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Abstract

With widespread advances in machine learning, a number of
large enterprises are beginning to incorporate machine learn-
ing models across a number of products. These models are
typically trained on shared, multi-tenant GPU clusters. Similar
to existing cluster computing workloads, scheduling frame-
works aim to provide features like high efficiency, resource
isolation, fair sharing across users, etc. However Deep Neu-
ral Network (DNN) based workloads, predominantly trained
on GPUs, differ in two significant ways from traditional big
data analytics workloads. First, from a cluster utilization per-
spective, GPUs represent a monolithic resource that cannot
be shared at a fine granularity across users. Second, from
a workload perspective, deep learning frameworks require
gang scheduling reducing the flexibility of scheduling and
making the jobs themselves inelastic to failures at runtime. In
this paper we present a detailed workload characterization of
a two-month long trace from a multi-tenant GPU cluster in
Microsoft. By correlating scheduler logs with logs from indi-
vidual jobs, we study three distinct issues that affect cluster
utilization for DNN training workloads on multi-tenant clus-
ters: (1) the effect of gang scheduling and locality constraints
on queuing, (2) the effect of locality on GPU utilization, and
(3) failures during training. Based on our experience running
a large-scale operation, we provide design guidelines pertain-
ing to next-generation cluster schedulers for DNN training
workloads.

1 Introduction

Recent advances in machine learning have led to tremendous
improvements in tasks ranging from object detection [31] to
speech recognition [34] and language translation [47]. As a
result a number of enterprises are now incorporating machine
learning models in various products [1,4]. To facilitate model
training, enterprises typically setup a large cluster shared by
users belonging to a number of different production groups.
Similar to clusters setup for big data analysis [12, 50], using

shared clusters can facilitate better utilization and reduce
development overheads.

However deep learning workloads pose a number of new
requirements or constraints on cluster management systems.
Since machine learning algorithms are floating point com-
putation intensive, these workloads require hardware accel-
erators like GPUs. However, unlike CPUs, accelerators do
not typically have proper hardware support for fine-grained
sharing [21]. While there are software mechanisms to enable
sharing, they often have high overhead making it challenging
to share resources across jobs [40, 53]. Furthermore, training
on large datasets often requires the use of multiple GPUs [20]
and machine learning frameworks typically require that tasks
on each GPU be scheduled at the same time, i.e., gang sched-
uled [18]. This increases the risk of resource fragmentation
and low utilization in shared clusters. Finally, multi-GPU
training also implies synchronization of model parameters
across GPUs and hence it is important to achieve better local-

ity while scheduling to allow for the use of faster interconnects
for both intra- and inter-machine communication.

Despite their growing popularity, to the best of our knowl-
edge, there has been no systematic study of multi-tenant clus-
ters used to train machine learning models. In this paper, we
present the design of a large, multi-tenant GPU-based cluster
used for training deep learning models in production. We
describe Philly, a service in Microsoft for training machine
learning models that performs resource scheduling and cluster
management for jobs running on the cluster. Using data from
this system, we then present a detailed workload characteriza-
tion and study how factors such as gang scheduling, locality
requirements and failures affect cluster utilization.

Our analysis spans across two months and uses around
100,000 jobs run by hundreds of users. We combine logs
from Apache YARN [48], our cluster scheduler, utilization
information from Ganglia [33], and logs from each job to
perform a systematic analysis of cluster utilization.

We study two main aspects of how locality-aware schedul-
ing affects performance and utilization. First, we study how
waiting for locality constraints can influence queuing delays
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before training jobs are run. Training jobs need to be gang
scheduled, as hyper-parameters are picked for specific GPU
count configurations. Given that training jobs take a long time
to run, and greater locality improves performance due to the
availability of faster interconnects for parallel training [52],
the scheduler in Philly waits for appropriate availability of
GPUs before beginning to run the training job. Our study
shows that as one might expect, relaxing locality constraints
reduces queueing delays, especially for jobs that use many
GPUs – our emphasis here is not on presenting this as a new
insight, but instead on highlighting this using real-world data
from production clusters.

Next, we study how locality-aware scheduling can affect
the GPU utilization for distributed training jobs. Even though
most GPUs within a cluster are allocated to users, thus sug-

gesting high cluster utilization, this metric alone is misleading.
We show that the hardware utilization of GPUs in use is only
around 52% on average. We investigate two reasons which
contribute to low GPU utilization: (1) the distribution of in-

dividual jobs across servers, ignoring locality constraints, in-
creases synchronization overheads, and (2) the colocation or
packing of different jobs on same server leads to interference
due to contention for shared resources.

Finally, we look at why jobs might fail to complete success-
fully and offer a detailed characterization of the causes for
such failures in our clusters. Around 30% of jobs are killed or
finish unsuccessfully due to failures. Failures are caused by
errors across the stack, with programming errors dominating
failures and occurring early in the training process; failures
due to cluster components like HDFS tend to occur much
later in the training lifecycle.

Based on the lessons learnt from data analysis and our ex-
periences running a large-scale operation over the years, we
provide three guidelines to improve the next generation of
cluster schedulers for DNN workloads. First, because the lack
of locality impacts both utilization and job runtime, and be-
cause DNN training jobs are long running, schedulers should
trade queueing delay for adhering to locality constraints. Sec-
ond, different jobs that share a single server may interfere
with each other and thus adversely affect their training time.
Schedulers should thus aim to isolate the jobs on dedicated
servers while implementing techniques like migration for de-
fragmentation, to support the locality constraints of jobs that
need more GPUs. Third, many failures ought to be caught
early, well before they are scheduled on a larger shared clus-
ter. This can be achieved by scheduling each incoming job
on a small dedicated pool of servers or even using a single
GPU should be able to catch simple programming and config-
uration errors from multi-GPU jobs. Furthermore, an online
analysis of failures at runtime can let schedulers adapt their
retry policies thus avoiding wasteful re-execution.

Philly’s design does not stand in isolation. There are many
open platforms for DNN job scheduling that use designs simi-
lar to Philly, e.g., OpenPAI [36] and Submarine [44]. We hope

that insights and data from our study, and the accompanying
traces, inform the burgeoning work of scheduling research for
machine learning workloads.

2 Philly: System Overview

In this section we provide an overview of the design and ar-
chitecture of Philly. First, we describe the workloads that are
supported in our system and then describe the hardware char-
acteristics of the clusters. Next, we describe the lifecycle of a
job. Finally, we explain our data collection pipeline and high-
light the data we use to perform our analysis in subsequent
sections. The authors would like to note that Philly has been
developed over the past few years by a team of developers in
our company and has gone through multiple generations of
design.

