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Abstract
We introduce Gandiva, a new cluster scheduling frame-
work that utilizes domain-specific knowledge to improve
latency and efficiency of training deep learning models
in a GPU cluster.

One key characteristic of deep learning is feedback-
driven exploration, where a user often runs a set of jobs
(or a multi-job) to achieve the best result for a specific
mission and uses early feedback on accuracy to dynam-
ically prioritize or kill a subset of jobs; simultaneous
early feedback on the entire multi-job is critical. A sec-
ond characteristic is the heterogeneity of deep learning
jobs in terms of resource usage, making it hard to achieve
best-fit a priori. Gandiva addresses these two challenges
by exploiting a third key characteristic of deep learn-
ing: intra-job predictability, as they perform numerous
repetitive iterations called mini-batch iterations. Gan-
diva exploits intra-job predictability to time-slice GPUs
efficiently across multiple jobs, thereby delivering low-
latency. This predictability is also used for introspect-
ing job performance and dynamically migrating jobs to
better-fit GPUs, thereby improving cluster efficiency.

We show via a prototype implementation and micro-
benchmarks that Gandiva can speed up hyper-parameter
searches during deep learning by up to an order of mag-
nitude, and achieves better utilization by transparently
migrating and time-slicing jobs to achieve better job-to-
resource fit. We also show that, in a real workload of jobs
running in a 180-GPU cluster, Gandiva improves aggre-
gate cluster utilization by 26%, pointing to a new way of
managing large GPU clusters for deep learning.

1 Introduction
All men schedulers make mistakes; only the wise learn from
their mistakes.

-Winston Churchill
∗The first two authors have equal contribution. This work is done

while Wencong Xiao, Zhenhua Han, Xuan Peng, and Hanyu Zhao are
interns in Microsoft Research.

An increasingly popular computing trend over the last
few years is deep learning [32]; it has already had signif-
icant impact; e.g., on widely-used personal products for
voice and image recognition, and has significant poten-
tial to impact businesses. Hence, it is likely to be a vital
and growing workload, especially in cloud data centers.

However, deep learning is compute-intensive and
hence heavily reliant on powerful but expensive GPUs;
a GPU VM in the cloud costs nearly 10x that of a regu-
lar VM. Cloud operators and large companies that man-
age clusters of tens of thousands of GPUs rely on cluster
schedulers to ensure efficient utilization of the GPUs.

Despite the importance of efficient scheduling of deep
learning training (DLT) jobs, the common practice to-
day [12, 28] is to use a traditional cluster scheduler, such
as Kubernetes [14] or YARN [50], designed for handling
big-data jobs such as MapReduce [17]; a DLT job is
treated simply as yet another big-data job that is allo-
cated a set of GPUs at job startup and holds exclusive
access to its GPUs until completion.

In this paper, we present Gandiva, a new scheduling
framework that demonstrates that a significant increase
in cluster efficiency can be achieved by tailoring the
scheduling framework to the unique characteristics of the
deep learning workload.

One key characteristic of DLT jobs is feedback-driven
exploration (Section 2). Because of the inherent trial-
and-error methodology of deep learning experimenta-
tion, users typically try several configurations of a job
(a multi-job), and use early feedback from these jobs to
decide whether to prioritize or kill some subset of them.
Such conditional exploration, called hyper-parameter
search, can either be manual or automated [10, 33, 41].
Traditional schedulers run a subset of jobs to comple-
tion while queueing others; this model is a misfit for
multi-jobs, which require simultaneous early feedback
on all jobs within the multi-job. Also, along with multi-
jobs, other DLT jobs that have identified the right hyper-
parameters, run for several hours to days, leading to
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head-of-line-blocking, as long-running jobs hold exclu-
sive access to the GPUs until completion, while multi-
jobs depending on early feedback wait in queue. Long
queueing times force users to either use reserved GPUs,
or demand cluster over-provisioning, thus reducing clus-
ter efficiency.

Second, like any other cluster workload, DLT jobs
are heterogeneous because of the diverse application do-
mains they target. Jobs widely differ in terms of memory
usage, GPU core utilization, sensitivity to interconnect
bandwidth, and/or interference from other jobs. For ex-
ample, certain multi-GPU DLT jobs may perform much
better with affinitized GPUs, while other jobs may not be
as sensitive to affinity (Section 3). A traditional sched-
uler that treats a job as a black-box will hence achieve
sub-optimal cluster efficiency.

To address the twin problems of high latency and
low efficiency, Gandiva exploits a powerful property of
DLT jobs: intra-job predictability (Section 3). A job is
comprised of millions of similar, clearly separated mini-
batch iterations. For example, the GPU RAM usage of
a DLT job follows a cyclic pattern aligned with mini-
batch boundaries, usually with more than 10x differ-
ence in GPU RAM usage within a mini-batch. Gandiva
exploits this cyclic predictability to implement efficient
application aware time-slicing; in effect, it re-defines
the atom of scheduling from a job to automatically-
partitioned micro-tasks. This enables the cluster to over-
subscribe DLT jobs and provide early feedback through
time-slicing to all DLT jobs, including all jobs that are
part of a multi-job.

Gandiva also uses the predictability to perform profile-
driven introspection. It uses the mini-batch progress rate
to introspect its decisions continuously to improve clus-
ter efficiency (Section 4). For example, it packs multiple
jobs on the same GPU only when they have low memory
and GPU utilization; it dynamically migrates a commu-
nication intensive job to more affinitized GPUs; it also
opportunistically “grows” the degree of parallelism of a
job to make use of spare resources, and shrinks the job
when the spare resources go away. The introspection pol-
icy we presently implement is a stateful trial-and-error
policy that is feasible because of the predictability and
the limited state space of options we consider.

Beyond the specific introspection and scheduling pol-
icy evaluated in this paper, the Gandiva framework pro-
vides the following APIs that any DLT scheduling pol-
icy can leverage: (a) efficient suspend-resume or time-
slicing, (b) low-latency migration, (c) fine-grained pro-
filing, (d) dynamic intra-job elasticity, and (e) dynamic
prioritization. The key to making these primitives ef-
ficient and practical is the co-design approach of Gan-
diva that spans across both the scheduler layer and the
DLT toolkit layer such as Tensorflow [8] or PyTorch [38].

Traditional schedulers, for a good reason, treat a job as
a black-box. However, by exploiting the dedicated na-
ture of GPU clusters, Gandiva customizes the scheduler
to the specific workload of deep learning, thus providing
the scheduler more visibility and control into a job, while
still achieving generality to arbitrary DLT jobs.

We have implemented Gandiva by modifying two
popular frameworks, PyTorch and Tensorflow, to pro-
vide the necessary new primitives to the scheduler, and
also implemented an initial scheduling policy manager
on top of Kubernetes and Docker containers (Section 5).
We evaluate Gandiva on a cluster of 180 heterogeneous
GPUs and show, through micro-benchmarks and real
workloads, that (i) Gandiva improves the efficiency of
cluster scheduling by up to 26%, and (ii) Gandiva is re-
active enough to time-slice multiple jobs dynamically on
the same GPU, reducing the time to early feedback by as
much as 77%. We also show that, for a popular hyper-
parameter search technique [10], Gandiva improves the
overall completion time of the hyper-parameter search by
up to an order of magnitude while using same resources
(Section 6).

The key contributions of the paper are as follows.
• We illustrate various unique characteristics of the

deep learning workflow and map it to specific re-
quirements needed for cluster scheduling.

• We identify generic primitives that can be used
by a DLT job scheduling policy, and provide
application-aware techniques to make primitives
such as time-slicing and migration an order of mag-
nitude more efficient and thus practical by leverag-
ing DL-specific knowledge of intra-job periodicity.

