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Abstract
Machine Learning (ML) adoption in the enterprise requires

simpler and more efficient software infrastructure—the be-
spoke solutions typical in large web companies are simply
untenable. Model scoring, the process of obtaining predic-
tions from a trained model over new data, is a primary con-
tributor to infrastructure complexity and cost as models are
trained once but used many times. In this paper we propose
HUMMINGBIRD, a novel approach to model scoring, which
compiles featurization operators and traditional ML models
(e.g., decision trees) into a small set of tensor operations. This
approach inherently reduces infrastructure complexity and
directly leverages existing investments in Neural Network
compilers and runtimes to generate efficient computations
for both CPU and hardware accelerators. Our performance
results are intriguing: despite replacing imperative computa-
tions (e.g., tree traversals) with tensor computation abstrac-
tions, HUMMINGBIRD is competitive and often outperforms
hand-crafted kernels on micro-benchmarks on both CPU and
GPU, while enabling seamless end-to-end acceleration of ML
pipelines. We have released HUMMINGBIRD as open source.

1 Introduction
Enterprises increasingly look to Machine Learning (ML)
to help solve business challenges that escape imperative
programming and analytical querying [35]—examples in-
clude predictive maintenance, customer churn prediction, and
supply-chain optimizations [46]. To do so, they typically turn
to technologies now broadly referred to as “traditional ML”,
to contrast them with Deep Neural Networks (DNNs). A
recent analysis by Amazon Web Services found that 50 to
95% of all ML applications in an organization are based on
traditional ML [38]. An analysis of 6M notebooks in public
GitHub repositories [64] paints a similar picture: NumPy [69],
Matplotlib [11], Pandas [7], and scikit-learn [62] are the four
most used libraries—all four provide functions for traditional
ML. As a point of comparison with DNN frameworks, scikit-
learn is used about 5 times more than PyTorch [61] and
⇤The work was done while the author was at Microsoft.

TensorFlow [13] combined, and growing faster than both.
Acknowledging this trend, traditional ML capabilities have
been recently added to DNN frameworks, such as the ONNX-
ML [4] flavor in ONNX [25] and TensorFlow’s TFX [39].

When it comes to owning and operating ML solutions, en-
terprises differ from early adopters in their focus on long-term
costs of ownership and amortized return on investments [68].
As such, enterprises are highly sensitive to: (1) complexity,
(2) performance, and (3) overall operational efficiency of their
software infrastructure [14]. In this work we focus on model
scoring (i.e., the process of getting a prediction from a trained
model by presenting it with new data), as it is a key driving fac-
tor in each of these regards. First, each model is trained once
but used multiple times for scoring in a variety of environ-
ments, thus scoring dominates infrastructure complexity for
deployment, maintainability, and monitoring. Second, model
scoring is often in the critical path of interactive and analytical
enterprise applications, hence its performance (in terms of la-
tency and throughput) is an important concern for enterprises.
Finally, model scoring is responsible for 45-65% of the total
cost of ownership of data science solutions [38].

Predictive Pipelines. The output of the iterative process of
designing and training traditional ML models is not just a
model but a predictive pipeline: a Directed Acyclic Graph
(DAG) of operators. Such pipelines are typically comprised
of up to tens of operators out of a set of hundreds [64] that
fall into two main categories: (1) featurizers, which could
be either stateless imperative code (e.g., string tokenization)
or data transformations fit to the data (e.g., normalization);
and (2) models, commonly decision tree ensembles or (gen-
eralized) linear models, fit to the data. Note that the whole
pipeline is required to perform a prediction.

A Missing Abstraction. Today’s featurizers and model im-
plementations are not expressed in a shared logical abstrac-
tion, but rather in an ad-hoc fashion using programming
languages such as R, Python, Java, C++, or C#. This hints to
the core problem with today’s approaches to model scoring:
the combinatorial explosion of supporting many operators
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(and frameworks) across multiple target environments. Fig-
ure 1 (top) highlights this visually by showing how existing
solutions lead to an O(N⇥M) explosion to support N oper-
ators from various ML frameworks against M deployment
environments (e.g., how to run a scikit-learn model on an
embedded device?). Furthermore, [64] shows that the number
of libraries used in data science (a metric correlated to N)
increased by roughly 4⇥ in the last 2 years. Our expectation
is that M is also destined to grow as ML is applied more
widely across a broad range of enterprise applications and
hardware (e.g., [1, 15, 30, 48, 49]). From the vantage point of
implementing runtimes for model scoring, this is a daunting
proposition. We argue that any brute-force approach directly
tackling all combinations would dilute engineering focus lead-
ing to costly and less optimized solutions. In fact, today, with
very few exceptions (e.g., NVIDIA RAPIDS [3] for GPU),
traditional ML operators are only implemented for CPUs.

This state of affairs is in contrast with the DNN space,
where neural networks are authored using tensor transforma-
tions (e.g., multiplications, convolutions), providing an alge-
braic abstraction over computations. Using such abstractions
rather than imperative code not only enables evolved opti-
mizations [33, 41] but also facilitates support for diverse en-
vironments (such as mobile devices [26], web browsers [32],
and hardware accelerators [15, 48, 49]), unlocking new levels
of performance and portability.

Our Solution. To bypass this N⇥M explosion in implement-
ing traditional ML operators, we built HUMMINGBIRD (HB
for short). HB leverages compilation and optimization tech-
niques to translate a broad set of traditional ML operators into
a small set of K core operators, thereby reducing the cost to
O(N)+O(K⇥M), as shown in Figure 1 (bottom). This is
also the key intuition behind the ONNX model format [25]
and its various runtimes [6]. However, with HB we take one
further bold step: we demonstrate that this set of core opera-
tors can be reduced to tensor computations and therefore be
executed over DNN frameworks. This allows us to piggyback
on existing investments in DNN compilers, runtimes, and
specialized-hardware, and reduce the challenge of “running K
operators across M environments” for traditional ML to just
O(N) operator translations. This leads to improved perfor-
mance and portability, and reduced infrastructure complexity.

Contributions. In this paper we answer three main questions:
1. Can traditional ML operators (both linear algebra-based

such as linear models, and algorithmic ones such as de-
cision trees) be translated to tensor computations?

2. Can the resulting computations in tensor space be com-
petitive with the imperative alternatives we get as input
(e.g., traversing a tree)?

3. Can HB help in reducing software complexity and im-
proving model portability?

Concretely, we: (1) port thousands of benchmark predic-
tive pipelines to two DNN backends (PyTorch and TVM);
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Figure 1: Prediction serving complexity: state-of-the-art (top) vs.
HUMMINGBIRD (bottom).

(2) show that we can seamlessly leverage hardware acceler-
ators and deliver speedups of up to 3⇥ against hand-crafted
GPU kernels, and up to 1200⇥ for predictive pipelines against
state-of-the-art frameworks; and (3) qualitatively confirm im-
provements in software complexity and portability by en-
abling scikit-learn pipelines to run across CPUs and GPUs.

HB is open source under the MIT license 1, and is part
of the PyTorch ecosystem [28]. We are integrating HB with
other systems, such as the ONNX converters [58].
Organization. The remainder of the paper is organized as
follows. Section 2 provides some background, and Section 3
presents an overview of HB. Section 4 describes the compi-
lation from traditional ML to tensor computations, whereas
Section 5 discusses various optimizations. Section 6 presents
our evaluation. Section 7 is related work, then we conclude.

2 Background and Challenges
We first provide background on traditional ML and DNNs.
We then explain the challenges of compiling traditional ML
operators and predictive pipelines into tensor computations.

2.1 Traditional ML and DNNs
Traditional Predictive Pipelines. The result of the data sci-
ence workflow over traditional ML are predictive pipelines,
i.e., DAG of operators such as trained models, preprocessors,
featurizers, and missing-value imputers. The process of pre-
senting a trained predictive pipeline with new data to obtain
a prediction is referred to in literature interchangeably as:
model scoring/inference/serving, pipeline evaluation, or pre-
diction serving. We favor model scoring in our writing.

1https://github.com/microsoft/hummingbird
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Packaging a trained pipeline into a single artifact is com-
mon practice [36]. These artifacts are then embedded inside
host applications or containerized and deployed in the cloud to
perform model scoring [43, 63]. ML.NET [36] (.NET-based),
scikit-learn [62] (Python-based), and H2O [9] (Java-based)
are popular toolkits to generate pipelines. However, they are
primarily optimized for training. Scoring predictive pipelines
is challenging, as their operators are implemented in impera-
tive code and do not follow a shared abstraction. Supporting
every operator in all target environments requires a huge ef-
fort, which is why these frameworks have limited portability.
DNNs. Deep Neural Networks (DNNs) are a family of ML
models that are based on artificial neurons [47]. They take raw
features as input and perform a series of transformation oper-
ations. Unlike traditional ML, transformations in DNNs are
drawn from a common abstraction based on tensor operators
(e.g., generic matrix multiplication, element-wise operations).
In recent years, DNNs have been extremely successful in
vision and natural language processing tasks [45, 54]. Com-
mon frameworks used to author and train DNNs are Tensor-
Flow [13], PyTorch [61], CNTK [10], and MXNet [12]. While
these frameworks can also be used to perform model scoring,
next we discuss systems specifically designed for that.
Runtimes for DNN Model Scoring. To cater to the demand
for DNN model inference, a new class of systems has emerged.
ONNX Runtime (ORT) [5] and TVM [41] are popular exam-
ples of such systems. These capitalize on the relative simplic-
ity of neural networks: they accept a DAG of tensor opera-
tions as input, which they execute by implementing a small
set of highly optimized operator kernels on multiple hard-
wares. Focusing on just the prediction serving scenario also
enables these systems to perform additional inference-specific
optimizations, which are not applicable for training. HB is
currently compatible with all such systems.