2.1 Workloads

Philly is designed to support workloads that perform super-
vised machine learning where jobs learn a model given train-
ing data and the corresponding labels. This includes training
jobs from production groups developing products that use
models for image classification, speech recognition, etc. The
system supports jobs written using any machine learning
framework like TensorFlow [5], CNTK [42], Caffe [29], and
PyTorch [39]. Jobs are based on recently proposed learn-
ing architectures like convolutional neural networks [31],
LSTMs [45] and RNNs [35].

All jobs, irrespective of the framework or model being used,
rely on iterative optimization methods [19] like stochastic
gradient descent (SGD). In each iteration, the gradient compu-
tation is performed by translating the model components into
code that can be executed on accelerators like GPUs. The gra-
dient values are then aggregated to compute a model update
and these iterations are repeated until convergence. Training
a model could require thousands to millions of iterations [46],
and result in multiple passes or epochs over the entire dataset.

To scale training across larger datasets, a number of jobs
use distributed training across machines. Distributed training
typically uses data parallelism where each worker loads a
complete copy of the model into its own memory. In each
iteration, every worker performs training using a subset of the
input data, and at the end of the iteration all workers exchange
gradients to synchronize model updates. This synchronization
phase is performed using either parameter servers [32] or high
performance libraries for collective communication (such as
MPI, NCCL, etc).

2.2 Cluster Architecture

Our system is deployed on large GPU clusters shared across
many groups in the company. Our clusters has grown signif-
icantly over time, both in terms of the number of machines
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Figure 1: The lifecycle of deep learning jobs in Philly.

(5⇥ increase in one year) as well as the number of GPUs per
machine (2-GPU to 8-GPU servers).

Our clusters have high-speed network connectivity among
servers and GPUs in the cluster. This is to speed up dis-
tributed training where workers need to exchange model
updates promptly for every iteration. There is a hierarchy
of network links available in our cluster for communication
across GPUs. For example, machines within the same rack
(RDMA domain) are connected via 100-Gbps RDMA (Infini-
Band) network, while cross-rack traffic goes through Ethernet.
To improve communication performance, workers in a dis-
tributed training job must either be colocated on the same
machine or preferably communicate over a higher-speed net-
work such as say InfiniBand. Thus, our framework considers
both GPUs and network connectivity for scheduling.

Similar to existing big data analytics clusters, our clusters
use HDFS [43] as the distributed storage system and our re-
source manager is based off Apache YARN [48]. Input data
for the machine learning jobs is stored in HDFS and read by
jobs during training. Users provide a Docker container with
their training code and its dependencies. Each training job
requests 1 or more GPUs which can be allocated across mul-
tiple machines. Philly instantiates one container per machine
allocated to the job when it is scheduled for execution.

2.3 Job Scheduling and Execution Workflow

Figure 1 shows the lifecycle of a deep learning job in Philly
and the various stages of execution that it goes through.
Incoming jobs and queueing 1 . As a part of job submis-
sion, users specify the number of GPUs required. To facilitate
host resource allocation, we perform an allocation of CPU
cores and memory capacity proportional to the requested
GPU count. Once a job has been received by the scheduler
it is queued while the necessary GPUs are allocated. To sup-
port multiple production groups we create a virtual cluster for
each group and associate a resource share or quota in terms
of number of GPUs to each virtual cluster. Each virtual cluster
has a separate allocation queue in Apache YARN and we use
the Fair Scheduler to manage these queues [2]. Our scheduler
not only respects the configured resource shares but also allo-
cates unused GPUs to a queue which has additional demand.
Jobs can be preempted based on fair share of resources among

virtual clusters. Our scheduler starts preemption only when a
majority (90%) of total GPUs are being used.

For distributed learning, deep learning frameworks require
all the GPUs to be available at the same time [22]. Thus
the scheduler needs to perform gang scheduling while be-
ing locality-aware, i.e., pack a job’s GPUs onto the smallest
number of servers and within an RDMA domain. Locality
awareness improves training time by bringing down the time
needed for parameter synchronization [22,52] due to the avail-
ability of: (i) fast intra-server interconnects (such as PCIe and
NVLink), and (ii) for jobs that do not fit on a single server,
high-bandwidth links available within an RDMA domain.
We implement these goals by acquiring resources for a job
as GPUs become available and waiting for a pre-specified
timeout (2–3 minutes in our setup) to acquire all the neces-
sary GPUs with the locality constraints. To facilitate locality-
aware GPU scheduling, our job scheduler keeps track of all
idle GPUs in the cluster and ranks the corresponding racks
and servers. Specifically, racks are ranked by increasing or-
der of allocation or occupancy, and the machines in a rack
are ordered the same way. This allows the scheduler to first
consider racks and then servers within those racks that have
most GPUs available.

If the request is not fulfilled by the timeout, any partially
acquired resources are relinquished and we retry scheduling
after a back-off (2 minutes in our setup). To avoid starva-
tion, the locality constraints are relaxed after a scheduling
request has been retried a fixed number of times. We analyze
corresponding queuing delays in Section 3.1.
Job placement and utilization 2 . While the scheduler tries
to maximize locality for distributed jobs as described before,
at the same time the scheduler also aims to avoid fragmen-
tation of resources from smaller jobs (e.g., 1-GPU jobs) by
packing them into a fewer servers. However colocating differ-
ent jobs on the same server could lead to lower GPU utiliza-
tion due to interference in shared system resources such as
PCIe bus [52]. In order to better understand this trade-off we
study the effects of colocation vs. distribution and measure
how that affects utilization.

Once the job is scheduled to run, its GPUs are not shared

with other jobs. This is because model training can be compu-
tation intensive and we need consistent performance among
workers of the job without having stragglers. However, ded-
icated GPUs may be underutilized for many reasons, e.g.,
inefficiencies in the code generated by the machine learn-
ing frameworks or programs blocking on I/O when reading
data from storage. GPU underutilization also comes from dis-
tributed training where computation may block during model
synchronization among the workers. We analyze the effects
of job placement and GPU utilization in Section 3.2.