• We propose and evaluate a new introspective
scheduling framework that utilizes domain-specific
knowledge of DLT jobs to refine its scheduling de-
cision continuously, thereby significantly improving
early feedback time and delivering high cluster effi-
ciency.

2 Background

Deep learning is a type of representation learning that au-
tomatically infers features from raw data in order to ac-
complish tasks such as image classification or language
translation [32]. Deep learning may be supervised (data
with labels) or unsupervised (data only). In either case,
the representation is a deep neural network model with
parameters called weights. These weights are carefully
arranged in layers and number typically in the millions.
These model weights are learned through training.

Deep learning training operates on a few samples of
data at a time called a mini-batch. It computes a set
of scores for each mini-batch by performing numerical
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Figure 1: Intra-server locality.
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Figure 2: Inter-server locality.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

LM GNMT ResNet-50

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Models co-located with LM

LM Other

Figure 3: 1-GPU interference.
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Figure 4: NIC interference.

computations using the model weights, called the for-
ward pass. Based on the desired task, an objective func-
tion is defined that measures an error between the com-
puted scores and desired scores. The error is populated
via a backward pass over the model, where it first com-
putes a gradient for each weight (i.e., the impact of each
weight on the error) and then applies a negative of the
gradient, scaled by a parameter called the learning rate,
to each weight to decrease the error. Both the forward
and backward passes typically involve billions of floating
point operations and thus leverage GPUs. Each forward-
backward pass is called a mini-batch iteration. Typi-
cally, millions of such iterations are performed on large
datasets to achieve high task accuracy.

Feedback-driven exploration. One pre-requisite for
achieving high accuracy is model selection. Discovery
of new models such as ResNet [24] or Inception [46] is
mostly a trial-and-error process today, though ways to
automate it is an active area of research [36].

Apart from the model structure, there are a number of
parameters, called hyper-parameters, that also need to
be specified as part of the DLT job. Hyper-parameters
include the number of layers/weights in the model, mini-
batch size, learning rate, etc. These are typically chosen
today by the user based on domain knowledge and trial-
and-error, and can sometimes even result in early train-
ing failure. Thus, early-feedback on DLT jobs is critical,
especially in the initial stages of training.
Multi-job. Once the user has identified a particular
model to explore further, the user typically performs
hyper-parameter search to improve task accuracy. This
can be done using various searching techniques over the
space of the hyper-parameters; that is, the user gener-
ates multiple DLT jobs or multi-jobs, each performing
full training using one set of hyper-parameters or con-
figuration. Because users typically explore hundreds of
such configurations, this process is computationally ex-
pensive. Thus, sophisticated versions of hyper-parameter
searches are available in the literature, such as Hyper-
Opt [10] and Hyperband [33]. For example, Hyperband
might initially spawn 128 DLT jobs and, in each round
(e.g., 100 mini-batch iterations), kill half of the jobs with
the lowest accuracy. Again, for these algorithms, early
feedback on the entire set of jobs is crucial because they

would be unable to make effective training decisions oth-
erwise.

3 DLT Job Characteristics

In this section, we motivate the design of Gandiva by
highlighting several unique characteristics of DLT jobs.

3.1 Sensitivity to locality
The performance of a multi-GPU DLT job depends on
the affinity of the allocated GPUs. Different DLT jobs
exhibit different levels of sensitivity to inter-GPU affin-
ity. Even for GPUs on the same machine, we observe dif-
ferent levels of inter-GPU affinity due to asymmetric ar-
chitecture: two GPUs might be located in different CPU
sockets (denoted as DiffSocket), in the same CPU socket,
but on different PCIe switches (denoted as SameSocket),
or on the same PCIe switch (denoted as SamePCIeSw).

Figure 1 shows different sensitivity to intra-server lo-
cality for two models VGG16 [44] and ResNet-50 [24].
When trained with two P100 GPUs using Tensorflow,
VGG16 suffers greatly under bad locality. With the worst
locality, when two GPUs are located in different CPU
sockets, VGG16 achieves only 60% of the best locality
config, where two GPUs are placed under the same PCIe
switch. On the other hand, the ResNet-50 is not affected
by GPU locality in this setting. This is because VGG16
is a larger neural model than ResNet-50, hence the model
synchronization in each mini-batch incurs a higher com-
munication load on the underlying PCIe bus.

We observe similar trends in a distributed setting. Fig-
ure 2 shows the performance of a 4-GPU Tensorflow
job running with different inter-server locality, training
ResNet-50 and InceptionV3 [46] models. Even when
interconnected with a 40G InfiniBand network, the per-
formance difference is clearly seen when the job is as-
signed to 4 GPUs, where they are evenly scattered across
4 servers (denoted as 4*1-GPU), 2 servers (denoted as
2*2-GPU), and all in one server (denoted as local 4-
GPU), though the sensitivity to locality of the two mod-
els is different.

Thus, a DLT scheduler has to take into account a job’s
sensitivity to locality when allocating GPUs.
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3.2 Sensitivity to interference

When running in a shared execution environment, DLT
jobs might interfere with each other due to resource con-
tention. We again observe that different DLT jobs exhibit
different degrees of interference.

Interference exists even for single-GPU jobs. When
placing a Language Model [56] job (marked as LM) with
another job under the same PCI-e switch, Figure 3 shows
the performance degradation due to intra-server interfer-
ence. When two LMs run together, both jobs suffer 19%
slowdown. However, ResNet-50 does not suffer from
GPU co-location with LM. Neural Machine Translation
(GNMT) [51] exhibits a modest degree of interference
with LM. Similarly, we also observe various degrees of
interference for multi-GPU training with different types
of training models. We omit the result due to space limi-
tation.

Figure 4 shows inter-server interference on two 4-
GPU servers that are connected with a 40G InfiniBand
network. When running multiple 2-GPU jobs, where
each GPU is placed on different server, ResNet-50 shows
up to 47% slowdown, InceptionV3 shows 30% slow-
down, while DeepSpeech [23] only shows 5% slowdown.

In summary, popular deep learning models across dif-
ferent application domains such as vision, language, and
speech demonstrate different levels of sensitivity to lo-
cality and interference. To cater to these challenges,
Gandiva leverages a key characteristic of DLT jobs,
which we elaborate next.
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Figure 5: GPU memory usage during training.
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Figure 6: GPU usage options in Gandiva.

3.3 Intra-job predictability

A DLT job consists of numerous mini-batch iterations.
The total GPU memory used1 during a 20s snapshot
of training on ImageNet data when using ResNet-50
model [24] on four K80 GPUs is shown in Figure 5(a).
The GPU memory used clearly follows a cyclic pattern.
Each of these cycles corresponds to the processing of a
single mini-batch (about 1.5s), with the memory increas-
ing during the forward pass and decreasing during the
backward pass. The maximum and minimum GPU mem-
ory used is 23GB and 0.3GB, respectively, or a factor of
77x. This ratio scales with the mini-batch size (typically
between 16 to 256; 128 in this case).

The total GPU memory used during a 20s snapshot of
training on WMT’14 English German language dataset
when using GNMT model [51] on one K80 GPU is
shown in Figure 5(b). While the mini-batch iterations
are not identical to each other as in the ImageNet exam-
ple (due to differing sentence lengths and the use of dy-
namic graphs in PyTorch), the graph has a similar cyclic
nature. The difference between maximum and minimum
is smaller (3x) primarily due to larger model (0.4GB) and
smaller mini-batch size (16 in this example).

