
Machine Learning at Facebook:
Understanding Inference at the Edge

Carole-Jean Wu, David Brooks, Kevin Chen, Douglas Chen, Sy Choudhury, Marat Dukhan,
Kim Hazelwood, Eldad Isaac, Yangqing Jia, Bill Jia, Tommer Leyvand, Hao Lu, Yang Lu, Lin Qiao,

Brandon Reagen, Joe Spisak, Fei Sun, Andrew Tulloch, Peter Vajda, Xiaodong Wang,
Yanghan Wang, Bram Wasti, Yiming Wu, Ran Xian, Sungjoo Yoo∗, Peizhao Zhang

Facebook, Inc.

ABSTRACT
At Facebook, machine learning provides a wide range of
capabilities that drive many aspects of user experience
including ranking posts, content understanding, object
detection and tracking for augmented and virtual real-
ity, speech and text translations. While machine learn-
ing models are currently trained on customized data-
center infrastructure, Facebook is working to bring ma-
chine learning inference to the edge. By doing so, user
experience is improved with reduced latency (inference
time) and becomes less dependent on network connec-
tivity. Furthermore, this also enables many more appli-
cations of deep learning with important features only
made available at the edge. This paper takes a data-
driven approach to present the opportunities and de-
sign challenges faced by Facebook in order to enable
machine learning inference locally on smartphones and
other edge platforms.

1. INTRODUCTION
Machine Learning (ML) is used by most Facebook

services. Ranking posts for News Feed, content under-
standing, object detection and tracking for augmented
and virtual reality (VR) platforms, speech recognition,
and translations all use ML. These services run both in
datacenters and on edge devices. All varieties of ma-
chine learning models are being used in the datacen-
ter, from RNNs to decision trees and logistic regres-
sion [1]. While all of training runs exclusively in the
datacenter, there is an increasing push to transition in-
ference execution, especially deep learning, to the edge.
Facebook makes over 90% of its advertising revenue
from mobile [2] and has focused on providing its over
2 billion monthly active users the best possible experi-
ence [3]. In addition to minimizing users network band-
width and improving response time, executing inference
on the edge makes certain deep learning services possi-
ble, for example, Instagram features that involve real-
∗Sungjoo Yoo is a Professor at Seoul National University. A
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Figure 1: The distribution of peak performance
of smartphone SoCs running Facebook mobile
app exhibit a wide spread. The data samples
represents over 85% of the entire market share
and are sorted by the corresponding SoC release
year. Peak performance can vary by over an
order of magnitude, increasing the design chal-
lenge of performance optimization.

time machine learning at the image capture time. En-
abling edge inference requires overcoming many unique
technical challenges stemming from the diversity of mo-
bile hardware and software not found in the controlled
datacenter environment.

While inference is generally less computationally de-
manding than training, the compute capabilities of edge
systems (both hardware and software) running the Face-
book app limit what is possible. Figure 1 shows the
peak performance of edge devices, representing over 85%
of the entire market share, over the corresponding re-
lease year of a System on a Chip (SoC). The figure shows
a wide variation in performance that must be considered
to enable efficient, real-time inference across all edge
devices. Trends emerge over time to tell another story:
while the average theoretical performance of SoCs is im-
proving over time, there is a consistent, widespread peak
performance regardless the release year of the SoCs. To
provide the best user experience despite limited perfor-
mance scaling Facebook has been proactive in develop-
ing tools and optimizations to enable all models/services



to execute across the observed performance spectrum.
Optimizations include techniques for model architec-

ture search, weight compression, quantization, algorith-
mic complexity reduction, and microarchitecture spe-
cific performance tuning. These optimizations enable
edge inference to run on mobile CPUs. Only a small
fraction of inference currently run on mobile GPUs.
This is no small feat considering the computational com-
plexity of state-of-the-art deep learning models and that
most CPUs are relatively low-performance. In our dataset,
an overwhelming majority of mobile CPUs use in-order
ARM Cortex-A53 and Cortex-A7 cores. While a great
deal of academic work has focused on demonstrating
the potential of co-processors (GPUs/DSPs) and accel-
erators, as we will show, in the field the potential per-
formance benefits of mobile GPUs vs. CPUs for the
Android market are not great. Considering theoretical
peak FLOP performance, less than 20% of mobile SoCs
have a GPU 3× more powerful than CPUs and, on a
median mobile device, GPUs are only as powerful as
CPUs. Inference sees limited co-processor use today as
a result of close performance between CPU clusters and
GPUs as well as an immature programming environ-
ment.

