
Privacy Accounting and Quality Control in the

Sage Differentially Private ML Platform

Mathias Lècuyer, Riley Spahn, Kiran Vodrahalli, Roxana Geambasu, and Daniel Hsu

Columbia University

Abstract
We present Sage, the first ML platform that enforces

a global differential privacy (DP) guarantee across all

models produced from a sensitive data stream. Sage ex-

tends the Tensorflow-Extended ML platform with novel

mechanisms and DP theory to address operational chal-

lenges that arise from incorporating DP into ML train-

ing processes. First, to avoid the typical problem with

DP systems of “running out of privacy budget” after a

pre-established number of training processes, we develop

block composition. It is a new DP composition theory

that leverages the time-bounded structure of training pro-

cesses to keep training models endlessly on a sensitive

data stream while enforcing event-level DP on the stream.

Second, to control the quality of ML models produced

by Sage, we develop a novel iterative training process

that trains a model on increasing amounts of data from

a stream until, with high probability, the model meets

developer-configured quality criteria.

1 Introduction
Machine learning (ML) is changing the origin and

makeup of the code driving many of our applications, ser-

vices, and devices. Traditional code, written by program-

mers, consists in algorithms that express business logic,

and a bit of configuration. We keep sensitive data – such

as passwords, keys, and user data – out of our code, be-

cause we often ship the code to untrusted locations, such

as end-user devices and app stores. When we do include

secrets in code, or when our code is responsible for leak-

ing user data to unauthorized parties (e.g., through incor-

rect access control), it is considered a major vulnerability.

With ML, “code” is generated from a training algo-

rithm, a bit of configuration, plus a lot of training data.

Often, the training data comes from users and is personal,

including their private emails, searches, website visits, lo-

cations, purchases, heartbeats, and driving behavior. Code

learned from user data allows personalization and enables

powerful new applications like autonomous driving.

Although ML code incorporates sensitive data, we

often handle it as we would secret-free code, rather

∗This is an abridged version of a paper that is under submission at a

conference [31]. We will make the paper available on arxiv.

than as we would handle sensitive data. ML plat-

forms, such as Google’s Tensorflow-Extended (TFX),

Facebook’s FBLearner, and Uber’s Michelangelo, rou-

tinely push models trained over sensitive data to servers

all around the world [5, 26, 32, 40] and sometimes to end-

user devices [49, 46] for faster predictions. Some compa-

nies also report pushing feature models trained over sen-

sitive data – such as user embedding vectors and statistics

of user activity – into shared model stores that are widely

accessible within the company, even though they may not

enable such wide access for the data itself [26, 32, 43].

Such exposure would be inconceivable in a traditional ap-

plication. Think of a word processor: it might push your

documents to your device for faster access, but it would

be outrageous if it pushed your documents to my device!

There is perhaps a sense that, because ML models ag-

gregate data from multiple users, they “obfuscate” indi-

viduals’ data sufficiently to warrant weaker protection of

the models than of the data itself. However, that percep-

tion is succumbing to increasing evidence that ML models

can leak substantial information about their training sets.

Carlini, et.al. [8] showed that language models trained

over users’ emails leak secrets – such as passwords, social

security numbers, and credit card numbers – that users of-

ten include in their communications. Shokri, et.al. [44]

showed that membership in a training set can be inferred

even when the attacker only has access to a model’s ex-

ternal predictions. Calandrino, et.al. [7] showed that rec-

ommenders leak information across users. Finally, it has

long been established both theoretically and empirically

that access to too many linear statistics from a dataset – as

an adversary might have due to periodic releases of ML

models, which often include statistics used for featuriza-

tion – is fundamentally non-private [3, 13, 24, 27].

As companies continue to disseminate many versions

of ML codes into untrusted domains, it becomes critical

to account for and control the data exposure risks imposed

by these codes. We present Sage, an ML platform based

on TFX that leverages differential privacy (DP) [16] to

control the cumulative leakage of individual entries in a

company’s sensitive data streams through all the ML mod-

els the company releases from those streams. DP random-

izes a computation over a dataset to bound the privacy

75

loss of individual entries in the dataset through its outputs.

Sage makes the process of generating models preserve a

global DP guarantee across all models that it generates.

Sage introduces an additional layer of access control

into ML platforms beyond the traditional access control

lists applied to the raw data. The new layer splits the data

stream into fixed-timeframe blocks and accounts for the

privacy loss incurred from releasing a model or statistic at

the level of the blocks that were used to train the model or

statistic. When the privacy loss for a given block reaches a

pre-configured ceiling, the block is retired and will not be

used again for ML. However, new blocks from the stream

arrive with a clean budget and can be used to train future

models. Thus, Sage controls a stream’s leakage through

ML by controlling ML’s access to the stream’s blocks.

The preceding design for privacy loss accounting raises

substantial semantic and operational challenges for ML

platforms. First, perhaps surprisingly, the design can-

not be supported practically with existing DP composition

theory. We present block composition, the first DP com-

position theory that permits computations on overlapping

subsets of data blocks while accounting for privacy loss

at the level of the specific blocks that are actually used by

each computation. Compared to designs based on tradi-

tional DP composition, our design based on block com-

position leads to more efficient privacy accounting and

ultimately to the first practical approach to address DP’s

“running out of privacy budget” problem for ML work-

loads on continuous data streams.

Second, incorporating DP into the model generation

process decreases the reliability of the ML platform and

raises operational challenges. The models may require

more data to reach the same levels of accuracy as with-

out DP (if they ever reach it). Their evaluation, which

must also be a randomized DP process, may succeed by

mere chance, pushing sub-par models into production. We

describe iterative training, a new process that trains and

evaluates an ML model or statistic on increasing amounts

of data from a stream until, with high probability, the

model meets developer-specified quality criteria.

