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Abstract
Traditional deep learning frameworks such as TensorFlow

and PyTorch support training on a single deep neural network
(DNN) model, which involves computing the weights itera-
tively for the DNN model. Designing a DNN model for a task
remains an experimental science and is typically a practice
of deep learning model exploration, dovetailed with training
and validation, aiming to find the best model among a set that
yields the best result. Retrofitting such exploratory-training
into the training process of a single DNN model, as supported
by current deep learning frameworks, is unintuitive, cumber-
some, and inefficient, because of the fundamental mismatch
between exploring a set of models and training a single one.

Retiarii is the first framework to support deep learning
exploratory-training. In particular, Retiarii (i) provides a new
programming interface to specify a DNN model space for
exploration, as well as an interface to describe the exploration
strategy that decides which order to instantiate and train mod-
els in, how to prioritize model training, and when to terminate
training of certain models; (ii) offers a Just-In-Time (JIT)
engine that instantiates models, manages the training of the in-
stantiated models, gathers the information for the exploration
strategy to consume, and executes the decisions accordingly;
(iii) identifies the correlations between the instantiated models
and develops a set of cross-model optimizations to improve
the overall exploratory-training process. Retiarii does so by
introducing a key abstraction, Mutator, that connects the spec-
ifications of DNN model spaces and exploration strategies,
while exposing the correlations between models for optimiza-
tion. As a result, Retiarii’s clean separation of DNN model
space specification, exploration strategy, and cross-model op-
timizations, connected through the single mutator abstraction,
leads to ease of programming, reuse of components, and vastly
improved (up to 8.58x) overall exploratory-training efficiency.

1 Introduction
Deep neural networks (DNNs) have been successfully ap-
plied to a variety of perception-based tasks such as vision
and speech. For each such task, a DNN model architecture,
depicted as a graph of operators as vertices, connected with
weighted edges, is designed. The model is then trained to
populate the weights, before it can be used to perform the
task. Deep learning frameworks, such as TensorFlow [11] and
PyTorch [48], have been designed to describe an individual

DNN model and train the model as a (training) job to run
on target hardware, such as GPUs. Training a deep learning
model is often resource intensive and costly.

Devising a model for a particular task often involves an
iterative exploration process, where a developer would often
start with a model architecture that captures the main intu-
itions and tweak it repeatedly until a model with satisfactory
results is identified in a continuous training and validation
process. Alternatively, a model architecture could also evolve
from simple models following a simple set of evolution rules.

There are clear gaps between the needs to support this
exploratory-training process and the existing deep learning
frameworks. First, this exploratory-training process works
on a series of deep learning models, rather than a single one,
as supported by the existing deep learning frameworks. A
developer either has to specify each model individually in a
manual, tedious, and repetitive process, or encodes this series
of models as one “jumbo” model [13, 27, 50, 65] using ad-
vanced features such as dynamic graph and control flow. Such
a “jumbo” model pollutes the original model architecture and
makes it significantly harder to understand as changes are
scattered across the model description with complex dynamic,
control-flow structures. It is also more difficult to optimize
due to the use of those dynamic, control-flow structures.

Second, deep learning frameworks manage individual train-
ing jobs and cannot capture or leverage the correlation among
the set of training jobs in the same exploratory-training pro-
cess. A developer is again forced to code certain exploration
strategies in a “jumbo” model, together with ad hoc runtime
mechanisms to manipulate the priorities of jobs or stop not-
so-promising jobs early. Such implementations of exploration
strategies are hardly reusable as they are deeply coupled with
and embedded in a particular exploratory-training process.
And there is no easy way to expose the correlations among
those models, which tend to share many common structures,
for cross-model optimizations. Training a set of models often
incurs significant cost; any efficiency gains through optimiza-
tions would often allow an exploratory-training process to
find a better model under the same budget.

We therefore propose Retiarii, the first deep learning frame-
work specifically designed to support exploratory-training. To
address the gaps we have previously identified in the existing
deep learning frameworks, we address three core problems
of exploratory-training: (i) specifying a DNN model space
to explore, (ii) defining and realizing exploration strategies
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to decide when to instantiate a model in the space, which
ones to instantiate, how to prioritize the training of the in-
stantiated models, and when to terminate the jobs for training
those models, and (iii) exposing the correlations among the
instantiated models and optimizing training across models by
leveraging the correlation information.

Retiarii embraces a new Mutator abstraction as the basis for
specifying a DNN model space and for defining an exploration
strategy. Observing that the exploratory-training process tends
to introduce relatively minor modifications to existing models
or to compose simple models together following a set of
evolution rules, Retiarii allows developers to specify each
such modification or evolution as a mutator on a model graph.
A DNN model space for an exploratory-training process can
be defined as a set of base models (each specified as in the
original deep learning frameworks, with no “pollution”) and a
set of mutators. The DNN mode space is then the base models,
plus any subsequent models produced by applying mutators
to the current models, and so on. An exploration strategy can
then be partly defined to govern when to generate new models
by applying mutators, as well as which current models and
mutators to choose.

Retiarii further designs a Just-In-Time (JIT) engine for
the exploratory-training process, which essentially manages
the logical collection of all models and their corresponding
training jobs. The engine instantiates new models dynami-
cally, exposes the correlations of the instantiated models for
cross-model optimizations, schedules the optimized jobs for
execution, and manages the execution of the scheduled jobs,
governed by the specified exploration strategy.

Retiarii advocates a clean separation of concerns and strives
for simplicity and modularity. The mutator abstraction fo-
cuses on the changes to an existing model and exposes the
differences (and similarities) of models for cross-model op-
timizations. Each mutator is fine-grained, to capture a logi-
cal unit of modification, and intended to be composable and
reusable. The cross-model optimizations are also designed
and implemented as general capabilities, enabled by the muta-
tor abstraction, in Retiarii’s JIT engine. Exploration strategies
are decoupled from the specification of the model spaces
(through base models and mutators) to maximize reusability,
even though some exploration strategies might unavoidably
have dependencies on certain types of model spaces.

We have fully implemented and open sourced Retiarii 1.
So far, Retiarii implements 6 mutators to define 18 differ-
ent model spaces, 11 different exploration strategies, and 3
cross-model optimizations. These combinations have already
covered 27 NAS algorithms from the research community,
and benefit from vastly improved performance with cross-
model optimizations. Our evaluation shows that (1) Retiarii
reduces the exploration time of popular Neural Architecture
Search (NAS) algorithms by up to 2.57×, and (2) Retiarii im-

1Source code available at https://github.com/microsoft/nni/
tree/retiarii_artifact
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Figure 1: Three typical types of model space explorations.

proves the scalability of NAS algorithms using weight sharing
with a speed-up of 8.58×.

2 Background and Motivation

The many ways of creating candidate model variations.
Developing a model typically involves creating interesting
candidate model variations following some design intuitions;
for example, by 1) tweaking a substructure (e.g., a layer or
a cell) of a base model, 2) coming up with generalized cell
structure, 3) or evolving network structure gradually, as shown
in Figure 1.

The top set of examples in Figure 1 shows different ways
of modifying a base model. One could replace an operator
at a layer with some candidate operators (e.g., normal conv,
depthwise conv), or changing a layer’s input (e.g., adding
some skip connections). The modification can also be applied
to a cell containing several interconnected layers, but treated
as a one logical layer. More generally, a matching rule can
be defined to apply modifications on the entire model (e.g.,
adding BatchNorm after convolution layers or replacing all
ShuffleNet cells [42] with Inverted Residual cells [54]).

The middle example in Figure 1 shows how one could
generalize a cell structure in order to find a better one. For
example, an Inception cell [57] can be generalized to explore a
space with different numbers of paths and a different operator
on each path. Similarly, an LSTM structure can be generalized
to an RNN cell [69]. A generalized structure usually contains
a large number of different structures.