In this paper we detail how Facebook runs inference
on the edge. We begin by reviewing the hardware and
software system stack the Facebook app is run on (Sec-
tion 2). This highlights the degree of device diversity
and divergence of software, presenting many design and
optimization challenges. Next, we review the machine
learning frameworks and tool sets including PyTorch 1.0
and the execution flow for mobile inference (Section 3).
To understand the optimization techniques Facebook
has implemented to improve the performance and ef-
ficiency of inference we present two case studies. For
horizontally integrated devices (e.g., smartphones) we
show how general optimizations including quantization
and compression can be used across all devices (Sec-
tion 4). Vertically integrated solutions enable control
over the hardware-software stack. In the case of the
Oculus virtual reality (VR) platform, we show how in-
ference can easily be ported to run on DSPs to improve
energy efficiency, execution time predictability, and per-
formance (Section 5). The degree of performance vari-
ance found in inference on the same device is presented
in Section 6–this is a problem for applications with real-
time constraints. Finally, we conclude by discussing the
ramifications of our findings and provide our take on
what it means for potential research directions in archi-
tecture and systems (Section 7).

This paper makes the following key observations:

• Nearly all mobile inference run on CPUs and most
deployed mobile CPU cores are old and low-end.
In 2018, only a fourth of smartphones implemented
CPU cores designed in 2013 or later. In a median
Android device, GPU provides only as much per-
formance as its CPU. Only 11% of the Android
smartphones have a GPU that is 3 times more per-
formant than its CPU.

• System diversity makes porting code to co-processors,
such as DSPs, challenging. We find it more effec-
tive to provide general, algorithmic level optimiza-
tions that can target all processing environments.
When we have control over the system environ-
ment (e.g., Portal [4] or Oculus [5] virtual reality
platforms) or when there is little diversity and a
mature SW stack (e.g., iPhones), performance ac-
celeration with co-processors becomes more viable.

• The main reason to switch to an accelerator/co-
processor is power-efficiency and stability in exe-
cution time. Speedup is largely a secondary effect.

• Inference performance variability in the field is much
worse than standalone benchmarking results. Vari-
ability poses a problem for user-facing applications
with real-time constraints. To study these effects,
there is a need for system-level performance mod-
eling.

Facebook expects rapid growth across the system stack.
This growth will lead to performance and energy effi-
ciency challenges, particularly for ML mobile inference.
While today we have focused on optimizing tools and
infrastructure for existing platforms we are also explor-
ing new design solutions to enable efficient deep learning
inference at the edge.

2. THE LAY OF THE LAND: A LOOK AT
SMARTPHONES FACEBOOK RUNS ON

Facebook’s neural network engine is deployed on over
one billion mobile devices. These devices are comprised
of over two thousand unique SoCs1 running in more
than ten thousand smartphones and tablets2. In this
section we present a survey of the devices that run Face-
book services to understand mobile hardware trends.

2.1 There is no standard mobile chipset to op-
timize for

Figure 2 shows the cumulative distribution function
(CDF) of the SoC market share. The data paints a clear
picture: there is no“typical”smartphone or mobile SoC.
The most commonly-used SoC accounts for less than 4%
of all mobile devices. Moreover, the distribution shows
an exceptionally long tail: there are only 30 SoCs with
more than 1% market share and their joint coverage is
only 51% of the market.