2.2 Challenges
HB combines the strength of traditional ML pipelines on
structured data [56] with the computational and operational
simplicity of DNN runtimes for model scoring. To do so, it
relies on a simple yet key observation: once a model is trained,
it can be represented as a prediction function transforming
input features into a prediction score (e.g., 0 or 1 for binary
classification), regardless of the training algorithm used. The
same observation naturally applies to featurizers fit to the data.
Therefore, HB only needs to compile the prediction functions
(not the training logic) for each operator in a pipeline into
tensor computations and stitch them appropriately. Towards
this goal, we identify two challenges.

Challenge 1: How can we map traditional predictive
pipelines into tensor computations? Pipelines are generally
composed of operators (with predictive functions) of two
classes: algebraic (e.g., scalers or linear models) and algo-
rithmic (e.g., one-hot encoder and tree-based models). While
translating algebraic operators into tensor computations is

straightforward, the key challenge for HB is the translation
of algorithmic operators. Algorithmic operators perform arbi-
trary data accesses and control flow decisions. For example,
in a decision tree ensemble potentially every tree is different
from each other, not only with respect to the structure, but also
the decision variables and the threshold values. Conversely,
tensor operators perform bulk operations over the entire set
of input elements.

Challenge 2: How can we achieve efficient execution for
tensor-compiled traditional ML operators? The ability to
compile predictive pipelines into DAGs of tensor operations
does not imply adequate performance of the resulting DAGs.
In fact, common wisdom would suggest the opposite: even
though tensor runtimes naturally support execution on hard-
ware accelerators, tree-based methods and commonly used
data transformations are well known to be difficult to acceler-
ate [42], even using custom-developed implementations.

3 System Overview
In this section we explain our approach to overcome the chal-
lenges outlined in Section 2.2, and present HB’s architecture
and implementation details. We conclude this section by ex-
plaining assumptions and limitations.

3.1 High-level Approach
In HB, we cast algorithmic operators into tensor computa-
tions. You will notice that this transformation introduces re-
dundancies, both in terms of computation (we perform more
computations than the original traditional ML operators) and
storage (we create data structures that store more than what
we actually need). Although these redundancies might sound
counter-intuitive at first, we are able to transform the arbi-
trary data accesses and control flow of the original operators
into tensor operations that lead to efficient computations by
leveraging state-of-the-art DNN runtimes.

For a given traditional ML operator, there exist different
strategies for compiling it to tensor computations, each in-
troducing a different degree of redundancy. We discuss such
strategies for representative operators in Section 4. The opti-
mal tensor implementation to be used varies and is informed
by model characteristics (e.g., tree-structure for tree-based
models, or sparsity for linear models) and runtime statistics
(e.g., batch size of the inputs). Heuristics at the operator
level, runtime-independent optimizations at the pipeline level,
and runtime-specific optimizations at the execution level en-
able HB to further improve predictive pipelines performance
end-to-end. The dichotomy between runtime-independent and
runtime-specific optimizations allow us to both (1) apply op-
timizations unique to traditional ML and not captured by the
DNN runtimes; and (2) exploit DNN runtime optimizations
once the traditional ML is lowered into tensor computations.
Finally, HB is able to run end-to-end pipelines on the hard-
ware platforms supported by the target DNN runtimes.
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Figure 2: High-level architecture of HB.

3.2 System Architecture and Implementation
The high-level architecture of HB is shown in Figure 2. HB
has three main components: (1) Pipeline Parser, (2) Opti-
mizer, and (3) Tensor DAG Compiler.
Pipeline Parser. In this phase, input pipelines are parsed one
operator at a time, and each operator is wrapped into a con-
tainer object. Each operator’s container maintains (1) the
inputs and outputs of the operator, and (2) the operator signa-
ture that codifies the operator type (e.g., “scikit-learn decision
tree”). HB parser also introduces a set of extractor functions
that are used to extract the parameters of each operator (e.g.,
weights of a linear regression, thresholds of a decision tree).
Operator signatures dictate which extractor function should be
used for each operator. At startup time, extractor functions are
registered into a hash table, mapping operator signatures to
the related extractor function. HB parser is extensible, allow-
ing users to easily add new extractor functions. HB currently
supports over 40 scikit-learn operators (listed in Table 1),
as well as parsers for XGBoost [40], LightGBM [51], and
ONNX-ML [4]. At the end of the parsing phase, the input
pipeline is “logically” represented in HB as a DAG of con-
tainers storing all the information required for the successive
phases. HB parser is based on skl2onnx [31].
Optimizer. In this phase, the DAG of containers generated
in the parsing phase is traversed in topological order in two
passes. During the first traversal pass, the Optimizer extracts
the parameters of each operator via the referenced extractor
function and stores them in the container. Furthermore, since
HB supports different operator implementations based on
the extracted parameters, the Optimizer annotates the con-
tainer with the compilation strategy to be used for that spe-
cific operator (5.1). During the second pass, HB tries to apply
runtime-independent optimizations (5.2) over the DAG.
Tensor DAG Compiler. In this last phase, the DAG of
containers is again traversed in topological order and a
conversion-to-tensors function is triggered based on each op-
erator signatures. Each conversion function receives as input
the extracted parameters and generates a PyTorch’s neural
network module composed of a small set of tensor operators
(listed in Table 2). The generated module is then exported into
the target runtime format. The current version of HB supports
PyTorch/TorchScript, ONNX, and TVM output formats. The
runtime-specific optimizations are triggered at this level.
Table 2: PyTorch tensor operators used by the Tensor DAG Compiler.

matmul, add, mul, div, lt, le, eq, gt, ge, &, |, ⌧,
�, bitwise_xor, gather, index_select, cat, reshape,
cast, abs, pow, exp, arxmax, max, sum, relu, tanh,
sigmoid, logsumexp, isnan, where

Table 1: Scikit-learn operators currently supported in HB.

Supported ML Models

LogisticRegression, SVC, NuSVC, LinearSVC, SGDClassi-
fier, LogisticRegressionCV, DecisionTreeClassifier/Regression,
RandomForestClassifier/Regression, ExtraTreesClassifier/Re-
gressor, GradientBoostingClassifier/Regression, HistGradient-
BoostingClassifier/Regressor, IsoltationForest, MLPClassifier,
BernoulliNB, GaussianNB, MultinomialNB

Supported Featurizers

SelectKBest, VarianceThreshold, SelectPercentile, PCA, Ker-
nelPCA, TruncatedSVD, FastICA, SimpleImputer, Imputer,
MissingIndicator, RobustScaler, MaxAbsScaler, MinMaxScaler,
StandardScaler, Binarizer, KBinsDiscretizer, Normalizer, Poly-
nomialFeatures, OneHotEncoder, LabelEncoder, FeatureHasher

3.3 Assumptions and Limitations
In this paper, we make a few simplifying assumptions. First,
we assume that predictive pipelines are “pure”, i.e., they do
not contain arbitrary user-defined operators. There has been
recent work [65] on compiling imperative UDFs (user-defined
functions) into relational algebra, and we plan to make use
of such techniques in HB in the future. Second, we do not
support sparse data well. We found that current support for
sparse computations on DNN runtimes is primitive and not
well optimized. We expect advances in DNN frameworks to
improve on this aspect—TACO [52] is a notable such example.
Third, although we support string operators, we currently do
not support text feature extraction (e.g., TfidfVectorizer).
The problem in this case is twofold: (1) compiling regex-
based tokenizers into tensor computations is not trivial, and
(2) representing arbitrarily long text documents in tensors
is still an open challenge. Finally, HB is currently limited
by single GPU memory execution. Given that several DNN
runtimes nowadays support distributed processing [57, 66],
we plan to investigate distributed inference as future work.

4 Compilation
HB supports compiling several algorithmic operators into ten-
sor computations. Given their popularity [64], in Section 4.1
we explain our approach for tree-based models. Section 4.2
gives a summary of other techniques that we use for both
algorithmic and arithmetic operators.

4.1 Compiling Tree-based Models
HB has three different strategies for compiling tree-based
models. Strategies differ based on the degree of redundancy
introduced. Table 3 explains the notation used in this section.
We summarize the worst-case runtime and memory footprints
of each strategy in Table 4. HB currently supports only trees
built over numerical values: support for missing and categori-
cal values is under development. For the sake of presentation,
we assume all decision nodes perform < comparisons.
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Figure 3: Compiling an example decision tree using the GEMM strategy.

Table 3: Notation used in Section 4.1

Symbol Description

N, I,L,F,C Ordered lists with all nodes, internal nodes, leaf nodes,
features, and classes, respectively.

X 2 Rn⇥|F | Input records (n is the number of records).