2 Differential Privacy
DP is concerned with whether the output of a computa-

tion over a dataset – such as training an ML model – can

leak information about individual entries in the dataset. To

prevent leakage, randomness is introduced into the com-

putation to hide details of individual entries.

Definition 1 (Differential Privacy (DP) [21]). A random-

ized algorithm M : D → Y is (ǫ, δ)-DP if for any D,D′

with Hamming distance |D⊕D′
| ≤ 1 and for any S ⊆ Y ,

we have: P (M(D) ∈ S) ≤ eǫP (M(D′) ∈ S) + δ.

Here, ǫ > 0 and δ ∈ [0, 1] are parameters that quantify

the strength of the guarantee: for small values, (ǫ, δ)-DP

implies that observing one draw from the algorithm’s out-

put gives little information about whether it was run on D

or D′, i.e., with or without any individual entry.

Multiple mechanisms exist to make a computation DP.

They add noise to the computation scaled by its sensi-

tivity s, the maximum change in the computation’s out-

put triggered by adding or removing a single entry in

the dataset. Adding noise from a Laplace distribution

with mean zero and scale s
ǫ

(denoted Laplace(0.0, s
ǫ
))

gives (ǫ, 0)-DP. Adding noise from a Gaussian distribu-

tion scaled by s
ǫ

√

2 ln(1.25
δ

) gives (ǫ, δ)-DP.

Known to address the threat of data leakage through

ML [23, 44], DP has been studied extensively in this

domain. DP versions exist for almost every popular

ML algorithm, including: stochastic gradient descent

(SGD) [1, 51]; various regressions [10, 30, 37, 47, 53];

collaborative filtering [34]; feature selection [11]; model

selection [45]; evaluation [6]; and statistics [4, 50].

A key strength of DP is its composition property, which

in its basic form, states that the process of running an

(ǫ1, δ1)-DP and an (ǫ2, δ2)-DP computation on the same

dataset is (ǫ1 + ǫ2, δ1 + δ2)-DP. Composition enables

the development of complex DP computations – such as

DP Training Pipelines – from piecemeal DP components,

such as DP ML algorithms. Composition also lets one

account for the privacy loss resulting from a sequence of

DP-computed outputs, such as periodic release of models.

A distinction exists between user-level and event-level

privacy. User-level privacy enforces DP on all data points

contributed by a user toward a computation. Event-level

privacy enforces DP on individual data points (e.g., indi-

vidual clicks). We focus here on event-level privacy.

3 Sage DP ML Platform
Our effort builds upon an opportunity we observe in to-

day’s companies: the rise of ML platforms, trusted infras-

tructures that provide key services for ML workloads in

production, plus strong library support for their develop-

ment. Google has TensorFlow-Extended (TFX) [5]; Face-

book has FBLearner [26]; Uber has Michelangelo [32].

Each operates differently, but they all provide services for

training and serving models, as well as storage and access

control capabilities that constrain access to the raw data.

The opportunity is to incorporate DP into these platforms

as a new type of access control that constrains data leak-

age through the models a company disseminates.

3.1 Overview

Fig. 1 shows Sage’s architecture through comparison

with a typical ML platform akin to TFX. The differences

are highlighted in yellow background. After describing

the functioning of the non-DP version and the threat in-

herent in it, we describe Sage’s changes and contributions.

Non-DP ML Platform. A typical ML platform has sev-

eral components: Training Pipelines (one for each model

76

composition theory leads either to wasteful privacy ac-

counting or to unnecessarily noisy learning. We thus de-

veloped our own composition theory, dubbed block-level

privacy accounting. It leverages characteristics of ML

workloads to permit both efficient accounting and effi-

cient learning. Our complete paper formalizes the new

theory, which bears broader applications than Sage [31].

This section describes the limitations of existing DP com-

position for ML workloads and gives the intuition for

block-level privacy accounting and how Sage uses it as

a new form of access control in ML platforms.

Characteristics of Data Interaction in ML. Fig. 2 shows

an example of a typical workload as seen by an ML plat-

form. Each “query,” denoted Qi, corresponds to a train-

ing pipeline. We note two characteristics. First, the typ-

ical ML workload consists of multiple training pipelines

launched at different times and operating on overlapping

windows of potentially very different sizes. Q1 may com-

pute a linear regression model, requiring a few days’

worth of data for representative results. Q2 may com-

pute a neural network, requiring many more days of data

to fit properly. Q3 may update a summary statistic com-

puted for each day (such as a feature’s mean or variance),

requiring only data from the previous day.

Second, training pipelines are typically adaptive, i.e.

one pipeline may depend either directly or indirectly on

previous pipelines. A directly dependent query might be a

new query Q4 that is launched because the model learned

by (say) Q2 does not reach its quality target, so the de-

veloper increases the training set size and relaunches the

pipeline. The choice of the data on which Q4 runs, along

with its computation and configuration (e.g., model hyper-

parameter values), is therefore dependent on Q2’s output.

An indirectly dependent query would be one whose train-

ing is impacted by the output of a previous query through

the collected data. Suppose Q2 trains a recommendation

model; then, future data collected from the users may de-

pend on its recommendations, so any subsequent query

will be influenced by Q2’s output.

These characteristics imply three requirements for a

composition theory suitable for ML. It must support:

R1 Queries on overlapping data subsets of diverse sizes.

R2 Adaptivity in the choice of both computation and

data subsets the queries process.

R3 Endless execution on new data from a stream.

Limitations of Existing Composition Theory for ML.

No previous DP composition theory supports all three

requirements. DP has mostly been studied for static

databases, where (adaptively chosen) queries are assumed

to compute over the entire database. Consequently, com-

position accounting is typically made at query level: each

query consumes part of the available privacy budget for

the database. Query-level accounting has carried over

even in extensions to DP theory that handle streaming

databases [20] and partitioned queries [35]. There are

multiple ways to apply query-level accounting to ML,

each trading off at least one of the preceding requirements.