Table 1 qualitatively compares Philly with the state-of-the-
art DNN cluster schedulers, showing both similarities and
differences exist. Nonetheless, locality and colocation are the
common issue for all contemporary clusters, and that insights
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Table 1: Comparison of DNN cluster schedulers. JCT means job completion time.
Philly Gandiva [52] Optimus [38] Tiresias [22]

Objective Consolidation Consolidation Average JCT Average JCT
Algorithm Locality-based Time-sharing SRTF Gittins Index & LAS
Input Arrival time N/A Remaining time Attained service
Preemption Model checkpoint Context switch Model checkpoint Model checkpoint

obtained in this study are widely valuable.
Training progress and completion 3 . Jobs can finish with
one of three statuses: passed, killed, or unsuccessful. Passed
indicates that the job completed successfully, while killed
indicates that the job was terminated by the user.

Among successful jobs, every job runs a number of itera-
tions to improve the model incrementally, and the number of
iterations to run is typically a static parameter set by the user.
In cases where a job is configured with too many iterations, it
is possible to deliver the same (or similar) quality of trained
model with fewer iterations. Failed jobs in our system are
retried a fixed number of times. This is useful for overcoming
non-deterministic failures and if the job does not succeed after
retries then it is marked as unsuccessful. As failures also con-
tribute to ineffective cluster utilization, we perform a detailed
study to understand the reasons behind failures in Section 4.2.

While our focus in this section is specifically about the
lifecycle and execution flow in Philly, there are many open
platforms for ML job scheduling that use a similar design.
Platforms like OpenPAI [36] and Submarine [44] also use
a centralized scheduler with support for running machine
learning frameworks as Docker containers. While the details
of the scheduling algorithm vary across systems, a number of
aspects we study in this paper are independent of the choice of
scheduler: e.g., failures due to programming errors and bugs
in popular frameworks, effect of distributed training across
machines, etc. Thus, we believe that lessons from Philly are
generally applicable to other clusters as well.

2.4 Data Collection and Analysis

The cluster under study consists of hundreds of machines
accounting for thousands of GPUs of the same model. The
cluster has 2 server SKUs – one with 2 GPUs per server and
another with 8 GPUs per server; RDMA domains are homo-
geneous with respect to server SKUs. To get a comprehensive
understanding of the characteristics of our system and work-
loads, we developed a data collection and analysis pipeline
and collect logs over a 75-day period from Oct. 2017 to Dec.
2017. Our logs contain a total of 96260 jobs over 14 virtual
clusters.

The analysis pipeline combines three main log sources in
our system as follows. (1) We collect the YARN scheduler
logs to obtain job arrival time, number of GPUs requested,
GPU allocation status, and job finish status. (2) We collect
stdout and stderr logs from the machine learning frameworks

Figure 2: CDF of job run times for 1 GPU, 2-4 GPU, 5-8
GPU, and >8 GPU jobs.

that execute scheduled jobs. (3) We collect logs from Gan-
glia monitoring system that reports per-minute statistics on
hardware usage on every server, including CPU, memory, net-
work, GPU utilizations. Combined with GPU allocation status
in YARN scheduler logs, we can track how a scheduled job
utilizes cluster hardware resources.

Our collected data contains jobs from a wide spectrum in
terms of their run times and sizes, and consequently cluster
resources demands. Jobs run from minutes to days or even
weeks, as shown in Figure 2. In contrast, in big data analytics,
job execution times range from only tens of milliseconds to a
few hours [11,37,41]. Furthermore, we see that our workload
has significant skewness in run time, with 0.5% jobs taking
more than a week to be finished. Figure 2 also shows how
jobs of different sizes vary in terms of execution times. We
see that jobs with more GPUs tend to run longer. This results
in most of the cluster resources demands coming from the
larger jobs, and resource availability status changing relatively
slowly over time.

3 Impact of Locality Awareness

Our scheduler trades off locality for lower waiting. Thus place-
ment choices made by the scheduler affects the efficiency of
DNN training in two parts: queueing delay (before job ex-
ecution) and hardware utilization of in-use GPUs (after job
execution). The effect of locality constraints on queuing de-
lays has been extensively explored in large-scale resource
allocation [7, 11, 26, 54]. Machine learning workloads intro-
duce similar constraints driven by gang scheduling and the
requirement for using fast interconnects. In Section 3.1, we an-

950    2019 USENIX Annual Technical Conference USENIX Association



(a) VC1 (b) VC2 (c) VC3 (d) VC4 (e) VC5

Figure 3: CDF of scheduler queueing delay for five of the largest virtual clusters in our deployment. Note that VC4 contains no
jobs with >8 GPU.

Figure 4: For a given GPU count, relaxing locality constraints
reduces queueing delays (VC2).

alyze queueing delays in the context of DNN training cluster
using real-world data in detail. Next, we study utilization of
processing cycles for GPUs allocated to training jobs in Sec-
tion 3.2. In particular, while prior work discusses efficiency
of distributed training for a certain job size or a configured
placement [22, 52], we perform an analysis on the aggregated
efficiency for a range of job sizes for the first time.

3.1 Queueing Delays

We first consider overall queueing delay observed during job
scheduling. We plot the CDF of queueing delay in Figure 3
for all jobs in five of the largest virtual clusters (VCs). Jobs
that need more than 4 GPUs tend to have a slightly longer
tail in the distribution of queueing delays compared to their 1
GPU and 2-4 GPU counterparts. For example for VC2, 25%
of jobs using >4 GPUs, which include both 5-8 GPU and >8
GPU, experience a queueing delay of at least 10 minutes; in
comparison, only 10% of 1 GPU jobs experience a queueing
delay of at least 10 minutes.

But overall, queuing delays for jobs, irrespective of their
GPU demand, are not markedly distinct. This is partially a
consequence of our scheduling policy that chooses to relax
locality constraints in order to start a job without incurring
a very long queueing delay penalty. To highlight the rela-
tion between locality constraints and queueing delays, we
next consider jobs with 5-8 GPU and >8 GPU. We correlate
scheduler waiting times with number of servers on which the

Delay 2-4 GPU 5-8 GPU >8 GPU
Fair-share 5168 (40.6%) 3793 (25.8%) 66 (2.1%)

Fragmentation 7567 (59.4%) 10928 (74.2%) 3117 (97.9%)

Table 2: Frequencies of two types of queueing delay.

jobs are placed, and show the results in Figure 4. As expected,
most of jobs with 5-8 GPU are scheduled with high local-
ity, i.e., placed on one or two servers. On the other hand, we
find that jobs with >8 GPU are spread across a wider range
from 2 to 16 servers. Clearly, when jobs end up running on 16
servers, they start execution much sooner than running on 2 or
4 servers. This confirms how our scheduler works in practice
to trade-off locality for lower scheduling delay.