Apart from image and language models shown here,
other training domains such as speech, generative
adverserial networks (GANs), and variational auto-
encoders all follow a similar cyclic pattern (not shown
due to space limitation) since the core of training is the
gradient descent algorithm performing many mini-batch
iterations.
Leveraging predictability. This characteristic behavior
is exploited in Gandiva in multiple ways. First, a DLT
job can be automatically split into mini-batch iterations
and a collection of these iterations over 60 seconds, say
a micro-task, forms a scheduling interval. Second, by
performing the suspend operation at the minimum of the
memory cycle, the amount of memory to be copied from
GPU to be saved in CPU can be significantly reduced,
thereby enabling suspend/resume and migration to be an
order of magnitude more efficient than a naı̈ve imple-
mentation. Third, the mini-batch progress rate can be
profiled and used as a proxy to evaluate the effectiveness
of applying mechanisms such as packing or migration.

4 Design

High latency and low utilization in today’s cluster arises
because DLT jobs are assigned a fixed set of GPUs ex-
clusively (Figure 6). Exclusive access to GPUs causes

1This is actual GPU memory used. Toolkits like Py-
Torch/Tensorflow use caching to avoid expensive GPU memory
(de)allocations.
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head-of-line blocking, preventing early feedback and re-
sulting in high queuing times for incoming jobs. Exclu-
sive access to a fixed set of GPUs also results in low GPU
utilization when jobs are unable to utilize their assigned
GPUs fully.

4.1 Mechanisms
In Gandiva, we address these inefficiencies by remov-
ing the exclusivity and fixed assignment of GPUs to DLT
jobs in three ways (Figure 6). First, during overload, in-
stead of waiting for current jobs to depart, Gandiva al-
lows incoming jobs to time-share GPUs with existing
jobs. This is enabled using a custom suspend-resume
mechanism tailored for DLT jobs along with selective
packing. Second, Gandiva supports efficient migration
of DLT jobs from one set of GPUs to another. Migra-
tion allows time-sliced jobs to migrate to other (recently
vacated) GPUs or for de-fragmentation of the cluster so
that incoming jobs are assigned GPUs with good locality.
Third, Gandiva supports a GPU grow-shrink mechanism
so that idle GPUs can be used opportunistically. In order
to support these mechanisms efficiently and enable ef-
fective resource management, Gandiva introspects DLT
jobs by continuously profiling their resource usage and
estimating their performance. We now describe each of
these mechanisms.

Suspend-Resume and Packing. Suspend-resume is
one mechanism Gandiva uses to remove exclusivity of
a set of GPUs to a DLT job. Modern operating systems
support efficient suspend-resume for CPU process time-
slicing. Gandiva leverages this mechanism and adds cus-
tom support for GPU time-slicing.

As shown in Figure 5(a), usage of GPU memory by
DLT jobs has a cyclic pattern with as much as 77x dif-
ference between the minimum and maximum memory
usage. The key idea in Gandiva is to exploit this cyclic
behavior and suspend-resume DLT jobs when their GPU
memory usage is at their lowest. Thus, when a suspend
call is issued, the DLT toolkit waits until the minimum
of the memory usage cycle, copies the objects stored in
the GPU to the CPU, releases all its GPU memory alloca-
tions (including cache), and then invokes the classic CPU
suspend mechanism. Later, when the CPU resumes the
job, the DLT framework first allocates appropriate GPU
memory, copies the stored objects back to the GPU, and
then resumes the job.

Suspend-resume may also initiate a change of GPU
within the same server (e.g., in the case of six 1-GPU
jobs time-sharing 4-GPUs). While changing GPU is ex-
pensive, we hide this latency from the critical path. As
we show in our evaluation (Section 6.1), for typical im-
age classification jobs, suspend-resume together can be

accomplished in under 100ms, while for large language
translation jobs suspend-resume can take up to 1s. Given
a time-slicing interval of 1 minute, this amounts to an
overhead of 2% or less.

Note that suspend in Gandiva may be delayed by at
most a mini-batch interval of the DLT job (typically, a
few seconds or less), but we believe this is a worthwhile
trade-off as it results in significantly less overhead due to
the reduced GPU-CPU copy cost and less memory used
in the CPU. Further, useful work is accomplished during
this delay. The scheduler keeps track of this delay and
adjusts the time-slicing interval accordingly for fairness.

An alternative to suspend-resume for time-slicing is to
run multiple DLT jobs on a GPU simultaneously and let
the GPU time-share the jobs. We call this packing. Pack-
ing in GPU is efficient only when the packed jobs do
not exceed the GPU resources (cores, memory) and do
not adversely impact each other. If jobs interfere, pack-
ing can be significantly worse than suspend-resume (Sec-
tion 6.1). We use profiling to monitor the resource and
progress of DLT jobs when they have exclusive access. If
two jobs are identified as candidates for packing, we pack
them together and continue monitoring them. If a given
packing results in adverse impact on jobs’ performance,
we unpack those jobs and revert to suspend-resume.

Migration. Migration is the mechanism Gandiva uses
to change the set of GPUs assigned to a DLT job. Mi-
gration is useful in several situations such as i) moving
time-sliced jobs to vacated GPUs anywhere in the clus-
ter; ii) migrating interfering jobs away from each other;
iii) de-fragmentation of the cluster so that incoming jobs
get GPUs with good locality.

We evaluate two approaches for tackling DLT pro-
cess state migration. In the first approach, we leverage a
generic process migration mechanism such as CRIU [1].
Because CRIU by itself does not support migration of
processes that use the GPU device, we first checkpoint
GPU objects and remove all GPU state from the process
before CRIU is invoked. Because CRIU checkpoints and
restores the entire process memory, the size of the check-
point is on the order of GBs for these DLT jobs using Py-
Torch. Thus, the resulting migration overhead is about 8-
10s for single GPU jobs and higher for multi-GPU jobs.

The second approach we consider is the use of
DLT jobs that are checkpoint-aware. DLT frame-
works such as Tensorflow already support APIs (e.g.,
tensorflow.train.saver) that allow automatic
checkpoint and restore of models. This API is used to-
day to ensure that long running jobs do not have to be
rerun due to server failures. We extend the framework
to support migration of such jobs. By warming up the
destination before migration and only migrating the nec-
essary training state, we can reduce the migration over-
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head to as little as a second or two (Section 6.1). With
either approach, we find that the overhead of inter-server
migration is worthwhile compared to the benefits it pro-
vides in terms of higher overall GPU utilization.
Grow-Shrink. The third mechanism that Gandiva uses
to remove the exclusivity of GPUs to a DLT job is
grow-shrink. This mechanism primarily targets situa-
tions when the cluster may not be fully utilized, say, late
at night. The basic idea is to grow the number of GPUs
available to a job opportunistically during idle times and
correspondingly also shrink the number of GPUs avail-
able when the load increases.

Many DLT jobs, especially in the image domain, see
linear performance scaling as the number of GPUs is in-
creased. Gandiva applies this mechanism only to those
DLT jobs that specifically declare that they are adaptive
enough to take advantage of these growth opportunities.
When multiple DLT jobs fit this criteria, Gandiva uses
profiling information, discussed next, to estimate each
job’s progress rate and then allocate GPUs accordingly.
Profiling. Like any scheduler, Gandiva monitors re-
source usage such as CPU and GPU utilization,
CPU/GPU memory, etc. However, what is unique
to Gandiva is that it also introspects DLT jobs in
an application-aware manner to estimate their rate of
progress. This introspection exploits the regular pattern
exhibited by DLT jobs (Section 3) and uses the periodic-
ity to estimate their progress rate.

Gandiva estimates a DLT job’s mini batch time,
the time to do one forward/backward pass over a batch
of input data, as the time taken between two minimums
of the GPU memory usage cycles (Figure 5(a)). Be-
cause DLT jobs typically perform millions of such mini
batch operations in their lifetime, the scheduler compares
the mini batch time of a DLT prior to and post a
scheduling decision to determine its effectiveness.