In production, smartphone hardware is extremely frag-
mented. This diversity comes from a combination of the
multiple IP blocks in a SoC which may include CPU(s),
GPU clusters, shared caches, memory controllers, image

1Some of the SoCs are different by connectivity modules.
2SoC information is widely accessible through Android
system properties and Linux kernel mechanisms, such as
/proc/cpuinfo file and sysfs filesystem. Android devel-
opers commonly use SoC information to optimize perfor-
mance. To allow developers to optimize ML-based applica-
tion performance, we developed cpuinfo library to decode
SoC specification and open sourced it at https://github.
com/pytorch/cpuinfo.

https://github.com/pytorch/cpuinfo
https://github.com/pytorch/cpuinfo
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Figure 2: There is no standard mobile SoC
to optimize for. The top 50 most common SoCs
account for only 65% of the smartphone market.

processors, a digital signal processor (DSP), and even
a specialized neural network accelerator (NPU). There
are over 25 mobile chipset vendors which each mixes and
matches its own custom-designed components with IP
blocks licensed from other companies. The fragmenta-
tion of hardware is particularly acute on Android, where
the Facebook app runs on over two thousand of differ-
ent SoCs compared to a little more than a dozen SoCs
on iOS.

2.2 Mobile CPUs show little diversity
The general availability and programmability of CPUs

make them the default option for mobile inference. Thus,
we pay close attention to the CPU microarchitecture
differences between mobile SoCs. Figure 3 shows a
breakdown of the year smartphone CPU cores were de-
signed or released. 72% of primary CPU cores being
used in mobile devices today were designed over 6 years
ago. Cortex A53 represents more than 48% of the entire
mobile processors whereas Cortex A7 represents more
than 15% of the mobile processors. When looking at
more recent CPUs, the distribution is much more di-
verse without dominating microarchitectures. The im-
plication of the dominant Cortex A7 and Cortex A53
IPs for machine learning is that most of today’s edge in-
ference runs on in-order (superscalar) mobile processors
with only one to four cores per cluster. Furthermore,
this view of the world poses a new, real challenge for
systems and computer architecture researchers – pro-
posed mobile hardware optimizations and accelerators
need to consider the long IP lifetime.

We observe a similar multi-core trend as desktop and
server chips in mobile. 99.9% of Android devices have
multiple cores and 98% have at least 4 cores. We find
distinct design strategies between Android and iOS smart-
phones – iOS devices tend to use fewer, more powerful
cores while Android devices tend to have more cores,
which are often less powerful. A similar observation was
made in 2015 [6]. To optimize a production application
for this degree of hardware diversity, we optimize for the
common denominator: the cluster of most performant
CPU cores.

About half of the SoCs have two CPU clusters: a
cluster of high-performance cores and another cluster

2005-20101.8%

2011
15.6%2012

54.7%

2013-2014

4.2%
2015+

23.6%

Figure 3: The most commonly-used mobile pro-
cessors, Cortex A53, are at least six years old. In
2018, only a fourth of smartphones implemented
CPU cores designed in 2013 or later.
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Figure 4: The theoretical peak performance dif-
ference between mobile CPUs and GPUs is nar-
row. In a median Android device, GPU provides
only as much performance as its CPU. Only 11%
of the smartphones have a GPU that is 3 times
more performant than its CPU.

of energy-efficient cores. Only a small fraction include
three clusters of cores. Cores in the different clusters
may differ in microarchitectures, frequency settings, or
cache sizes. A few SoCs even have two clusters consist-
ing of identical cores. In nearly all SoCs, cores within
the same cluster have a shared cache, but no cache
level is shared between cores in the different clusters.
The lack of a shared cache imposes a high synchroniza-
tion cost between clusters. For this reason, Facebook
apps target the high-performing cluster by, for exam-
ple, matching thread and core count for neural network
inference.

2.3 The performance difference between a mo-
bile CPU and GPU/DSP is narrow

High-performance GPUs continue to play an impor-
tant role in the success of deep learning. It may seem
natural that mobile GPUs play a similar part for edge
neural network inference. However, today nearly all
Android devices run inference on mobile CPUs due to
the performance limitations of mobile GPUs as well as
programmability and software challenges.