While effective, we find that this decision affects the GPU
utilization as discussed in Section 3.2. We next look at more
details on the queuing delay characteristics and break down
the delay by different causes.

3.1.1 Impact of Locality-Driven Scheduling

Queuing delay can be caused by two primary factors: fairness
(which is common in conventional data analytics clusters),
and locality requirement and resource fragmentation (which
is more prevalent in deep learning clusters). We call queueing
caused by the first factor as fair-share delay, as it happens
when the virtual cluster uses up its assigned quota (i.e., num-
ber of GPUs). However, it is possible that a job arrives within
the quota but fails to be scheduled, mainly because resource
fragmentation makes it hard to find enough GPUs with high
locality. We call this queuing delay as fragmentation delay.
In practice, we find that resource fragmentation is very com-
mon. For example, we observe that (i) when two thirds of
the total GPUs are being used, the fraction of servers that are
completely empty is less than 4.5% and that (ii) these servers
are spread across RDMA domains.

We next see how frequently fair-share delay and fragmenta-
tion delay occur for different job sizes in our workloads. Since
some jobs are quickly terminated, we only consider jobs that
run for at least one minute. Further, since fragmentation in-
fluences distributed training jobs only, we consider jobs that
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(a) Passed (b) Killed (c) Unsuccessful

Figure 5: CDF of per-minute GPU utilization for passed, killed, unsuccessful jobs in different sizes.

use 2 or more GPUs. Table 2 shows the frequencies for the
two types of delay. For jobs with 5-8 GPU, fragmentation de-
lay is responsible for 74.2% of occurrences, and it dominates
for larger jobs. In contrast, for smaller jobs, we see that the
two causes are more balanced. Further, we also observe that
across all jobs fragmentation delay is responsible for around
80% of the delay in terms of waiting time. This is because
fair-share delays are easy to mitigate with preemption, but
fragmentation delays are much harder to overcome in our
current design.

Finally, we note that the queuing delay fractions vary across
virtual clusters. Among the five largest virtual clusters, VC5
often over-subscribes its quota and thus the proportion of
fair-share delay is overall higher at 37%.

Does out-of-order scheduling exacerbate job queueing?

Given the resource fragmentation and the fact that the YARN
scheduler is work-conserving, larger jobs could be addition-
ally negatively affected by out-of-order scheduling. To see
how, consider a job that requires 24 GPUs spread across three
machines. While this job is waiting for such configuration, if
a smaller job requests 2 GPUs, it is scheduled on machines
where two GPUs become available. This could cause fur-
ther fragmentation and lead to the 24-GPU job needing to
retry after a backoff. In our workload, out-of-order scheduling
is quite common, with 38.1% of scheduling decisions, and
occurs 100% for jobs with 5-8 GPU or >8 GPU. However,
we find that most out-of-order scheduling decisions do not
greatly affect the waiting time for resource-intensive jobs. For
example, for out-of-order scheduling occurrences of jobs with
5-8 GPU or >8 GPU, as much as 85.0% corresponds to cases
where idle GPUs are effectively utilized without prolonging
the scheduling time of those waiting jobs.

In summary, our analysis shows why it makes sense to relax
locality over time to mitigate queuing delays for distributed
training. We also find that in addition to fair-share queuing
delay, the need for gang scheduling and locality introduces
fragmentation delay for machine learning jobs.

Job size Passed Killed Unsuccessful All
1 GPU 53.51 37.02 62.82 52.38
4 GPU 51.13 34.39 50.95 45.18
8 GPU 51.09 60.63 64.34 58.99
16 GPU 44.88 36.98 39.02 40.39

All 52.43 42.98 60.43 52.32

Table 3: Mean GPU utilization for different job sizes.

3.2 GPU utilization

GPUs are the most expensive resources in our cluster and this
makes their efficiency an important factor in assessing the
cost-effectiveness across the entire cluster. For each individual
GPU, Ganglia [33] reports aggregate performance counters
every minute, including utilization of processing cycles and
memory, temperature, power usage, etc [3]. We next present
how efficiently training jobs use processing cycles in their
(exclusively) allocated GPUs. Note that our current generation
of GPUs only report coarse-grained utilization for processing
cycles that can only be used to detect if any of the streaming
multiprocessors (SMs) are being utilized [3]. They do not
report what fraction of the SMs are being actually used within
a single GPU. Therefore, our analysis presents an “upper
bound” of actual effective SM utilization.

Overall, deep learning training jobs underutilize GPU pro-
cessing cycles regardless of their job sizes. Figure 5 shows
CDFs of per-minute GPU utilization of passed, killed, and
unsuccessful jobs for different sizes. Table 3 reports averages
for each job size, including averages for different job status;
we use these job sizes as representative of small, medium and
large jobs based on the GPU request distribution in our clus-
ter. Surprisingly we find that around 47.7% of in-use GPUs’
cycles are wasted across all jobs, with jobs using 16 GPUs
exhibiting the lowest utilization at 40.39%. Moreover, across
job status in Figure 5, the median utilization for 16 GPU
jobs is 45.00%, 34.24%, 39.54% for Passed, Killed, and
Unsuccessful, respectively. These are 6.46%, 40.25%, and
42.63% lower than the 8 GPU jobs in the corresponding job
status. We study the efficiency of such jobs in the next section
in detail.
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Metric SameServer DiffServer IntraServer InterServer
GPU util. 57.7 49.6 37.5 36.5
Images/s 114.8 98.0 75.6 74.1

Table 4: Mean GPU utilization and training performance of
ResNet-50 over different locality/colocation configurations.

3.2.1 Impact of Distributed Learning

Given that the 8 GPUs mounted in each server can commu-
nicate more efficiently without using the network, our job
scheduling strategy is to favor intra-server locality when as-
signing each job to available GPUs. At the same time, the
scheduler attempts to pack small jobs into fewer servers to
avoid fragmentation. This leads to job colocation on the same
server and consequently could lead to interference in shared
system resources (e.g., RDMA and PCIe) [52]. This creates
an interesting utilization spectrum for multi-GPU jobs. In par-
ticular, jobs using more than 8 GPUs must distribute training
instances across multiple servers and may be dynamically
colocated with other jobs. This scenario also involves com-
munication overheads since each server has to periodically
wait for model aggregation to happen over the network.