For example, consider the example of packing two
DLT jobs in a GPU described earlier. By comparing the
mini batch time of each of the two DLT jobs before
and after packing, Gandiva can decide whether packing
is effective. Without such profiling, in order to make a
packing decision, one would have to model not only the
two DLT jobs’ performance on various GPUs but also the
various ways in which they may interfere with each other
(e.g., caches, memory bandwidth, etc.), a non-trivial task
as evidenced by the varied performance of packing we
see in Section 6.1.

4.2 Scheduling Policy
Definitions: Before we describe the details of the sched-
uler, we define some terminology. DLT jobs are encap-
sulated in containers (Section 5) and include the num-
ber of GPUs required, their priority (can be dynamically
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Figure 7: Scheduling example in a 16-GPU Cluster.

changed), and a flag indicating if the job is capable of
grow-shrink. We assume the number of GPUs requested
by a job is a power of two (typical for DLT jobs today).
A cluster is composed of one or more servers, with each
server having one or more GPUs. Further, we assume a
dedicated GPU cluster for DLT jobs [28, 12].

We define the height of a server as
⌈
M/ N

⌉
, where M

is the number of allocated GPUs and N is the number
of total GPUs. Thus, the suspend/resume mechanism
will only be used when the height of a server exceeds
one. The height of a cluster is defined as the maximum
height of all its servers. Overload occurs when the height
of the cluster is greater than one; i.e., the sum of re-
quested/allocated GPUs of all jobs is greater than the to-
tal number of GPUs. We define the affinity of a server
as the type of jobs (based on GPUs required) assigned to
that server. For example, initially servers have affinity of
zero and, if a job that requires two GPUs is assigned to a
server, the affinity of that server is changed to two. This
parameter is used by the scheduler to assign jobs with
similar GPU requirements to the same server.
Goals: The primary design goal of the Gandiva sched-
uler is to provide early feedback to jobs. In prevalent
schedulers, jobs wait in a queue during overload. In con-
trast, Gandiva supports over-subscription by allocating
GPUs to a new job immediately and using the suspend-
resume mechanism to provide early results. A second de-
sign goal is cluster efficiency. This is achieved through
a continuous optimization process that uses profiling and
a greedy heuristic that takes advantage of mechanisms
such as packing, migration, and grow-shrink. Cluster-
level fairness is not a design goal in Gandiva. While we
believe achieving long-term fairness at the cluster level
is feasible using the Gandiva mechanisms, in this paper,
we focus only on providing fairness among jobs at each
server using the suspend-resume mechanism and leave
cluster-level fairness to future work.

To achieve these goals, the Gandiva scheduler oper-
ates in two modes: reactive and introspective. By re-
active mode, we refer to when the scheduler reacts to
events such as job arrivals, departures, machine failures
etc. By introspective mode, we refer to a continuous pro-
cess where the scheduler aims to improve cluster utiliza-
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Algorithm 1 getNodes(in job, out nodes)

1: nodes0 ← f indNodes( job.gpu,a f f inity ← job.gpu)
2: nodes1 ← minLoadNodes(node0)
3: nodes2 ← f indNodes( jog.gpu,a f f inity ← 0)
4: nodes3 ← f indNodes( job.gpu)
5: if nodes1 and height(nodes1)< 1:
6: return nodes1 // Same affinity with free GPUs
7: if nodes2 and numGPUs(nodes2)≥ job.gpu:
8: return nodes2 // Unallocated GPU servers
9: if nodes3:

10: return nodes3 // Relax affinity constraint
11: elif nodes1:
12: return nodes1 // Allow over-subscription
13: else:
14: enqueue( job) // Job queued

tion and job completion time. Note that the scheduler can
be operating in both modes at the same time. We discuss
each of these modes next.

4.2.1 Reactive Mode

The reactive mode is designed to take care of events such
as job arrivals, departures, and machine failures. Con-
ventional schedulers operate in this mode. Here we dis-
cuss only our job placement policy since we follow the
conventional approach for failure handling.

When a new job arrives, the scheduler allocates
servers/GPUs for the job. The node allocation policy
used in Gandiva is shown in Algorithm 1. f indNodes
is a function to return the node candidates that satisfy
the job request with an optional parameter for affinity
constraint. Initially, Gandiva tries to find nodes with the
same affinity as the new job and, among those, ones with
the minimum loads. If such nodes exist and their height
is less than one (lines 5–6), that node is assigned. Oth-
erwise, Gandiva tries to find and assign un-affinitized
nodes (lines 7–8). If no such free servers are available,
the third option is to look for nodes with free GPUs while
ignoring affinity (lines 9–10). This may result in frag-
mented allocation across multiple nodes but, as we shall
see later, migration can be used for defragmentation. If
none of the above work, it implies that no free GPUs are
available in the cluster. In this case, if nodes with the
same affinity exist, they are used with suspend-resume
(lines 11–12); if not, the job is queued (lines 13–14).

For example, as shown in Figure 7, jobs that require
1-GPU are placed together but jobs that require 2 or 4
GPUs are placed on different servers. Further, we try to
balance the over-subscription load on each of the servers
by choosing the server with the minimum load (e.g., six
1-GPU jobs on each of the two servers in the figure).

Conventional schedulers will use job departures to
pick the next job from the waiting queue for placement.

J0 J0

D

Server0

Server1

Server2

Server3

Server4

J3

J3

Server5

Server6

J1

J1

D J2

J2D

J0 Job0 slot D DeepSpeech slot

OtherJob’s slot Migrate

Figure 8: Job migration in a shared cluster.

In addition, in Gandiva, we check whether the height of
the cluster can be reduced; e.g., by migrating a job that is
suspended to the newly vacated GPU. This job could be
from the same server or from any other server in the clus-
ter. Finally, job departures can also trigger migrations for
improving locality, as discussed in the next section.

Gandiva’s job placement policy takes into account
two factors. First, unlike conventional schedulers, Gan-
diva allows over-subscription. When a server is over-
subscribed, we do weighted round-robin scheduling to
give each job its fair time-share. Second, unlike today’s
schedulers, where GPU allocation is a one-time event
at job arrival, Gandiva uses the introspective mode, dis-
cussed next, to improve cluster utilization continuously.
Thus, Gandiva relies on a simple job placement policy
to allocate GPU resources quickly to new jobs, thereby
enabling early feedback.

4.2.2 Introspective Mode

In the introspective mode, Gandiva continuously moni-
tors and optimizes placement of jobs to GPUs in the clus-
ter to improve the overall utilization and the completion
time of DLT jobs.
Packing. Packing is considered only during overload.
The basic idea behind packing is to run two or more
jobs simultaneously on a GPU to increase efficiency. If
the memory requirements of the packing jobs combined
are higher than GPU memory, the overhead of “paging”
from CPU memory is significantly high [16] that pack-
ing is not effective. When the memory requirements of
two or more jobs are smaller than GPU memory, pack-
ing still may not be more efficient than suspend-resume
as we show in Section 6.1. For example, for some DLT
jobs, packing increases efficiency, while for others pack-
ing can be worse than suspend-resume.

Analytically modeling performance of packing is a
challenging problem given the heterogeneity of DLT
jobs. Instead, Gandiva relies on a greedy heuristic to
pack jobs. When jobs arrive, we always run them in ex-
clusive mode using suspend-resume and collect profiling
information (GPU utilization, memory and job progress
rate). Based on the profiling data, the scheduler main-
tains a list of jobs sorted by their GPU utilization. The
scheduler greedily picks the job with the lowest GPU uti-
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lization and attempts to pack it on a GPU with the lowest
GPU utilization. We only do this when the combined
memory utilization of the packed jobs do not exceed the
overall memory of the GPU. Packing is deemed success-
ful when the total throughput of packed jobs is greater
than time-slicing. If packing is unsuccessful, we undo
the packing and try the next lowest utilization GPU. If
the packing is successful, we find the next lower utiliza-
tion job and repeat this process. Based on our evaluation,
we find that this simple greedy heuristic achieves 26%
efficiency gains.

