tables that contain unaggregated information about
individuals. These tables can include medical, voter reg-
istration, census, and customer data. Microdata is a valu-
able source of information for the allocation of public funds,
medical research, and trend analysis. However, if individ-
uals can be uniquely identified in the microdata then their
private information (such as their medical condition) would
be disclosed, and this is unacceptable.

To avoid the identification of records in microdata,
uniquely identifying information like names and social se-
curity numbers are removed from the table. However, this
first sanitization still does not ensure the privacy of indi-
viduals in the data. A recent study estimated that 87% of
the population of the United States can be uniquely identi-

fied using the seemingly innocuous attributes gender, date
of birth, and 5-digit zip code [23]. In fact, those three at-
tributes were used to link Massachusetts voter registration
records (which included the name, gender, zip code, and
date of birth) to supposedly anonymized medical data from
GIC1 (which included gender, zip code, date of birth and di-
agnosis). This “linking attack” managed to uniquely iden-
tify the medical records of the governor of Massachusetts in
the medical data [24].

Sets of attributes (like gender, date of birth, and zip code
in the example above) that can be linked with external data
to uniquely identify individuals in the population are called
quasi-identifiers. To counter linking attacks using quasi-
identifiers, Samarati and Sweeney proposed a definition of
privacy calledk-anonymity[21, 24]. A table satisfiesk-
anonymity if every record in the table is indistinguishable
from at leastk − 1 other records with respect to every
set of quasi-identifier attributes; such a table is called ak-
anonymoustable. Hence, for every combination of values
of the quasi-identifiers in thek-anonymous table, there are
at leastk records that share those values. This ensures that
individuals cannot be uniquely identified by linking attacks.

An Example. Figure 1 shows medical records from a
fictitious hospital located in upstate New York. Note that
the table contains no uniquely identifying attributes like
name, social security number, etc. In this example, we di-
vide the attributes into two groups: thesensitiveattributes
(consisting only of medical condition) and thenon-sensitive
attributes (zip code, age, and nationality). An attribute is
marked sensitive if an adversary must not be allowed to dis-
cover the value of that attribute for any individual in the
dataset. Attributes not marked sensitive are non-sensitive.
Furthermore, let the collection of attributes{zip code, age,
nationality} be the quasi-identifier for this dataset. Figure 2
shows a 4-anonymous table derived from the table in Fig-
ure 1 (here “*” denotes a suppressed value so, for example,
“zip code =1485*” means that the zip code is in the range
[14850−14859] and “age=3*” means the age is in the range

1Group Insurance Company (GIC) is responsible for purchasing health
insurance for Massachusetts state employees.
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Non-Sensitive Sensitive
Zip CodeAge Nationality Condition

1 13053 28 Russian Heart Disease
2 13068 29 American Heart Disease
3 13068 21 Japanese Viral Infection
4 13053 23 American Viral Infection
5 14853 50 Indian Cancer
6 14853 55 Russian Heart Disease
7 14850 47 American Viral Infection
8 14850 49 American Viral Infection
9 13053 31 American Cancer
10 13053 37 Indian Cancer
11 13068 36 Japanese Cancer
12 13068 35 American Cancer

Figure 1. Inpatient Microdata

Non-Sensitive Sensitive
Zip Code Age Nationality Condition

1 130** < 30 ∗ Heart Disease
2 130** < 30 ∗ Heart Disease
3 130** < 30 ∗ Viral Infection
4 130** < 30 ∗ Viral Infection
5 1485* ≥ 40 ∗ Cancer
6 1485* ≥ 40 ∗ Heart Disease
7 1485* ≥ 40 ∗ Viral Infection
8 1485* ≥ 40 ∗ Viral Infection
9 130** 3∗ ∗ Cancer
10 130** 3∗ ∗ Cancer
11 130** 3∗ ∗ Cancer
12 130** 3∗ ∗ Cancer

Figure 2. 4-anonymousInpatient Microdata

[30 − 39]). Note that in the 4-anonymous table, each tuple
has the same values for the quasi-identifier as at least three
other tuples in the table.

Because of its conceptual simplicity,k-anonymity has
been widely discussed as a viable definition of privacy in
data publishing, and due to algorithmic advances in creating
k-anonymous versions of a dataset [3, 6, 16, 18, 21, 24, 25],
k-anonymity has grown in popularity. However, doesk-
anonymity really guarantee privacy? In the next section, we
will show that the answer to this question is interestingly
no. We give examples of two simple, yet subtle attacks on
ak-anonymous dataset that allow an attacker to identify in-
dividual records. Defending against these attacks requires a
stronger notion of privacy that we callℓ-diversity, the focus
of this paper. But we are jumping ahead in our story. Let
us first show the two attacks to give the intuition behind the
problems withk-anonymity.

1.1. Attacks Onk-Anonymity

In this section we present two attacks, thehomogene-
ity attack and thebackground knowledge attack, and we
show how they can be used to compromise ak-anonymous
dataset.

Homogeneity Attack: Alice and Bob are antagonistic
neighbors. One day Bob falls ill and is taken by ambulance
to the hospital. Having seen the ambulance, Alice sets out
to discover what disease Bob is suffering from. Alice dis-
covers the 4-anonymous table of current inpatient records
published by the hospital (Figure 2), and so she knows that
one of the records in this table contains Bob’s data. Since
Alice is Bob’s neighbor, she knows that Bob is a 31-year-old
American male who lives in the zip code 13053. Therefore,
Alice knows that Bob’s record number is 9,10,11, or 12.
Now, all of those patients have the same medical condition
(cancer), and so Alice concludes that Bob has cancer.

Observation 1 k-Anonymity can create groups that leak
information due to lack of diversity in the sensitive attribute.

Note that such a situation is not uncommon. As a back-
of-the-envelope calculation, suppose we have a dataset con-
taining 60,000 distinct tuples where the sensitive attribute
can take 3 distinct values and is not correlated with the non-
sensitive attributes. A 5-anonymization of this table will
have around 12,000 groups2 and, on average, 1 out of every
81 groups will have no diversity (the values for the sensi-
tive attribute will all be the same). Thus we should expect
about 148 groups with no diversity. Therefore, information
about 740 people would be compromised by a homogeneity
attack. This suggests that in addition tok-anonymity, the
sanitized table should also ensure “diversity” – all tuples
that share the same values of their quasi-identifiers should
have diverse values for their sensitive attributes.

Our next observation is that an adversary could use
“background” knowledge to discover sensitive information.