The bottom example in Figure 1 shows how the final net-
work gradually evolves from a simple network following
some rules. The rules could be adding a layer/edge or chang-
ing a layer’s operator in each evolution step [23].
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the model space. Colored circles are different operators.

The pain of specifying and exploring a model space. Ex-
ploring a model space, as exemplified in Figure 1, is not
directly supported by the existing deep learning frameworks,
such as TensorFlow and PyTorch. A model developer often
has to program and train each model manually, or to code
up all the variations of models in a model space as a sin-
gle jumbo model in TensorFlow/PyTorch through complex
control-flow, such as using specified values on the condition
of control-flows to route to each model [27, 50, 62, 70]. Fig-
ure 2 shows a simple example, a layer has four candidate
operators (e.g., normal conv, depthwise conv, avgpool, and
maxpool), there should be a control-flow to pick one during
model construction. If a layer’s input is the output of one
of the previous layers (e.g., skip connection), there should
be a dynamic control-flow to route to the right path during
model forward (i.e., forward pass of data flow graph). Some
popular model spaces [50, 62] change operators and inputs
on as many as tens of layers, leading to excessive complexity,
making the code hard to understand, and going beyond the
limited capabilities of current frameworks to handle control-
flow. The control-flow in jumbo models also make them hard
to apply compiler optimization techniques, such as operator
fusion [15, 38] and memory planning [16]. Figure 3 shows
the performance gaps in terms of throughout for ResNet50, as
a single model vs. as one encoded as part of a jumbo model.

Automatic model exploration. A DNN model space can
be explored automatically with an exploration strategy. The
action scope of exploration strategy spans from model gener-
ation to model execution.

When exploring a huge model space, it is usually impossi-
ble and unnecessary to train all the models in the space. An
exploration strategy is responsible for deciding which models
to instantiate and train, in what priority, and when to terminate.
A typical strategy on which models to instantiate could be
brute force (e.g., random search [56] and grid search [60]),
heuristic-based (e.g., evolution [23,30] and annealing algo-
rithms [36]), or more advanced model-based (e.g., Bayesian

Figure 3: The throughput of ResNet50 built as a single model
and a jumbo model. The space contains 4 choices of convo-
lution operator at each layer. Both computation graphs are
optimized by TensorFlow XLA [38].

models [33, 67] and reinforcement learning [59, 69, 70]).
An exploration strategy further manages the executions of

training instantiated model; for example, to stop the execu-
tion of a bad-performing model early based on a performance
predictor [20], or to dynamically adjust the computation re-
source provided to each model depending on the model’s
performance [64], or to run several mini-batches only and
share the weights of overlapped layers among the models to
reduce each model’s execution time significantly [27, 50].

The pain of implementing exploration strategies. An ex-
ploration strategy naturally manages a set of models. Im-
plementing such a strategy with the existing deep learning
frameworks is unintuitive and cumbersome, as those frame-
works are designed for training individual models and have
no support for an exploration strategy.

Because an exploration strategy intensively involves in-
stantiating models from a model space, the implementation
often tightly couples an exploration strategy with a specific
model space, further increasing the complexity of already
complicated jumbo models. For example, an RNN-based RL
algorithm (a popular exploration strategy) uses each of its
time steps to control the condition value of each control-flow
in the jumbo model [50]. Further incorporating the logic of
controlling model training makes the jumbo model unman-
ageable. As a result, though most exploration strategies are
logically applicable to different model spaces, the implemen-
tations embedded in the jumbo models are hardly reusable by
other model spaces.

Encoding an exploration strategy in a jumbo model also
makes it hard to expose cross-model optimization opportuni-
ties as an exploratory-training usually produces many models.
The models explored tend to have strong correlations (e.g.,
common computation logic) among them, as the variations
produced tend to touch only a certain part of the model, while
keeping the rest unchanged. The training of those models
also share the same dataset and data preprocessing logic. To
adapt a model to different tasks, the large backbone network
(e.g., BERT) is often fixed: the exploration tends to focus
on varying the structure of several added layers. Significant
opportunities, therefore, exist in leveraging common computa-
tion across model training to speed up an exploratory-training
process as a whole. When encoding an exploration strategy in
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Figure 4: Base model and mutation: An example.

a jumbo model, it also becomes challenging to scale the train-
ing of this jumbo job to multiple GPUs and servers [27, 50];
in contrast, scaling to multiple GPUs is straightforward for a
set of individual jobs, each training a single model.

Insufficiency of existing AutoML systems. Previous Au-
toML systems (e.g., Google Vizier [24], Auto-WEKA [61],
Auto-Sklearn [22]) abstract the AutoML problem as hyper-
parameter tuning. Although a certain NAS problem can be
modeled as the tuning of specific hyper-parameters, it often
involves the definition of an ad-hoc set of hyper-parameters,
making it cumbersome to express different model spaces in
a general way. It is especially painful to hyper-parameterize
evolutionary NAS [13, 23, 51] where neural architectures can
randomly evolve. Moreover, the expressed architectures are
hardly understood by compilers, making optimizations almost
impossible. Some recently emerged AutoML systems (e.g.,
AutoKeras [32]) provide more support to NAS. They can au-
tomatically search neural architectures but with specifically
implemented model spaces and exploration strategies, where
system optimizations are hardly applicable.

Retiarii is designed to address the abovementioned pains.
It provides great expressiveness to support various model
spaces and strategies in a systematic and programmable way.
It clearly decouples model space from exploration strategy
and enables system optimizations to speed up exploration
process.

3 Mutator as the Core Abstraction

Exploratory-training is all about exploring a model space. Mu-
tator is the core abstraction that connects the specification and
exploration of a model space, while exposing the correlations
between models for further optimizations.

Base models. Retiarii follows the standard practice of char-
acterizing a DNN model as a data-flow graph (DFG), where
each node represents an operator (or a subgraph) with one or
multiple input and output tensors and an edge connects an
output tensor of a node to an input tensor of another node.

Retiarii introduces the notion of base models as the start-
ing points of an exploratory-training and preserves the way
a single DNN model is specified for base models. In fact,

1 create_node(name:str,op:Op,params:dict={})
2 delete_node(node:Node)
3 connect(src:NodeOutput ,dst:NodeInput)
4 del_connect(src:NodeOutput ,dst:NodeInput)
5 update_node(node:Node ,op:Op=None ,params:dict={},
6 inputs:list=None)
7 choose(candidates:list ,n_chosen:int=1,
8 type:str="choice",ctx:dict=None)

Figure 5: Mutation primitives and the choose primitive.

Retiarii can simply import base models defined in an existing
deep learning framework such as TensorFlow. Figure 4 illus-
trates an example base model with a chain of 4 operators (a
convolutional neural network).

Mutator. Exploratory-training is typically a process of ap-
plying modifications (e.g., as depicted in Figure 1) to existing
models, starting from base models. Rather than encoding mod-
ifications in a complex jumbo model, Retiarii cleanly sepa-
rates modifications from the original target models and encode
each as a Mutator, an abstraction designed to be expressive,
modular, reusable, and composable. The model space to be
explored by an exploratory-training process is then the base
models, plus all the resulting models from applying mutators
to the base models and to any subsequently generated models.

Graph matching and manipulation in Mutator. Each
mutator specifies matching criteria to identify subgraphs of
a target model’s DFG to operate on, followed by a series of
graph construction operations to modify the matched sub-
graphs to create a new model. The mutator abstraction can
also use the choose primitive to describe different options to
choose from in a mutator, so that the mutator can produce a
number of models without duplicating the mutator code to
create a new mutator for each option.