Figure 4 shows the peak performance ratio between
CPUs and GPUs across Android SoCs. In a median de-
vice, the GPU provides only as much theoretical GFLOPS



performance as its CPU. 23% of the SoCs have a GPU
at least twice as performant as their CPU, and only 11%
have a GPU that is 3 times as powerful than its CPU.
This performance distribution is not a historical artifact
but a consequence of the market segmentation: mid-
end SoCs typically have CPUs that are 10-20% slower
compared to their high-end counterparts. The perfor-
mance distribution corresponds to a wider gap for the
GPUs in SoCs targeted for different performance tiers—
the performance gap for mobile GPUs is two to four
times. Realizable mobile GPUs performance is further
bottlenecked by limited memory bandwidth capacities.
Unlike high-performance discrete GPUs, no dedicated
high-bandwidth memory is available on mobile. More-
over, mobile CPUs and GPUs typically share the same
memory controller, competing for the scarce memory
bandwidth.

2.4 Available co-processors: DSPs and NPUs
Compute DSPs are domain-specific co-processors well-

suited for fixed-point inference. The motivation at Face-
book to explore co-processor performance acceleration
opportunities is for the increased performance-per-watt
efficiency benefit (higher performance with lower power
consumption). However DSPs face the same challenge
GPUs do – “compute” DSPs are available in only 5% of
the Qualcomm-based SoCs the Facebook apps run on.
Most DSP do not yet implement vector instructions.
While all vendors are adding vector/compute DSPs, it
is likely to take many years before we see a large market
presence.

The regularity in the computational patterns of many
DNN workloads makes NPUs exceptionally amenable to
hardware acceleration. Many academic research projects,
startups, and companies have proposed solutions in this
space (Section 7 offers a thorough treatment). The most
notable deployed NPU is the Cambricon 1A in the Kirin
970 SoC [7] and the Neural Engine in the Apple A12
Bionic SoC [8]. While relatively few NPUs exist today,
and fewer programmable by third parties, we may be
reaching an inflection point.

2.5 Programmability is a primary roadblock
for using mobile co-processors

The major APIs used to program neural networks on
mobile GPUs are OpenCL, OpenGL ES, and Vulkan on
Android and Metal on iOS.

OpenCL was designed to enable general-purpose pro-
grams to run on programmable co-processors. Thus,
OpenCL does not provide graphics specific functional-
ity, e.g., 3D rendering. Focusing on general-purpose
computations helps: OpenCL’s API and intrinsic func-
tions as well as support for memory address space man-
agement, and efficient thread synchronization make it
easier to express computations compared to graphics-
oriented APIs like OpenGL. However while most An-
droid devices ship with OpenCL drivers, OpenCL is not
officially a part of the Android system, and they do not
go through the same conformance tests as OpenGL ES
and Vulkan. As shown in Figure 5(a), a notable portion

of Android devices ship with a broken OpenCL driver.
In the worst case, 1% of the devices crash when the
app tries to load the OpenCL library. The instability of
OpenCL’s library and driver makes it unreliable to use
at scale.

OpenGL ES has proved to be a viable alternative.
OpenGL ES is a trimmed variant of the OpenGL API
specifically for mobile and embedded systems. Being a
graphics API, OpenGL ES is not tailored to GPGPU
programming. However recent versions of the API pro-
vide sufficient capabilities to program neural network
computations. Different versions dictate what we can
do with mobile GPUs and there are several versions of
the OpenGL ES API on the market.

• OpenGL ES 2.0 is the first version of the API
with a programmable graphics pipeline. All mobile
devices running Facebook apps on Android sup-
port this version. With OpenGL ES 2.0 it is pos-
sible to implement neural network operators via
the render-to-texture technique, but inherent lim-
itations of the API make computations memory
bound. All computations have to happen inside a
fragment shader which can write only 16 bits3 of
output. Therefore, multi-channel convolution or
matrix-matrix multiplication would require read-
ing the same inputs multiple times. The compu-
tation patterns are similar to matrix-matrix mul-
tiplication on CPU using a dot product function.