Background Knowledge Attack: Alice has a pen-
friend named Umeko who is admitted to the same hospital
as Bob, and whose patient records also appear in the table
shown in Figure 2. Alice knows that Umeko is a 21 year-
old Japanese female who currently lives in zip code 13068.
Based on this information, Alice learns that Umeko’s infor-
mation is contained in record number 1,2,3, or 4. Without
additional information, Alice is not sure whether Umeko
caught a virus or has heart disease. However, it is well-
known that Japanese have an extremely low incidence of
heart disease. Therefore Alice concludes with near certainty
that Umeko has a viral infection.

Observation 2 k-Anonymity does not protect against at-
tacks based on background knowledge.

2Our experiments on real data sets show that data is often veryskewed
and a 5-anonymous table might not have so many groups
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We have demonstrated (using the homogeneity and back-
ground knowledge attacks) that ak-anonymous table may
disclose sensitive information. Since both of these attacks
are plausible in real life, we need a stronger definition of
privacy that takes into account diversity and background
knowledge. This paper addresses this very issue.

1.2. Contributions and Paper Outline

In the previous section, we showed thatk-anonymity is
susceptible to homogeneity and background knowledge at-
tacks; thus a stronger definition of privacy is needed. In the
remainder of the paper, we derive our solution. We start by
introducing an ideal notion of privacy calledBayes-optimal
for the case that both data publisher and the adversary have
full (and identical) background knowledge (Section 3). Un-
fortunately in practice, the data publisher is unlikely to pos-
sess all this information, and in addition, the adversary
may have more specific background knowledge than the
data publisher. Hence, while Bayes-optimal privacy sounds
great in theory, it is unlikely that it can be guaranteed in
practice. To address this problem, we show that the notion
of Bayes-optimal privacy naturally leads to a novelpracti-
cal definition that we callℓ-diversity. ℓ-Diversity provides
privacy even when the data publisher does not know what
kind of knowledge is possessed by the adversary. The main
idea behindℓ-diversity is the requirement that the values of
the sensitive attributes are well-represented in each group
(Section 4).

We show that existing algorithms fork-anonymity can
be adapted to computeℓ-diverse tables (Section 5), and in
an experimental evaluation we show thatℓ-diversity is prac-
tical and can be implemented efficiently (Section 6). We
discuss related work in Section 7, and we conclude in Sec-
tion 8. Before jumping into the contributions of this paper,
we introduce the notation needed to formally discuss data
privacy in the next section.

2. Model and Notation

In this section we will introduce some basic notation that
will be used in the remainder of the paper. We will also
discuss how a table can be anonymized and what kind of
background knowledge an adversary may possess.

Basic Notation. Let T = {t1, t2, . . . , tn} be a table
with attributesA1, . . . , Am. We assume thatT is a sub-
set of some larger populationΩ where each tuple repre-
sents an individual from the population. For example, if
T is a medical dataset thenΩ could be the population of
the United States. LetA denote the set of all attributes
{A1, A2, . . . , Am} and t[Ai] denote the value of attribute
Ai for tuple t. If C = {C1, C2, . . . , Cp} ⊆ A then we

use the notationt[C] to denote the tuple(t[C1], . . . , t[Cp]),
which is the projection oft onto the attributes inC.

In privacy-preserving data publishing, there exist several
important subsets ofA. A sensitive attributeis an attribute
whose value for any particular individual must be kept se-
cret from people who have no direct access to the original
data. LetS denote the set of all sensitive attributes. An
example of a sensitive attribute isMedical Conditionfrom
Figure 1. The association between individuals andMed-
ical Condition should be kept secret; thus we should not
disclose which particular patients have cancer, but it is per-
missible to disclose the information that there exist cancer
patients in the hospital. We assume that the data publisher
knows which attributes are sensitive. All attributes that are
not sensitive are callednonsensitiveattributes. LetN de-
note the set of nonsensitive attributes. We are now ready to
formally define the notion of a quasi-identifier.

Definition 2.1 (Quasi-identifier) A set of nonsensitive at-
tributes{Q1, . . . , Qw} of a table is called aquasi-identifier
if these attributes can be linked with external data to
uniquely identify at least one individual in the general pop-
ulationΩ.

One example of a quasi-identifier is a primary key like
social security number. Another example is the set{Gender,
Age, Zip Code} in the GIC dataset that was used to identify
the governor of Massachusetts as described in the introduc-
tion. Let us denote the set of all quasi-identifiers byQI.
We are now ready to formally definek-anonymity.

Definition 2.2 (k-Anonymity) A table T satisfies k-
anonymity if for every tuplet ∈ T there existk − 1 other
tuples ti1 , ti2 , . . . , tik−1

∈ T such thatt[C] = ti1 [C] =
ti2 [C] = · · · = tik−1

[C] for all C ∈ QI.

The Anonymized TableT ⋆. Since the quasi-identifiers
might uniquely identify tuples inT , the tableT is not pub-
lished; it is subjected to ananonymization procedureand
the resulting tableT ⋆ is published instead.

There has been a lot of research on techniques for
anonymization (see Section 7 for a discussion of related
work). These techniques can be broadly classified into
generalizationtechniques [3, 16],generalization with tu-
ple suppressiontechniques [6, 22], anddata swapping and
randomizationtechniques [1, 13]. In this paper we limit our
discussion only to generalization techniques.

Definition 2.3 (Domain Generalization) A domainD⋆ =
{P1, P2, . . . } is a generalization(partition) of a domainD
if

⋃

Pi = D andPi ∩ Pj = ∅ wheneveri 6= j. For x ∈ D

we letφD⋆(x) denote the elementP ∈ D⋆ that containsx.

Note that we can create a partial order≺G on domains by
requiringD ≺G D⋆ if and only if D⋆ is a generalization of
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D. Given a tableT = {t1, . . . , tn} with the set of nonsen-
sitive attributesN and a generalizationD⋆

N of domain(N ),
we can construct a tableT ⋆ = {t⋆1, . . . , t

⋆
n} by replacing the

value ofti[N ] with the generalized valueφD⋆
N

(ti[N ]) to get
a new tuplet⋆i . The tuplet⋆i is called ageneralizationof the
tupleti and we use the notationti

⋆
→ t⋆i to mean “t⋆i gener-

alizesti”. Extending the notation to tables,T
⋆
→ T ⋆ means

“T ⋆ is a generalization ofT ”. Typically, ordered attributes
are partitioned into intervals, and categorical attributes are
partitioned according to a user-defined hierarchy (for exam-
ple, cities are generalized to counties, counties to states, and
states to regions).