Retiarii’s current graph matching is based on node type or
node name, which is simple, but sufficient for all the use cases
we have implemented. But it can be extended easily to more
expressive graph matching if necessary.

Retiarii introduces general mutation primitives like
create_node for a mutator to manipulate the node and edge
in a model. The primitives are summarized in Figure 5. Note
that a node in Retiarii can also represent a subgraph. Thus the
primitives can also be applied to a subgraph (e.g., a layer or a
cell) of a model.

For each model instantiation, Retiarii records all the muta-
tion primitives called in a mutator. Hence Retiarii can easily
identify model correlations across instantiated models. For
example, between two instantiations of the same base model,
the nodes not modified by the mutator are considered iden-
tical. Retiarii can leverage such information to optimize the
multi-model training (details in §5).

Mutator: an example. Figure 4 depicts a model space in
which the third node (“model/maxpool”) of the base model
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1 # define the graph mutation behavior
2 class InceptionMutator(BaseMutator):
3 def __init__(self , paths_range , candidate_ops):
4 self.paths_range = paths_range # [2, 3, 4, 5]
5 self.ops = candidate_ops # {conv , dconv , ...}
6 def mutate(self , targets):
7 if not three_node_chain(targets):
8 return err
9 n = choose(candidates=self.paths_range)

10 delete_node(targets[1])
11 for i in range(n): # create n paths
12 op = choose(candidates=self.ops)
13 nd = create_node(name=’way_’+str(i), op=op)
14 connect(src=targets[0].output , dst=nd.input)
15 connect(src=nd.output , dst=targets[2].input)
16

17 # mutation applied to the graph
18 apply_mutator(targets=["model/relu", "model/

maxpool", "model/dense"],
19 mutator=InceptionMutator(
20 [2, 3, 4, 5], [conv , dconv , pool]))

Figure 6: A mutator that constructs an Inception-like cell.

can be mutated with a multi-path cell. The cell could have
2 to 5 paths, each of which chooses an operator from Conv,
DepthwiseConv and Maxpool. Figure 6 shows the code of
the mutator, i.e., InceptionMutator, which implements the
model space illustrated in Figure 4.

All the mutation logic is encapsulated in the mutate func-
tion (lines 6-15). The entry point of the mutator is given
by targets in the mutate function (line 6 of Figure 6), to
match nodes/subgraphs in the given model. The targets of
InceptionMutator is a chain of 3 nodes. This shows that a
mutator can be applied to a subgraph with a specific pattern,
which improves the reusability of a mutator. In the example
code, the mutator first ensures that the matching is a chain of
3 nodes (lines 7-8). It will then call choose (line 9) to select
an integer n to create n paths subsequently. On creating each
path, the mutator will call choose (line 12) again to select
an operator for the node in the path. Note that the code for a
mutator can contain arbitrary complex control flow in a muta-
tor (e.g., the control loop in lines 11-15 of Figure 6), without
polluting the instantiated models, unlike in the case of jumbo
models with control flows. Finally, a call to apply_mutator
will create a mutator instance (line 18), which matches a chain
of relu, maxpool, and dense.

4 Retiarii Just-In-Time Engine

A key design decision for Retiarii to support exploratory-
training is to instantiate models to explore on the fly and
manage the training of instantiated models dynamically. This
is accomplished by Retiarii’s just-in-time (JIT) engine (Fig-
ure 7), which takes as input one or more base models, a set of
mutators, and a policy describing the exploration strategy.

The end-to-end exploratory-training process is driven by
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Figure 7: The architecture of Retiarii.

the policy described as a Model Exploration Strategy. The JIT
engine maintains a set of target models, initialized with the set
of base models, and consults the model exploration strategy
to decide which target model(s) and mutator(s) to choose (i.e.,
Instantiation Control), as well as which choices to make for
each choose within those mutators (i.e., Choice Suggestion),
to instantiate new models. The decision can be guided by a
context-free strategy (e.g., making a random choice upon each
choose) or by a history-based strategy, generating choices
based on which models have been previously instantiated [60].
The choose interface in Mutator enables the customization
of the choices.

Once new models are instantiated (i.e., Apply Mutators)
as Raw DFGs, the JIT engine transparently performs Cross-
Model Optimization (§5). Because the JIT engine records
the mutation history, the Cross-Model Optimization module
can easily detect identical nodes across models to produce
optimized DFGs by applying common sub-expression elimi-
nation [44], cross-model operator batching [15, 41], and NAS
optimizations (§5). The optimized DFGs are then converted
to the standard model format for the existing deep learning
frameworks to perform single-model optimizations before
training. In Training Control, the JIT engine launches train-
ing on new models, monitors the training of instantiated and
optimized models, collects training feedbacks (e.g., model
accuracy), adjusts training priorities and resource allocation,
and terminates training of less promising models, all guided
by a model exploration strategy.

Retiarii’s Mutator abstraction and JIT engine offers an ele-
gant architecture to support exploratory-training, following
the principles of separating policy from mechanisms and
separation of concerns, and maximizing modularity, reusabil-
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ity, and opportunities for optimizations. In addition to the
common functionalities (e.g., Cross-Model Optimization) in
the overall infrastructure, mutators and policies encoding the
model exploration strategies might also be reused. This is in
sharp contrast to the current practice of encoding everything
in a jumbo code, which is hardly understandable or reusable
due to tight coupling.

5 Cross-Model Optimization

The DNN models instantiated by Retiarii in an exploratory-
training process tend to have significant similarities as their
DFGs share common subgraphs, thereby offering huge op-
portunities for Retiarii to optimize the training of multiple
models. With mutators that identify and record all modifica-
tions to a model’s DFG, Retiarii can easily find the common
subgraphs of multiple DFGs, circumventing the generally
NP-hard and APX-hard problem of identifying maximum
common subgraphs [34].

5.1 Cross-Model Optimization Opportunities
Three different cross-model optimization opportunities are
identified, depending on the inputs, weights, and trainability2

of operators in the common subgraphs.

Common Sub-expression Elimination (CSE). CSE is a
common compiler optimization to eliminate identical opera-
tions of a program by only computing them once. CSE can
be applied to the non-trainable operators in the common sub-
graphs with common inputs and outputs, but cannot be ap-
plied to trainable operators as their weights will change dur-
ing training, rendering their computation different after the
first iteration. In practice, we find CSE particularly useful
for merging prefix nodes of a DFG, because they are often
non-trainable operators for data loading and preprocessing, as
neural architecture search often uses the same dataset, batch
size, and preprocessing procedures. When running multiple
data-flow graphs concurrently on a single server, CSE can also
avoid contention on shared storage and CPUs to maximize
utilization of expensive GPUs.

Operator Batching. Common operators with different in-
puts and weights can potentially be batched together and com-
puted in a single operator kernel. This optimization is useful
for model exploration in multi-domain deep learning and
transfer learning [28,52,53]. In this scenario, a model is mod-
ified to a new task with only minor changes, thus those modi-
fied models usually share a common skeleton. Adapter-based
transfer learning is a one such example: networks have the
same architecture from a pre-trained network, with adapters

2Similar to most popular deep learning frameworks, Retiarii allows
model developers to specify whether the weights associated with an operator
are trainable, whose weights will be applied with gradients during back-
propagation.
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Figure 8: Operator batching: An example.

inserted at different locations. Only the inserted layers are
fine-tuned [28, 52, 53]. Figure 8 illustrates an example that
two graphs share multiple layers with the same weights. After
merging the two graphs, the input of the common operators
are batched along the batch dimension, and the output of the
batched operators are split before adapters. Common opera-
tions with different weights (e.g., trainable weights) can also
be batched by leveraging special kernels (e.g., grouped con-
volution [37], batch_matmul) that can parallelly compute on
slices of an input tensor. This allows Retiarii to enable more
fine-grained sharing of GPUs by increasing SIMD utilization
with less GPU memory.