First, one can permit queries on overlapping subsets of

the data (R1) and allow adaptivity across these queries

(R2) by accounting for composition at query level against

the entire stream. In Fig. 2, query-level composition gives

a total privacy loss of ǫ1 + ǫ2 + ǫ3 over the whole stream

after running the three queries. This approach wastes pri-

vacy budget and leads to the problem of “running out of

privacy budget” for the stream. Once ǫg = ǫ1 + ǫ2 + ǫ3,

enforcing a global leakage bound of ǫg means that after

executing query Q3, one must stop using the stream. This

is true despite the fact that not all queries run on all the

data and that there will be new data coming into the sys-

tem in the future (e.g., block D5). This behavior violates

requirement (R3) of endless execution on streams.

Second, one can restructure the training queries to ac-

count for privacy loss at a finer granularity with query-

level accounting. One partitions the data stream in blocks,

as shown on Fig. 2, and splits each training query into

multiple queries each running with DP on an individual

block. The DP results are then aggregated to give the fi-

nal answer, for instance by averaging model updates as

in federated learning [33]. Since each block is a sepa-

rate dataset, traditional composition can account for pri-

vacy loss at block level. This approach supports query

adaptivity (R2) and allows new data blocks added to the

stream to incur no privacy loss from past queries, thereby

enabling endless execution of the system on streams (R3).

However, by forcing the blocks to not overlap, it violates

requirement (R1) and results in unnecessarily noisy learn-

ing [14, 15]. Consider computing a feature average. DP

requires adding noise only once after summing all values

on the combined blocks. But with independent queries

over each block, we must add the same amount of noise

to the sum of each block, yielding a more noisy total.

Block-level Composition Accounting. We have de-

veloped a new composition theory that meets all three

requirements. The data stream is also split into non-

overlapping, fixed-timeframe blocks (e.g., one day’s

worth of data), but we allow queries to run on overlapping

and adaptively chosen sets of blocks (R1, R2). Despite

running overlapping queries, we can still account for the

privacy loss at the level of individual blocks, where each

query only impacts the blocks it actually uses, not the en-

tire data stream. Unused blocks, including future ones,

incur no privacy loss. In Fig. 2, the first three blocks each

incur a privacy loss of ǫ1 + ǫ2 while the last block has

ǫ2 + ǫ3. Thus, after executing these three queries, the pri-

vacy loss over the entire data stream will be the maximum

of these two values. Moreover, when block D5 arrives, its

privacy loss is zero, so the system can run endlessly by

training new models on new data (R3).

79

Sage Access Control. With block-level accounting, Sage

controls data leakage from a sensitive stream by control-

ling DP access to blocks of data from the stream. The

company configures a desirable (ǫg, δg) global policy for

each sensitive stream. The Sage Access Control compo-

nent tracks, for each data block, the available privacy bud-

get for that block. When a new block is added to the Data

Store, its available privacy budget is set to (ǫg, δg). When

a block’s available privacy budget reaches zero, the block

is “retired,” i.e., it will never be allowed to be used again

in ML computations. When the Sage Iterator (described in

§3.4) for a pipeline requests data, Sage Access Control of-

fers only blocks with available privacy budgets. The Itera-

tor then determines the privacy budget (ǫ, δ) it will use for

its iteration and informs Sage Access Control, which then

deducts (ǫ, δ) from the available privacy budgets of those

blocks (assuming they are still available). Finally, the Iter-

ator invokes the developer-supplied DP Training Pipeline,

trusting it to enforce the chosen (ǫ, δ) privacy parameters.

We prove that this access control policy enforces (ǫg, δg)-
DP across all uses of the sensitive stream [31].

3.4 Sage Iterative Training

Sage’s design adds reliability to the DP model train-

ing and validation processes, which are rendered impre-

cise by the DP randomness. We describe two novel tech-

niques: (1) SLAed validation, which accounts for the ef-

fect of randomness in the validation process to give a

high-probability guarantee of correctness for the valida-

tion (akin to a quality service level agreement, or SLA);

and (2) iterative model training, which launches the (ǫ, δ)-
DP Training Pipeline repeatedly on increasing amounts of

data from the stream, and/or with increased privacy pa-

rameters, until the validation succeeds.

SLAed DP Validation. Fig. 1 shows the three possible

outcomes of SLAed model validation: ACCEPT, REJECT,

and RETRY. If SLAed model validation returns ACCEPT,

then with high probability (e.g. 95%) the model reaches

its configured quality targets when predicting on new data

from the same distribution. For certain metrics and under

certain assumptions, it is also possible to give statistical

guarantees of correct negative assessment. In such cases,

if SLAed validation returns REJECT, then with high prob-

ability (e.g., 95%) this type of model will never reach the

configured target, no matter how much data it is trained/-

validated on. Finally, if SLAed validation returns RETRY,

it signals that it needs more data for an assessment.

We have implemented SLAed validators for three

classes of metrics (sage.DPModelValidator in

List. 1): loss metrics (e.g. MSE for regressions), accu-

racy metrics (e.g. for classification), and absolute errors

of sum-based statistics (e.g. mean, variance). Our com-

plete paper [31] details our implementations and justifies

their statistical and DP guarantees. Here, we just include

basic intuition. All validators follow the same logic. First,

we compute a DP version of the test quantity (e.g. MSE)

on a testing set. Second, we compute the worst-case im-

pact of DP noise on that quantity for a given confidence

probability; we call this a correction for DP impact. For

example, if we add Laplace noise with parameter 1

ǫ
to the

sum of squared errors on n data points, assuming that the

loss is in [0, 1] we know that with probability (1 − η) the

sum is deflated by less than −
1

ǫ
ln(1

2η
), because a draw

from this Laplace distribution has just an η probability to

be more negative than this value. Third, we use known

statistical concentration inequalities, also made DP and

corrected for worst case noise impact, to upper bound with

high probability the loss on the entire distribution.