A 2 R|F |⇥|I| Ai, j =

(
1, I j evaluates Fi

0, Otherwise

B 2 R|I| Bi = ThresholdValue(Ii)

C 2 R|I|⇥|L| Ci, j =

8
><

>:

�1, L j 2 RightSubTree(Ii)
1, L j 2 LeftSubTree(Ii)
0, Otherwise

D 2 R|L| Dk = Â
k2L

path��!Root

1(k == LeftChild(Parent(k)))

E 2 R|L|⇥|C| Ei, j =

(
1, Li

map to����!Cj

0, Otherwise

Table 4: Worst-case memory and runtime analysis of different tree
compilation strategies, assuming the number of input records and
number of trees are fixed. The notation is explained in Table 3.

Strategy Memory Runtime
GEMM O(|F ||N|+ |N|2 + |C||N|) O(|F ||N|+ |N|2 + |C||N|)
TT O(|N|) O(|N|)
PTT O(2|N|) O(|N|)

Strategy 1: GEMM. We cast the evaluation of a tree as a series
of three GEneric Matrix Multiplication (GEMM) operations
interleaved by two element-wise logical operations. Given
a tree, we create five tensors which collectively capture the
tree structure: A,B,C,D, and E. A captures the relationship
between input features and internal nodes. B is set to the
threshold value of each internal node. For any leaf node and
internal node pair, C captures whether the internal node is a
parent of that internal node, and if so, whether it is in the left or
right sub-tree. D captures the count of the internal nodes in the
path from a leaf node to the tree root, for which the internal
node is the left child of its parent. Finally, E captures the
mapping between leaf nodes and the class labels. Given these
tensors, Algorithm 1 presents how we perform tree scoring
for a batch of input records X . A graphical representation of
an execution of the GEMM strategy is depicted in Figure 3.

The first GEMM is used to match each input feature with

Algorithm 1 GEMM Strategy (Notation explained in Table 3)
Input :X 2 Rn⇥|F |, Input records
Output :R 2 {0,1}n⇥|C|, Predicted class labels
/* Evaluate all internal nodes */

T  GEMM(X, A) // T 2 Rn⇥|I|

T  T < B // T 2 Rn⇥|I|

/* Find the leaf node which gets selected */

T  GEMM(T, C) // T 2 Rn⇥|L|

T  T == D // T 2 Rn⇥|L|

/* Map selected leaf node to class label */

R GEMM(T, E) // R 2 Rn⇥|C|

the internal node(s) using it. The following < operations is
used to evaluate all the internal decision nodes and produces
a tensor of 0s and 1s based on the false/true outcome of the
conditions. The second GEMM operation generates an encoding
for the path composed by the true internal nodes, while the
successive == operation returns the leaf node selected by
the encoded path. Finally, the third GEMM operation maps the
selected leaf node to the class label.

This strategy can be easily applied to support tree ensem-
bles and regression tasks too. For tree ensembles, we create
the above 2-dimensional tensors for each tree and batch them
together. As the number of leaf nodes and internal nodes can
vary among trees, we pick the maximum number of leaf nodes
and internal nodes for any tree as the tensor dimensions and
pad the smaller tensor slices with zeros. During scoring, we
invoke the batched variants of GEMM and logical operations
and perform a final ReduceMean operation over the batched
dimension to generate the ensemble output. For regression
tasks, we initialize E with label values.

Strategy 2: TreeTraversal (TT). In the GEMM strategy, we
incorporated a high degree of computational redundancy by
evaluating all internal nodes and leaf nodes. Here, we try to
reduce the computational redundancy by mimicking the typi-
cal tree traversal—but implemented using tensor operations.
In this strategy, the tree structure is captured by five tensors:
NL,NR,NF ,NT , and NC. We formally define these tensors in
Table 5. The same column index (last dimension) across all
tensors corresponds to the same tree node. NL and NR capture
the indices of the left and right nodes for a given node. If the
node is a leaf node, we set these to the index of the given node.
Similarly, NF and NT capture the feature index and threshold
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Table 5: Additional notation used in Strategy 2: TreeTraversal

Symbol Description

NL 2 Z|N| NLi =

(
LeftChild(Ni),Ni 2 I
i,Otherwise

NR 2 Z|N| NRi =

(
RightChild(Ni),Ni 2 I
i,Otherwise

NF 2 Z|N| NFi =

(
k,(Ni 2 I)^ (Ni evaluates Fk)

1,Otherwise

NT 2 R|N| NTi =

(
ThresholdValue(Ni),Ni 2 I
0,Otherwise

NC 2 Z|N|⇥|C| NCi,k=

(
1,(Ni 2 L)^ (Ni

map to����!Ck)

0,Otherwise

Algorithm 2 TreeTraversal Strategy (Notation in Tables 5)
Input :X 2 Rn⇥|F |, Input records
Output :R 2 {0,1}n⇥|C|, Predicted class labels
/* Initialize all records to point to k, with k the index

of Root node. */
TI  {k}n // TI 2 Zn

for i 1 to TREE_DEPTH do
/* Find the index of the feature evaluated by the

current node. Then find its value. */
TF  Gather(NF ,TI) // TF 2 Zn

TV  Gather(X ,Tf ) // TV 2 Rn

/* Find the threshold, left child and right child */
TT  Gather(NT ,TI) // TT 2 Rn

TL Gather(NL,TI) // TL 2 Zn

TR Gather(NR,TI) // TR 2 Zn

/* Perform logical evaluation. If true pick from TL;
else from TR. */

TI  Where(TV < TT ,TL,TR) // I 2 Zn

end
/* Find label for each leaf node */
R Gather(NC,TI) // R 2 Zn

value for each node, respectively. For leaf nodes, we set NF to
1 and NT to 0. Finally, NC captures the class label of each leaf
node. For internal nodes this can be any value; we set it to 0.

Given these tensors, Algorithm 2 presents how we perform
scoring for a batch of input records X . We use Gather and
Where operations which can be used to perform index-based
slicing and conditional value selection. We first initialize an
index tensor TI corresponding to all records in X , which points
to the root node. Using TI , we Gather the corresponding
feature indices and use them to Gather the corresponding
feature values from X . Similarly, we also Gather left node
indices, right node indices, and node thresholds. Using these
gathered tensors, we then invoke a Where operation which
checks for the tree node decisions. Based on the evaluation,
for each record the Where operator either returns the left child
index or right child index. To perform full tree scoring, the
above steps have to be repeated until we reach a leaf node
for all records in X . We exploit the fact that (1) TREE_DEPTH
is a known property of the input model at compilation time,

and (2) all leaf nodes are at a depth  TREE_DEPTH, to iterate
for that fixed number of iterations to ensure that all records
have found their corresponding leaf node. Tensors are created
in such a way that if one of the indices reaches a leaf node
before running for TREE_DEPTH iterations, the same class
label will keep getting selected. At compile time, we unroll
all iterations and remove the for loop to improve efficiency.
For ensembles, we create tensors for each tree and batch them
together. However, between trees the number of nodes and
dimensions may differ, so we use the maximum node count
for any tree as the dimension and pad the remaining elements.
Strategy 3: PerfectTreeTraversal (PTT). Similar to the pre-
vious one, this strategy also mimics the tree traversal. How-
ever, here we assume the tree is a perfect binary tree. In a
perfect binary tree, all internal nodes have exactly two chil-
dren and all leaf nodes are at the same depth level. Assume
we are given a non-perfect binary tree with a TREE_DEPTH of
D, and Lk is a leaf node which is at a depth of Dk < D. To
push Lk to a depth D, we replace Lk with a perfect sub-tree of
depth D�Dk and map all the leaf nodes of the sub-tree to Ck:
the label of the original leaf node. The decision nodes in the
introduced sub-tree are free to perform arbitrary comparisons
as the outcome is the same along any path. By pushing all
leaf nodes at depth < D to a depth of D, we transform the
original tree to a perfect tree with the same functionality.

Table 6: Additional notation used in Strategy 3

Symbol Description

I0 2 Z2D�1
,L0 2 Z2D Internal and leaf nodes of the per-

fect tree ordered by level.

N0F 2 Z|I0| N0Fi
= k () I0i evaluates Fk

N0T 2 R|I0| N0Ti
= ThresholdValue(I0i )

N0C 2 Z|L0|⇥|C| N0Ci,k
=

(
1,Ni

map to����!Ck

0,Otherwise

Working on perfect trees enables us to get rid of NL and
NR tensors as we can now calculate them analytically, which
also reduces memory lookup overheads during scoring. Thus
we create only three tensors to capture the tree structure:
N0F ,N

0
T , and N0C (Table 6). They capture the same information

as NF ,NT ,NC but have different dimensions and have a strict
condition on the node order. Both N0F and N0T have 2D�1 ele-
ments and the values correspond to internal nodes generated
by level order tree traversal. N0C has 2D elements with each
corresponding to an actual leaf node from left to right order.