• OpenGL ES 3.0 (or newer) is supported on 83% of
Android devices. It is the first version of OpenGL
ES that is practical for neural network implemen-
tations. Similar to 2.0, all computations need to
be implemented in fragment shaders, but OpenGL
ES 3.0 supports several features for efficiency. For
example, each invocation of a fragment shader can
write up to 128 bits of data into each of the (up
to 8) textures while also using uniform buffers to
load constant data (e.g., weights).

• OpenGL ES 3.1 (or newer) is supported on 52%
of the Android devices. It introduces compute
shaders that provide similar functionalities avail-
able in OpenCL 1.x and early versions of CUDA.
For example, important compute features such as,
launching kernels on GPU with reduced overhead
for the graphics pipeline, fast synchronization within
a work-group, access to local memory shared by
threads in a work-group, and arbitrary gather and
scatter operations with random-access buffers, be-
come available.

Figure 5(b) shows how over the past year the pro-
grammability of mobile GPUs on Android devices has
steadily improved. Today, a median Android device has
the support of GPGPU programming with OpenGL ES
3.1 compute shaders.

Vulkan is a successor to OpenGL and OpenGL ES.
It provides similar functionality to OpenGL ES 3.1, but
332 bits with OES rgb8 rgba8 extension
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Figure 5: Mobile GPUs have fragile usability and poor programmability.

with a new API targeted at minimizing driver overhead.
Looking forward, Vulkan is a promising GPGPU API.
Today, early adoption of Vulkan (see Figure 5(c)) is lim-
ited, being found on less than 36% of Android devices.

Metal is Apple’s GPU programming language. Mo-
bile GPUs on iOS devices paint a very different picture.
Because Apple chipsets with the A-series mobile pro-
cessors are vertically-designed, the system stack is more
tightly integrated for iPhones. Since 2013 all Apple mo-
bile processors, starting with A7, support Metal. Metal
is similar to Vulkan but with much wider market share
and more mature system stack support. 95% of the iOS
devices support Metal. Moreover the peak performance
ratio between the GPU and the CPU is approximately
3 to 4 times, making Metal on iOS devices with GPUs
an attractive target for efficient neural network infer-
ence. Guided by this data and experimental perfor-
mance validation, Facebook apps enable GPU-powered
neural network inference on iOS for several models.

In summary, Facebook takes a data-driven design ap-
proach: the heterogeneity of SoCs makes it inordinately
challenging to perform fine-grained, device/SoC-specific
optimization. Diverse SoCs pose significant programma-
bility challenge. It is difficult to deploy performance
optimization techniques to SoC that are implemented
with different versions of device drivers, scopes of mem-
ory granularities, and consistency models.

3. MACHINE LEARNING AT FACEBOOK
Facebook puts in significant engineering efforts into

developing deep learning features for mobile platforms.
Figure 6 illustrates the execution flow of machine learn-
ing, where a product leverages a series of inputs to
build a parameterized model, which is then used to
create a representation or a prediction. Hazelwood et
al. presented the major products and services leverag-
ing machine learning that run on Facebook customized
datacenter infrastructure [1]. To ensure reliable, high-
performance, and high-quality training, this phase gen-
erally happens offline in the cloud. On the other hand,
an inference phase that makes real-time predictions on
pre-trained models runs either in the cloud or on mobile
platforms. This paper focuses on mobile inference—
making real-time predictions locally at the edge.

3.1 Machine learning models and frameworks
We developed several internal platforms and frame-

works to simplify the task of bringing machine learning
into Facebook products. As an example, FBLearner
is an ML platform that automates many tasks such as
training on clusters and is the tool of choice by many
teams experimenting and developing custom ML at Face-
book. In addition to production tooling, ML develop-
ment at Facebook has been underpinned by Caffe2 and
PyTorch, as set of distinct deep learning frameworks
both of which are open source. Caffe2 is optimized for
production scale and broad platform support while Py-
Torch was conceived with flexibility and expressibility
in mind allowing researchers to fully express the de-
sign space. Caffe2 provides cutting-edge mobile deep
learning capabilities across a wide range of devices and
is deployed broadly through the Facebook application
family. In particular, it is deployed to over one bil-
lion devices, of which approximately 75% are Android
based, with the remainder running iOS. Caffe2, in par-
ticular, is built with optimized mobile inference in mind
to deliver the best experience possible for a broad set
of mobile devices.