Example 1 (Continued).The table in Figure 2 is a gen-
eralization of the table in Figure 1. We generalized on the
Zip Codeattribute by partitioning it into two sets: “1485*”
(representing all zip codes whose first four digits are 1485)
and “130**” (representing all zip codes whose first three
digits are 130). Then we partitionedAgeinto three groups:
“< 30”, “3*” (representing all ages between 30 and 39),
and “≥ 40”. Finally, we partitionedNationality into just
one set “*” representing all nationalities.

The Adversary’s Background Knowledge. Since the
background knowledge attack was due to the adversary’s
additional knowledge about the table, let us briefly discuss
the type of background knowledge that we are modeling.

First, the adversary has access to the published tableT ⋆

and she knows thatT ⋆ is a generalization of some base table
T . The adversary also knows the domain of each attribute
of T .

Second, the adversary may know that some individuals
are in the table. This knowledge is often easy to acquire. For
example, GIC published medical data about Massachusetts
state employees. If the adversary Alice knows that her
neighbor Bob is a Massachusetts state employee then Al-
ice is almost certain that Bob’s information is contained
in that table. In this case, we assume that Alice knows
all of Bob’s nonsensitive attributes. In addition, the ad-
versary could have knowledge about the sensitive attributes
of specific individuals in the population and/or the table.
For example, the adversary Alice might know that neighbor
Bob does not have pneumonia since Bob does not show any
of the symptoms of pneumonia. We call such knowledge
“instance-level background knowledge,” since it is associ-
ated with specific instances in the table.

Third, the adversary could have partial knowledge about
the distribution of sensitive and nonsensitive attributesin
the population. We call this “demographic background
knowledge.” For example, the adversary may know
P

(

t[Condition] = “cancer”
∣

∣ t[Age] ≥ 40
)

, and may use it
to make additional inferences about records in the table.

Now armed with the right notation, let us start looking
into principles and definitions of privacy that leak little in-
formation.

3. Bayes-Optimal Privacy

In this section we analyze an ideal notion of privacy
called Bayes-Optimal Privacysince it involves modeling
background knowledge as a probability distribution over the
attributes and uses Bayesian inference techniques to reason
about privacy. We introduce tools for reasoning about pri-
vacy (Section 3.1), we use them to discuss theoretical prin-
ciples of privacy (Section 3.2), and then we point out the
difficulties that need to be overcome to arrive at a practical
definition of privacy (Section 3.3).

3.1. Changes in Belief Due to Data Publishing

For simplicity of discussion, we will combine all the
nonsensitive attributes into a single, multi-dimensional
quasi-identifier attributeQ whose values are generalized to
create the anonymized tableT ⋆ from the base tableT . Since
Bayes-optimal privacy is only used to motivate a practical
definition, we make the following two simplifying assump-
tions: first, we assume thatT is a simple random sample
from some larger populationΩ (a sample of sizen drawn
without replacement is called asimple random sampleif
every sample of sizen is equally likely); second, we as-
sume that there is a single sensitive attribute. We would like
to emphasize that both these assumptions will be dropped
in Section 4 when we introduce a practical definition of pri-
vacy.

Recall that in our attack model, the adversary Alice has
partial knowledge of the distribution of the sensitive and
non-sensitive attributes. Let us assume a worst case sce-
nario where Alice knows the complete joint distributionf

of Q andS (i.e. she knows their frequency in the popula-
tion Ω). She knows that Bob corresponds to a recordt ∈ T

that has been generalized to a recordt∗ in the published ta-
bleT ⋆, and she also knows the value of Bob’s non-sensitive
attributes (i.e., she knows thatt[Q] = q). Alice’s goal is
to use her background knowledge to discover Bob’s sensi-
tive information — the value oft[S]. We gauge her success
using two quantities: Alice’sprior belief, and herposterior
belief.

Alice’s prior belief, α(q,s), that Bob’s sensitive attribute
is s given that his nonsensitive attribute isq, is just her back-
ground knowledge:

α(q,s) = Pf

(

t[S] = s
∣

∣ t[Q] = q
)

After Alice observes the tableT ⋆, her belief about Bob’s
sensitive attribute changes. This new belief,β(q,s,T ⋆), is
herposterior belief:

β(q,s,T ⋆) = Pf

(

t[S] = s
∣

∣ t[Q] = q ∧ ∃t⋆ ∈ T ⋆, t
⋆
→ t⋆

)
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Givenf andT ⋆, we can derive a formula forβ(q,s,T ⋆) which
will help us formulate our new privacy definition in Sec-
tion 4. The main idea behind the derivation is to find a set
of equally likely disjoint random worlds (like in [5]) such
that the conditional probabilityP (A|B) is the number of
worlds satisfying the conditionA ∧ B divided by the num-
ber of worlds satisfying the conditionB. We avoid double-
counting because the random worlds are disjoint. In our
case, a random world is any permutation of a simple ran-
dom sample of size n that is drawn from the populationΩ
and which iscompatiblewith the published tableT ⋆. 3

Theorem 3.1 Let q be a value of the nonsensitive attribute
Q in the base tableT ; let q⋆ be the generalized value ofq in
the published tableT ⋆; let s be a possible value of the sen-
sitive attribute; letn(q⋆,s′) be the number of tuplest⋆ ∈ T ⋆

wheret⋆[Q] = q⋆ and t⋆[S] = s′; and let f(s′ | q⋆) be
the conditional probability of the sensitive attribute condi-
tioned on the fact that the nonsensitive attributeQ can be
generalized toq⋆. Then the following relationship holds:

β(q,s,T ⋆) =
n(q⋆,s)

f(s|q)
f(s|q⋆)

∑

s′∈S n(q⋆,s′)
f(s′|q)
f(s′|q⋆)

(1)

Armed with a way of calculating Alice’s belief about
Bob’s private data after she has seenT ∗, let us now examine
some principles for building definitions of privacy.

3.2. Privacy Principles

Given the adversary’s background knowledge, a pub-
lished tableT ⋆ might disclose information in two important
ways:positive disclosureandnegative disclosure.

Definition 3.1 (Positive disclosure)Publishing the table
T ⋆ that was derived fromT results in apositive disclosure
if the adversary can correctly identify the value of a sensi-
tive attribute with high probability; i.e., given aδ > 0, there
is a positive disclosure ifβ(q,s,T ⋆) > 1 − δ and there exists
t ∈ T such thatt[Q] = q andt[S] = s.

Definition 3.2 (Negative disclosure)Publishing the table
T ⋆ that was derived fromT results in anegative disclo-
sure if the adversary can correctly eliminate some possi-
ble values of the sensitive attribute (with high probabil-
ity); i.e., given anǫ > 0, there is a negative disclosure if
β(q,s,T ⋆) < ǫ and there exists at ∈ T such thatt[Q] = q

but t[S] 6= s.