Migration. GPU locality can play a significant role in
the performance of some jobs (Section 3.1). In Gandiva,
we use migration to improve locality whenever a job de-
parts and also as a background process to “defrag” the
cluster. To improve locality, we pick jobs that are not
co-located and try to find a new co-located placement.
Figure 8 illustrates an example from a cluster experiment
(Section 6.4). When a multi-job with 4 jobs that requires
2-GPUs each was scheduled, it had poor GPU affinity;
only J0’s two GPUs are colocated with the other 3 jobs
in the multi-job (J1, J2, and J3,) assigned to separated
GPUs. Three minutes later, a background training job,
DeepSpeech, completes and releases its 8 GPUs. Three
of the 8 GPUs, marked as D in Figure 8 in three differ-
ent servers (server 1, 3, and 4), can improve the training
efficiency of the multi-job. Gandiva hence initiates the
migration process, relocating J1, J2, and J3 to colocated
GPUs. For de-fragmentation, we pick the server with the
most free GPUs among all non-idle ones. We then try
to move the jobs running on that server to others. The
job will be migrated to another server with fewer free
GPUs, as long as there is negligible performance loss.
We repeat this until the number of free GPUs on every
non-idle server is less than a threshold (3 out of 4 in our
experiments) or if no job will benefit from migration.

Grow-shrink. Grow-shrink is only triggered when the
cluster is under-utilized and the DLT jobs specifically
identify themselves as amenable to grow-shrink. In our
current system, we only grow jobs to use up to the max-
imum number of GPUs available in a single server. Fur-
ther, we trigger growth only after an idle period to avoid
thrashing and shrink immediately when a new job might
require the GPUs.

Time-slicing. Finally, we support round robin schedul-
ing in each server to time-share GPUs fairly (Sec-
tion 6.1). When jobs have multiple priority levels, higher
priority jobs will never be suspended to accommodate
lower priority jobs. If a server is fully utilized with
higher priority jobs, the lower priority job will be mi-
grated to another server, if feasible.

5 Implementation

DLT jobs are encapsulated as Docker containers con-
taining our customized versions of DL toolkits and a
Gandiva client. These jobs are submitted to a Kuber-
netes [14] system. Gandiva also implements a custom
scheduler that then schedules these jobs.

5.1 Scheduler
Gandiva consists of a custom central scheduler and also a
client component that is part of every DLT job container.
The scheduler is just another container managed by Ku-
bernetes. Kubernetes is responsible for overall cluster
management, while the Gandiva scheduler manages the
scheduling of DLT jobs. The Gandiva scheduler uses the
Kubernetes API to get cluster node and container infor-
mation and, whenever a new container is submitted, the
scheduler assigns it to one or more of the GPUs in the
cluster based on the scheduling policy.

When a container is scheduled on a node, initially only
the Gandiva client starts executing. It then polls the Gan-
diva scheduler to identify which GPUs to make available
for the DLT job and also controls the execution of the
DLT job using suspend/resume and migrate commands.
While scheduling of all the GPUs in our cluster is fully
controlled by the central scheduler, a hierarchical ap-
proach may be needed if scalability becomes a concern.

5.2 Modifications to DL toolkits
In the interest of space, we describe only the time-slicing
implementation for PyTorch and the migration imple-
mentation for Tensorflow.
PyTorch time-slicing. The Gandivaclient issues a SIGT-
STP signal to indicate that the toolkit must suspend the
process. It also indicates whether or not the resume
should occur in a new GPU via an in-memory file. Upon
receiving the signal, the toolkit sets a suspend flag and
executes the suspend only at the end of a mini-batch
boundary.

In Tensorflow, a define-and-run toolkit, the mini-
batch boundaries are easily identified (end of
session.run()). In PyTorch, a define-by-run
toolkit, we identify the mini-batch boundary by tracking
GPU memory usage cycles as part of PyTorch’s GPU
memory manager (THCCachingAllocator) and looking
for a cycle minimum whenever GPU memory is freed.

Once the minimum is detected, the toolkit i) copies
all stored objects from GPU to CPU, ii) frees up GPU
allocations, and iii) suspends the process. When Gan-
diva client issues a SIGCONT signal, the toolkit allo-
cates GPU memory, copies stored objects from CPU to
GPU, and resumes the process. To handle device address
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change on resume, we track GPU objects in the toolkit
and patch them with the new addresses. Changing GPU
involves calling cudaDeviceReset and CudaInit, which
can take 5-10s. We hide this latency by performing these
actions in the background while “suspended”.
Tensorflow migration. We make changes to Tensorflow
(TF) with 400+ lines of Python/C++ code. With 200+
line of additional code, we deploy a Migration Helper on
each server to support on-demand checkpointing and mi-
gration. When receiving a migration command from the
scheduler, the destination Helper first warms up the TF
session and waits for the checkpoint. The source Helper
then asks TF to save the checkpoint, moves the check-
point to destination in case of cross-server migration, and
finally resumes the training session. To speed up the mi-
gration process, we adopt Ramdisk to keep the check-
point in memory. In the cross-server case, the modified
TF saves the checkpoint to the remote Ramdisk directly
through the Network File System (NFS) protocol.

When the Migration Helper asks a job to perform
checkpointing, the modified TF calls tf.Saver at the
end of a mini-batch. For data parallelism, the checkpoint
only includes the model in one GPU, regardless of the
number of GPUs used in the training. To speedup TF mi-
gration further, we do not include the meta-graph struc-
ture in a checkpoint as it can be reconstructed based on
user code.

In the warm-up phase, the modified TF checks the
GPU configuration and reconstructs the meta-graph. It
further creates the Executor to run a warm-up opera-
tion to ensure that the initialization is not deferred lazily.
When resuming the training process, the modified TF
loads the checkpoint, with multiple GPUs loading it in
parallel, and continues the training.

6 Evaluation

In this section, we first present micro-benchmark results
of the Gandiva mechanisms. We then evaluate the ben-
efit Gandiva provides to multi-jobs. Finally, we present
our evaluation results of the experiments on a 180-GPU
cluster.

Our servers are 12-core Intel Xeon E5-
2690@2.60GHz with 448GB RAM and two 40Gbps
links (no RDMA), running Ubuntu 16.04. Each server
has either four P100 or four P40 GPUs. All servers are
connected to a network file-system called GlusterFS [3]
with two-way replication on the server disks (SSDs).
For jobs that use more than one GPU, we only evaluate
data parallelism (as it is more common than model
parallelism), and use synchronous updates (though we
can support asynchronous update as well). Our evalu-
ation uses 18 models, 8 implemented in PyTorch 0.3
and 10 implemented in TensorFlow 1.4. The batch size

Figure 9: Time slicing six 1-GPU jobs on 4 GPUs.

Figure 10: Packing jobs on single P40 GPU.

used for training are defaults from their references. All
models take 6s or less per mini-batch in our evaluation.
Thus, we set the time-slicing interval to 60s in these
experiments.

6.1 Micro-benchmarks
In this section, we evaluate the Gandiva mechanisms,
viz., time-slicing, packing, grow-shrink, and migration.

Time-slicing. We use six 1-GPU jobs on a single server
with four P100 GPUs to illustrate time-slicing. These
are ResNet-50 [24] models trained on the Cifar10 dataset
using the PyTorch toolkit. When six 1-GPU jobs share
four GPUs, each job ideally should get four minutes of
GPU time out of every six.