Given these tensors, in Algorithm 3 we present how PTT
works. From a high-level point of view, it is very similar to
the TT strategy with only a few changes. First, the index
tensor TI is initialized to all ones as the root node is always
the first node. Second, we get rid of finding the left index and
right index of a node and using them in the Where operation.
Instead, the Where operation returns 0 for true case and 1 for
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Algorithm 3 PTT Strategy (Notation in Tables 6)
Input :X 2 Rn⇥|F |, Input records
Output :R 2 {0,1}n⇥|C|, Predicted class labels
/* Initialize all records to point to the root node. */
TI  {1}n // TI 2 Zn

for i 1 to TREE_DEPTH do
/* Find the index of the feature evaluated by the

current node. Then find its value. */
TF  Gather(NF ,TI) // TF 2 Zn

TV  Gather(X ,Tf ) // TV 2 Rn

/* Find the threshold */
TT  Gather(NT ,TI) // TT 2 Rn

/* Perform logical evaluation. If true pick left child;
else right child. */

TI  2⇥TI + Where(TV < TT ,0,1) // I 2 Zn

end
/* Find label for each leaf node */
R Gather(N0C,TI) // R 2 Zn

the false case. By adding this to 2⇥TI we get the index of
the child for the next iteration. For ensembles, we use the
maximum TREE_DEPTH of any tree as D for transforming
trees to perfect trees. We create tensors separate for each tree
and batch them together for N0C. But for N0F and N0T instead
of batching, we interleave them together in some order such
that values corresponding to level i for all trees appear before
values corresponding to level i+1 of any tree.

4.2 Summary of Other Techniques
Next, we discuss the other techniques used across ML opera-
tors to efficiently compile them into tensor computations.
Exploiting Automatic Broadcasting. Broadcasting [21] is
the process of making two tensors shape compatible for
element-wise operations. Two tensors are said to be shape
compatible if each dimension pair is the same, or one of them
is 1. At execution time, tensor operations implicitly repeat
the size 1 dimensions to match the size of the other tensor,
without allocating memory. In HB, we heavily use this fea-
ture to execute some computation over multiple inputs. For
example, consider performing an one-hot encoding operation
over column Xi 2 Rn with a vocabulary V 2 Zm. In order
to implement this using tensor computations, we Reshape
Xi to [n,1] and V to [1,m] and calculate R = Equal(X , V ),
R 2 {0,1}n⇥m. The Reshape operations are for free because
they only modify the metadata of the tensor. However, this
approach performs redundant comparisons as it checks the
feature values from all records against all vocabulary values.
Minimize Operator Invocations. Given two approaches
to implement an ML operator, we found that often pick-
ing the one which invokes fewer operators outperforms the
other—even if it performs extra computations. Consider a
featurizer that generates feature interactions. Given an input
X 2 Rn⇥d , with d = |F |, it generates a transformed output
R 2 Rn⇥ d·(d+1)

2 with Ri = [X2
i,1, ...,X

2
i,d ,Xi,1Xi,2, ...Xi,d�1Xi,d ].

One way to implement this operator is to compute each new
feature separately by first Gathering the corresponding in-

put feature columns, perform an element-wise Multiplication,
and conCatenate all new features. However, this approach
requires performing d2+d+1 operations and hence is highly
inefficient due to high operator scheduling overheads. Alter-
natively, one could implement the same operator as follows.
First, Reshape X into X 0 2 Rn⇥d⇥1 and X 00 2 Rn⇥1⇥d . Then
perform a batched GEMM using these inputs, which will create
R0 2Rn⇥d⇥d . Finally, Reshape R0 to R00 2Rn⇥d2 . Notice that
each row in R00 has all the values of the corresponding row
in R, but in a different order. It also has some redundant val-
ues due to commutativity of multiplication (i.e., xix j = x jxi).
Hence, we perform a final Gather to extract the features in the
required order, and generate R. Compared to the previous one,
this approach increases both the computation and the mem-
ory footprint roughly by a factor of two. However, we can
implement feature interaction in just two tensor operations.
Avoid Generating Large Intermediate Results. Automatic
broadcasting in certain cases can become extremely ineffi-
cient due to the materialization of large intermediate tensors.
Consider the Euclidean distance matrix calculation, which is
popular in many ML operators (e.g., SVMs, KNN). Given two
tensors X 2Rn⇥d and Y 2Rm⇥d , the objective is to calculate a
tensor D2Rn⇥m, where Di, j = ||Xi�Yj||22. Implementing this
using broadcasting requires first reshaping X to X 0 2 Rn⇥1⇥d ,
Y to Y 0 2R1⇥m⇥d , calculate (X 0�Y 0)2Rn⇥m⇥d , and perform
a final Sum over the last dimension. This approach causes a
size blowup by a factor of d in intermediate tensors. Alterna-
tively, a popular trick [37] is to use the quadratic expansion of
Di, j = ||Xi||22 + ||Yj||22�2 ·XiY T

j and calculate the individual
terms separately. This avoids generating intermediate tensors.
Fixed Length Restriction on String Features. Features
with strings of arbitrary lengths pose a challenge for HB.
Strings are commonly used in categorical features, and op-
erators like one-hot encoding and feature hashing natively
support strings. To support string features, HB imposes a
fixed length restriction, with the length being determined by
the max size of any string in the vocabulary. Vocabularies are
generated during training and can be accessed at compile time
by HB. Fixed length strings are then encoded into an int8.

5 Optimizations
In this section we discuss the key optimizations performed
by the HB’s Optimizer: heuristics for picking operator strate-
gies (Section 5.1) and runtime-independent optimizations
(Section 5.2). Recall that our approach also leverages runtime-
specific optimizations at the Tensor Compiler level. We refer
to [8, 41] for runtime-specific optimizations.

5.1 Heuristics-based Strategy Selection
For a given classical ML operator, there can be more than
one compilation strategy available. In the previous section
we explained three such strategies for tree-based models. In
practice, no strategy consistently dominates the others, but
each is preferable in different situations based on the input
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and model structure. For instance, the GEMM strategy gets
significantly inefficient as the size of the decision trees gets
bigger because of the large number of redundant computa-
tions. This strategy performs O(2D) (D is the depth of the tree)
computations whereas the original algorithmic operator needs
to perform only O(D) comparisons. Nevertheless, with small
batch sizes or a large number of smaller trees, this strategy
can be performance-wise optimal on modern hardware, where
GEMM operations can run efficiently. With large batch sizes and
taller trees, TT techniques typically outperform the GEMM
strategy and PTT is slightly faster than vanilla TT due to the
reduced number of memory accesses. But if the trees are too
deep, we cannot implement PTT because the O(2D) memory
footprint of the associated data structures will be prohibitive.
In such cases, we resort to TT. The exact crossover point
where GEMM strategy outperforms other strategies is deter-
mined by the characteristics of the tree model (e.g., number
of trees, maximum depth of the trees), runtime statistics (e.g.,
batch size), and the underlying hardware (e.g., CPUs, GPUs).
For instance, from our experiments (see Figure 8) we found
that the GEMM strategy performs better for shallow trees
(D  3 on CPU,  10 on GPU) or for scoring with smaller
batch sizes. For tall trees, using PTT when D  10 give a
reasonable trade-off between memory footprint and runtime,
which leaves vanilla TreeTraversal the only option for very
tall trees (D > 10). These heuristics are currently hard-coded.

5.2 Runtime-independent Optimizations
We discuss two novel optimizations, which are unique to HB.
HB’s approach of separating the prediction pipeline from
training pipeline, and representing them in a logical DAG
before compilation into tensor computations facilitate the
optimization of end-to-end pipelines.
Feature Selection Push-Down. Feature selection is a popu-
lar operation that is often used as the final featurization step
as it reduces over-fitting and improves the accuracy of the
ML model [44]. However, during scoring, it can be pushed
down in the pipeline to avoid redundant computations such as
scaling and one-hot encoding for discarded features or even
reading the feature at all. This idea is similar to the concept of
projection push-down in relation query processing but through
user-defined table functions, which in our case are the ML op-
erators. For operators such as feature scaling, which performs
1-to-1 feature transformations, selection push-down can be
easily implemented. However, for operators such as one-hot
encoding and polynomial featurization, which perform 1-to-m
or m-to-1 feature transformations, the operator will have to
absorb the feature selection and stop generating those features.
For example, say one-hot encoding is applied on a categorical
feature column which has a vocabulary size of 10, but 4 of
those features are discarded by the feature selector. In such
cases, we can remove such features from the vocabulary. Note
that for some “blocking” operators [55], such as normalizers,
it is not possible to push-down the feature selection.

Feature Selection Injection. Even if the original pipeline
doesn’t have a feature selection operator, it is possible to
inject one and then push it down. Linear models with L1 regu-
larization (Lasso) is a typical example where feature selection
is implicitly performed. The same idea can be extended to
tree-based models to prune the features that are not used as
decision variables. In both of these examples, the ML model
also has to be updated to take into account the pruned features.
For linear models we prune the zero weights; for tree models,
we update the indices of the decision variables.