The homogeneity attack in Section 1.1 where Alice de-
termined that Bob has cancer is an example of a positive

3Due to space constraints we had to omit the proof of the following
theorem; see [17] for the derivation of Equation 1.

disclosure. Similarly, in the example from Section 1.1,
even without background knowledge Alice can deduce that
Umeko does not have cancer. This is an example of a nega-
tive disclosure.

Note that not all positive disclosures are disastrous. If
the prior belief was thatα(q,s) > 1−δ, the adversary would
not have learned anything new. Similarly, negative disclo-
sures are not always bad: discovering that Bob does not
have Ebola might not be very serious because the prior be-
lief of this event was small. Hence, the ideal definition of
privacy can be based on the following principle:

Principle 1 (Uninformative Principle) The published ta-
ble should provide the adversary with little additional infor-
mation beyond the background knowledge. In other words,
there should not be a large difference between the prior and
posterior beliefs.

The uninformative principle can be instantiated in sev-
eral ways, for example with the(ρ1, ρ2)-privacy breach
definition [14]. Under this definition, privacy is breached
either whenα(q,s) < ρ1 ∧ β(q,s,T ⋆) > ρ2 or when
α(q,s) > 1 − ρ1 ∧ β(q,s,T ⋆) < 1 − ρ2. An alterna-
tive privacy definition based on the uninformative principle
would bound the maximum difference betweenα(q,s) and
β(q,s,T ⋆) using any of the functions commonly used to mea-
sure the difference between probability distributions. Any
privacy definition that is based on the uninformative prin-
ciple, and instantiated either by a(ρ1, ρ2)-privacy breach
definition or by bounding the difference betweenα(q,s) and
β(q,s,T ⋆) is a Bayes-optimal privacy definition. The specific
choice of definition depends on the application.

Note that any Bayes-optimal privacy definition captures
diversity as well as background knowledge. To see how it
captures diversity, suppose that all the tuples whose nonsen-
sitive attributeQ have been generalized toq⋆ have the same
values for their sensitive attribute. Thenn(q⋆,s′) = 0 for all
s′ 6= s and hence the value of the observed beliefβ(q,s,T ⋆)

becomes 1 in Equation 1. This will be flagged as a breach
whenever the prior belief is not close to 1.

3.3. Limitations of the Bayes-Optimal Privacy

For the purposes of our discussion, we are more inter-
ested in the properties of Bayes-optimal privacy rather than
its exact instantiation. In particular, Bayes-optimal privacy
has several drawbacks that make it hard to use in practice.

Insufficient Knowledge. The data publisher is unlikely
to know the full distributionf of sensitive and nonsensitive
attributes over the general populationΩ from whichT is a
sample.

The Adversary’s Knowledge is Unknown. It is also
unlikely that the adversary has knowledge of the complete
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joint distribution between the non-sensitive and sensitive at-
tributes. However, the data publisher does not know how
much the adversary knows. For example, in the background
knowledge attack in Section 1.1, Alice knew that Japanese
have a low incidence of heart disease, but the data publisher
did not know that Alice knew this piece of information.

Instance-Level Knowledge. The theoretical definition
does not protect against knowledge that cannot be modeled
probabilistically. For example, suppose Bob’s son tells Al-
ice that Bob does not have diabetes. The theoretical def-
inition of privacy will not be able to protect against such
adversaries.

Multiple Adversaries. There will likely be multiple ad-
versaries with different levels of knowledge, each of which
is consistent with the full joint distribution. Suppose Bob
has a disease that is (a) very likely among people in the
age group [30-50], but (b) is very rare for people of that
age group who are doctors. An adversary who only knows
the interaction of age and illness will think that it is very
likely for Bob to have that disease. However, an adversary
who also knows that Bob is a doctor is more likely to think
that Bob does not have that disease. Thus, although ad-
ditional knowledge can yield better inferences on average,
there are specific instances where it does not. Thus the data
publisher must take into account all possible levels of back-
ground knowledge.

In the next section, we present a definition that eliminates
these drawbacks.

4. ℓ-Diversity: A Practical Privacy Definition

In this section we discuss how to overcome the difficul-
ties outlined at the end of the previous section. We derive
theℓ-diversity principle (Section 4.1), show how to instan-
tiate it with specific definitions of privacy (Section 4.2),
outline how to handle multiple sensitive attributes (Section
4.3), and discuss howℓ-diversity addresses the issues raised
in the previous section (Section 4.4).

4.1. Theℓ-Diversity Principle

Recall that Theorem 3.1 allows us to calculate the ob-
served belief of the adversary. Let us define aq⋆-blockto be
the set of tuples inT ⋆ whose nonsensitive attribute values
generalize toq⋆. Consider the case of positive disclosures;
i.e., Alice wants to determine that Bob hast[S] = s with
very high probability. From Theorem 3.1, this can happen
only when:

∃s, ∀s′ 6= s, n(q⋆,s′)
f(s′|q)

f(s′|q⋆)
≪ n(q⋆,s)

f(s|q)

f(s|q⋆)
(2)

The condition in Equation (2) could occur due to a com-
bination of two factors: (i) a lack of diversity in the sensi-

tive attributes in theq⋆-block, and/or (ii) strong background
knowledge. Let us discuss these in turn.

Lack of Diversity. Lack of diversity in the sensitive at-
tribute manifests itself as follows:

∀s′ 6= s, n(q⋆,s′) ≪ n(q⋆,s) (3)

In this case, almost all tuples have the same values for
the sensitive attributeS, and thusβ(q,s,T ⋆) ≈ 1. Note that
this condition can be easily checked since it only involves
counting the values ofS in the published tableT ⋆. We
can ensure diversity by requiring thatall the possible val-
uess′ ∈ domain(S) occur in theq⋆-block with roughly
equal proportions. This, however, is likely to cause signif-
icant loss of information: ifdomain(S) is large then the
q⋆-blocks will necessarily be large and so the data will be
partitioned into a small number ofq⋆-blocks. Another way
to ensure diversity and to guard against Equation 3 is to re-
quire that aq⋆-block has at leastℓ ≥ 2 different sensitive
values such that theℓ most frequent values (in theq⋆-block)
have roughly the same frequency. We say that such aq⋆-
block iswell-represented byℓ sensitive values.