Figure 9 shows a trace with the progress rate of each
of the jobs over time. Initially, four 1-GPU long jobs are
running and at time t=25min, two 1-GPU short jobs are
scheduled at this server. One can see that the initial four
1-GPU jobs now get 4/6th their previous share. When
the two short jobs depart, the long jobs return to their ear-
lier performance. Also, note that the aggregate through-
put of all jobs (right scale) is only marginally affected
(less than 2%) during the entire trace, demonstrating that
time-slicing is an efficient mechanism for providing early
feedback during over-subscription.

Packing. Table 1 shows the performance of packing
multiple jobs on a single GPU for various DLT mod-
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GPU Time Packing Packing
Job Util Slicing Max Gain

(%) (mb/s) (mb/s) (%)
VAE [29] 8.7 81.8 419.3 412
SuperResolution [43] 14.1 40.3 145.2 260
RHN [58] 61.6 10.1 14.8 46
SCRNN [37] 66.8 16.7 23.3 39
MI-LSTM [52] 76.2 22.2 25.9 17
LSTM [5] 87.2 63.8 53.0 -16
ResNet-50 [24] 94.0 10.3 9.0 -13
ResNext-50 [53] 98.9 83.6 74.4 -11

Table 1: Packing multiple jobs on P40 (mb/s = minibatches/s).

Figure 11: Grow from 1 to 4 GPUs, Shrink to 1-GPU.

els using PyTorch toolkit. For small DLT jobs with low
GPU utilization, packing can provide significant gains of
as much as 412%. For DLT jobs with middling GPU uti-
lization, packing gains vary from model to model with
some showing gains of up to 46%, but some exhibiting a
loss of 16%. Finally, for image processing jobs with high
utilization, such as ResNet-50 or ResNext-50 on the Ci-
far10 dataset, packing hurts performance by 11-13% .

Note that these packing results are without enabling
NVIDIA’s multi-process service (MPS) [7]. We found
that MPS results in significant overhead in P40/P100
GPUs. However, hardware support for MPS in V100
GPUs [7] suggests that the use of MPS may be able to
increase further packing gains in V100 GPUs.

Based on these results, predicting packing perfor-
mance even with jobs of the same type appears chal-
lenging, let alone when jobs of different types are packed
together. Instead, Gandiva adopts a profiling-based ap-
proach to packing. Figure 10 shows a case where two
image super-resolution jobs [43] are initially being time-
sliced on the same P40 GPU. After some time, the sched-
uler concludes that their memory and GPU core utiliza-
tion is small enough that packing them is feasible and
schedules them together on the GPU. The scheduler con-
tinues to profile their performance. Because their aggre-
gate performance improves, packing is retained; other-
wise (not shown), packing is undone and the jobs con-
tinue to use time-slicing.

Grow-Shrink. Grow-shrink is useful primarily when
the cluster is under-utilized. Gandiva uses grow-shrink
only for those jobs that specifically state that they can
make use of this feature because users may want to ad-
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Figure 12: The breakdown of TF migration overhead.

just the learning rate and the batch size depending on the
number of GPUs available. Figure 11 demonstrates this
mechanism in action. Initially, a 4-P100 server has three
jobs, 1-GPU growth-capable job, 1-GPU short job, and
a 2-GPU short job, all using ResNet-50 with PyTorch.
At time t=25min, the short job departs and after a time-
out period of no new jobs being allocated to this GPU,
the long running job expands to use 2 GPUs. At time
t=45min, the second short job departs and the long run-
ning job expands to use all four GPUs. At time t=75min,
a new 2-GPU job enters and the long job immediately
shrinks to use two GPUs and, when another new 1-GPU
job appears, the long job shrinks to use only 1 GPU.
This micro-benchmark demonstrates that idle GPU re-
sources can be effectively used with a mechanism like
grow-shrink.

Migration. We use a server with 8 P100 GPUs and
the Tensorflow toolkit to evaluate migration overhead.
First, we migrate a ResNet-50 single-server training job
from one server to another. Figure 12 shows the detailed
breakdown with a varying number of GPUs. Using our
optimized implementation, we are able to eliminate or
hide the majority of the migration overhead. The ac-
tual migration time, saving and restoring checkpoints, re-
mains almost constant regardless of the number of GPUs
because we save only one copy of the model. The load-
ing of the in-memory checkpoint in each GPU runs in
parallel and does not saturate the PCI-e bandwidth. The
warm-up time and the cost due to meta-graph and check-
points from other GPUs grow with the number of GPUs.
As a result, we are able to save 98% of the migration
overhead of 35s for 8-GPU jobs.

Figure 13 shows the max, min, and average intra-
server and inter-server migration time of a 1-GPU job
with 10 different deep learning models (summarized in
Table 2) over 3 runs. Six of the 10 can be migrated within
1 second. Even the largest model (DeepSpeech [23] with
a 1.4GB checkpoint) can be migrated in about 3.5 sec-
onds, which is negligible compared to the long training
time that often lasts for hours or days.
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Figure 13: Migration time of real workloads.

6.2 Model exploration in a multi-job

AutoML, or automatic model exploration through hyper-
parameter search is an important way to help users iden-
tify good neural models [21]. Typically, AutoML in-
volves a hyper-parameter configuration generator and a
performance evaluator. The generator uses different al-
gorithms [11, 33] to generate new candidate configura-
tions (DLT jobs), sometimes using the performance of
prior configuration runs as a signal. The evaluator uses
the early output of running jobs (e.g., the learning curve)
to predict the jobs’ final performance and decide whether
to continue running a given job or terminate it early.

Compared to a traditional scheduler where the number
of configurations explored at any given time is limited by
the number of GPUs available, Gandiva provides new
primitives such as time-slicing and dynamic prioritiza-
tion for AutoML algorithms to exploit. For example, the
configuration generator is no longer limited by the num-
ber of GPUs and can dynamically generate many more
configurations. Similarly, the performance evaluator can
not only decide whether to continue or terminate a job
but also how much priority to give to each configuration.

In this section, we explore one particular instance of
using these new options enabled by Gandiva to highlight
the potential benefit for AutoML. Detailed analysis of
when and how many configurations to generate and/or
how to best allocate priority among the various running
configurations to utilize Gandiva features optimally is an
open problem that we leave for future work.

At a high level, Gandiva can benefit an AutoML sys-
tem in two ways. First, Gandiva can help AutoML
explore more hyper-parameter configurations within a
timespan, thereby enabling it to find better models [10,
19, 11]. Alternatively, Gandiva can help AutoML find
a qualified model faster given a set of configurations
through prioritization.

To demonstrate the benefit of Gandiva in exploring
more configurations, we first use AutoML to run a multi-
job to tune a LeNet-like CNN model with multiple con-
volution layers and fully connected layers, trained with
the Cifar10 dataset. The hyper-parameters we search
have 12 dimensions, including learning rate, dropout
rate, number of layers, choice of optimization, etc. In this

Neural model Type Dataset

10%

InceptionV3 [46] CV ImageNet [18]
ResNet-50 [24] CV ImageNet
Alexnet [31] CV ImageNet
Vgg16 [44] CV ImageNet

60%

Bi-Att-Flow [42] NLP SQuAD [40]
LanguageModel [56] NLP PTB [34]
GNMT [51] NLP WMT16 [6]
Transformer [49] NLP WMT16

30% Wavenet [48] Speech VCTK [54]
DeepSpeech [23] Speech CommonVoice [2]

Table 2: Neural models and the ratios in the trace.
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Figure 14: Model exploration number.

experiment, AutoML continually generates new hyper-
parameter configurations based on Hyperopt [10] and
leverages a curve-fitting method [19] to evaluate and pre-
dict the learning curve every 1,000 mini-batches (3% of
the total mini-batches [19]). Jobs with no promise (less
than 30% predicted accuracy) will be stopped early. The
multi-job runs on 4 (or 16) P40 GPUs and each job re-
quires 1 GPU. In the experiment, AutoML schedules 2
(or 8) more jobs every 1,000 mini-batches. In the base-
line, jobs have to stay in a FIFO queue waiting for the
running jobs to be terminated early or complete while in
Gandiva, they are scheduled with time-slicing and mi-
gration support.