6 Experimental Evaluation
In our experimental evaluation we report two micro-
benchmark experiments showing how HB performs compared
to current state-of-the-art for inference over (1) tree ensem-
bles (Section 6.1.1); (2) other featurization operators and ML
models (Section 6.1.2). Then we evaluate the optimizations
by showing: (1) the need for heuristics for picking the best
tree-model implementation (Section 6.2.1); and (2) the ben-
efits introduced by the runtime-independent optimizations
(Section 6.2.2). Finally, we conduct an end-to-end evaluation
using pipelines (Section 6.3). We evaluate both CPUs and
hardware accelerators (GPUs).
Hardware and Software Setup. For all the experiments (ex-
cept when stated otherwise) we use an Azure NC6 v2 machine
equipped with 112 GB of RAM, an Intel Xeon CPU E5-2690
v4 @ 2.6GHz (6 virtual cores), and an NVIDIA P100 GPU.
The machine runs Ubuntu 18.04 with PyTorch 1.3.1, TVM 0.6,
scikit-learn 0.21.3, XGBoost 0.9, LightGBM 2.3.1, ONNX
runtime 1.0, RAPIDS 0.9, and CUDA 10. We run TVM with
opt_level 3 when not failing; 0 otherwise.
Experimental Setup. We run all the experiments 5 times and
report the truncated mean (by averaging the middle values)
of the processor time. In the following, we use ONNX-ML to
indicate running an ONNX-ML model (i.e., traditional ML
part of the standard) on the ONNX runtime. Additionally, we
use bold numbers to highlight the best performance for the
specific setup (CPU or GPU). Note that both scikit-learn and
ONNX-ML do not natively support hardware acceleration.

6.1 Micro-benchmarks
6.1.1 Tree Ensembles
Setup. This experiment is run over a set of popular datasets
used for benchmarking gradient boosting frameworks [22].
We first do a 80%/20% train/test split over each dataset. Suc-
cessively, we train a scikit-learn random forest, XGBoost [40],
and LightGBM [51] models using the default parameters of
the benchmark. Specifically, we set the number of trees to
500 and maximum depth to 8. For XGBoost and LightGBM
we use the scikit-learn API. Note that each algorithm gener-
ates trees with different structures, and this experiment helps
with understanding how HB behaves with various tree types
and dataset scales. For example, XGBoost generates balanced
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trees, LightGBM mostly generates skinny tall trees, while
random forest is a mix between the two. Finally, we score the
trained models over the test dataset using different batch sizes.
We compare the results against HB with different runtime
backends and an ONNX-ML version of the model generated
using ONNXMLTools [18]. When evaluating over GPU, we
also compared against NVIDIA RAPIDS Forest Inference
Library (FIL) [29]. We don’t compare against GPU imple-
mentations for XGBoost or LightGBM because we consider
FIL as state-of-the-art [19]. For the CPU experiments, we
use all six cores in the machine, while for request/response
experiments we use one core. We set a timeout of 1 hour for
each experiment.
Datasets. We use 6 datasets from NVIDIA’s gbm-bench [22].
The datasets cover a wide spectrum of use-cases: from regres-
sion to multiclass classification, from 285K rows to 100M,
and from few 10s of columns to 2K.
List of Experiments. We run the following set of experi-
ments: (1) batch inference, both on CPU and GPU; (2) re-
quest/response where one single record is scored at a time; (3)
scaling experiments by varying batch sizes, both over CPU
and GPU; (4) evaluation on how HB behaves on different
GPU generations; (5) dollar cost per prediction; (6) memory
consumption; (7) validation of the produced output wrt scikit-
learn; and finally (8) time spent on compiling the models.
Batch Inference. Table 7 reports the inference time for ran-
dom forest, XGBoost and LightGBM models run over the 6
datasets. The batch size is set to 10K records. Looking at the
CPU numbers from the table, we can see that:

1. Among the baselines, scikit-learn models outperform
ONNX-ML implementations by 2 to 3⇥. This is because
ONNX-ML v1.0 is not optimized for batch inference.

2. Looking at the HB’s backends, there is not a large differ-
ence between PyTorch and TorchScript, and in general
these backends perform comparable to ONNX-ML.

3. The TVM backend provides the best performance on 15
experiments out of 18. In the worst case TVM is 20%
slower (than scikit-learn); in the best cases it is up to 2⇥
faster compared to the baseline solutions.

Let us look now at the GPU numbers of Table 7:
1. Baseline RAPIDS does not support random forest nor

multiclass classification tasks. For the remaining experi-
ments, GPU acceleration is able to provide speedups of
up to 300⇥ compared to CPU baselines.2

2. Looking at HB backends, TorchScript is about 2 to 3⇥
slower compared to RAPIDS. TVM is instead the faster
solution on 14 experiments out of 18, with a 10% to 20%
improvement wrt RAPIDS.

2The original FIL blog post [19] claims GPU acceleration to be in the
order of 28⇥ for XGBoost, versus close to 300⇥ in our case (Airline). We
think that the difference is in the hardware: in fact, they use 5 E5-2698 CPUs
for a total of 100 physical cores, while we use a E5-2690 CPU with 6 (virtual)
physical cores. Additionally, they use a V100 GPU versus a P100 in our case.

(a) CPU (Higgs, LightGBM), 6 cores

(b) GPU (Airline, LightGBM)
Figure 4: Performance wrt scaling the batch size.

The results are somehow surprising: HB targets the high-
level tensor APIs provided by PyTorch and TVM, and still it is
able to outperform custom C++ and CUDA implementations.
Request/response. In this scenario, one single record is
scored at a time. For this experiment we run inference over
the entire test datasets, but with batch size equal to 1. We used
the same datasets and setup of Section 6.1.1, except that (1)
we removed the Airline dataset since no system was able to
complete within the 1 hour timeout; and (2) we only use one
single core. The results are depicted in Table 8:

1. Unlike the batch scenario, ONNX-ML is much faster
compared to scikit-learn, in some cases even more than
100⇥. The reason is that ONNX-ML is currently opti-
mized for single record, single core inference, whereas
scikit-learn design is more towards batch inference.

2. PyTorch and TorchScript, again, behave very similarly.
For random forest they are faster than scikit-learn but up
to 5⇥ slower compared to ONNX-ML. For LightGBM
and XGBoost they are sometimes on par with scikit-
learn, sometime slower.

3. TVM provides the best performance in 11 cases out of
15, with a best case of 3⇥ compared to the baselines.

These results are again surprising, considering that tensor op-
erations should be more optimized for bulk workloads rather
than request/response scenarios.
Scaling the Batch Size. We study how the performance of
baselines and HB’s backends change with the batch size. Fig-
ures 4a and 4b depicts the performance variation over CPU
and GPU, respectively. We report only a few combinations
of dataset / algorithm, but all the other combinations behave
similarly. Starting with the CPU experiment, we can see that
ONNX-ML has the best runtime for batch size of 1, but then
its performance remains flat as we increase the batch size.
TorchScript and scikit-learn did not complete within the time-
out for batch equal to 1, but, past 100, they both scale linearly
as we increase the batch size. TVM is comparable to ONNX-
ML for batch of 1; for batches of 100 records it gets about
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Table 7: Batch Experiments (10K records at-a-time) for both CPU (6 cores) and GPU. Reported numbers are in seconds.

Algorithm Dataset
Baselines (CPU) HB CPU Baselines (GPU) HB GPU

Sklearn ONNX-ML PyTorch TorchScript TVM RAPIDS FIL TorchScript TVM

Rand. Forest

Fraud 2.5 7.1 8.0 7.8 3.0 not supported 0.044 0.015
Epsilon 9.8 18.7 14.7 13.9 6.6 not supported 0.13 0.13

Year 1.9 6.6 7.8 7.7 1.4 not supported 0.045 0.026
Covtype 5.9 18.1 17.22 16.5 6.8 not supported 0.11 0.047
Higgs 102.4 257.6 314.4 314.5 118.0 not supported 1.84 0.55
Airline 1320.1 timeout timeout timeout 1216.7 not supported 18.83 5.23

LightGBM

Fraud 3.4 5.9 7.9 7.6 1.7 0.014 0.044 0.014
Epsilon 10.5 18.9 14.9 14.5 4.0 0.15 0.13 0.12

Year 5.0 7.4 7.7 7.6 1.6 0.023 0.045 0.025
Covtype 51.06 126.6 79.5 79.5 27.2 not supported 0.62 0.25
Higgs 198.2 271.2 304.0 292.2 69.3 0.59 1.72 0.52
Airline 1696.0 timeout timeout timeout 702.4 5.55 17.65 4.83

XGBoost

Fraud 1.9 5.5 7.7 7.6 1.6 0.013 0.44 0.015
Epsilon 7.6 18.9 14.8 14.8 4.2 0.15 0.13 0.12

Year 3.1 8.6 7.6 7.6 1.6 0.022 0.045 0.026
Covtype 42.3 121.7 79.2 79.0 26.4 not supported 0.62 0.25
Higgs 126.4 309.7 301.0 301.7 66.0 0.59 1.73 0.53
Airline 1316.0 timeout timeout timeout 663.3 5.43 17.16 4.83

Table 8: Request/response times in seconds (one record at-a-time).

Algorithm Dataset
Baselines HB

Sklearn ONNX-ML PT TS TVM

Rand. Forest

Fraud 1688.22 9.96 84.95 75.5 11.63
Epsilon 2945.42 32.58 153.32 134.17 20.4

Year 1152.56 18.99 84.82 74.21 9.13
Covtype 3388.50 35.49 179.4 157.8 34.1
Higgs timeout 335.23 timeout timeout 450.65

LightGBM

Fraud 354.27 12.05 96.5 84.56 10.19
Epsilon 40.7 29.28 167.43 148.87 17.3

Year 770.11 16.51 84.55 74.05 9.27
Covtype 135.39 209.16 854.07 822.93 42.86
Higgs timeout 374.64 timeout timeout 391.7

XGBoost

Fraud 79.99 7.78 96.84 84.61 10.21
Epsilon 121.21 27.51 169.03 148.76 17.4

Year 98.67 17.14 85.23 74.62 9.25
Covtype 135.3 197.09 883.64 818.39 43.65
Higgs timeout 585.89 timeout timeout 425.12

Table 9: Peak memory consumption (in MB) for Fraud.