Iterative Training. Sage attempts to improve the quality

of a model and its validation by supplying them with in-

creasing amounts of data or privacy budgets so the SLAed

validator can either ACCEPT or REJECT the model. Sev-

eral ways exist to improve a DP model’s quality. First,

we can increase the dataset’s size: at least in theory, it has

been proven that one can compensate for the loss in ac-

curacy due to any (ǫ, δ)-DP guarantee by increasing the

training set size [29]. Second, we can increase the privacy

budget (ǫ, δ) to decrease the noise added to the computa-

tion: this must be done within the available budgets of the

blocks involved in the training and not too aggressively,

because wasting privacy budget on one pipeline can affect

the ability of other pipelines to train on the same blocks.

Iterative training searches for a configuration that can

be either ACCEPTed or REJECTed by the SLAed valida-

tor. We have investigated multiple strategies for how to do

this search. The ones that have proven most efficient are

those that conserves privacy budget. Briefly, we start out

with a small privacy budget (ǫ0, δ0) and with developer-

configured start time and minimum window size for the

model’s training. On RETRY from the validator, we make

sure to double either the privacy budget or the number

of samples available to the Training Pipeline by accepting

new data from the stream. Our evaluation shows that com-

pared to alternatives, the preceding iteration strategy con-

serves privacy budgets and improves performance when

multiple Training Pipelines contend for the same blocks.

4 Evaluation
We address four questions: (Q1) Does DP impact reli-

ability of TFX Training Pipelines? (Q2) Does Sage’s it-

erative training with SLAed validation increase reliability

of DP Training Pipelines? (Q3) Does block-level account-

ing improve training compared to query-level accounting?

(Q4) How do workloads of multiple pipelines perform un-

der Sage’s (ǫg, δg)-DP regime?

We develop multiple training pipelines on a public

37M-sample dataset from three months of the NYC taxi

dataset [38]. We consider a regression task to predict the

duration of each cab ride using 61 binary features derived

from 10 contextual features about each cab ride. We im-

80

Models: Configuration:

Linear

Regression

(LR)

DP Alg. AdaSSP from [48], (ǫ, δ)-DP

Config. Regularization param ρ : 0.1
Budgets (ǫ, δ) ∈ {(1.0, 10−6), (0.05, 10−6)}
Targets MSE ∈ [2.4× 10−3, 7× 10−3]

Neural

Network

(NN)

DP Alg. DP SGD from [1], (ǫ, δ)-DP

ReLU, Layers: (5K, 100)

Config. Learning rate: 0.01, Epochs: 3

Batch: 1024, Momentum: 0.9

Budgets (ǫ, δ) ∈ {(1.0, 10−6), (0.5, 10−6)}
Targets MSE ∈ [2× 10−3, 7× 10−3]

Statistics: Configuration:

Avg.Speed* Targets Absolute error ∈ {1, 5, 7.5, 10, 15} km/h

Tab. 1: Experimental Training Pipelines. * Statistics at three time

granularities: hour of day, day of week, week of month.

✥

✥�✁

✂

✂�✁

✄

✶☎✆ ✶☎☎✆ ✶✝ ✶☎✝

▼
✞
✟
✠✡
☛
☞☛
☛
✌
✍

❚✎✏✑✒✑✒✓ ✔✏✕✖✗✘✙

▲✚ ✛✜

▲✚ ❡❂✶�☎☎

▲✚ ❡❂☎�☎✁

(a) LR MSE

✢

✢✣✤

✦

✦✣✤

✧

★✩✪ ★✩✩✪ ★✫ ★✩✫

✬
✭
✮
✯✰
✱
✲✱
✱
✳
✴

✵✷✸✹✺✹✺✻ ✼✸✽✾✿❀❁

◆◆ ◆❃

◆◆ ❄❅★✣✩✩

◆◆ ❄❅✩✣✤✩

(b) NN MSE

Fig. 3: Impact of DP on Vanilla Training Pipelines.

plement two predictive training pipelines – linear regres-

sion (LR) and neural network (NN) – and three summary

statistics pipelines – average speeds at three time gran-

ularities. Tab. 1 details the configurations and parame-

ters of each training pipeline. Training: We make each

pipeline DP using known algorithms for the models and

the Laplace method for the summary statistics – as indi-

cated in Tab. 1. Validation: For the predictive models,

we use our loss SLAed validator with MSE as the loss

metric. For our task, a naı̈ve model that always returns

the average ride duration has an MSE of 0.0069, so that

is the upper value we configure for our validation targets.

For the summary statistics we use our sum-based SLAed

validator, with absolute error as the metric. We instan-

tiate each pipeline for multiple quality targets, shown in

Tab. 1, yielding a workload of 25 pipelines. We config-

ure: 90%/10% train/test ratio; δ = 10−6; η = 0.05.

4.1 Unreliability of TFX DP Training Pipelines (Q1)

Fig. 3 show the loss of LR and NN when trained on

increasing amounts of data. Three versions are shown for

each model: the non-DP version (NP), a large DP budget

version (ǫ = 1), and a small DP budget one (ǫ = 0.05
for LR and ǫ = 0.5 for NN). The NN requires the most

data, but achieves the best performance: with sufficient

data, the DP NN outperforms the non-DP LR. The DP

LRs catch up to the non-DP version with the full dataset,

but the DP NNs appear to require more data. Thus, model

η No SLA NP SLA UC DP SLA Sage SLA

0.01 0.379 0.0019 0.0172 0.0027

0.05 0.379 0.0034 0.0224 0.0051

0.10 0.379 0.0039 0.0240 0.0059

Tab. 2: Target Violation Rate of ACCEPTed Models. Violations are

across LR and NN separately trained with iterative training.