Figure 14 shows the number of explored hyper-
parameter configurations. Gandiva can explore almost
10 times the number in the baseline approach in both
the 4-GPU and 16-GPU cases. This is because, in the
baseline approach, the GPUs can get “stuck” with a sub-
optimal set of jobs that need to be run to completion, but
in Gandiva, because of time-slicing, new configurations
can be explored in parallel along with those jobs.

To demonstrate the benefit of Gandiva in finding a
qualified model faster, we use Hyperopt to generate ran-
domly the same set of 374 hyper-parameter configura-
tions for both the baseline and Gandiva. The experiment
measures the time required to find a configuration with
at least 84% accuracy2. AutoML algorithms evaluate
the jobs every 1,000 mini-batches and re-prioritize them
based on the learning-curve prediction of their probabil-
ity to achieve 84% accuracy [19]. In Gandiva, the top M
jobs with the highest probabilities are then trained in the
GPUs exclusively. In this experiment, we set M to 2 and
8 for 4-GPU and 16-GPU cases. Other jobs run in a time

2The LeNet-like CNN model is small: 84% is the best accuracy we
found in the generated configurations.
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Position 93th
(25%)

187th
(50%)

280th
(75%)

365th
(98%)

4
GPUs

Baseline 691.5 1373.0 2067.2 2726.4
Gandiva 125.5 213.8 302.4 387.1
Speedup 5.51x 6.42x 6.84x 7.04x

16
GPUs

Baseline 253.0 492.7 731.7 970.0
Gandiva 74.4 103.7 135.4 162.6
Speedup 3.40x 4.75x 5.40x 5.96x

Table 3: Time to find a qualified configuration (minutes).

slicing manner. Our baseline approach stays the same as
in the previous experiment. The result shows that Gan-
diva achieves 7x speedup compared to the baseline for
the 4-GPU case and 6x for the 16-GPU case. More GPUs
benefit the baseline as it implicitly improves the degree
of parallelism of the long running jobs. There are two
factors contributing to these gains. First, with prioritiza-
tion, Gandiva grants more computation resources to the
promising jobs. Second, because of the ability to run
more configurations in parallel, Gandiva is able to find
promising jobs quickly based on early feedback.

Further study shows the first job with the qualified
configuration gets scheduled by Gandiva and the base-
line in the 365th place. We move the first qualified job
from 365th place to the first 25th percentile, 50th per-
centile, and 75th percentile scheduling place and rerun
the experiment. Table 3 summarizes the result: the later
the qualified configuration shown, the larger gain Gan-
diva has. In a typical AutoML experiment, quality mod-
els usually show up later as those early-stopped jobs’
configurations guide the system to find the better con-
figurations.

To understand the sensitivity of Gandiva’s perfor-
mance to the target accuracy of the model, we run Au-
toML with different target accuracies on a large state-of-
the-art ResNet-like model (the official ResNet example
in Keras [4]) for Cifar10. We use Hyperopt to gener-
ate 100 configurations, with the search space covering
both the neural network architecture and various tunable
hyper-parameters. The learning-curve prediction works
as before; i.e., for every 3% of total mini-batches. The
multi-job experiment runs on 16 P40 GPUs and every job
runs on 1 GPU.

Table 4 shows the time spent on finding a model that
is better than target accuracy using the baseline and Gan-
diva respectively. For a higher target accuracy, the per-
formance gain of Gandiva is more notable. With 90%
specified as a goal, the qualified model that is found
achieves 92.62% validation accuracy. However, if the
target accuracy is low; e.g., 70%, a qualified model will
appear early. In this case, the time for completing a sin-
gle qualified configuration run dominates the total Au-
toML search time. Thus, Gandiva shows little bene-
fit. We can see that when AutoML is used for achiev-
ing high accuracy models, Gandiva provides significant
gains over the baseline.

Accuracy 70% 80% 90%
Baseline 134.1 2849.1 5296.7
Gandiva 134.1 543.1 935.4
Speedup 1.00x 5.25x 5.66x
Position 15th 58th 87th

Table 4: Model searching in ResNet-like network (minutes).

Figure 15: Cluster GPU utilization.

6.3 Cluster experiments: time-slicing and
packing

In this section, we evaluate the Gandiva scheduler in a
45 server, 180-GPU cluster with about an equal mix of
P100 and P40 GPUs. The scheduler implements both
the reactive and introspective modes described earlier.
In order to understand the gains contributed by different
mechanisms in Gandiva, in this experiment, we only use
time-slicing and packing, and disallow migrations. Fur-
ther, none of the jobs are grow-shrink enabled. Thus, the
accuracy achieved during training is unaffected by the
Gandiva mechanisms.

We use the eight DLT jobs from Table 1 for this ex-
periment and derive a mix of these jobs such that aver-
age GPU utilization is about 50%, similar to the average
GPU utilization numbers reported from a study of a large
deep learning cluster [28]. DLT jobs 1 and 2 from Table 1
(low utilization) are chosen with 0.3 probability, jobs 3,
4, and 5 (mid utilization) are chosen with 0.25 probabil-
ity and jobs 6, 7, and 8 (high utilization) are chosen with
probability of 0.45. Further, jobs 7 and 8 require either 2
or 4 GPUs while the rest each uses 1-GPU.

The number of mini-batches for each of these jobs are
chosen such that, in isolation on P40, they take between
30 and 45 minutes of GPU time. A total of 1,000 jobs
drawn from the above distribution arrive in a uniformly
random manner over two hours. Using the same work-
load, we compare with Gandiva a baseline scheduler that
does bin-packing but does not oversubscribe.

The primary goal of Gandiva is early feedback. We
compute the average time to 100 mini-batches for all jobs
as a measure of early feedback (e.g., HyperBand [33]
uses 100 mini-batches to evaluate a job). We find that
the average time to complete 100 mini-batches is 498s
for Gandiva and 2,203s for the baseline, for a reduction
of 77%.
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The second goal of Gandiva is cluster efficiency. Fig-
ure 15 shows the average GPU utilization of the cluster
for the baseline scheduler and Gandiva, as well as the
cumulative number of successful packings by Gandiva
(right y-axis). The result shows clearly that Gandiva is
able to use the cluster more efficiently than the baseline.
The average utilization (computed over the stable regime
from 20 to 200 mins) achieved by Gandiva is 62.8%
compared to baseline average of 50.1%, resulting in a
26% relative improvement. Further, the greedy packing
heuristic employed by Gandiva can be seen to be mostly
successful with only a few packing decisions that need to
be undone (the packing curve is mostly increasing with
only small occasional dips).

6.4 Cluster experiments: time-slicing and
migration

Trace. We collect a 9-day real-world job trace on a
2,000 GPU production cluster at Microsoft. The trace in-
cludes over 8,800 DLT jobs from three categories: com-
puter vision (CV) (10%), Natural Language Processing
(NLP) (60%), and Speech (30%), according to user sur-
vey and log analysis. However, the data/code used by
these jobs are not available to us, due to security and pri-
vacy regulations. In their place, we pick 10 state-of-the-
art deep learning models from Github with 50,000+ stars
in total. The models are summarized in Table 2.