Framework Random Forest LightGBM XGBoost

Sklearn 180 182 392
ONNX-ML 265 258 432
TorchScript 375 370 568

TVM 568 620 811

5⇥ faster, while it scales like TorchScript for batches greater
than 100. This is likely due to the fact that TVM applies a
set of optimizations (e.g., operator fusion) that introduce a
constant-factor speedup compared to TorchScript.

Looking at the GPU numbers (Figure 4b), TorchScript
and TVM again follow a similar trend, with TVM being
around 3⇥ faster than TorchScript. Both TVM and Torch-
Script plateau at about a batch size of 10K. RAPIDS FIL is

(a) Batch size 1M

(b) Batch size 1K
Figure 6: Performance across GPUs for Airline, LightGBM

slower than TorchScript for small batch sizes, but it scales
better than HB. This is because of its custom CUDA imple-
mentation that is able to better use hardware under higher
utilization. Interestingly, FIL as well plateaus at around 100K
records. The custom CUDA implementation introduces a 50%
gain over HB with TVM runtime over large batches.

Scaling Hardware. We tested how RAPIDS FIL and HB
(TorchScript and TVM) scale as we change the GPU model.
For this experiment we tried both with a large batch size
(1M records, Figure 6 (a)) to maximize hardware utilization,
and a smaller batch size (1K, Figure 6 (b)). We ran this on
all datasets across random forest, LightGBM, XGBoost with
similar results, and present the Airline dataset (the largest)
with LightGBM as a representative sample. We tested on
three NVIDIA devices: K80 (the oldest, 2014), P100 (2016),
and V100 (2017). From the figures, in general we can see that:
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Table 10: Conversion times (in seconds) over one core.

Algorithm Dataset ONNX-ML
HB

PyTorch TorchScript TVM

Rand.Forest

Fraud 1.28 0.55 0.58 102.37
Epsilon 7.53 2.63 2.67 108.64

Year 7.11 2.77 2.86 69.99
Covtype 9.87 2.16 2.2 106.8
Higgs 8.25 2.41 2.44 103.77
Airline 6.82 2.42 2.53 391.07

LightGBM

Fraud 1.34 0.98 1.06 3.42
Epsilon 11.71 7.55 7.60 9.95

Year 9.49 6.11 6.15 8.35
Covtype 32.46 22.57 23.12 26.36
Higgs 6.73 25.04 26.3 109
Airline 11.52 6.38 6.47 8.19

XGBoost

Fraud 0.55 0.65 0.7 86.59
Epsilon 6.86 25.89 25.94 113.4

Year 5.66 23.4 23.54 110.24
Covtype 9.87 2.16 2.20 106.8
Higgs 6.73 25.04 26.3 109

(1) RAPIDS FIL does not run on the K80 because it is an old
generation; (2) with a batch size of 1K we get slower total
inference time because we don’t utilize the full hardware; (3)
TorchScript and TVM runtimes for HB scale similarly on
different hardware, although TVM is consistently 4 to 7⇥
faster; (4) FIL scales similarly to HB, although it is 50%
faster on large batches, 3⇥ slower for smaller batches; (5)
TorchScript is not optimal in memory management because
for batches of 1M it fails on the K80 with an OOM exception.
Finally, we also were able to run HB on the new Graphcore
IPU [15] over a single decision tree.

Cost. Figure 7 shows the cost comparison between the Azure
VM instance equipped with GPU, and a comparable one with-
out GPU (E8 v3). The plot shows the cost of executing 100k
samples with a batch size of 1K for random forest. The cost
is calculated based on the hourly rate of each VM divided
by the amortized cost of a single prediction. We executed
scikit-learn on the CPU and TorchScript and TVM on the
GPU for comparison. We found that the CPU cost was signif-
icantly higher (between 10⇥-120⇥) across all experiments. 3

An interesting result was that the oldest GPU was the most
cost effective, with the K80 and TVM having the lowest cost
for 13 out of the 18 experiments (including LightGBM and
XGBoost, not pictured). This result is explained by the fact
that the K80 is readily available at significantly lower cost.

Memory Consumption. We measured the peak memory con-
sumption over the Fraud dataset and for each algorithm. We
used the memory_usage function in the memory_profiler
library [2]. The numbers are reported in Table 9, and are the
result of the execution over 1 core with a batch size of 1K.
As we can see, scikit-learn is always the most memory effi-

3Note: airline times out for random forest for CPU with 1K batch.

Figure 7: Cost for random forest 100k samples, batch size of 1K.

cient. ONNX-ML consumes from 10% to 50% more memory,
while HB with TorchScript runtime consumes from 50% to
about 2⇥ more memory than scikit-learn. Conversely, TVM
consumes from 2⇥ to 3⇥ more memory wrt scikit-learn. We
think that TVM is more memory hungry because it optimizes
compute at the cost of memory requirements. Note that the
batch size influences the total memory consumption.
Output Validation. Since we run tree ensemble models as
tensor operations, we could introduce rounding errors over
floating point operations. Therefore, we need to validate that
indeed the outputs produced match. To evaluate this, we used
the numpy testing.assert_allclose function, and we set
the relative and absolute errors to 10�5. We validate both
the final scores and the probabilities (when available) for all
combinations of datasets and algorithms. Out of the 18 exper-
iments listed in Table 7, 9 of them returned no mismatches
for HB, 12 in the ONNX-ML case. Among the mismatches,
the worst case for HB is random forest with Covtype where
we have 0.8% of records differing from the original scikit-
learn output. For the Epsilon dataset, HB with random forest
returns a mismatch on 0.1% of records. All the remaining
mismatches effect less than 0.1% of records. Note that the
differences are small. The biggest mismatch is of 0.086 (ab-
solute difference) for Higgs using LightGBM. For the same
experiment ONNX-ML has an absolute difference of 0.115.
Conversion Time. Table 10 shows the time it takes to con-
vert a trained model into a target framework. The numbers
are related to the generation of models running on a single
core. This cost occurs only once per model and are not part
of the inference cost. As we can see, converting a model to
ONNX-ML can take up to a few tens of seconds; HB with
PyTorch backend is constantly about 2⇥ to 3⇥ faster wrt
ONNX-ML in converting random forests models, while it
varies for LightGBM and XGBModels. TorchScript models
are generated starting from PyTorch models, and in general
this further compilation step does not introduce any major
overhead. Finally, conversion to TVM is much slower, and it
might take more than 3 minutes. This is due to code genera-
tion and optimizations introduced in TVM.

As a final note: parallel (i.e., more than 1 core) and GPU
execution introduced further conversion time overheads, espe-
cially on TVM. For instance, TVM can take up to 40 minutes
to convert a random forest model for execution on GPU.
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6.1.2 Operators
Setup. This micro-benchmark is a replication of the suite
comparing scikit-learn and ONNX-ML operators [17]. We
test all scikit-learn operators of the suite that are supported by
both ONNX-ML and HB (minus tree ensembles models). The
total number of tested operators is 13, and they are a mix of
ML models (Logistic Regression, Support Vector Machines,
etc.) and featurizers (e.g., Binarizer, Polynomial, etc.). For
this micro-benchmark we score 1 million records.
Datasets. We use the Iris datasets [23] with 20 features.
List of Experiments. We run the following experiments: (1)
batch inference over 1M records, both on CPU and GPU; (2)
request/response over 1 record; (3) memory consumption and
conversion time. All the output results are correct.

Table 11: Batch experiments for operators on both CPU (1 core) and
GPU. Numbers are in milliseconds. (TS is short for TorchScript)

Operator
Baselines (CPU) HB CPU HB GPU

Sklearn ONNX-ML TS TVM TS TVM

Log. Regres. 970 1540 260 47 13 15
SGDClass. 180 1540 270 49 11 15
LinearSVC 110 69 260 51 12 18

NuSVC 3240 4410 2800 3000 140 72
SVC 1690 2670 1520 1560 120 41

BernoulliNB 280 1670 290 65 12 14
MLPClassifier 930 1860 910 1430 17 31
Dec.TreeClass. 59 1610 560 35 13 16

Binarizer 98 75 39 59 38 38
MinMaxScaler 92 200 78 57 38 38

Normalizer 94 140 83 97 39 40
Poly.Features 4030 29160 6380 3130 340 error

StandardScaler 150 200 77 58 38 38

Batch Inference. The batch numbers are reported in Table 11.
On CPU, scikit-learn is faster than ONNX-ML, up to 6⇥
for polynomial featurizer, although in most of the cases the
two systems are within a factor of 2. HB with TorchScript
backend is competitive with scikit-learn, whereas with TVM
backend HB is faster on 8 out of 13 operators, with in gen-
eral a speedup of about 2⇥ compared to scikit-learn. If now
we focus to the GPU numbers, we see that HB with Torch-
Script backend compares favorably against TVM on 11 op-
erators out of 13. This is in contrast with the tree ensemble
micro-benchmark where the TVM backend was faster than
the TorchScript one. We suspect that this is because TVM
optimizations are less effective on these “simpler” operators.
For the same reason, GPU acceleration does not provide the
speedup we instead saw for the tree ensemble models. In
general, we see around 2⇥ performance improvement over
the CPU runtime: only polynomial featurizer runs faster, with
almost a 10⇥ improvement. TVM returns a runtime error
when generating the polynomial featurizer model on GPU.
Request/response. Table 12 contains the times to score 1
record. The results are similar to the request/response scenario

for the tree ensemble micro-benchmark. Namely, ONNX-ML
outperform both scikit-learn and HB in 9 out of 13 cases.
Note, however, that all frameworks are within a factor of 2.
The only outlier is polynomial featurizer which is about 10⇥
faster on HB with TVM backend.