❆❇❈

❆❇❇❈

❆❉

❆❇❉

❊ ❋ ● ❍ ■ ❏❘
❑
❖
P
◗❙
❑
❯
❱
❲
❳
❨
❩❑
❱
◗❬
❑

❉❭❪ ❫❴❵❛❜❝ ❞❢❇❣❇❇❆❤

✐❥ ❦❧♠
✐♥ ❦❧♠

♦♣ q♥ ❦❧♠
❦rst ❦❧♠

(a) LR ACCEPT

✉✈✇

✉✈✈✇

✉①

✉✈①

② ③ ④ ⑤ ⑥ ⑦⑧
⑨
⑩
❶
❷❸
⑨
❹
❺
❻
❼
❽
❾⑨
❺
❷❿
⑨

①➀➁ ➂➃➄➅➆➇ ➈➉✈➊✈✈✉➋

➌➍ ➎➏➐
➌➑ ➎➏➐

➒➓ ➔➑ ➎➏➐
➎→➣↔ ➎➏➐

(b) NN ACCEPT

Fig. 4: Sample Complexity of SLAed DP Validation.

quality is impacted by DP but the impact diminishes with

more samples. These results motivate iterative training.

Tab. 2, column No SLA, shows the rate of erroneous

acceptance of DP-trained models with higher MSE than

their specified targets. Here, validation uses a DP version

of the comparison with the target, without Sage’s SLAs.

The false acceptance rate is a little under 40%, a big hike

from the 5.1% false rejection rate with no SLA on the

non-DP pipeline. This result motivates SLAed validation.

4.2 Reliability of Sage DP Training Pipelines (Q2)

Sage’s iterative training and SLAed validators are de-

signed to add reliability to DP model training and vali-

dation. Tab. 2 shows the fraction of ACCEPTed models

violating their quality targets (based a 100K-sample held-

out evaluation set). For three confidences η, we show:

(1) No SLA, the vanilla TFX validation with no statistical

rigor, but where the MSE is DP. (2) NP SLA, a non-private

but statistically rigorous validation. This is the best we

can hope to achieve with statistical confidence. (3) UC

DP SLA, the DP SLAed validation but without the cor-

rection for DP impact. (4) Sage SLA, our DP SLAed val-

idator. We make three observations. First, the NP SLA’s

violation rate is much lower than η: our generalization

bounds are conservative for this task. Second, Sage’s DP-

corrected validation accepts models with violation rates

slightly higher than NP SLA, but well below the config-

ured error rate, η. Third, removing the correction in-

creases the violation rate by 5x, even violating the con-

fidence threshold for η = 0.01; this is despite the conser-

vative generalization bounds! These results confirm that

(1) Sage’s SLAed validation is reliable and (2) its correc-

tion for DP impact is critical for reliability.

The increased reliability of SLAed validation comes at

a cost: SLAed validation requires more data compared of

a non-DP test. This new data is supplemented by Sage’s

iterative training process. Fig. 4 show the amount of

train+test data required to ACCEPT a model under various

81

✥

✥�✁

✂

✂�✁

✄

✶☎✆ ✶☎☎✆ ✶✝ ✶☎✝

▼
✞
✟
✠✡
☛
☞☛
☛
✌
✍

❚✎✏✑✒✑✒✓ ✔✏✕✖✗✘✙

❇✗�✁✂ ✄✁☎✓�

◗✆✘✎✝ ✄✁☎✓� ✁☎✆

◗✆✘✎✝ ✄✁☎✓� ✶☎✆

(a) LR MSE

✶✞✟

✶✞✞✟

✶✠

✶✞✠

✥ ✡ ☛ ☞ ✌ ✍
❘
✎
✏
✑
✒✓
✎
✔
✕
✖
✗
✘
✙✎
✕
✒✚
✎

✠▼✛ ✜✢✣✤✦✧ ★✩✞✪✞✞✶✫

✬✭✮✯✰ ✱✯✧✤

✲✳✦✣✴ ✱✯✧✤ ☞✞✟

✲✳✦✣✴ ✱✯✧✤ ✶✞✟

(b) Samples for Validation.
Fig. 5: Block-level vs. Query-level Accounting. LR ǫ = 1.

quality targets. First, Sage’s SLA validation is able to ac-

cept models for targets as low as 0.003, which is close the

0.0025 minimum MSE that the non-rigorous No SLA val-

idation can accept (potentially erroneously). Second, un-

surprisingly, non-rigorous validation (No SLA) requires

the least data. Adding a statistical guarantee to the valida-

tion but no privacy (NP SLA) increases sample complex-

ity substantially. Adding DP to the statistical guarantee

and applying the DP correction incur limited additional

overhead. The distinction between Sage and NP SLA is

barely visible for NN. For LR, it accounts for half of the

increase over No SLA as it requires one additional data

growth step in iterative training. Thus, SLAed validation

and iterative training increase reliability of DP training

pipelines for reasonable increase in sample complexity.

4.3 Benefit of Block-level Accounting (Q3)

Block-level privacy accounting lets us combine more or

fewer blocks into a dataset, as needed by specific models

or statistics, while incurring privacy loss only on blocks

used. This effect is also achievable with previous theory

by partitioning each DP query into multiple ones operat-

ing on a single block and combining results.

Fig. 5 shows (a) model quality and (b) SLAed vali-

dation sample complexity of an LR model when oper-

ating on blocks of 10K and 50K samples. It compares

these configurations against Sage’s combined-block train-

ing that allows ML training and validation to operate on

their full relevance windows. For small block sizes (10K),

the partitioned LR model takes a 18% hit in MSE which

does not improve with more data (more partitions). The

SLAed validation process (b) is even more affected: it

is unable to validate models for MSE targets < 0.006!