Super-Graph for Weight Sharing. Weight sharing is a
machine-learning optimization shown to deliver improved
empirical performance for certain model training: instead of
training a graph’s weights from scratch, shared weights are
inherited from other graphs to continue the training in this
graph [27, 50]. Retiarii naturally supports this training opti-
mization by allowing model developers to annotate operator
weights they want to share. Retiarii will automatically identify
the weight sharing-enabled operators in common subgraphs.
The DFGs with shared weights will be merged to build a
super-graph. By training the super-graph together in one DFG,
Retiarii can avoid overhead of checkpointing shared weights,
because with weight sharing each graph has short training
time (e.g., several mini-batches). To accelerate the training
of the merged super-graph, we further introduce a new type
of parallelism when constructing executable graphs (§5.2) by
increasing its scalability on distributed GPU clusters. Note
that super-graphs are generated and used for optimizations
only, and not exposed to developers.

5.2 Executable Graph Construction
To exploit these cross-model opportunities, Retiarii needs to
construct executable graphs from the raw DFGs. The construc-
tion involves decisions of model merging, device placement
of operators, and training parallelism, constrained by physical
environment (e.g., server configuration). Retiarii adopts a pol-
icy similar to Gandiva [64] that introspectively selects graphs
to merge. Moreover, Retiarii specifically optimizes device
placement of CSE-optimized graphs and training parallelism
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Figure 9: Device placement for CPU/GPU-based pre-trained
embedding when constructing executable graphs.

of weight sharing.

Device Placement of CSE-Optimized Graphs For DFGs
sharing the same dataset and preprocessing, these common
operators can be merged by common sub-expression elimi-
nation. The most efficient execution plan of merged graphs
depends on the types of merged operators and configuration of
GPU servers. Figure 9 shows two different execution plans of
CSE-optimized graphs. Both examples use a pre-trained em-
bedding before the trainable layers. The difference is that the
embedding in 9(a) is CPU-based (e.g., word2vec [43]) while
the embedding in 9(b) is GPU-based (e.g., BERT [10, 19]).
When BERT-embedding is the bottleneck of model computa-
tion and consumes most of GPU memory, dedicating one GPU
for it can improve the pipeline and reduce memory consump-
tion. Thus, we may pack more graphs on the rest of GPUs
to improve the training throughput. Retiarii currently uses a
whitelist to identify operators that require dedicated GPUs.
We leave the automatic graph partitioning and optimization
to future work.

In Retiarii, all cross-graph optimizations are applied within
every batch of models. We first profiled the iteration time,
peak GPU memory, and GPU utilization of each model by
independently running for a few iterations. Then the models
are sorted based on the iteration time. Retiarii greedily packs
as many models as possible into one GPU. If the excutable
graph’s total training throughput is lower than that before
optimization, the optimization will be reverted.

Mixed Parallelism for Weight Sharing. Weight sharing
suffers from the scalability issue. After an exploration strat-
egy instantiates a set of models, these models need to be
trained sequentially (in an interleaved way) with different
data to guarantee that every model can use the latest version
of shared weights without losing training accuracy. A single
model can hardly scale to a large number of GPUs using data
parallelism, because a large batch size would harm model
accuracy [25, 35]. Figure 10 shows an example of how Re-
tiarii trains weight-shared models on two GPUs. Retiarii can
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Figure 10: Retiarii uses mixed parallelism to improve scala-
bility of weight sharing-based training.

improve the scalability by splitting the super-graph onto mul-
tiple GPUs, when the super-graph of all models is too large
to fit into one GPU. Retiarii spreads the instantiated models
into multiple super-graphs (each on a GPU) to be trained to-
gether. This can be regarded as model parallel training of the
super-graph of all models. Moreover, in each iteration, models
in different GPUs will be fed with different batches of data
(like data parallelism), following the requirement of weight-
shared training. The shared weights will be synchronously
updated using parameter servers by averaging their gradients.
Note that, it is difficult to apply Retiarii’s mixed parallelism
to a jumbo model, since a compiler can hardly understand
and partition the sophisticated jumbo model without know-
ing each individual model’s architecture. Our evaluation in
§7.4 shows Retiarii’s mixed parallelism yields better scala-
bility that reduces the training time by up to 8.58× without
affecting validation accuracy, compared with the traditional
approach that trains the jumbo model using data parallelism.

6 Implementation

We have implemented Retiarii in about 19,723 lines of code,
in which about 5,436 lines of code for the core Retiarii JIT
engine, 5,203 lines of code for model, state, data management
with failure recovery, and 9,084 for managing training with
interfaces to various training services, such as Kubeflow [2].
We also wrote an additional 6,157 lines of code to implement
11 exploration strategies, 6 mutator classes, and 27 model
spaces [4].

Building internal representations of base models and mu-
tators. Our implementation supports base models defined in
PyTorch and TensorFlow, which we convert to their graph rep-
resentations. The conversion is done through TorchScript [9]
for PyTorch. TensorFlow naturally supports a similar graph
representation and offers the utility to output in a protobuf for-
mat. We do not yet support dynamic graphs. The mutators are
extracted through Python Abstract Syntax Trees (AST) [1].
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1 class ExplorationStrategy:
2 # the APIs for instantiation control
3 def generate_graph(self , new_graph_id)
4 def on_ask_target_graph(self , graph_id)
5 def on_ask_choice(self ,graph_id ,type ,values ,ctx)
6 # the APIs for training control
7 def execute_graph(self , graph_id , load_ckpt)
8 def terminate_graph(self ,graph_id ,do_ckpt)
9 def on_ask_training_approach(self , graph_id)

10 # the APIs for getting provisioned information
11 def query_mutation_history(self , graph_id)
12 def on_receive_feedbacks(self ,graph_id ,feedback)

Figure 11: Some key APIs for an exploration strategy.

The base graph and mutators are then passed to the JIT engine.

Materializing the JIT engine. The JIT Engine drives the
whole exploratory-training process. It first starts an explo-
ration strategy which is an independent executable Python
script. The strategy uses the APIs listed in Figure 11 to inter-
act with the engine. Users are free to customize a new one
following the interface. For instantiating a model, the mu-
tators are applied one after another. On applying a mutator,
the JIT engine retrieves the subgraphs specified by targets,
and feeds them into the mutator. The instantiation is guided
by an exploration strategy through those callback functions
(i.e., “on_*”). The JIT Engine maintains all the instantiated
and trained models in a data store (i.e., SQLite in our imple-
mentation) and collects runtime information of those models,
such as model accuracy, execution time, which can by queried
by the exploration strategy. Each model can have its train-
ing approach, e.g., a training loop with a configured epoch
number and batch size. We follow the practice in PyTorch
Lightning [8] to provide a wrapper for programming and
configuring a training approach. An exploration strategy can
specify the training approach for each instantiated model.

Converting models for training. In our implementation,
the optimized graphs are trained on current deep learning
frameworks, such as TensorFlow and PyTorch. To make the
optimized graph executable on those frameworks, we imple-
ment a converter to translate an optimized graph into Ten-
sorFlow or PyTorch code. Taking PyTorch as an example,
the optimized graph is converted to a PyTorch module, i.e.,
graph nodes in __init__() and connections in forward().
In cases where an optimized graph could contain multiple
models, the losses are either added or concatenated to pro-
duce a single one. We enable device placement for a model
with each framework’s utility, such as the to() method in
PyTorch and with tf.device() in TensorFlow.