Table 12: Request/Response experiments for operators on CPU (sin-
gle core). Reported numbers are in milliseconds.

Operator
Baselines HB

Sklearn ONNX-ML TS TVM

LogisticRegression 0.087 0.076 0.1 0.1
SGDClassifier 0.098 0.1 0.12 0.1

LinearSVC 0.077 0.05 0.11 0.1
NuSVC 0.086 0.072 4.1 0.14

SVC 0.086 0.074 2.3 0.12
BernoulliNB 0.26 0.1 0.07 0.11

MLPClassifier 0.15 0.11 0.1 0.12
DecisionTreeClassifier 0.087 0.074 0.44 0.12

Binarizer 0.064 0.053 0.063 0.1
MinMaxScaler 0.066 0.060 0.058 0.1

Normalizer 0.11 0.063 0.072 0.1
PolynomialFeatures 1.2 1 0.5 0.1

StandardScaler 0.069 0.048 0.059 0.1

Memory Consumption and Conversion Time. We mea-
sured the peak memory consumed and conversion time for
each operator on each framework. We used batch inference
over 1K records. For memory consumption, the results are in
line with what we already saw in Section 6.1.1. Regarding the
conversion time, for ONNX-ML and HB with TorchScript,
the conversion time is in the order of few milliseconds. The
TVM backend is slightly slower but still in the order of few
tens of milliseconds (exception for NuSVC and SVC which
take up to 3.2 seconds). In comparison with the tree ensem-
bles numbers (Table 10), we confirm that these operators are
simpler, even from a compilation perspective.

6.2 Optimizations
6.2.1 Tree Models Implementation
Next we test the different tree-based models implementation
to make the case for the heuristics.
Datasets. For this experiment we employ a synthetic dataset
randomly generated with 5000 rows and 200 features.
Experiments Setup. We study the behavior of the tree im-
plementations as we change the training algorithm, the batch
size, and the tree depth. For each experiment we set the num-
ber of trees to 100. We use the TVM runtime backend. Each
experiment is run on 1 CPU core.
Results. Figure 8 shows the comparison between the different
tree implementations, and the two scikit-learn and ONNX-ML
baselines. In the top part of the figure we run all experiments
using a batch size of 1; on the bottom part we instead use
a batch size of 1K. In the column on the left-hand side, we
generate trees with a max depth of 3; 7 for the middle column,
and 12 for column on the right-hand side. In general, two
things are apparent: (1) HB is as fast as or better than the
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Figure 8: Comparison between the different tree strategies as we vary the batch size and depth.

Figure 9: Feature selection push down.

Figure 10: Feature selection injection.

(a) CPU

(b) GPU
Figure 12: Speedup/slowdown of pipelines
when using HB wrt baseline Sklearn.

baselines; and (2) no tree implementation is always better than
the others. The GEMM implementation outperforms the other
two for small batch sizes, whereas TT and PTT are better over
larger batch sizes. Between TT and PTT, the latter is usually
the best performant (although not by a large margin). PTT
however creates balanced trees, and fails for very deep trees.

6.2.2 Runtime-independent Optimizations.
Next we test the optimizations described in Section 5.2.
Dataset. We use the Nomao dataset [24] with 119 features.
Feature Selection Push Down. In this experiment we mea-
sure the benefits of the feature selection push down. In Fig-
ure 9 we compare HB with and without feature selection
push-down, and the baseline implementation of the pipelines
in scikit-learn. We use a pipeline which trains a logistic re-
gression model with L2 loss. The featurization part contains
one-hot encoding for categorical features, missing value impu-
tation for numerical values, followed by feature scaling, and a

final feature selection operator (scikit-learn’s SelectKBest).
We vary the percentile of features that are picked by the fea-
ture selection operator. In general, we can see that HB without
optimization is about 2⇥ faster than scikit-learn in evaluating
the pipelines. For small percentiles, the feature selection push-
down optimization delivers a further 3⇥. As we increase the
percentile of features that are selected, the runtime of HB
both with and without optimizations increase, although with
the optimization HB is still 2⇥ faster than without.

Feature Selection Injection. In this experiment we evaluate
whether we can improve the performance of pipelines with
sparse models by injecting (and then pushing down) feature
selection operators. The pipeline is the same as in the previous
case but without the feature selection operator. Instead we
train the logistic regression model with L1 regularization. In
Figure 10 we vary the L1 regularization coefficient and study
how much performance we can gain. Also in this case, with
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very sparse models we can see up to 3⇥ improvement wrt
HB without optimization. Performance gains dissipate as we
decrease the sparsity of the model.

6.3 End-to-end Pipelines
Setup. In this experiment we test HB over end-to-end
pipelines. We downloaded the 72 tasks composing the
OpenML-CC18 suite [27]. Among all the tasks, we discarded
all the “not pure scikit-learn” ML pipelines (e.g., containing
also arbitrary Python code). We successively discarded all
the pipelines returning a failure during training. 88% of the
remaining pipelines are exclusively composed by operators
supported by HB, for a total of 2328 ML pipelines. Among
these, 11 failed during inference due to runtime errors in HB;
we report the summary of executing 2317 pipelines. These
pipelines contain an average of 3.3 operators, which is in line
with what was observed elsewhere [64].
Datasets. For this experiment we have 72 datasets in to-
tal [27]. The datasets are a curated mix specifically designed
for ML benchmarking. We did the typical 80%/20% split be-
tween training and inference. The smaller dataset has just 100
records, the bigger 19264, while the median value is 462. The
minimum number of columns for a dataset is 4, the maximum
3072, with a median of 30.
Results. Figure 12 summarizes the speedup / slowdown intro-
duced by HB when scoring all 2317 pipelines. As we can see,
HB is able to accelerate about 60% of the pipelines on CPU
(11a). In general, the slowest pipeline gets about 60⇥ slower
wrt scikit-learn, the fastest instead gets a 1200⇥ speed up.
The slowdowns are due to a couple of factors: (a) the datasets
used for these experiments are quite small; (b) some pipelines
contain largely sparse operations (i.e., SVM on sparse inputs);
(c) several pipelines are small and do not require much com-
putation (e.g., a simple inputer followed by a small decision
tree). These three factors are highlighted also by the fact that
even if we move computation to the GPU (11b), still 27%
of the pipelines have some slowdown. Note however that (1)
both sparse and small pipelines can be detected at compile
time, and therefore we can return a warning or an error; (2)
DNN frameworks are continuously adding new sparse tensor
operations (e.g., [34]); and (3) an option could be to add a
specific runtime backend for sparse tensor operations (e.g.,
we have a prototype integration with TACO [52]). In general,
DNN frameworks are relatively young, and HB will exploit
any future improvement with no additional costs.

With GPU acceleration (Figure 11b), 73% of the pipelines
show some speedup. The slowest pipeline gets about 130⇥
slower wrt scikit-learn, the fastest instead gets a speedup of 3
orders of magnitude. Some of the pipelines get worse from
CPU to GPU execution. This is due to (1) sparsity; (2) small
compute; and (3) data movements between CPU and GPU
memory. Indeed we run all pipelines on GPU, even the ones
for which in practice would not make much sense (e.g., a deci-
sion tree with 3 nodes). We leave as future work an extension

to our heuristics for picking the right hardware backend.

7 Related Work
PyTorch [61], TensorFlow [13], MXNet [12], CNTK [10]
are DNN frameworks that provide easy-to-use (tensor-based)
APIs for authoring DNN models, and heterogeneous hard-
ware support for both training and inference. Beyond these
popular frameworks, inference runtimes such as ONNX [5],
nGraph [16], TVM [41], and TensorRT [20] provide optimiza-
tions and efficient execution targets, specifically for inference.
To prove the versatility of our approach, we have tested HB
with both PyTorch and TVM. HB uses a two-level, logical-
physical optimization approach. First, logical optimizations
are applied based on the operators composing the pipeline.
Afterwards, physical operator implementations are selected
based on model statistics, and physical rewrites, which are
externally implemented by the DNN runtime, are executed
(e.g., algebraic rewrites, operator fusion). Willump [53] uses
a similar two-level optimization strategy, although it targets
Weld [60] as its low level runtime and therefore it cannot
natively support inference on hardware accelerators. Con-
versely, HB casts ML pipelines into tensor computations and
takes advantage of DNN serving systems to ease the deploy-
ment on target environments. Other optimizers for predictive
pipelines, such as Pretzel [55], only target logical optimiza-
tions. We have integrated HB into Raven [50] as part of our
bigger vision for optimizing ML prediction pipelines.