Strong Background Knowledge.The other factor that
could lead to a positive disclosure (Equation 2) is strong
background knowledge. Even though aq⋆-block may haveℓ
“well-represented” sensitive values, Alice may still be able
to use her background knowledge to eliminate sensitive val-
ues when the following is true:

∃s′,
f(s′|q)

f(s′|q⋆)
≈ 0 (4)

This equation states that Bob with quasi-identifiert[Q] = q

is much less likely to have sensitive values′ than any other
individual in theq⋆-block. For example, Alice may know
that Bob never travels, and thus he is extremely unlikely
to have Ebola. It is not possible for a data publisher to
guard against attacks employing arbitrary amounts of back-
ground knowledge. However, the data publisher can still
guard against many attacks even without having access to
Alice’s background knowledge. In our model, Alice might
know the distributionf(q, s) over the sensitive and non-
sensitive attributes, in addition to the conditional distribu-
tion f(s|q). The most damaging type of such information
has the formf(s|q) ≈ 0, e.g., “men do not have breast
cancer”, or the form of Equation 4, e.g., “among Asians,
Japanese have a very low incidence of heart disease”. Note
that a priori information of the formf(s|q) = 1 is not as
harmful since this positive disclosure is independent of the
published tableT ⋆. Alice can also eliminate sensitive val-
ues with instance-level knowledge such as “Bob does not
have diabetes”.

In spite of such background knowledge, if there areℓ

“well represented” sensitive values in aq⋆-block, then Al-
ice needsℓ − 1 damaging pieces of background knowledge
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Non-Sensitive Sensitive
Zip Code Age Nationality Condition

1 1305* ≤ 40 ∗ Heart Disease
4 1305* ≤ 40 ∗ Viral Infection
9 1305* ≤ 40 ∗ Cancer
10 1305* ≤ 40 ∗ Cancer
5 1485* > 40 ∗ Cancer
6 1485* > 40 ∗ Heart Disease
7 1485* > 40 ∗ Viral Infection
8 1485* > 40 ∗ Viral Infection
2 1306* ≤ 40 ∗ Heart Disease
3 1306* ≤ 40 ∗ Viral Infection
11 1306* ≤ 40 ∗ Cancer
12 1306* ≤ 40 ∗ Cancer

Figure 3. 3-DiverseInpatient Microdata

to eliminateℓ − 1 possible sensitive values and infer a pos-
itive disclosure! Thus, by setting the parameterℓ, the data
publisher can determine how much protection is provided
against background knowledge — even if this background
knowledge is unknown to the publisher.

Putting these two arguments together, we arrive at the
following principle.

Principle 2 (ℓ-Diversity Principle) A q⋆-block isℓ-diverse
if contains at leastℓ “well-represented” values for the sen-
sitive attributeS. A table isℓ-diverse if everyq⋆-block is
ℓ-diverse.

Returning to our example, consider the inpatient records
shown in Figure 1. We present a 3-diverse version of the ta-
ble in Figure 3. Comparing it with the 4-anonymous table in
Figure 2 we see that the attacks against the 4-anonymous ta-
ble are prevented by the 3-diverse table. For example, Alice
cannot infer from the 3-diverse table that Bob (a 31 year old
American from zip code 13053) has cancer. Even though
Umeko (a 21 year old Japanese from zip code 13068) is ex-
tremely unlikely to have heart disease, Alice is still unsure
whether Umeko has a viral infection or cancer.

Theℓ-diversity principle advocates ensuringℓ “well rep-
resented” values for the sensitive attribute in everyq⋆-block,
but does not clearly state what “well represented” means.
Note that we called it a “principle” instead of a theorem
— we will use it to give two concrete instantiations of the
ℓ-diversity principle and discuss their relative trade-offs.

4.2.ℓ-Diversity: Instantiations

Our first instantiation of theℓ-diversity principle uses the
information-theoretic notion of entropy:

Definition 4.1 (Entropy ℓ-Diversity) A table isEntropyℓ-

Diverseif for everyq⋆-block

−
∑

s∈S

p(q⋆,s) log(p(q⋆,s′)) ≥ log(ℓ)

wherep(q⋆,s) =
n(q⋆,s)

P

s′∈S

n(q⋆,s′)
is the fraction of tuples in the

q⋆-block with sensitive attribute value equal tos.

As a consequence of this condition, everyq⋆-block has at
leastℓ distinct values for the sensitive attribute. Using this
definition, Figure 3 is actually2.8-diverse.

Since−x log(x) is a concave function, it can be shown
that if we split aq⋆-block into two sub-blocksq⋆

a andq⋆
b

thenentropy(q⋆) ≥ min(entropy(q⋆
a), entropy(q⋆

b )). This
implies that in order for entropyℓ-diversity to be possible,
the entropy of the entire table must be at leastlog(ℓ). This
might not be the case, especially if one value of the sensi-
tive attribute is very common – for example, if 90% of the
patients have “heart problems” as the value for the “Medical
Condition” attribute.

Thus entropyℓ-diversity may sometimes be too restric-
tive. If some positive disclosures are acceptable (for exam-
ple, a clinic is allowed to disclose that a patient has a “heart
problem” because it is well known that most patients who
visit the clinic have heart problems) then we can do bet-
ter. This reasoning allows us to develop a less conservative
instantiation of theℓ-diversity principle calledrecursiveℓ-
diversity.

Let s1, . . . , sm be the possible values of the sensitive at-
tribute S in a q⋆-block. Assume that we sort the counts
n(q⋆,s1), . . . , n(q⋆,sm) in descending order and name the el-
ements of the resulting sequencer1, . . . , rm. One way to
think aboutℓ-diversity is the following: the adversary needs
to eliminate at leastℓ − 1 possible values ofS in order to
infer a positive disclosure. This means that, for example, in
a 2-diverse table, none of the sensitive values should appear
too frequently. We say that aq⋆-block is (c, 2)-diverse if
r1 < c(r2 + · · · + rm) for some user-specified constantc.
For ℓ > 2, we say that aq⋆-block satisfiesrecursive(c, ℓ)-
diversityif we can eliminate one possible sensitive value in
the q⋆-block and still have a(c, ℓ−1)-diverse block. This
recursive definition can be succinctly stated as follows:

Definition 4.2 (Recursive(c, ℓ)-Diversity) In a givenq⋆-
block, letri denote the number of times theith most fre-
quent sensitive value appears in thatq⋆-block. Given a
constantc, the q⋆-block satisfiesrecursive(c, ℓ)-diversity
if r1 < c(rℓ + rℓ+1 + · · · + rm). A tableT ⋆ satisfies re-
cursive(c, ℓ)-diversity if everyq⋆-block satisfies recursive
ℓ-diversity. We say that1-diversity is always satisfied.