Distributing exploratory-training. Exploratory-training
usually requires lots of computation resources. In our imple-
mentation, Retiarii’s JIT engine runs on a single machine,
while the instantiated models can be distributed to wherever
computing resources are available (e.g., a cluster). For train-

ing of each model, Retiarii implements a wrapper to monitor
its execution and collects metrics (e.g., training performance)
to report back to the JIT engine.

Tolerating and handling failures. As exploratory-training
is usually time-consuming, in our implementation we deal
with failures of both the JIT engine and model execution.
All the exploration history is kept in the data store. When
the JIT engine fails, it will be restarted and recover the state
of exploration strategy by replaying the data in data store.
For model exploration, the most valuable data are the set of
models that have been explored and their observed results.
These data are usually enough to continue an interrupted
exploration from a previously known state. For an exploration
strategy that maintains its own, additional states that cannot
be recovered by our automatic mechanism, its own recovery
logic must be provided. Another type of failure comes from
the optimized graphs. If the execution of an optimized graph
fails (e.g., out of GPU memory, tensor shape mismatch), while
each model in this graph runs without error, Retiarii will revert
to running the individual models separately.

Limitations. Retiarii has limited support to dynamic graphs.
Retiarii’s mutators are applied to a base model. However,
sometimes it is difficult to extract a graph representation from
the a highly dynamic base model (e.g., Tree-LSTMs [58]).
Also, the current implementation of operator batching is lim-
ited. Some operator batching is possible but is not imple-
mented as it requires implementing new GPU kernels. More-
over, when a model is mutated, it requires additional program-
ming efforts to match the shape of adjacent layers’ input/out-
put tensors. It is currently out of the scope of Retiarii to handle
possible shape mismatch after mutation. We leave automatic
shape inference and matching to our future work.

7 Evaluation

We evaluate the performance of Retiarii for exploring neural
network architectures. Overall, the key findings include:

• The separation of model space and exploration strategy
makes it easy for Retiarii to try different combinations.
Retiarii currently supports 27 popular Neural Architecture
Search (NAS) solutions. Most of them can be implemented
by the three mutator classes provided by Retiarii.

• A number of micro-benchmarks show how Retiarii’s cross-
model optimizations greatly improve training efficiency.

• Retiarii improves the model exploration speed of three
NAS solutions by up to 2.58×, compared with traditional
approaches.

• Retiarii improves the scalability of weight sharing-based
NAS solutions and brings up to 8.58× speed-up using
the proposed mixed parallelism, compared with data paral-
lelism.
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Required Mutator Class
NAS Solution Model Space Exploration Strategy Input

Mutator
Operator
Mutator

Inserting
Mutator

Customized
Mutator

MnasNet [59] MobileNetV2-based space Reinforcement Learning ! !

NASNet [70] NASNet cell Reinforcement Learning ! !

ENAS-CNN [50] NASNet cell variant Reinforcement Learning ! !

AmoebaNet [51] NASNet cell Evolutionary ! !

Single-Path One Shot (SPOS) [27] ShuffleNetV2-based space Evolutionary !

Weight Agnostic Networks [23]
Evolving space w/

adding/altering nodes
adding connections

Evolutionary ! !

Path-level NAS [13] Evolving space w/
replication and split Reinforcement Learning !

TextNAS [62] TextNAS space Reinforcement Learning ! !
... ... ... ... ... ... ...

Table 1: NAS solutions currently supported by Retiarii, and required mutators to implement them in Retiarii. Please refer to [4]
for the full list that contains 27 NAS solutions in total.

7.1 Expressiveness and Reusability

Table 1 shows 8 out of 27 NAS solutions currently supported
by Retiarii (please refer to [4] for the full list). After decou-
pling model spaces from exploration strategies, developers
can easily reuse them without extra coding efforts. For ex-
ample, the exploration strategy "reinforcement learning" is
reused by MnasNet [59], NASNet [70] and ENAS-CNN [50].
Several machine learning researchers at Microsoft Research
are now using Retiarii to explore more NAS solutions by lever-
aging different combinations of model spaces and exploration
strategies.

To build these model spaces, Retiarii provides three de-
fault mutator classes. Input Mutator is to mutate inputs of
matched operators. Operator Mutator is to replace matched
operators with other operators. Inserting Mutator is to insert
new operators or sub-graphs after matched operators. We find
the three mutator classes are enough to implement most of
the listed NAS solutions. Moreover, Retiarii allows model
developers to build customized mutator classes using basic
graph mutation primitives to implement more complex model
spaces, e.g., Weight Agnostic Networks [23] and Path-level
NAS [13].

7.2 Micro-benchmarks

7.2.1 Shared Data Loading and Preprocessing

The following experiments demonstrate two micro-
benchmarks of common sub-expression elimination, where
multiple models share the same data loading and preprocess-
ing. These micro-benchmarks are evaluated on 4 V100 GPUs
with 20 CPU cores. We compare Retiarii with a baseline
that runs each model independently without CSE. For a fair
comparision, CUDA Multi-Process Service (MPS) [5] is
enabled for the baseline when Retiarii decides to packed
more than one model in a GPU.

Avoiding CPU Bottleneck. Figure 12 shows the aggregate
throughput and CPU usage with the increased number of
MnasNet0.5 (i.e., depth multiplier=0.5) models [59] running
concurrently on the 4 V100 GPUs and 20 CPU cores. The
models are trained on ImageNet with a batch size of 224 with
the same preprocessing as in [59]. The baseline approach runs
each model independently, thus each batch of data will be
loaded and preprocessed multiple times. Retiarii merges the
data loading and preprocessing across different models thus
they are executed only once. Both Retiarii and the baseline
can further pack multiple models into one GPU to run them
concurrently. The models are distributed in a round-robin way.
For example, when running 6 models, the first two GPUs are
packed with two models on each GPU, while each of rest two
GPUs runs only one model. The measured performance is
averaged over one training epoch.

Figure 12: The aggregate throughput and CPU usage with
varying number of concurrently running MnasNet0.5 models.

Overall, Retiarii increases the throughput by 3.41× when
running 8 models on 4 GPUs. The bottom figure in Figure 12
shows that training one MnasNet0.5 model has already con-
sumed about 75% of CPU cores. Thus, CPU will become
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the bottleneck when running more than one model without
sharing. On the contrary, Retiarii eliminates the redundant
data loading and preprocessing. Increasing the number of con-
current models does not affect the CPU usage for data loader.
The marginal increase of CPU usage in Retiarii is due to other
computations, which can not be merged (e.g., overhead of the
training runtime).

Also note that, running 5 models does not bring higher
throughput than running 4 models. This is due to the overhead
of synchronization brought by unbalanced model assignment,
i.e., the first GPU is packed with two models while each of the
rest three GPUs runs only one model. In Retiarii, merging the
graphs will force them to be trained synchronously. Packing
two models in one GPU may increase their iteration time,
thus the rest three GPUs have to wait for the two slower
models in the first GPU in every iteration. This suggests to
merge the graphs with a similar iteration time to avoid severe
synchronization overheads.

Avoiding GPU Bottleneck. Non-trainable embedding [49]
can be regarded as a special type of data preprocessing. In this
micro-benchmark, we use BERT [19] to obtain pre-trained
contextual embeddings of input tokens from Stanford Senti-
ment Treebank (SST) dataset [55] for training TextNAS [62],
which is one of the state-of-the-art natural language process-
ing models. The batch size for each TextNAS model is 128.
Different from the micro-benchmark of avoiding CPU bot-
tleneck, the embedding computation is placed on GPU be-
cause the BERT embedding runs much faster on GPU than
CPU [3]. The baseline still runs multiple models indepen-
dently. The performance is measured by averaging over one
training epoch.

Figure 13: The aggregate throughput with varying number of
TextNAS models.