To confirm that such distribution and colocation factors in-
deed relate to the efficiency of GPUs in use, we first character-
ize utilization of processing cycles for various job placement
scenarios using a popular image recognition model, ResNet-
50 [23]. Specifically we train ResNet-50 with 2 GPUs using
TensorFlow and perform offline experiments with placements
that exercise shared resources differently. Then using our
telemetry data, we attempt to infer correlations between those
factors and the observed efficiency in our cluster.
Analysis using ResNet-50. Table 4 shows the impact of
distribution only, by comparing a ResNet-50 job placed in a
single server (SameServer) with the job placed in two servers
connected with RDMA network (DiffServer). Each server
has four NVIDIA Tesla P100 GPUs attached to a CPU socket.
The table reports GPU utilization when processing a batch
size of 32 images during training. First we observe that the
training does not fully utilize GPUs even for single machine
execution. In particular, SameServer achieves utilization of
57.7% for GPUs in use. It increases to 71.1% for twice the
batch size but only increases marginally for larger batches.
Also the table shows that using distributed training achieves
lower utilization of 49.6% in DiffServer. This shows that
even for 2-GPU jobs, there is a cost to not achieving locality.

Given a distributed training setup, contention for shared
resources like RDMA and PCIe further lowers the efficiency
of utilized GPUs. To show this we set DiffServer as our
baseline and measure changes in the efficiency while popu-
lating additional ResNet-50 jobs in the same servers. First,
we measure GPU utilization when the colocated jobs do not
use RDMA network at all: we place two SameServer jobs,
one on each server in the same CPU socket as the job under

Figure 6: GPU utilization when running 8 and 16 GPU jobs
on dedicated servers.

study. Thus, these jobs interfere with the job under study in
the use of PCIe buses while reading training inputs, aggre-
gating model updates, and so on. The observed efficiency
is shown as IntraServer in Table 4, and we see that hav-
ing such intra-server interference lowers the utilization by as
much as 12.1%. We also study if such interference matters
for the RDMA network in InterServer. For this setup we
use two DiffServer jobs instead of two SameServer jobs as
background traffic, so that all the jobs are distributed across
two servers and share the RDMA network. In this case, we
see a 13.1% decrease in utilization compared to the baseline.

Our experimental study reveals that efficiency of allocated
GPUs varies according to locality and colocation scenarios
that could occur in the cluster. Further, any placement that
causes lowered GPU utilization also results in slowdown in
training performance (i.e., images processed per second) as
shown in Table 4. Next, we analyze utilization for our aggre-
gate workload. We note that unlike the controlled experiment,
the type of model trained and the batch sizes used vary across
jobs in our aggregate workload making it harder to establish
a baseline utilization without distribution or inference.

Distributed training with dedicated servers. First, to study
the effects of distribution, we restrict our study to look at 8
GPU and 16 GPU jobs that are packed on one or two servers.
In this case, the 8 GPU jobs uses all 8 GPUs in a single server
while the 16 GPU jobs uses all the GPUs in two servers.
The network over which the servers for these jobs are con-
nected to each other is shared. Figure 6 shows the results of
our comparison. Compared to the 8 GPU jobs, we see that
16 GPU jobs, which have the additional model aggregation
step in distributed mode, have significantly lower utilization.
Specifically, for 8 GPU jobs, GPU cycles are utilized 56.9%
of time on average while this is only 34.3% for 16 GPU jobs.
Furthermore, the median is 73.12% for 8 GPU jobs, which is
1.67x the median in the 16 GPU case.

Distributed training with shared servers. When locality
constraints are relaxed, a job may have to be distributed over
many servers while sharing them with other jobs. Distributing
a job over many shared servers can further lower utilization
of GPUs. This drop in utilization occurs not only due to a
higher network overhead but also because of interference from
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Figure 7: Host resource utilization.

Degree Mean 50%ile 90%ile 95%ile
2 servers 43.66 43.69 91.77 97.06
4 servers 40.94 39.85 83.28 91.97
8 servers 28.56 25.71 65.68 78.85

Table 5: GPU utilization for 16-GPU jobs that are spread over
2, 4, and 8 servers.

unrelated but co-located jobs. To study this, we see how the
GPU utilization of 16-GPU jobs varies as as we move from
dedicated GPUs to a larger number of shared servers. Table 5
shows the average and percentiles for GPU utilization across
the different allocation scenarios.

When running on 2 8-GPU servers, a 16-GPU job has
dedicated servers. When running on 4 servers, the 16-GPU
job may occupy 4 GPUs on each server, and will be colocated
with other jobs on those servers. We find that the degree of
interference is larger if the job is distributed on more servers.
Table 5 shows that in addition to the inefficiency caused by
distribution (Figure 6) there is additional underutilization
caused by colocation. We see that for 16-GPU jobs distributed
across 8 servers, the average utilization is as low as 28.26%
and more than 90% of jobs have less than 66% utilization.

Among host resources, our scheduler dedicates CPU and
memory along with GPU to each job. In deep learning clusters,
these host resources are used for many useful tasks includ-
ing caching training inputs, model aggregation, and periodic
model validation and progress report. By default, we allo-
cate CPU and memory capacity proportional to the number
of requested GPUs. Figure 7 shows CDFs of utilization of
these host resources observed in our servers. In general, many
servers underutilize CPU cycles yet highly utilize memory.
This indicates that a useful feature in the scheduler would be
to observe if a particular job requires disproportionate amount
of host memory and isolate memory used by jobs colocated
on the same server.

In summary, our data analysis shows how GPUs are un-
derutilized in shared clusters. We presented correlations of
how distribution and interference affect utilization and vali-
dated this using a controlled experiment to break down the
importance of locality and interference. We discuss some
implications for scheduler design in Section 5.

Status Count(%) GPU times used (%)
Passed 66696 (69.3%) 44.53%
Killed 12996 (13.5%) 37.69%

Unsuccessful 16568 (17.2%) 17.76%
Total 96260 (100.0%) 100.0%

Table 6: Distribution of jobs by their final status.

4 Training Progress and Completion

Jobs in our system finish with one of three statuses: passed,
killed or unsuccessful. Similar to iterative online computa-
tions [6, 16], our machine learning job utilizes cluster re-
sources to improve the model over time. However as opposed
to prior study on big data traces [30], we see a significant frac-
tion of jobs (30.7% as shown in Table 6) are either terminated
unsuccessfully or killed by users. They constitute around 55%
of the total GPU time used during our trace collection period.
Thus it is important to understand the reason behind these
failures as fewer unsuccessful jobs would mean that more of
the cluster resources can be used for successful jobs.