Now suppose thatY is the set of sensitive values for
which positive disclosure is allowed (for example, because
they are extremely frequent, or because they may not be an
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invasion of privacy – like “Medical Condition”=”Healthy”).
Since we are not worried about those values being too fre-
quent, letsy be the most frequent sensitive value in theq⋆-
block that isnot in Y and letry be the associated frequency.
Then theq⋆-block satisfiesℓ-diversity if we can eliminate
theℓ − 2 most frequent values ofS not includingry with-
out makingsy too frequent in the resulting set. This is the
same as saying that after we remove the sensitive values
with countsr1, . . . , ry−1, then the result is(ℓ − y + 1)-
diverse. This brings us to the following definition.

Definition 4.3 (Positive Disclosure-Recursive (c, ℓ)-
Diversity). Let Y denote the set of sensitive values for
which positive disclosure is allowed. In a givenq⋆-block,
let the most frequent sensitive value not inY be theyth

most frequent sensitive value. Letri denote the frequency
of the ith most frequent sensitive value in theq⋆-block.
Such aq⋆-block satisfiespd-recursive(c, ℓ)-diversity if one
of the following hold:

• y ≤ ℓ − 1 andry < c
m
∑

j=ℓ

rj

• y > ℓ − 1 andry < c
y−1
∑

j=ℓ−1

rj + c
m
∑

j=y+1

rj

We denote the summations on the right hand side of the both
conditions bytailq⋆(sy).

Now, note that ifry = 0 then theq⋆-block only has sen-
sitive values that can be disclosed and so both conditions
in Definition 4.3 are trivially satisfied. Second, note that if
c > 1 then the second condition clearly reduces to just the
conditiony > ℓ − 1 becausery ≤ rℓ−1. The second condi-
tion states that even though theℓ − 1 most frequent values
can be disclosed, we still do not wantry to be too frequent if
ℓ− 2 of them have been eliminated (i.e., we want the result
to be 2-diverse).

Until now we have treated negative disclosure as rela-
tively unimportant compared to positive disclosure. How-
ever, negative disclosure may also be important. IfW is the
set of values for the sensitive attribute for which negative
disclosure is not allowed then, given a user-specified con-
stantc2 < 100, we require that eachs ∈ W appear in at
leastc2-percent of the tuples in everyq⋆-block, resulting in
the following definition.

Definition 4.4 (Negative/Positive Disclosure-Recursive
(c1, c2, ℓ)-Diversity). Let W be the set of sensitive values
for which negative disclosure is not allowed. A table
satisfies npd-recursive(c1, c2, ℓ)-diversity if it satisfies
pd-recursive(c1, ℓ)-diversity and if everys ∈ W occurs in
at leastc2 percent of the tuples in everyq⋆-block.

4.3. Multiple Sensitive Attributes

Multiple sensitive attributes present some additional
challenges. SupposeS and V are two sensitive at-
tributes, and consider theq⋆-block with the following
tuples: {(q⋆, s1, v1), (q

⋆, s1, v2), (q
⋆, s2, v3), (q

⋆, s3, v3)}.
This q⋆-block is 3-diverse (actually recursive (2,3)-diverse)
with respect toS (ignoringV ) and 3-diverse with respect
to V (ignoringS). However, if we know that Bob is in this
block and his value forS is nots1 then his value for attribute
V cannot bev1 or v2, and therefore must bev3. One piece
of information destroyed his privacy. Thus we see thata q∗-
block that isℓ-diverse in each sensitive attribute separately
may still violate the principle ofℓ-diversity.

Intuitively, the problem occurred because within theq∗-
block,V was not well-represented for each value ofS. Had
we treatedS as part of the quasi-identifier when checking
for diversity inV (and vice versa), we would have ensured
that theℓ-diversity principle held for the entire table. For-
mally,

Definition 4.5 (Multi-Attribute ℓ-Diversity) Let T be a
table with nonsensitive attributesQ1, . . . , Qm1 and sen-
sitive attributes S1, . . . , Sm2 . We say thatT is ℓ-
diverse if for all i = 1 . . .m2, the tableT is ℓ-diverse
when Si is treated as the sole sensitive attribute and
{Q1, . . . , Qm1 , S1, . . . , Si−1, Si+1, . . . , Sm2} is treated as
the quasi-identifier.

As the number of sensitive attributes grows, it is not hard
to see that we will necessarily need larger and largerq∗-
blocks to ensure diversity. This problem may be amelio-
rated through tuple suppression and generalization on the
sensitive attributes, and is a subject for future work.

4.4. Discussion

Recall that we started our journey into Section 4 moti-
vated by the weaknesses of Bayes-optimal privacy. Let us
now revisit these issues one by one.

• ℓ-Diversity no longer requires knowledge of the full
distribution of the sensitive and nonsensitive attributes.

• ℓ-Diversity does not even require the data publisher to
have as much information as the adversary. The pa-
rameterℓ protects against more knowledgeable adver-
saries; the larger the value ofℓ, the more information
is needed to rule out possible values of the sensitive
attribute.

• Instance-level knowledge (Bob’s son tells Alice that
Bob does not have diabetes) is automatically covered.
It is treated as just another way of ruling out possible
values of the sensitive attribute.
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• Different adversaries can have different background
knowledge leading to different inferences.ℓ-Diversity
simultaneously protects against all of them without the
need for checking which inferences can be made with
which levels of background knowledge.

Overall, we believe thatℓ-diversity is practical, easy to
understand, and addresses the shortcomings ofk-anonymity
with respect to the background knowledge and homogene-
ity attacks. Let us now see whether we can give efficient
algorithms to implementℓ-diversity. We will see that, un-
like Bayes-optimal privacy,ℓ-diversity possesses a property
calledmonotonicity. We will define this concept in Section
5, and we show how this property can be used to efficiently
generateℓ-diverse tables.

5. Implementing Privacy Preserving Data Pub-
lishing

In this section we discuss how to build algorithms for
privacy-preserving data publishing using domain general-
ization. Let us first review the search space for privacy-
preserving data publishing using domain generalization
[6, 16]. For ease of explanation, we will combine all the
nonsensitive attributes into a single multi-dimensional at-
tributeQ. For attributeQ, there is a user-defined general-
ization lattice. Formally, we define a generalization lattice
to be a set of domains partially ordered by a generalization
relation≺G (as described in Section 2). The bottom ele-
ment of this lattice isdomain(Q) and the top element is
the domain where each dimension ofQ is generalized to
a single value. Given a base tableT , each domainD⋆

Q in
the lattice defines an anonymized tableT ⋆ which is con-
structed by replacing each tuplet ∈ T by the tuplet⋆,
such that the valuet⋆[Q] ∈ D⋆

Q is the generalization of the
valuet[Q] ∈ domain(Q). An algorithm for data publishing
should find a point on the lattice such that the correspond-
ing generalized tableT ⋆ preserves privacy and retains as
much utility as possible. In the literature, the utility of a
generalized table is usually defined as a distance metric on
the lattice – the closer the lattice point is to the bottom, the
larger the utility of the corresponding tableT ⋆. Hence, find-
ing a a suitable anonymized tableT ⋆ is essentially a lattice
search problem. There has been work on search strategies
for k-anonymous tables that explore the lattice top-down [6]
or bottom-up [16].