Figure 13 shows the result. Overall, Retiarii achieves 1.97×
throughput of the baseline when training 12 TextNAS models
on 4 V100 GPUs. Both the baseline and Retiarii meet out-of-
memory when running more than 12 TextNAS models. As
we have shown in Figure 9, Retiarii uses model parallelism to
dedicate one GPU to compute the BERT embedding, which
is pipelined with the training of TextNAS models on the other
three GPUs. Since the BERT embedding is the bottleneck in
each training iteration, this optimization allows the training
of more TextNAS models to be overlapped with the BERT

Figure 14: The aggregate throughput with varying number of
batched models.

embedding. In this experiment, we find Retiarii can pack
two TextNAS models on each GPU (i.e., 6 models in total)
without affecting the iteration time. And 12 models can be
packed in total with better aggregated throughput, but each
model’s iteration time is degraded. Although the baseline can
also pack up to 12 models on 4 GPUs, the compute-intensive
BERT embedding repeats three times per GPU that greatly
increases the iteration time. Only marginal improvement on
throughput is observed in the baseline when packing more
models using CUDA MPS.

7.2.2 Operator Batching

To evaluate operator batching across graphs, we insert adapter
layers to a pre-trained MobileNet [29]. Weights from the Mo-
bileNet are fixed during training. These models use the same
batch size, which is 8 images per mini-batch. Synthetic data
without preprocessing is used to avoid the gain from shared
data loading. The models are trained on one V100 GPU of
16GB GPU memory. Similar to previous micro-benchmarks,
the baseline uses CUDA MPS to execute multiple models
in one GPU. The performance is measured by averaging the
throughput over 1500 mini-batches.

Figure 14 shows the average throughput of concurrently
running models. Overall, Retiarii’s operator batching im-
proves the aggregate throughput by 3.08× when batching
192 models, compared with the baseline that can only train at
most 12 models together. Retiarii can batch more models than
the baseline because it only has one copy of (fixed) weights
from MobileNet. Only the memory for adapters is increased
when batching more models. Even when Retiarii batches 12
models, it still achieves 1.76× improvement on the aggregate
throughput. This improvement comes from the benefit of vec-
torization to execute the batched operators in a single kernel,
which increases GPU utilization.

7.2.3 Optimization for Weight Sharing

To evaluate Retiarii’s optimization for weight sharing, we
use Single Path One-Shot (SPOS) [27] to explore a model
space built by ShuffleNetV2 blocks, where a model is instan-
tiated for every batch of data. The models are trained with
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(a) NVIDIA Data Loading Library (DALI) (b) PyTorch DataLoader

Figure 16: The completion time of the search phase of three NAS approaches, each of which generates 1,000 models for training.

synthetic data on a V100 GPU of 16GB GPU memory. We
implemented two baselines that share weights of overlapped
operators among the instantiated models through weight sav-
ing and loading. In the first baseline, a checkpoint file is used
for weight sharing, i.e., a model loads its weights from the
file, then saves its updated weights to the file after training a
mini-batch. In the second baseline, the file is replaced with a
dict object located in GPU memory. Both model weights and
optimizer states (e.g., momentum) need to be checkpointed.

Figure 15: The throughput of weight sharing with and without
cross-model optimization.

The result is shown in Figure 15. By merging multiple
models as a super-graph, Retiarii’s cross-model optimization
improves the throughput by up to 6.52× when batch size
is 32, and 2.08× when batch size is 256 (compared with
checkpoint-to-file). Since SPOS only trains an instantiated
model with a batch of data, frequent checkpointing brings
significant overheads. Merging instantiated models into a
super-graph allows Retiarii to load the models only once (at
the beginning). Thus, Retiarii can use control flow to only
activate the desired model, which also saves the time of model
initialization. The performance of a jumbo model is similar
to that of Retiarii’s super-graph, the difference is that the
super-graph is automatically built by Retiarii’s JIT engine

while the same graph is manually programmed in the jumbo
model approach. This leads to a big performance gap on
parallel training which will be illustrated in §7.4, as Retiarii
fully understands each sampled graph and the weight sharing
pattern.

7.3 Speeding up Neural Architecture Search
To evaluate the performance of running NAS solutions on
Retiarii, we select three popular and representative NAS solu-
tions from Table 1: (1) MnasNet [59], (2) NASNet [70], and
(3) AmoebaNet [51]. They cover different combinations of
model spaces and exploration strategies: MnasNet and NAS-
Net use the same search strategy; NASNet and AmoebaNet
have the same model space. We compare Retiarii against
the one-off solutions built by traditional deep learning frame-
works. Since Retiarii separates the cross-model optimization
from model generation, all the three NAS solutions can lever-
age the three cross-model optimizations in §5 to accelerate
the search of architectures without extra effort.

To evaluate the traditional approaches, which are unaware
of cross-model relations, we test the following two baselines.
(1) Exclusive execution: a model is trained independently
and exclusively on one GPU. (2) Packing: multiple models
may share the same GPU using CUDA MPS without merging
their graphs; it uses Retiarii’s decisions to choose the models
to be packed onto the same GPU.

In the experiments, each NAS approach will generate 1,000
models in 20 batches (each batch contains 50 models). For a
fair comparision, Retiarii and the two baselines are given the
same set of models in the same order. We compare the time to
finish the training of all the 1,000 models for 1 epoch on Ima-
geNet’s training images [18]. We vary the batch size from 32
to 96 (batch size larger than 96 will lead to Out-of-Memory).
We also compare the performance using two implementa-
tions of the data loader, i.e., NVIDIA Data Loading Library
(DALI) [6] and PyTorch DataLoader [7], to understand the
impact of data loading. The experiments are conducted on 4
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NVIDIA Tesla V100 GPUs (each has 16GB GPU memory).
Simlar to [64], we “fast-forward” the experiment by instruct-
ing model trainings to skip a number of iterations when the
iteration time becomes stable. We measure the average itera-
tion time over 100 mini-batches, which is used to project the
entire training time.

Figure 16 shows the results of the search time of differ-
ent settings. In most settings, Retiarii is substantially faster
than the two baselines due to the cross-model optimizations.
Overall, Retiarii achieves up to 2.57× speed-up on the search
time compared with the two baselines. The performance gain
mainly comes from packing multiple models in the same
GPU, and shared dataloading and preprocessing. Because the
packing baseline is agnostic to the cross-model relations, it
cannot apply cross-model optimizations thus only brings up
to 1.42× speed-up over the exclusive execution. Moreover,
due to the increased CPU burden on the larger batch size, the
packing baseline runs even slower by 31% than the exclu-
sive execution on PyTorch DataLoader when the batch size
is 96. Note that, an introspective policy, e.g., Gandiva [64],
can remedy the packing baseline’s slow-down by reverting
the packing when the training speed is slower. But the key
insight in this experiment is that only using packing without
cross-model merging will limit the space for improvement.

Retiarii achieves higher speed-up on MnasNet than NAS-
Net and AmoebaNet. Because the models from MnasNet are
designed for mobile devices that have a lower GPU mem-
ory usage and shorter iteration time, Retiarii can pack more
MnasNet models into one GPU and merge their graphs for
cross-model optimizations. As the generated models have
different memory consumption, the number of models that
can be fit in the same GPU varies accordingly. When the
batch size is 32, Retiarii can run 4-22 MnasNet models simu-
tanously; but only 4-8 NASNet/AmoebaNet models due to the
larger model size. We also observe Retiarii achieves higher
speed-up on PyTorch DataLoader, because DALI is more ef-
ficient on data preprocessing that reduces the probability of
bottleneck on CPU.