(Recall that just returning the average ride duration has

MSE 0.0069 and the best MSE value for non-DP LR is

0.0025.) This is because each single block query receives

DP noise: combining blocks increases the data size, but

also the amount of noise, which cancels the effect, pre-

venting the model training and the validation test from

improving. In contrast, in Sage adding blocks increases

the data size but not the noise: we can validate up to MSE

targets of 0.003, a significant improvement. For larger

blocks (50K), partitioning hurts the model quality less, but

still affects SLAed validation.

4.4 Multi-pipeline Workload Performance (Q4)

Our last experiment is an end-to-end evaluation of Sage

with a workload consisting of a data stream and ML

pipelines arriving over discrete time steps. At each step,

a constant amount of new data arrives and forms a new

block. The number of new ML pipelines arriving is drawn

from an exponential distribution with arrival rate λ−1 (i.e.

average number of new pipelines). Each pipeline is then

drawn from our 25 configurations of tasks and targets.

Pipelines with smaller amounts of required data are more

likely to be drawn. For each strategy, we measure the

average release time, the average number of time steps

needed to train+validate a model.

Recall that to discover sufficient resource allocations

to meet each ML pipeline’s quality target without vastly

overspending, Sage iteratively trains and validates mod-

els on increasing data and/or privacy budget. We eval-

uate three iterative training strategies. The first strategy,

Sequential Execution, is a naı̈ve baseline that can be an-

alyzed with query-level accounting. Models are serial-

ized and allocated data in turn, training on the whole pri-

vacy budget for this data until meeting their quality target.

Then, the next model trains. Sage’s block-level account-

ing enables training multiple ML pipelines concurrently,

on overlapping blocks of data, using subsets of the privacy

budget. The other two iterative training strategies take ad-

vantage of Sage’s block-level accounting, which allows

training of multiple ML pipelines concurrently on over-

lapping blocks of data. Both strategies uniformly divide

the privacy budget of new blocks among all incomplete

pipelines. They differ in how each pipeline uses the bud-

get. One, Concurrent, Conservative (Sage), uses the strat-

egy defined in § 3.4. The other, Concurrent, Aggressive,

uses all privacy budget available on each query.

✵

✷✵

✸✵✵

✸✷✵

✹✵✵

✹✷✵

✺✵✵

✵✻✸ ✵✻✹ ✵✻✺ ✵✻✼ ✵✻✷ ✵✻✽ ✵✻✾

❆
✿
❀
❁
❂
❃
❄
❅
❈
❉
❅
❈❅
❊
❋
❅
●
❍■
❅

❏❑❑▲◆❖P ❙❖❚❯

❱❲❳❨❲❩❬❭❪❫ ❴❵❲❛❨❬❭❜❩
❝❜❩❛❨❞✻ ❡❢❢❞❲❣❣❭❤❲
❝❜❩❛❨❞✻ ❝❜❩❣❲❞❤❪❬❭❤❲ ✐❱❪❢❲❥

Fig. 6: Workload Evaluation.

Fig. 6 shows how

the average release times

grow for each strategy un-

der increasing load and

as the system enforces

(ǫg, δg) = (1.0, 10−6)-
DP. We make two observa-

tions. First, Sage’s block-

level accounting and the concurrent training it enables, is

crucial: the Sequential Execution produces off-the-charts

release times. Second, we observe consistently lower

release times under the privacy budget conserving strat-

egy. Privacy budget conservation reduces the amount of

privacy budget that will be consumed by an individual

pipeline and allows new pipelines to use the remaining

budget when they arrive in the system.

5 Related Work

Basic [18] and strong [22, 28] DP composition give the

DP guarantee for multiple queries with adaptively chosen

82

computation. McSherry [35] and Zhang, et.al. [52] show

that non-adaptive queries over non-overlapping subsets of

data can share the DP budget. Rogers, et.al. [41] ana-

lyze composition under adaptive DP parameters, which

is crucial to our block-level accounting. These works all

consider fixed datasets and query-level accounting. Sage

uniquely allows adaptive queries on overlapping data sub-

sets, only consumes budget of queried blocks, and enables

continuous operation on new data.

Streaming DP [9, 17, 19, 20] extends DP to data

streams but is restrictive for ML. Data is consumed once

and never used again. This enables stronger guarantees, as

data need not even be kept internally. However, training

ML models often requires multiple passes over the data,

which is disallowed in streaming DP.

Cummings, et.al. [12] consider DP over growing

databases. Like us, they run DP algorithms with increas-

ing noise and on exponentially growing data sizes. Un-

like us, they require DP algorithms with quantified utility

guarantees, which are only available for linear queries and

convex ML models. Moreover, their approach has high

query runtime, exponential in data dimension!

A few DP systems exist, but none focuses on streams or

ML. PINQ [35] and its generalization wPINQ [39] give a

SQL-like interface to perform DP queries. Airavat [42]

gives a MapReduce interface and supports a strong threat

model that distrusts the developer. GUPT [36] supports

automatic privacy budget allocation and lets programmers

specify accuracy goals for arbitrary DP applications. All

these works work for static datasets and adopt query-level

accounting. This makes them run out of privacy budget

even when applied on a continuous data stream.

Local DP (LDP) is another privacy approach in which

each data point is collected with DP noise. However LDP

is extremely limiting in the computations it can support.

It also requires prohibitive amounts of data and special-

ized algorithms [25]. Combining DP and LDP in a hybrid

model can yield better utility [2], but requires specialized

algorithms and adaptivity between DP and LDP queries,

which is not realistic for general ML.

6 Conclusion
As companies disseminate ML models trained over

sensitive data to untrusted domains, it is crucial to start

controlling the leakage of the data through these models.

We presented Sage, the first ML platform that enforces a

global DP guarantee across all models released from sen-

sitive data streams. Its main contributions are its iterative

training with robust validation and its block-level privacy

accounting that permits endless operation on streams.