In general, searching the entire lattice is computationally
intractable. However, lattice searches can be made efficient
if there is a stopping condition of the form: ifT ⋆ preserves
privacy then every generalization ofT ⋆ also preserves pri-
vacy [16, 22]. This is called themonotonicity property, and
it has been used extensively in frequent itemset mining al-
gorithms [4].k-Anonymity satisfies the monotonicity prop-

erty, and it is this property which guarantees the correctness
of all efficient algorithms [6, 16]. Thus, if we show that
ℓ-diversity also possesses the monotonicity property, then
we can re-use these efficient lattice search algorithms to
find theℓ-diverse table with optimal utility. Although more
of theoretical interest, we can prove the following theorem
that gives a computational reason why Bayes-optimal pri-
vacy does not lend itself to efficient algorithmic implemen-
tations.

Theorem 5.1 Bayes-optimal privacy does not satisfy the
monotonicity property.

However, we can prove that all variants ofℓ-diversity satisfy
monotonicity.

Theorem 5.2 (Monotonicity of Entropy ℓ-diversity)
Entropy ℓ-diversity satisfies the monotonicity property:
if a table T ⋆ satisfies entropyℓ-diversity, then any
generalizationT ⋆⋆ of T ⋆ also satisfies entropyℓ-diversity.

Theorem 5.3 (Monotonicity of NPD Recursive
ℓ-diversity) npd recursive(c1, c2, ℓ)-diversity satisfies the
monotonicity property: if a tableT ⋆ satisfies npd recursive
(c1, c2, ℓ)-diversity, then any generalizationT ⋆⋆ of T ⋆ also
satisfies npd recursive(c1, c2, ℓ)-diversity.

Thus to create an algorithm forℓ-diversity, we simply
take any algorithm fork-anonymity and make the following
change: every time a tableT ⋆ is tested fork-anonymity, we
check forℓ-diversity instead. Sinceℓ-diversity is a property
that is local to eachq⋆-block and since allℓ-diversity tests
are solely based on the counts of the sensitive values, this
test can be performed very efficiently.

6. Experiments

In our experiments, we used an implementation of Incog-
nito, as described in [16], for generatingk-anonymous ta-
bles. We modified this implementation so that it produces
ℓ-diverse tables as well. Incognito is implemented in Java
and uses the database manager IBM DB2 v8.1 to store its
data. All experiments were run under Linux (Fedora Core
3) on a machine with a 3 GHz Intel Pentium 4 processor and
1 GB RAM.

We ran our experiments on the Adult Database from
the UCI Machine Learning Repository [20] and the Lands
End Database. The Adult Database contains 45,222 tuples
from US Census data and the Lands End Database contains
4,591,581 tuples of point-of-sale information. We removed
tuples with missing values and adopted the same domain
generalizations as [16]. Figure 4 provides a brief descrip-
tion of the data including the attributes we used, the num-
ber of distinct values for each attribute, the type of general-
ization that was used (for non-sensitive attributes), and the
height of the generalization hierarchy for each attribute.
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Adults
Attribute Domain Generalizations Ht.

size type
1 Age 74 ranges-5,10,20 4
2 Gender 2 Suppression 1
3 Race 5 Suppression 1
4 Marital Status 7 Taxonomy tree 2
5 Education 16 Taxonomy tree 3
6 Native Country 41 Taxonomy tree 2
7 Work Class 7 Taxonomy tree 2
8 Salary class 2 Sensitive att.
9 Occupation 41 Sensitive att.

Lands End
Attribute Domain Generalizations Ht.

size type
1 Zipcode 31953 Round each digit 5
2 Order date 320 Taxonomy tree 3
3 Gender 2 Suppression 1
4 Style 1509 Suppression 1
5 Price 346 Round each digit 4
6 Quantity 1 Suppression 1
7 Shipment 2 Suppression 1
8 Cost 147 Sensitive att.

Figure 4. Description of Adults and Lands End Databases

Due to space restrictions, we report only a small subset
of our experiments. An exhaustive set of experimental re-
sults can be found in our technical report [17]; those results
are qualitatively similar to the ones we present here.

Homogeneity Attack. We illustrate thehomogeneity at-
tack on a k-anonymized dataset with the Lands End and
Adult databases. For the Lands End Database, we treated
the first 5 attributes in Figure 4 as the quasi-identifier. We
partitioned the Cost attribute into 147 buckets of size 100
and used this as the sensitive attribute. We then generated
all 3-anonymous tables that were minimal with respect to
the generalization lattice (i.e. no table at a lower level of
generalization was 3-anonymous). There were 3 minimal
tables, and 2 of them were vulnerable to the homogeneity
attack. In fact, more than 1,000 tuples had their sensitive
value revealed. Surprisingly, in each of the vulnerable ta-
bles, the average size of a homogeneous group was larger
than 100. The table that was not vulnerable to the homo-
geneity attack was entropy2.61-diverse.

For the Adult Database, we treated the first 5 attributes
in Figure 4 as the quasi-identifier. When we used Occupa-
tion as the sensitive attribute, there were a total of 12 mini-
mal 6-anonymous tables, and one of them was vulnerable to
the homogeneity attack. On the other hand, when we used
Salary Class as the sensitive attribute, there were 9 mini-
mal 6-anonymous tables, and 8 of them were vulnerable.
The 9th table was recursive (6,2)-diverse. This large value
of c (from the definition of recursive(c, ℓ)-diversity) is due
to the distribution of values of the Salary Class attribute:
Salary Class is a binary attribute with one value occurring 4
times as frequently as the other.

Performance. In our next set of experiments, we compare
the running times of entropyℓ-diversity andk-anonymity.
The results are shown in Figures 5 and 6. For the Adult
Database, we used Occupation as the sensitive attribute, and
for Lands End we used Cost. We varied the quasi-identifier
size from 3 attributes up to 8 attributes; a quasi-identifier
of sizej consisted of the firstj attributes of its dataset as
listed in Figure 4. We measured the time taken to return all

6-anonymous tables and compared it to the time taken to re-
turn all6-diverse tables. In both datasets, the running times
for k-anonymity andℓ-diversity were similar. Sometimes
the running time forℓ-diversity was faster, which happened
when the algorithm pruned parts of the generalization lat-
tice earlier than it did fork-anonymity.