Several works deal with executing trees (ensembles) [29,
59, 67] on hardware accelerators. These systems provide a
custom implementation of the PTT strategy specific to the
target hardware (e.g., NVIDIA GPUs for RAPIDS FIL [29],
FPGAs for [59]), and where computation is parallelized along
on the tree-dimension. Alternatively, HB provides three tree
inference strategies, including two novel strategies (GEMM
and TT), and picks the best alternative based on the efficiency
and redundancy trade-off.

8 Conclusions
In this paper, we explore the idea of using DNN frameworks
as generic compilers and optimizers for heterogeneous hard-
ware. Our use-case is “traditional” ML inference. We ported
40+ data featurizers and traditional ML models into tensor
operations and tested their performance over two DNN frame-
works (PyTorch and TVM) and over different hardware (CPUs
and GPUs). The results are compelling: even though we tar-
get high-level tensor operations, we are able to outperform
custom C++ and CUDA implementations. To our knowledge,
HUMMINGBIRD is the first system able to run traditional ML
inference on heterogeneous hardware.
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A Artifact Appendix

A.1 Abstract
Hummingbird compiles trained traditional ML models into
tensor computation for faster inference. Hummingbird allows
users to score models both on CPU and hardware accelera-
tors.

A.2 Artifact check-list
• Program: PyTorch, ONNX Runtime, TVM.

• Data set: Fraud, Epsilon, Year, Covtype, Higgs, Airline, Iris,
Nomao, OpenMLCC-18.

• Run-time environment: Ubuntu 18.04.

• Hardware: Azure NC6 v2 machine.

• Experiments: tree-models (Random Forest, XGBoost, Light-
GBM), operators ( LogisticRegression, SGDClassifier, Lin-
earSVC, NuSVC, SVC, BernoulliNB, MLPClassifier, Decision-
TreeClassifier, Binarizer, MinMaxScaler, Normalizer, Polyno-
mialFeatures, StandardScaler), end-to-end pipelines.

• Public link: https://github.com/microsoft/
hummingbird.

• Code licenses: MIT.

A.3 Description
A.3.1 How to access

Hummingbird is open source and can be accessed directly
from https://github.com/microsoft/hummingbird. Other-
wise, Hummingbird can also be downloaded from pip with pip
install hummingbird-ml.

A.3.2 Hardware dependencies

No specific hardware dependencies. The artifact has been evaluated
on different NVIDIA GPU generations (K80, P100, V100) but it
should work on any hardware supported by the target DNN runtime.

A.3.3 Software dependencies

Hummingbird requires Python >= 3.5, numpy>=1.15, onnxconverter-
common>=1.6.0, scikit-learn>=0.21.3, torch>=1.3.1. Additional de-
pendencies for reproducing the results are onnxruntime >= 1.0,
onnxmltools>=1.6.0, xgboost>=0.90 and lightgbm>=2.2, psutil,
memory-profiler.

A.3.4 Data sets

For the experiments on tree algorithms we used Fraud 4, Epsilon 5,
Year 6, Covtype 7, Higgs 8, and Airline 9. For the experiments on op-
erators we instead used Iris 10. Finally, for the pipeline experiments
we used OpenML-CC18 [27]. The experiment scripts automate the
download and preparation of all the datasets.

A.4 Installation
Hummingbird can be installed from pip with pip install
hummingbird-ml or by cloning the code available on GitHub
and by calling python setup.py install from the main direc-
tory. Hummingbird will automatically detect the available back-
ends at runtime. We refer to https://github.com/microsoft/
hummingbird/blob/master/TROUBLESHOOTING.md for problems
related to installations.

A.5 Experiment workflow
The scripts for the experiments are divided in three main folders:
trees, operators and pipelines. Each folder contains a README.md
file containing the specific instructions for that particular set of
experiments.
Trees: This directory contains the script to generate the result of
Section 6.1.1. We suggest to start with running python run.py
-dataset fraud,year,covtype,epsilon (skipping higgs/air-
line) because the complete script (which can be run with just python
run.py) over all backends and datasets takes more than one day to
complete. After the script is run for the first time, the datasets and
trained models are cached (in datasets and models folders, respec-
tively), so that following executions will be faster. Serveral other
arguments can be changed in the script (e.g., batch size, number of
trees, etc.).

The output of the above commands is a JSON file reporting the
training time and accuracy (if the model is not cached), and pre-
diction (process) time in seconds, as well the peak memory used.
The baseline is then compared against Hummingbird with PyTorch
(hb-pytorch), TorchScript (hb-torchscript) and TVM (hb-tvm) back-
ends. The entry is_same_output specifies whether the results of
the translated models match those of the baseline (up to a tolerance
of 10-̂6). If the result is false, the script can be re-run with the
-validate flag on to check the percentage of wrong results. The
-gpu flag can be used to run the experiments on GPU.
Operators: This directory contains the scripts to reproduce the
experiments of Section 6.1.2. The scripts are configured to run scikit-
learn and compare it against ONNX-ML, TorchScript and TVM (the
last 2 using Hummingbird), for the Iris dataset over 1 core, and with
batch of 1M. python run.py runs the benchmark for CPU, python
run.py -gpu runs the benchmark for GPU.
Pipelines: This directory contains the script to reproduce the exper-
iments of Section 6.3. There are two main scripts to run for this
experiment:

• openml_pipelines.py is used to download and train all the
scikit-learn pipelines of the openML-CC18 benchmark.

• run.py is used to run evaluate the performance of scikit-learn
and Hummingbird over the trained pipelines.

4https://www.kaggle.com/mlg-ulb/creditcardfraud
5https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

binary.html
6https://archive.ics.uci.edu/ml/datasets/

yearpredictionmsd
7https://archive.ics.uci.edu/ml/datasets/covertype
8https://archive.ics.uci.edu/ml/datasets/HIGGS
9http://kt.ijs.si/elena_ikonomovska/data.html

10https://archive.ics.uci.edu/ml/datasets/iris
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This experiment is composed of two steps. The first step in
this experiment is the generation of the prediction pipelines. This
can achieved by running python openml_pipelines.py | tee
openml-cc18.log This script takes several hours to run. While
executing, this script will log the number of successfully trained
pipelines, as well as additional statistics. Once completed, the
openml-cc18.log file contains the statistics. Per task statistics are
logged into the relative folder.

Once the first step is completed, in the second step we evaluate the
scoring time of the generated pipelines, and compare the speed-ups
introduced by Hummingbird against scikit-learn. This experiment
can be executed both on CPU and GPU, and in both cases it takes
about an hour. python run.py runs inference over all the gener-
ated pipelines, while python run.py -gpu can be used for GPU
execution.

A.6 Evaluation and expected result
In May we open sourced Hummingbird (blog post:
https://azuredata.microsoft.com/articles/ebd95ec0-
1eae-44a3-90f5-c11f5c916d15). Since then we have been
pushing our internal code into the open source repository, but the 2
versions do not match yet. Specifically:

• TVM integration is not complete. In our internal version we
re-implemented all the operators directly in TVM’s Relay but
this is not a good strategy in the long term. In the open source
version, we directly export Relay graphs from PyTorch models.
However the exporter does not cover PyTorch 100% yet. We
are however working with the TVM community for bringing
full support of TVM in Hummingbird (we suggest to check
the related issue #232 on Hummingbird’s GitHub if interested).
In practice, this means that: (1) not all operators are currently
exportable into TVM; and (2) the performance we reported in
the paper for TVM can be a bit different.

• The optimizer is not yet open sourced. This means that Figures
9 and 10 are not reproducible as of now. We hope to be able to
bring the optimizer open source in the coming months.

Besides the above two limitations, the scripts allow the reproduc-
tion of the following main results of the paper:

• trees allows the reproduction of the results of Tables 7, 9 and
10. Please check the above description for specifics.

• operators allows the reproduction of the results of Table
11 (however not all operators will run on the TVM backend).
Again, please check the related description for specifics.

• pipelines allows the reproduction of the results of Figure 12.
Also in this case we don’t cover yet 100% of the operators, but
we are close.

Keep in mind that running all the experiments for completely
reproducing the results will take several days.

A.7 Experiment customization
The above mentioned scripts can be customized by running them
with different input arguments. For instance, Table 8 in the paper can
be reproduced by setting the batch size to 1 (using the -batch_size
argument.) in the run.py script.

A.8 Notes
The numbers in the paper were run on the reported VM, however:

• As this is an Azure VM, the underlying machine can receive
upgrades necessitating the reinstallation of the NVidia drivers.

• The original experiments were run inside the context of an
Nvidia-docker container. This setup should not have a large
impact on results

Additionally, a few operators are not yet available in the open
source version of Hummingbird, therefore the final coverage reported
in the log file for the pipelines will be different than the one reported
in the paper. To check the expected coverage once all the operators
are open source, the script allows to add new operators. The same
consideration holds for the operators experiment.

As a final note: to allow third-party reproducibility, we are open
sourcing all the scripts used for the experiments.

A.9 AE Methodology
Submission, reviewing and badging methodology:

• https://www.usenix.org/conference/osdi20/call-
for-artifacts
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