References
[1] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov,

K. Talwar, and L. Zhang. Deep learning with differential privacy.

In Proc. of the ACM Conference on Computer and Communica-

tions Security (CCS), 2016.

[2] B. Avent, A. Korolova, D. Zeber, T. Hovden, and B. Livshits.

BLENDER: Enabling local search with a hybrid differential pri-

vacy model. In Proc. of USENIX Security, 2017.

[3] M. Backes, P. Berrang, M. Humbert, and P. Manoharan. Member-

ship privacy in microRNA-based studies. In Proc. of the ACM Con-

ference on Computer and Communications Security (CCS), 2016.

[4] B. Barak, K. Chaudhuri, C. Dwork, S. Kale, F. McSherry, and

K. Talwar. Privacy, accuracy, and consistency too: a holistic so-

lution to contingency table release. In Proc. of the ACM SIGMOD

International Conference on Management of Data, 2007.

[5] D. Baylor, E. Breck, H.-T. Cheng, N. Fiedel, C. Y. Foo, Z. Haque,

S. Haykal, M. Ispir, V. Jain, L. Koc, C. Y. Koo, L. Lew, C. Mewald,

A. N. Modi, N. Polyzotis, S. Ramesh, S. Roy, S. E. Whang,

M. Wicke, J. Wilkiewicz, X. Zhang, and M. Zinkevich. TFX:

A tensorflow-based production-scale machine learning platform.

In Proc. of the International Conference on Knowledge Discovery

and Data Mining (KDD), 2017.

[6] K. Boyd, E. Lantz, and D. Page. Differential privacy for classifier

evaluation. In Proc. of ACM Workshop on Artificial Intelligence

and Security, 2015.

[7] J. A. Calandrino, A. Kilzer, A. Narayanan, E. W. Felten, and

V. Shmatikov. “You Might Also Like:” Privacy risks of collabora-

tive filtering. In Proc. of IEEE Symposium on Security and Privacy

(S&P), 2011.

[8] N. Carlini, C. Liu, U. Erlingsson, J. Kos, and D. Song. The secret

sharer: Evaluating and testing unintended memorization in neural

networks. arXiv:1802.08232, 2018.

[9] T.-H. H. Chan, E. Shi, and D. Song. Private and continual release

of statistics. ACM Transactions on Information Systems Security,

2011.

[10] K. Chaudhuri and C. Monteleoni. Privacy-preserving logistic re-

gression. In Proc. of the Conference on Neural Information Pro-

cessing Systems (NeurIPS), 2008.

[11] K. Chaudhuri, A. D. Sarwate, and K. Sinha. A near-optimal algo-

rithm for differentially-private principal components. Journal of

Machine Learning Research (JMLR), 14, 2013.

[12] R. Cummings, S. Krehbiel, K. A. Lai, and U. Tantipongpipat. Dif-

ferential privacy for growing databases. In Proc. of the Conference

on Neural Information Processing Systems (NeurIPS), 2018.

[13] I. Dinur and K. Nissim. Revealing information while preserving

privacy. In Proc. of the International Conference on Principles of

Database Systems (PODS), 2003.

[14] J. Duchi and R. Rogers. Lower bounds for locally pri-

vate estimation via communication complexity. arXiv preprint

arXiv:1902.00582, 2019.

[15] J. C. Duchi, M. I. Jordan, and M. J. Wainwright. Minimax optimal

procedures for locally private estimation. Journal of the American

Statistical Association, 113(521):182–201, 2018.

[16] C. Dwork. Differential privacy. In Automata, languages and pro-

gramming, pages 1–12. Springer, 2006.

[17] C. Dwork. Differential privacy in new settings. In Proc. of the

ACM Symposium on Discrete Algorithms (SODA), 2010.

[18] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating

noise to sensitivity in private data analysis. In Proc. of the Confer-

ence on Theory of Cryptography (TCC), 2006.

[19] C. Dwork, M. Naor, T. Pitassi, , and S. Yekhanin. Pan-private

streaming algorithms. In Proc. of The First Symposium on Innova-

tions in Computer Science, 2010.

[20] C. Dwork, M. Naor, T. Pitassi, and G. N. Rothblum. Differential

privacy under continual observation. In Proc. of the ACM Sympo-

sium on Theory of Computing (STOC), 2010.

83

[21] C. Dwork, A. Roth, et al. The algorithmic foundations of differen-

tial privacy. Foundations and Trends R© in Theoretical Computer

Science, 2014.

[22] C. Dwork, G. N. Rothblum, and S. Vadhan. Boosting and differ-

ential privacy. In Proc. of the IEEE Symposium on Foundations of

Computer Science (FOCS), 2010.

[23] C. Dwork, A. Smith, T. Steinke, and J. Ullman. Exposed! A sur-

vey of attacks on private data. Annual Review of Statistics and Its

Application, 2017.

[24] C. Dwork, A. Smith, T. Steinke, J. Ullman, and S. Vadhan. Robust

traceability from trace amounts. In Proc. of the IEEE Symposium

on Foundations of Computer Science (FOCS), 2015.

[25] Ú. Erlingsson, V. Pihur, and A. Korolova. Rappor: Random-

ized aggregatable privacy-preserving ordinal response. In Proc. of

the ACM Conference on Computer and Communications Security

(CCS), 2014.

[26] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhul-

gakov, M. Fawzy, B. Jia, Y. Jia, A. Kalro, J. Law, K. Lee,

J. Lu, P. Noordhuis, M. Smelyanskiy, L. Xiong, and X. Wang.

Applied machine learning at Facebook: A datacenter infrastruc-

ture perspective. In Proc. of International Symposium on High-

Performance Computer Architecture (HPCA), 2018.