4.1 Effectiveness of Training Iterations

Most deep learning jobs optimize a non-convex loss function
and the optimization algorithms do not necessarily guarantee
that the loss always decreases with more training. Thus, sim-
ilar to [22], users in our system submit model training jobs
using a larger number of epochs than necessary to get the op-
timal model. To analyze the magnitude of this effect we study
how the training loss for a job varies across epochs and mea-
sure the epoch at which we achieve the best training loss. As
this information is not printed in the log by every user/frame-
work, we are only able to obtain convergence information for
around 2502 jobs.

First, Figure 8(a) shows the fractions of epochs required to
reach the lowest loss across all passed jobs. From the figure
we see that around 80% of passed jobs require all the epochs
executed to reach the lowest loss. We repeat this study for
killed jobs and see a similar pattern as shown in Figure 8(b).

However we also see that a majority of jobs improve the
loss marginally using a large fraction of epochs. In particular,
Figure 8(a) shows the fraction of epochs required to reach
within 0.1% of the lowest loss across all passed jobs. Around
75% of jobs reach within 0.1% of the lowest loss using only
40% of the epochs. Again, a similar pattern is shown for killed
jobs in Figure 8(b). While we do not present data from user
surveys, this suggests that machine learning practitioners can
early terminate jobs to save use of GPU times considerably
when the loss change is less than a particular threshold in
successive epochs. Essentially, we look into much resources
are used to improve 0.1% of convergence accuracy in terms
of the fraction of GPU times for each job. In our workload,
this accounts for 62% and 56% on average for passed jobs
and killed jobs, respectively.
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(a) Passed jobs (b) Killed jobs

Figure 8: Fraction of epochs necessary to achieve a particular
loss threshold for (a) passed jobs and (b) killed jobs.

4.2 Job Failures

We next present a detailed analysis on job failures, including
why/when/how frequently jobs fail and what their impact
is on effective cluster usage. We remind the reader that in
our cluster scheduler, a job is retried upon failure. If the job
repeatedly fails it is marked as unsuccessful as further retries
are deemed no longer effective. Figure 9 presents a high-level
summary of job retries/failures and shows that jobs using
more than 4 GPUs not only retry execution more often but
also finish unsuccessfully at higher rate. The reasons behind
job retries/failures are diverse, and failures occur at different
times during job execution. We thus investigate failures by
classifying them across layers of our system stack.

4.2.1 Failure Classification

Table 7 presents analysis results of failures based on two clas-
sification factors. First, failures are classified from different
sources (Column 2): the sources include (i) Infrastructure
(IF) which includes YARN, HDFS and all other framework
components, (ii) AI Engine (AE) which includes TensorFlow,
Torch, and any other platforms, and (iii) User (U) which rep-
resents programmers. Column 1 lists a number of reasons for
failures we observe from the workload.

Most failure reasons in the table are self-explanatory, and
we describe six important ones in more detail here.
(1) Incorrect inputs: Model files or input data stored in the
external HDFS storage cannot be read.

(2) Semantic error: Errors that happen due to library version
mismatch or other dependencies of the user training program
not being setup correctly.

(3) Model checkpoint error: The job is not able to success-
fully create a model checkpoint after a certain number of
epochs complete. This is usually due to either transient error
in HDFS or HDFS name node recovery.

(4) MPI runtime failure: This is usually due to either a fail-
ure of network connection to peer MPI process, or possibly

(a) Retries (b) Unsuccessful jobs

Figure 9: (a) Average number of job retries for using different
number of GPUs, and (b) subsequent unsuccessful jobs.

an internal failure of the MPI daemon itself.

(5) Job preempted: YARN reclaims any GPU currently in
use to schedule another job.

(6) Invalid memory access: Training job dies because of vi-
olating access on memory address space e.g., using an invalid
pointer value, or having race condition while copying data.
This failure is observed in both CPU memory and memory
allocated for GPU access.
While bridging failure category and failure reason, we observe
that a failure reason can appear in multiple categories, even
in all involved categories, as shown in Column 2 of Table 7.
Building failure classifier. There exists causality among
various failure reasons. For example, traceback from crash is a
consequence of an invalid memory access. Our first mission in
building a classifier is identifying signatures of failure reasons
closer to the root cause. We capture root-cause signatures
from stdout or stderr logs of a failed job. If not explicit from
the logs, we then attempt to capture implicit ones such as
traceback from crash. In consequence, our classifier has in
total more than 230 rules to find both explicit signatures and
implicit signatures. If there is no signature for a failure, we tag
it as no signature, which constitutes 4.2% of the total failures.

4.2.2 Failure Frequency

Column 3 of Table 7 summarizes the occurrence frequency
of the classified failure reason. Trial counts the number
of failure events observed in our workload: failure reasons
are sorted by it. We further group Trial occurrences by job
ID (Job) and user ID (User) to see if failures are localized
according to the same job or user.
Failures repeat for the same job/user. Our analysis shows
that across failure reasons, failures repeat at both job level
and user level. In particular, we measure repetition factors
(i.e., Trial divided by Job or User) for top-8 failure reasons,
which cover 88.9% of the total failures. The measured repe-
tition factors are 2.3 and 38.8 on average for Job and User,
respectively, meaning a single job and a single user on average
cause 2.3 and 38.8 occurrences of failure, respectively, during
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Failure Reason
Category Num Occurrences RTF: Runtime to Failure (mins) GPU Demand