7.4 Scaling Weight-Shared Training
In addition to system optimizations, Retiarii also enables and
enhances the weight sharing optimization advocated by the
machine learning community. As shown in §7.2.3, Retiarii
builds a super-graph for weight sharing to avoid the overhead
of model building and checkpointing. This optimization can
be further improved by training the super-graph using mixed
parallelism to scale it to a GPU cluster.

In this experiment, we build a model space with Shuf-
fleNetV2 blocks described in the Single Path One-Shot
(SPOS) paper [27]. Each model in the model space is ran-
domly sampled and trained for one batch of data [17,27]. The
models are trained for 60 epochs in total on the ImageNet
dataset (with 1,281,167 images). As a result, a new model

is instantiated for every batch of data (e.g., 1281167/256×
60 = 300240 models are instantiated when the batch size
is 256). The experiment runs on two servers, each has 4
V100 GPUs. We use the common evaluation metric of weight
sharing-based approaches [12, 27] to evaluate the searched
space. We randomly sample 196 models and evaluate each
model using 256 images from ImageNet’s validation set. Then
we calculate the average validation accuracy of the 196 mod-
els. The higher the average validation accuracy is, the better
the space is explored. We compare Retiarii’s mixed paral-
lelism with three commonly used data parallelism approaches.
To understand the benefit of mixed parallelism, all the three
baselines of data parallelism and Retiarii’s mixed parallelism
enable the super-graph optimization (i.e., no saving and load-
ing of weights). Specifically, the former three are manually
programmed jumbo-models, while the latter is a super-graph
automatically built by Retiarii.

Figure 17: Training time and validation accuracy of weight
sharing. The left y-axis shows the training time (bar chart).
The right y-axis shows the validation accuracy (line chart).

Figure 17 shows the training time and validation accuracy
of the three data parallelism approaches and Retiarii’s mixed
parallelism. The data parallelism of the left two bars and Re-
tiarii’s mixed parallelism use the batch size of 256 with a
learning rate of 0.125 per model (or per 256 data samples).
As a common practice of data parallelism, scaling to 8 GPUs
requires to split each batch of data across the 8 GPUs (i.e.,
the batch size per GPU is 32). SyncBN [66] is an optimiza-
tion to calculate batch normalization across multiple GPUs,
which proves to improve the model quality, but slows down
the training due to intensive synchronization and data trans-
mission across GPUs. As shown in Figure 17, SyncBN-based
data parallelism requires more than 60 hours of training time.
Disabling SyncBN reduces the training time to ∼ 20 hours
but harms the model accuracy. In contrast, Retiarii’s mixed
parallelism greatly reduces training time (only 7.45 hours),
achieving up to 8.58× speed-up over SyncBN-based Data
Parallel training. This is because the mixed parallel training
avoids the synchronization overhead of SyncBN as each GPU
runs a different model requiring no cross-GPU synchroniza-
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tion. Moreover, Retiarii’s mixed parallel training produces a
comparable validation accuracy to SyncBN-based Data Par-
allel training (61.49% v.s. 61.11%). Another practice of data
parallelism is to increase batch size and learning rate with the
increased number of GPUs. The result is shown as the second
bar on the right of Figure 17. Although the training time is re-
duces to 7.04 hours, the model’s validation accuracy degrades
significantly. This result is consistent with the common wis-
dom in deep learning community that larger batch size could
hurt model accuracy [25, 35]. In summary, Retiarii’s mixed
parallelism achieves better scalability for weight-shared train-
ing, without sacrificing model accuracy.

8 Related Work
Deep Learning Frameworks. Deep learning frameworks
(e.g., PyTorch [48], TensorFlow [11], and MXNet [14]) are
designed to describe and train an individual DNN model,
which covers only one step in the end-to-end exploration-
training process of devising a high-quality model.

Network Architecture Search Algorithms. To automate
the design of neural networks, Neural Architecture Search
(NAS) [39, 50, 59, 60, 69, 70] develops algorithms to discover
the state-of-the-art neural model architecture. Limited by the
existing deep learning frameworks, their implementations
often couple model space, exploration strategy, and model
training together, introducing barriers to innovations and op-
timizations. In contrast, Retiarii’s modular and decoupled
approach maximizes reusability and facilitates optimizations.

AutoML Systems. Automated Machine Learning (Au-
toML) automates the end-to-end process of real-world ma-
chine learning problems, e.g., AutoGluon [21], TPOT [47],
Auto-Sklearn [22], Auto-WEKA [61], AutoKeras [32]. The
implementations of these systems still couple the domain-
specific model space and exploration strategy, making it
hardly reusable to other problem domains.

The hyper-parameter tuning systems like Google
Vizier [24] and Katib [68] can be used for neural architecture
search. To use a hyper-parameter tuning system, the model
space and exploration strategy are being parameterized. Since
different model space and exploration strategy often use a
different set of parameters, this approach limits the reusability
of the implementation. Moreover, the hyper-parameter tuning
approach can limit the expressiveness of the system as
well. Some model space is hard to be parameterized, e.g.,
evolutionary NAS [13,23,51]. It is worth noting that Retiarii’s
Mutator abstraction can also be used for hyper-parameter
tuning. The hyper-parameter tuning can be treated as a
special case of neural model mutation.

DeepArchitect [46] also strives to decouple model spaces
and exploration strategies. Compared to DeepArchitect, Re-
tiarii differentiates itself with the Mutator abstraction. As
shown in §7, Retiarii can implement multiple model spaces

using a few mutators, demonstrating great reusability and
composability. More importantly, with the Mutator abstrac-
tion, Retiarii is able to exploit cross-model optimizations
easily, which is not addressed previously.

Graph Optimization for Deep Learning. Recently, there
are many proposals to optimize the computation of a single
neural network model by optimizing the data-flow graph, e.g.,
TVM [15], DLVM [63], TensorFlow-XLA [38], TASO [31],
TensorFlow-Fold [41]. In contrast, Retiarii exploits the cross-
model optimizations exposed by Mutator. HiveMind [45],
FLEET [26] and some other works [40] apply common sub-
expression elimination in the AutoML scenario to deduplicate
the common prefix nodes of multiple graphs. This can be
considered a special case in Retiarii’s larger optimization
space, which includes other techniques like operator batching
and weight sharing.

9 Conclusion
We propose Retiarii, the first deep learning framework that
supports the exploratory training on a neural network model
space, rather than on a single neural network model. The core
of Retiarii is the Mutator abstraction, which not only allows
the specification of different neural network model spaces,
interacts with various model exploration strategies, and ex-
poses the model correlations for further optimization, but also
serves as a clean interface to separate the three. The design
leads to ease of programming, reuse of model space, explo-
ration strategy, and cross-model optimization. Our evaluation
demonstrates the effectiveness of the design, showing more
than 8× improvement in the overall exploratory-training per-
formance over approaches that rely on existing deep learning
frameworks, which only support one model at a time. The
artifacts of Retiarii are available at https://github.com/
microsoft/nni/tree/retiarii_artifact.
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A Artifact Appendix

A.1 Abstract
This artifact is designed to reproduce the main results of this
work, which have two goals:

• Functionality: Retiarii can express NAS spaces using mu-
tators, explore spaces using Exploration Engine, and accel-
erate the exploration using cross-model optimization.

• Performance: Retiarii’s cross-model optimization
achieves the performance number claimed in §7.

A.2 Artifact check-list
• Algorithm: yes

• Data set: ImageNet [18], SST [55]

• Run-time environment: Ubuntu 16.04, CUDA 10.0, cuDNN
7.6.5. Root access is required.

• Hardware: GPUs with NVIDIA MPS.

• Metrics: training throughput; job completion time; model vali-
dation accuracy.

• Output: Web UI; stdout from console.