[27] N. Homer, S. Szelinger, M. Redman, D. Duggan, W. Tembe,

J. Muehling, J. V. Pearson, D. A. Stephan, S. F. Nelson, and D. W.

Craig. Resolving individuals contributing trace amounts of DNA

to highly complex mixtures using high-density SNP genotyping

microarrays. PLoS Genetics, 2008.

[28] P. Kairouz, S. Oh, and P. Viswanath. The composition theorem

for differential privacy. In International Conference on Machine

Learning (ICML), 2015.

[29] S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova,

and A. Smith. What can we learn privately? SIAM Journal on

Computing, 40(3):793–826, 2011.

[30] D. Kifer, A. Smith, and A. Thakurta. Private convex empirical

risk minimization and high-dimensional regression. In Proc. of the

ACM Conference on Learning Theory (COLT), 2012.

[31] M. Lecuyer, R. Spahn, K. Vodrahalli, R. Geambasu, and D. Hsu.

Privacy accounting and quality control in the sage differentially

private ml platform. Under submission, 2019.

[32] L. E. Li, E. Chen, J. Hermann, P. Zhang, and L. Wang. Scaling

machine learning as a service. In Proc. of The 3rd International

Conference on Predictive Applications and APIs, 2017.

[33] H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang. Learn-

ing differentially private recurrent language models. In Proc. of

the International Conference on Learning Representations (ICLR),

2018.

[34] F. McSherry and I. Mironov. Differentially private recommender

systems: Building privacy into the Netflix prize contenders. In

Proc. of the International Conference on Knowledge Discovery

and Data Mining (KDD), 2009.

[35] F. D. McSherry. Privacy integrated queries: An extensible platform

for privacy-preserving data analysis. In Proc. of the ACM SIGMOD

International Conference on Management of Data, 2009.

[36] P. Mohan, A. Thakurta, E. Shi, D. Song, and D. Culler. GUPT:

Privacy preserving data analysis made easy. In Proc. of the 2012

ACM SIGMOD International Conference on Management of Data,

2012.

[37] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh,

and N. Taft. Privacy-preserving ridge regression on hundreds of

millions of records. In Proc. of IEEE Symposium on Security and

Privacy (S&P), 2013.

[38] NYC Taxi & Limousine Commission - trip record data.

http://www.nyc.gov/html/tlc/html/about/trip_

record_data.shtml, 2018.

[39] D. Proserpio, S. Goldberg, and F. McSherry. Calibrating data to

sensitivity in private data analysis: a platform for differentially-

private analysis of weighted datasets. Proc. of the International

Conference on Very Large Data Bases (VLDB), 2014.

[40] S. Ravi. On-device machine intelligence.

https://ai.googleblog.com/2017/02/

on-device-machine-intelligence.html, 2017.

[41] R. M. Rogers, A. Roth, J. Ullman, and S. Vadhan. Privacy odome-

ters and filters: Pay-as-you-go composition. In Proc. of the Confer-

ence on Neural Information Processing Systems (NeurIPS), 2016.

[42] I. Roy, S. T. Setty, A. Kilzer, V. Shmatikov, and E. Witchel. Aira-

vat: Security and privacy for MapReduce. In Proc. of the USENIX

Symposium on Networked Systems Design and Implementation

(NSDI), 2010.

[43] D. Shiebler and A. Tayal. Making machine learning easy with em-

beddings. SysML http://www.sysml.cc/doc/115.pdf,

2010.

[44] R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Membership

inference attacks against machine learning models. In Proc. of

IEEE Symposium on Security and Privacy (S&P), 2017.

[45] A. Smith and A. Thakurta. Differentially private model selection

via stability arguments and the robustness of lasso. Journal of

Machine Learning Research (JMLR), 30:1–12, 2013.

[46] G. P. Strimel, K. M. Sathyendra, and S. Peshterliev. Statistical

model compression for small-footprint natural language under-

standing. arXiv:1807.07520, 2018.

[47] K. Talwar, A. Thakurta, and L. Zhang. Nearly-optimal private

LASSO. In Proc. of the Conference on Neural Information Pro-

cessing Systems (NeurIPS), 2015.

[48] Y.-X. Wang. Revisiting differentially private linear regression: op-

timal and adaptive prediction & estimation in unbounded domain.

arXiv:1803.02596, 2018.

[49] C.-J. Wu, D. Brooks, K. Chen, D. Chen, S. Choudhury,

M. Dukhan, K. Hazelwood, E. Isaac, Y. Jia, B. Jia, T. Leyvand,

H. Lu, Y. Lu, L. Qiao, B. Reagen, J. Spisak, F. Sun, A. Tulloch,

P. Vajda, X. Wang, Y. Wang, B. Wasti, Y. Wu, R. Xian, S. Yoo,

and P. Zhang. Machine learning at Facebook: Understanding in-

ference at the edge. In Proc. of the IEEE International Symposium

on High-Performance Computer Architecture (HPCA), 2019.

[50] J. Xu, Z. Zhang, X. Xiao, Y. Yang, G. Yu, and M. Winslett. Dif-

ferentially private histogram publication. In Proc. of the IEEE In-

ternational Conference on Data Engineering (ICDE), 2012.

[51] L. Yu, L. Liu, C. Pu, M. E. Gursoy, and S. Truex. Differentially

private model publishing for deep learning. In Proc. of IEEE Sym-

posium on Security and Privacy (S&P), 2019.

[52] D. Zhang, R. McKenna, I. Kotsogiannis, M. Hay, A. Machanava-

jjhala, and G. Miklau. Ektelo: A framework for defining

differentially-private computations. In Proc. of the ACM SIGMOD

International Conference on Management of Data, 2018.

[53] J. Zhang, Z. Zhang, X. Xiao, Y. Yang, and M. Winslett. Func-

tional mechanism: Regression analysis under differential privacy.

In Proc. of the International Conference on Very Large Data Bases

(VLDB), 2012.

84