RTF⇥Demand (%)IF AE U Trial Job User 50%ile 90%ile 95%ile Total % 1 2-4 >4
CPU out of memory 3 3 12076 2803 65 13.45 17.73 33.97 6.62 11465 235 376 3982320 (8.05)
Incorrect inputs 3 3 9690 4936 208 1.87 404.83 2095.73 30.43 5844 2638 1208 11979474 (24.21)
Semantic error 3 3 2943 2049 159 2.72 376.00 1436.88 9.22 1603 494 846 8442835 (17.06)
Core dump 3 3 2912 1784 122 0.85 72.75 431.65 3.35 1936 496 480 1493632 (3.02)
Invalid mem access 3 2602 1235 108 1.03 403.50 1357.38 3.82 712 774 1116 2352994 (4.75)
Model ckpt error 3 1995 948 85 181.67 3728.93 8196.02 21.73 743 384 868 8080374 (16.33)
CUDA failure 3 1484 571 70 1.32 19.87 82.17 0.62 133 1153 198 357119 (0.72)
Syntax error 3 3 1132 883 110 0.58 5.02 12.00 0.19 780 184 168 130094 (0.26)
Traceback from crash 3 3 3 777 271 44 1.02 894.33 1394.07 2.34 356 277 144 863130 (1.74)
MPI error 3 634 166 28 1.62 3015.27 5143.98 3.70 456 54 124 613059 (1.24)
GPU out of memory 3 487 261 35 18.53 353.62 2740.28 1.08 237 70 180 1040249 (2.10)
MPI runtime failure 3 478 420 96 1389.48 13778.60 18090.88 14.63 240 141 97 7593398 (15.34)
Permission error 3 299 151 37 1.00 8.15 15.85 0.07 56 202 41 15185 (0.03)
Import error 3 3 148 148 41 0.67 4.58 10.73 0.06 108 30 10 10803 (0.02)
Job preempted 3 147 95 34 559.08 2682.85 5892.23 1.66 25 95 27 2338772 (4.73)
CUDA init failed 3 141 69 20 1.08 2.18 4.63 0.03 16 66 59 64512 (0.13)
Model diverged 3 84 30 5 1.48 44.37 76.53 0.01 78 5 1 2562 (0.01)
CUDA ver. mismatch 3 49 49 19 0.83 1.65 1.67 0.00 1 1 47 421 (0.00)
GPU ECC error 3 10 10 2 26.82 671.92 2035.02 0.03 1 5 4 23575 (0.05)
Output node error 3 3 3 1 0.85 0.95 0.95 0.00 3 0 0 2 (0.00)
Cannot load libs 3 1 1 1 0.12 0.12 0.12 0.00 1 0 0 0.12 (0.00)
No signature 1684 698 94 1.87 28.00 95.17 0.42 1235 294 155 102138.03 (0.21)

Table 7: Failures classified into failure reasons (sorted based on the number of occurrences). There are largely three categories
that cause the failures: Infrastructure (IF), AI Engine (AE), and User (U). A failure reason may be observed in multiple categories.

the data collection period. The most critical one is CPU out

of memory, where we see 185.7 as the User repetition factor.
Interestingly, profiling shows that a certain engineer issued a
number of training jobs, all of which suffer from the same out-
of-memory issue, resulting in high concentration of failures.
This motivates the need for runtime detection mechanisms
that can correlate errors from the same user even though her
jobs are independent from job management point of view.
User/programming errors lead to a lot of failures. Fail-
ures incurred by user errors, such as configuration/syntax/se-
mantic errors in program and script, are dominant. These
failures are very prevalent across our top-8 failure reasons.
As explained, CPU out of memory is the most frequent with
its failures significantly concentrated on a few users. Other
frequent failures such as incorrect inputs and semantic error

are more spread out across different users. From our profiling,
the primary factor that causes those failures is a lot of inde-
pendent components involved in a training job. For example,
by definition, incorrect inputs happens when there is a failure
in reading model or input data stored in external HDFS store.
This is due to any error ranging from the data path is not
correct, data format is inconsistent, data itself is corrupted
on HDFS etc. Often, issues in data format affect multiple
engineers in the same team (e.g., speech recognition team) as
they often share the same training data or reference model.

4.2.3 Runtime to Failure

Column 4 of Table 7 presents runtime to failure (RTF) for
each classified failure reason. To capture the summary of RTF

distribution, in addition to the average, we also present the
50th-percentile (or median) and higher percentiles such as
90th-percentile and 95th-percentile.

The runtime to failure (RTF) exhibits high variability,

with mainly short RTFs. Many failures of training jobs
happen quickly, for example within 10 mins. This is mostly
the case for failures driven by users in syntax, semantic, and
configuration errors, which we can also infer from low 50P
RTFs in the corresponding failure reasons. Note that most of
those failures are deterministic and are caught when the run-
time begins to execute the program. One of exceptions that is
noteworthy is failure corresponding to inconsistent/corrupted
input data. We can only detect this at the moment we actually
read the erroneous data and attempt to parse it. This is the
primary reason for having high 95P in incorrect inputs.

Infrastructure failures occur infrequently but have much

longer runtime to failure (RTF). This analysis focuses on
two failure reasons in infrastructure category: model check-

point error and MPI runtime failure. They represent program-
to-storage and program-to-program communication, which
are both critical for reliable distributed deep learning training.
In general, these errors are relatively infrequent compared
to other common errors, constituting only 6.2% of the total
Trials. However, our analysis shows that these errors tend to
appear after a long execution duration, and thus dominate the
time until failure detection. In particular, Table 7 shows that
when the corresponding RTFs are summed up (i.e. Total), the
two failure reasons, model checkpoint error and MPI runtime

error, occupy as much as 21.73% and 14.63%, respectively.
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4.2.4 Impact of GPUs Allocated

For jobs with the same RTF, the impact on the amount of
utilized resources is proportional to the number of allocated
GPUs. The larger the allocation, the bigger the impact.
Large jobs with programming semantic errors tend to

fail a while after execution. Column 5 of Table 7 presents
GPU demand across failure reasons. To simplify the analysis,
we select four most-dominant failure reasons each contribut-
ing around 10% or more of failures. When we correlate RTF
with GPU demand, among the four failure types, semantic

error exhibits a markedly distinct trend, with jobs that have
higher GPU demand having relatively large RTFs, as com-
pared to jobs having lower GPU demand. This results in
disproportional impact on the actual resources utilized by
failed jobs. We show this in Column 6 of Table 7.

Column 6 presents actual GPU times for failures while mul-
tiplying RTF by GPU demand. As the results show, compared
to the RTF only, the impact of semantic error increases up
to 17.06% from 9.22% while the other three types of failure
are either decreased or unchanged. This corresponds to the
fact that semantic error is relatively frequent in larger-demand
larger-RTF jobs. Looking deeper, we observe that training
program instances sometimes send, receive, and access data in
an inconsistent way during model parameters synchronization.
As a consequence, semantic error ranks the second in terms
of GPU resources used among failures in our workload.

5 Design Implications for Future Schedulers

Based on our experiences and data-driven analysis so far, in
this section we discuss guidelines pertaining to the design of
next-generation schedulers for DNN training workloads.
Prioritizing locality. One of the main results from our anal-
ysis of GPU scheduling was that lack of locality impacts both
utilization and job running time. Our current scheduler adopts
a classic approach where it waits for a limited time to see if
locality can be achieved and if not the job is scheduled with
the resources available at relaxed locality. The main reason
for this approach is to keep queuing time low as longer wait
times affect user experience.