To synthesize a trace with similar characteristics as the
production cluster, we mix these models with the same
ratio as that in the trace. The number of mini-batches of
the jobs in the trace are set to follow the job running time
distribution of the 9-day real-world trace. We ensure
that the synthesized trace closely follows the job run-
ning time distribution of the real-world trace, as shown
in Figure 16. As before, none of the jobs are grow-shrink
enabled in this experiment, as the cluster is in high load.

We run the trace using Hadoop’s YARN capacity
scheduler [50] and our Gandiva scheduler.
Fast-forwarding. To speed up replaying the 9-day trace,
we leverage the predictability of the 10 models. We use
the scheduler to instruct a running job to skip a number
of mini-batches (i.e., fast-forwarding) whenever there are
no scheduling events, including job arrival, departure,
and migration, etc. The time skipped is calculated by
measuring the previous mini-batch performance when
the job reaches a stable state.

We validate fast-forwarding by constructing a 3-hour
trace and compute average job completion time (JCT)
and the makespan (the running time for the entire exper-
iment) for the full trace and the experiment with fast-
forwarding enabled using the capacity scheduler and
Gandiva. The difference between the real and fast-
forwarded experiment in all cases was less than 1%.

Avg. JCT
(mins)

Makespan
(mins)

Cap. Sche. 832 13371
Gandiva 656 11349

Improvement 26.8% 17.8%

Table 5: Full trace experiment with fast-forwarding

Table 5 shows the average job completion time and the
makespan for the two schedulers when replaying the syn-
thesized job trace in a cluster with 100 GPUs (50 P100,
50 P40). We see that Gandiva improves average JCT by
26.8% and the total makespan is reduced by 17.8%. Fig-
ure 17 shows the CDF of the JCT of the two approaches:
it shows Gandiva has more jobs with a JCT less than
around 100 mins. During the entire experiment, Gandiva
initiates migration 470 times; i.e., approximately once
every 20 minutes.
Multi-job performance in a shared cluster. To com-
pare the AutoML performance of a multi-job in a shared
environment, we run the synthesized trace the same way
as earlier in the same cluster with 100 GPUs. The trace-
driven jobs act as background jobs, emulating a realis-
tic shared cluster environment. At the 5,607th minute
(roughly in the middle of the trace), we launch two multi-
jobs, each to find a qualified CNN model described in
Section 6.2, trained on the Cifar10 dataset. Each multi-
job is allocated 8 GPUs. For fair comparison, each multi-
job is allowed to preempt other jobs to get 8 GPUs to
reduce the unpredictable resource sharing.

We are particularly interested in understanding the
effect of migration in Gandiva and therefore use a 2-
GPU VGG-like model that is large and locality sensi-
tive (Section 3.1). Each AutoML job runs for 100,000
mini-batches and reports the learning curve every 3,000
mini-batches (3%). Like the previous experiment, the
job can be early stopped if the learning shows no
promise [19]. In this experiment, the AutoML algorithm
tunes the learning rate of the model with 40 configura-
tions. The multi-job completes if a job’s model achieves
99.5% training accuracy, with 91.3% validation accu-
racy. Again, the top M highest probability jobs run ex-
clusively while other jobs are time-sliced. In this experi-
ment, we set M to 2 (i.e., 4 GPUs).

As shown in Figure 18, with the capacity scheduler,
it takes 1,215.74 and 1,110.62 mins, respectively, to
find the qualified configuration for the two multi-jobs.
Gandiva’s mechanisms like migration, time-slicing, and
dynamic priority help provide better locality, identify
promising jobs earlier, and improve the training speed
of high priority jobs. As a result, Gandiva achieves
a speedup of 13.6 and 12.9, respectively. Based on a
micro-benchmark we did, we observed that time-slicing
alone gave 7x gains for this AutoML experiment. Thus,
the rest of the gains are attributable to improved locality
due to migration. A real example of migration observed
in this experiment was shown in Figure 8.
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Figure 18: Multi-job completion time

7 Related Work

DLT job scheduling today. DLT jobs are scheduled
today by big data schedulers such as Kubernetes or
YARN [12, 28]. In these systems, a fixed set of GPUs is
assigned exclusively for the lifetime of a DLT job. Thus,
job queueing times can vary from a few minutes [12] to
even hundreds of minutes [28] in these clusters.

An earlier study [28] shows that the average GPU uti-
lization in a production cluster was only around 52%.
Some jobs can inherently result in low GPU utilization
due to the use of small models [29] and/or the use of
small batch sizes for better generalization [35]. Fur-
ther, jobs with inherently high GPU utilization can be
adversely affected by poor GPU affinity and/or interfer-
ence.
Scheduling policies for machine learning. Recent re-
search [9, 15] also suggests that locality, interference,
and GPU utilization are important performance factors
for GPU workloads. They develop analytical models to
predict the performance of GPU workloads. A Gandiva
scheduler may leverage such models to guide its schedul-
ing decisions. At its core, Gandiva framework is de-
signed to empower DLT schedulers with the primitives
such as time-slicing and migration.

SLAQ [57] proposes a scheduling policy that priori-
tizes resources in a CPU-based cluster to Spark jobs with
high potentials (e.g., the one with a fast improving learn-
ing curve). Gandiva can leverage the same policy for
DLT on GPU clusters. Optimus [39] derives a proper
number of parameter-servers and workers for MxNet-
based deep learning jobs, which complements Gandiva
in GPU cluster scheduling.
AutoML. Gandiva enables the co-design of DLT sched-
ulers and AutoML algorithms like [10, 30]. Jobs in
a multi-job can be promoted dynamically with more
resource and/or better locality, accordingly to Au-
toML specific algorithms. Google Vizier [21], Hyper-
Drive [41], and TuPAQ [45] focus more on the sys-
tem design of AutoML. Gandiva empowers these sys-
tems with lower level system primitives that can further
improve AutoML training experience in a multi-job, as
shown in the experiments.
Big data cluster scheduling frameworks. Most recent
big data scheduling frameworks assume jobs are mod-
eled after a data flow graph (DFG) [26, 55, 13, 27, 20,

22]. Map/Reduce like tasks instantiated from the log-
ical DFG get scheduled dynamically according to the
job progress and the DFG dependency. Gandiva in-
stead relies on the micro-task boundary implicitly de-
fined by the mini-batch boundary. The low-level mech-
anisms of Gandiva such as time-slicing and migration
also differ significantly from those big data scheduling
systems [13, 22, 25, 14], while being surprisingly simi-
lar to a traditional operation system [47].
Time-slicing, suspend-resume, and process migra-
tion. Gandiva adopts traditional OS process primitives to
facilitate DLT scheduling [47]. Unlike the general pur-
pose OS mechanisms, Gandiva leverages the intra-job
predictability of DLT to achieve a highly efficient im-
plementation. Gandiva does not claim generality of the
proposed techniques to other application domains.

8 Conclusion

We present Gandiva, a cluster scheduling framework for
deep learning, which provides a set of efficient, low-level
system primitives such as time-slicing, migration, intra-
job elasticity, and dynamic priority. Using these primi-
tives, Gandiva can effectively support neural model ex-
ploration in a multi-job, finding accurate neural mod-
els up to an order of magnitude faster than using tra-
ditional schedulers in a realistic shared cluster environ-
ment. Gandiva provides an efficient implementation of
the proposed mechanisms by exploiting the intra-job pre-
dictability of DLT: our system prototype demonstrates
that job suspend/resume and migration can be achieved
under a second, even for cross-server migration for pop-
ular deep learning toolkits such as Tensorflow and Py-
Torch. Combined with an introspective scheduling pol-
icy, Gandiva improves overall cluster utilization by 26%.
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