• Required disk space: 200 GB

• Expected experiment run time: 20 hours

• Public link: https://github.com/microsoft/nni/tree/
retiarii_artifact

• Code licenses: MIT License

A.3 Description
A.3.1 How to access

Clone the “retiarii_artifact” branch of Microsoft NNI’s GitHub repos-
itory.

1 git clone -b retiarii_artifact https://github.com/
Microsoft/nni.git

A.3.2 Hardware dependencies

This artifact requires at least one server with four NVIDIA V100
GPUs.

A.3.3 Software dependencies

• CUDA 10.1;

• cuDNN 7.6.5;

• Python 3.7;

• NVIDIA DALI;

• NVIDIA Apex;

• PyTorch 1.5.1;

• TensorFlow 2.3;

• Other Python packages in “requirements.txt”.

A.3.4 Data sets

• ImageNet: should be placed at “retiarii_perf/data/imagenet”.

• SST: The three text files (dev.txt, test.txt, train.txt) SST should
be placed at “retiarii_perf/data/sst/trees”.

A.4 Installation
For running Retiarii’s artifact, please install NNI v1.8 first. This
artifact contains two parts. In the folder of “retiarii_nas”, we demon-
strate the functionality of Retiarii to express different NAS solutions.
In the folder of “retiarii_perf”, we evaluate Retiarii’s performance
using cross-model optimization.

For some experiments, it requires NVIDIA MPS to be enabled.
To start NVIDIA MPS:

1 sudo ./mps_scripts/init_mps_for_all_gpus.sh
2 ./mps_scripts/set_mps_env_for_all_gpus.sh

To stop NVIDIA MPS:

1 sudo ./mps_scripts/stop_mps_for_all_gpus.sh

A.5 Evaluation: NAS Solution All-stars
In the folder of “retiarii_nas”, we have implemented 17 NAS so-
lutions using Retiarii. We support both PyTorch and TensorFlow.
Weight Agnostic Networks (wann), Path-level NAS (path_level),
and Hierarchical Representation (hierarchical) are implemented with
TensorFlow. Other NAS solutions are implemented with PyTorch.
We also provide a script to test them, which can be started using the
following command.

1 python3 retiarii.py e2e_launch.py [nas_mode]

(Use “python3 retiarii.py -L” to get the list of supported models)
After the command is executed, a Web UI URL will be given,

which contains the trial execution status.
Note that, to speed up the test, we run each generated model by

only one mini-batch (thus, returned values are all 0), you are free to
remove the ‘break’s in e2e_launch.py (ModelTrain, ModelTrainCifar,
ModelTrainTextNAS) to run each generated model completely.

This artifact has supported three classic exploration strate-
gies: random, reinforcement learning, and evolution, and also
has supported two differentiable training strategies: DARTS
training strategy and ProxylessNAS training strategy. Other
exploration strategies have been supported in NNI (https:
//github.com/microsoft/nni/blob/retiarii_artifact/
backend_nni/docs/en_US/Tuner/BuiltinTuner.md), have not
been integrated into this artifact. They will be formally supported in
Retiarii official release.
Paper Claim: Retiarii is able to support 27 NAS solutions.
Clarification: We have included 17 of the 27 NAS solutions in the
artifact evaluation. The remaining ones only have minor differences
with the included implementations (e.g., EfficientNet v.s. MnasNet,
SCARLET-NAS v.s. FairNAS v.s. SPOS). We believe the included
ones are sufficient to demonstrate the programmability of Retiarii.
Full support of the 27 NAS solutions will be included in an official
release version of Microsoft NNI.
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A.6 Evaluation: Retiarii Performance
A.6.1 Micro-benchmark: Deduplication to avoid CPU

bottleneck

Execution command:

1 python artifact_start.py micro_dedup_cpu --n=8

This python script will start 8 jobs (each GPU runs two jobs), then
profile the total throughput. This command takes 1.5 minutes. The
result will be printed after the profiling as follows. The error should
be within 10%.

1 Throughput: 4746.849792184445 samples/s

Paper Claim: In Figure 12, when running 8 models, Retiarii can
achieve about 5000 samples/s.

A.6.2 Micro-benchmark: Deduplication to avoid GPU
bottleneck

Execution command:

1 python artifact_start.py micro_dedup_gpu --n=12

This python script will start 12 jobs. GPU-0 runs one job, each of the
other three GPUs run 4 jobs). Then it profiles the total throughput.
This command takes 1.5 minutes. The result will be printed after the
profiling as follows. The error should be within 10%.

1 Throughput: 5028.187640607402 samples/s

Paper Claim: In Figure 13, when running 12 models, Retiarii can
achieve about 5100 samples/s.

A.6.3 Micro-benchmark: Operator batching

Execution command:

1 python artifact_start.py micro_batching --n=192

This python script will use Retiarii to pack 192 models into one job
to be run on a single GPU-0. Then it profiles the total throughput.
This command takes 10 minutes. It is normal if it has no output for
a long time, because it takes 3 minutes for the cross-model optimiza-
tion policy to calculate a plan. The result will be printed after the
profiling as follows. The error should be within 10%.

1 Throughput: 6124.981150684514 samples/s

Paper Claim: In Figure 14, when batching 192 models, Retiarii can
achieve about 5800 samples/s.

A.6.4 End-to-end Evaluation: MnasNet using DALI

Execution command:

1 python artifact_start.py e2e_dali_mnasnet

This experiment will train 1000 MnasNet models in 20 batches
(each batch has 50 models). Each model will be trained for 1 epoch
on ImageNet, which will be very time-consuming and costly if we
train all 1000 models. Since we only want to know the training

time but not the validation accuracy. We use a workaround to “fast-
forward” the training. We profile each job for 150 mini-batches to
measure the iteration time. Then we use the measured job speed to
emulate the experiment with a simple job scheduler (implemented in
“fast_scheduler.py”). The experiment takes about 1 hour to run. The
result will be printed as follows. The error should be within 10%.

1 124.35633072276445 hours for mnasnet w/ BS=32

Paper Claim: In Figure 15(a), when Batch Size=32, Retiarii can
finish NAS exploration of MnasNet in about 130 hours.

A.6.5 End-to-end Evaluation: SPOS training using
mixed parallelism

Execution command:

1 python artifact_start.py e2e_spos_mix_parallel
--n=4

This python script will start 4 jobs, each on one GPU, to train
SPOS in mixed parallelism, a new type of training parallelism we
proposed for weight sharing-based training. The super-graph is gen-
erated in the function “_gen_spos_super_graph(n_job)” in “arti-
fact_start.py”. In the paper, we used 8 V100 GPUs in two servers,
which takes about 7.45 hours to train SPOS for 60 epochs achieving
61.2% average validation accuracy. The result will be printed as
follows.

1 [03/31 02:40:46] INFO (main) Epoch [60/60]
Validation Step [196/196] acc1 0.650000
(0.611117) acc5 0.887500 (0.833490) loss
2.359303 (2.586974)

Note that, the training of SPOS is unstable. The average valida-
tion accuracy could vary from 60% to 62%. For your reference, we
also provide the training log we obtained on eight V100 GPUs in
“data/spos_8_v100.log”.
Paper Claim: In Figure Figure 17, Retiarii’s mixed parallelism can
train SPOS for 60 epochs with a batch size of 256 to achieve 61.11%.

A.7 Experiment customization
New experiments can be customized and added in “re-
tiarii_nas/e2e_launch.py” and “retiarii_perf/artifact_start.py”.

A.8 Notes
NVIDIA CUDA MPS may fail if a job is not stopped properly,
which requires NVIDIA CUDA MPS to be restarted. Experiments in
“retiarii_nas” will kill a running job for saving time, but may trigger
the failure of NVIDIA CUDA MPS. We suggest to disable NVIDIA
CUDA MPS when running experiments in “retiarii_nas”.
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