Utility. The utility of a dataset is a property that is diffi-
cult to quantify. As a result, we used three different metrics
to gauge the utility ofℓ-diverse andk-anonymous tables.
The first metric, generalization height [16, 21], is the height
of an anonymized table in the generalization lattice; intu-
itively, it is the number of generalization steps that were
performed. The second metric is the average size of the
q∗-blocks generated by the anonymization algorithm. The
third metric is thediscernibility metric [6]. The discerni-
bility metric measures the number of tuples that are indis-
tinguishable from each other. Each tuple in aq∗ block Bi

incurs a cost|Bi| and each tuple that is completely sup-
pressed incurs a cost|D| (whereD is the original dataset).
Since we did not perform any tuple suppressions, the dis-
cernibility metric is equivalent to the sum of the squares of
the sizes of theq∗-blocks.

The first graph in Figure 7 shows the minimum gener-
alization height ofk-anonymous andℓ-diverse tables for
k, ℓ = 2, 4, 6, 8. As the graph shows, ensuring diversity
in the sensitive attribute does not require many more gener-
alization steps than fork-anonymity (note that anℓ-diverse
table is automaticallyℓ-anonymous); the minimum gener-
alization heights for identical values ofk andℓ were either
the same or differed by one.

Nevertheless, we found that generalization height [21]
was not an ideal utility metric because tables with small
generalization heights can still have very large group sizes.
For example, using full-domain generalization on the Adult
Database with 5 quasi-identifiers, we found minimal (with
respect to the generalization lattice) 4-anonymous tables
that had average group sizes larger than 1,000 tuples. The
large groups were caused by data skew. For example, there
were only 114 tuples with age between 81 and 90, while
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Figure 7. Adults Database. Q = {age, gender, race, marital status}

there were 12,291 tuples with age between 31 and 40. So
if age groups of length 5 (i.e. [1-5], [6-10], [11-15], etc)
were generalized to age groups of length 10 (i.e. [1-10],
[11-20], etc), we would end up with very largeq∗-blocks.
Generalization hierarchies that are aware of data skew may
yield higher quality anonymizations. This is a promising
avenue for future work because some recent algorithms [6]
can handle certain dynamic generalization hierarchies.

In order to understand the loss of utility due to domain
generalization better, we chose to study a subsample of the
Adults Database with a lesser data skew in the Age attribute.
It turned out that a 5% Bernoulli subsample of the Adult
Database suited our requirements – most of the Age val-
ues appeared in around 20 tuples each, while only a few
values appeared in less than 10 tuples each. The second
and third graphs in Figure 7 show the minimum average
group size and the discernibility metric cost, respectively,
of k-anonymous andℓ-diverse tables fork, ℓ = 2, 4, 6, 8.
Smaller values for utility metrics represent higher utility.
We found that the bestt-anonymous andt-diverse tables
often had comparable utility. We also found that, in some
cases,ℓ-diversity had worse utility because some utility
must be traded off for privacy. It is interesting to note that
recursive(3, ℓ)-diversity permits tables which have better
utility than entropyℓ-diversity. Figure 7 shows that both the
instantiations ofℓ-diversity have similar costs for the dis-
cernibility metric, but recursiveℓ-diversity permits smaller
average group sizes than the entropy definition. Recursive
(c, ℓ)-diversity is generally less restrictive than entropyℓ-
diversity, because the extra parameter,c, allows us to con-

trol how much skew is acceptable in aq∗-block. Since there
is still some residual skew even in our 5% subsample, the
entropy definition performs worse than the recursive defini-
tion.

7. Related Work

The problem of publishing public-use microdata has
been extensively studied in both the statistics and computer
science communities. The statistics literature, motivated by
the need to publish census data, focuses on identifying and
protecting the privacy of sensitive entries in contingencyta-
bles, or tables of counts which represent the complete cross-
classification of the data. Two main approaches have been
proposed for protecting the privacy of sensitive cells:data
swappingand data suppression. The data swapping ap-
proach involves moving data entries from one cell to an-
other in the contingency table in a manner that is consistent
with the set of published marginals [9, 10, 13]. In the data
suppression approach [8], cells with low counts are simply
deleted, which in turn might lead to the deletion of addi-
tional cells. An alternate approach is to determine asafety
rangeor protection intervalfor each cell [12], and publish
only those marginals which ensure that the feasibility inter-
vals (i.e. upper and lower bounds on the values a cell may
take) contain the protection intervals for all the cell entries.
The above techniques, however, do not provide a strong the-
oretical guarantee of the privacy ensured.

Computer science research also has tried to solve the
data publishing problem. A technique calledk-anonymity

11



has been proposed which guarantees that every individual is
hidden in a group of sizek with respect to the non-sensitive
attributes [24]. It has been shown that the problem ofk-
anonymization by suppressing cells in the table is NP-hard
[18] and approximation algorithms have been proposed for
the same [3]. There has been a lot of study into creating ef-
ficient algorithms fork-anonymity using generalization and
tuple suppression techniques [2, 6, 16, 22]. A different for-
mal definition of privacy was proposed for published data
based on the notion ofblending in a crowdin [7]. However,
since it is an inter-tuple distance centric measure of privacy,
the privacy definition fails to capture scenarios where iden-
tification of even a single attribute may constitute a privacy
breach.

Query answering techniques are very related to the data
publishing approach, where instead of publishing the data,
the database answers queries as long as the answers do
not breach privacy. There has been work on characteriz-
ing the set of views that can be published while keeping
some query answer information-theoretically secret [19].
The paper shows that the privacy required is too strong and
most interesting queries like aggregates are not allowed to
be published. Related techniques in the statistical database
literature (see [1] for a survey), especially auditing [15]and
output perturbation [11], require maintaining state aboutthe
previous queries, while data publishing does not need to
maintain any state of the queries asked. The reader is re-
ferred to our technical report [17] for a more extensive sur-
vey of related work.

8. Conclusions and Future Work

In this paper we have shown that ak-anonymized dataset
permits strong attacks due to lack of diversity in the sensi-
tive attributes. We have introducedℓ-diversity, a framework
that gives stronger privacy guarantees.

There are several avenues for future work. First, we want
to extend our initial ideas for handling multiple sensitive
attributes, and we want to develop methods for continuous
sensitive attributes. Second, although privacy and utility are
duals of each other, privacy has received much more atten-
tion than the utility of a published table. As a result, the
concept of utility is not well-understood.
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