However given that deep learning jobs run for many hours
or even days, incurring a 10% or 20% drop in efficiency could
extend the job running time by multiple hours. Thus in such
scenarios, waiting for locality for a longer time could be more
beneficial. However this requires inferring long-running jobs
and appropriately setting user expectations. An alternate strat-
egy could be to migrate a job to machines with better locality
if resources become available during the execution.
Mitigating interference. Another critical guideline for
schedulers would be to consider job placement policies to
mitigate inter-job interference. Instead of packing different

small jobs on a single server, one option would be place them

on dedicated servers, reducing sharing and thus interference
among such jobs. Such an option would increase fragmenta-
tion and will result in larger jobs having to wait for longer
if we have to prioritize for intra-job locality. Support for job
migration to defragment the cluster [52], especially applied
to smaller jobs, will mitigate interference for small jobs, and
will improve intra-job locality for large jobs.
Improving failure handling. A large number of job failures
we see come from user errors in code or configuration. This
is primarily because programming languages in use are typi-
cally not strongly typed. We have found that simple syntax
checking could prevent many errors (e.g., missing quotes or
parenthesis) and some of the more sophisticated runtime fail-
ures can be captured by running the first iteration of training.
We plan to set up a pool of cheaper VMs to pre-run jobs. Even
running multi-GPU jobs on a single GPU will catch such er-
rors before they run on larger shared clusters and thus prevent
wasted GPU cycles on them. Training failures also happen
due to erroneous data format (e.g., inconsistent columns in
samples). We plan to investigate having a well defined schema
for datasets used in machine learning, and perform a schema
check while accessing data to reduce such errors.

Another useful extension for multi-tenant GPU clusters
would be to develop a system to predictively mitigate failures
by proactively observing related failures. The main goal of
such a system would be to (i) classify error messages in real
time from logs that training jobs generate, and (ii) adapting
scheduling parameters per job (e.g., number of retries) as
well as across jobs (e.g., input data blacklisting) to reduce
failure occurrences. For example, the scheduler could stop
retrying for failure categories like incorrect data/model input
and continue retrying for network timeouts.

6 Related Work

Failure analysis of data analytics jobs in shared clusters.

Prior work has looked at designing large-scale data analyt-
ics platforms assuming that failures are common [10, 17, 50].
They focus on framework support for fault-tolerance and reli-
able job execution. In this paper, we focus instead on under-
standing job failures in deep learning specific platforms.

Kavulya et al. conducted a detailed characterization for job
failures in a production MapReduce cluster [30]. Some of
their findings include: (1) Many jobs fail within a few minutes
while the worst-case job takes up to 4.3 days for its failure to
be detected. These failures occur due to data copy errors and
are similar to HDFS-related failures that we observe taking
much longer to detect; (2) Many failures are related to either
exceptions due to array indexing errors or IO exceptions. We
again see some similarity to our work where coding errors
lead to a number of failure cases.
Scheduler and runtime for efficient machine learning

execution. SLAQ schedules concurrent machine learning
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training jobs based on quality improvement for resource us-
age, allocating cluster resources for average quality improve-
ment [56]. While this may improve the quality across jobs,
each individual job may take longer time to finish. Opti-
mus [38] leverages the convergence curve to predict job re-
maining time for dynamic resource scheduling and reduces av-
erage job completion time. It adopts an online fitting model to
derive a proper number of servers and workers for MxNet [15]
jobs in parameter server architecture. Tiresias [22] reduces
job completion times when many training jobs undergo a trial-

and-error exploration where job remaining time to complete
training cannot be estimated from the convergence curve. In
this work, we found that a large job experiences highly vary-
ing efficiency over placement spectrum (e.g., Table 5), and
that future schedulers may need to consider the trade-off be-
tween reducing queueing time and reducing job running time
more carefully over a wide range of locality choices.

We also note that an earlier technical report of our work [27]
was used to motivate new scheduling primitives in recent
work on scheduling like Gandiva [52]. More importantly, our
paper presents a systematic study of a large-scale production
cluster, covering the whole lifecycle of deep learning jobs
including queuing, execution, and failure. We hope that our
study of large clusters dedicated to deep learning workloads
will continue to motivate novel research in deep learning
platforms and schedulers for these workloads.

GPU resource management for machine learning. There
are recent efforts on GPU sharing for simpler machine learn-
ing tasks. Baymax [14] explores GPU sharing as a way to
mitigate both queuing delay and PCIe contention. Following
that, Prophet [13] proposes an analytical model to predict
performance of GPU workloads. Gandiva [52] proposes GPU
time-sharing in shared GPU clusters through checkpointing at
low GPU memory usage of training job. Future work includes
integrating these prior work to improve cluster utilization and
capacity to run more jobs.

Many training networks are memory bound, especially by
capacity. Ryu et al. analyzed memory allocation for Ima-
geNet [25], with recent VGG-16 model consuming up to
28 GB of memory [40]. Therefore, vDNN [40] proposes vir-
tualized memory manager, and SuperNeurons [51] adopts
fine-grained layer-wise memory control to schedule memory
flexibly between CPU and GPU. Our work shares some simi-
larity with prior findings (i.e., some large networks do not fit
in GPU memory) in real-world data.

Approximate data processing. Approximate data pro-
cessing allows trading off accuracy for earlier completion
times [6, 9, 16, 24, 28, 55]. In databases, online aggregation
has been studied in the context of SQL queries [16, 24, 55].
More recently, approximation has been used in batch pro-
cessing [6, 8, 49]. Machine learning training presents a fertile
ground for exploring trading off accuracy for early completion.
In this paper, for the training workloads run on our clusters,

we quantify how trading off a very small amount of accuracy
(0.1%) can result in significant savings in GPU execution
time.

7 Conclusion

In this paper we analyzed a trace of deep learning jobs run
on a large multi-tenant cluster of GPUs and studied various
factors that affect cluster utilization. Our findings indicated
the importance of locality for distributed training jobs and
also how interference from other colocated jobs could lead to
lower GPU utilization. We also performed a detailed analysis
of various failure causes and showed how errors from various
parts of the stack contribute to failures. Based on our data
analysis and experiences running a large-scale operation, we
also described guidelines that could help future research and
development of machine learning schedulers.

Finally, we have publicly released the scheduler trace con-
taining information about job arrivals, job size, placement and
runtime to the community. As far as we know, this is the only
trace that includes rich information about deep learning train-
ing jobs run in production. By making such a trace available,
we hope to spur future research in this area.
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