At the 2018 F8 Developer Conference, Facebook an-
nounced the road map for a new unified AI framework
– PyTorch 1.0 [9]. Pytorch 1.0 combines the production
scale of Caffe2 and the research flexibility of PyTorch.
It supports the ONNX specification for ecosystem in-
teroperability. With this, Facebook aims to accelerate
AI innovation by streamlining the process of transition-
ing models developed through research exploration into
production scale with little transition overhead.

PyTorch 1.0 adopts the ONNX specification for ecosys-
tem interoperability. In addition to being able to ex-
port the ONNX model format, PyTorch 1.0 leverages
ONNX’s Interface for Framework Integration (ONNX-
IFI) as a stable interface for external backend integra-
tion. ONNXIFI enables PyTorch 1.0 to leverage exter-
nal software libraries and hardware accelerators without
requiring redundant integration work for each new back-
end and also supports embedded edge devices. We are
also collaborating with mobile OS ecosystem partners
such as Android to include a similar level of function-
ality, natively within the OS-specific machine learning



Figure 6: Execution flow of Facebook’s machine learning for mobile inference.

accelerator APIs.

3.2 DNN Inference at the Edge
Smartphones are capable of realizing deep learning

in real time without relying on the cloud but there are
also limitations. While smartphones have improved sig-
nificantly in computation performance in recent years,
these mobile platforms also have various resource con-
straints, such as power, memory, and compute capabil-
ities. Putting all aspects of SoC components together
leads to the landscape of a widely diverse set of SoCs,
as presented in Section 2. As a result, mobile presents
both an opportunity and, at the same time, a challenge
for machine learning. Depending on the application and
product domains, Facebook takes different approaches.

Here we review how inference works today by review-
ing the mobile workflow. We then provide two case
studies that provide details into how we optimize for
commodity devices (i.e., mobile SoCs) and vertically in-
tegrated, custom solutions (i.e., Oculus VR platforms).

3.3 Important Design Aspects for Mobile In-
ference and Potential Approaches

To develop mobile applications for the wild west of
mobile SoCs, a simple approach is to target applica-
tion development for the lowest common denominator,
in this case, mobile CPUs. This, however, optimizes
for ubiquity and programmability while sacrificing effi-
ciency.

To fully harvest potential performance benefits for
edge inference, there are several important design trade-
offs that we consider. Iteration speed from an idea to
product deployment takes weeks–order of magnitude
longer than the deployment cycle for cloud. Perfor-

mance is key for edge inference; thus, performance op-
timization is critical for mobile. However, performance
characterization and analysis is far more complicated
for mobile than cloud because of fragmentation of the
mobile ecosystem (Section 2).

Performance is far more limited with wider perfor-
mance variance for mobile than cloud. Most cloud in-
ference runs on server-class CPUs with theoretical com-
putation capability of up to several TFLOPS. On the
other hand, mobile SoCs are orders of magnitude less
capable, and deliver between single-digit GFLOPS in
the ultra low-end to few hundred of GFLOPS on the
very high-end.

Furthermore, model and code sizes are imperative for
mobile because of the limited memory capacity of a few
GBs. Techniques, such as weight pruning, quantiza-
tion, and compression, are commonly used to reduce
the model size for mobile. Code size is a unique design
point for mobile inference. For good deployment experi-
ence, the amount of new code pushed into the app needs
to be incremental. Several methods are available for ap-
plication code size management and are potentially vi-
able. First option is to compile applications containing
ML models to platform-specific object code using, for
example, Glow [10], XLA [11], or TVM [12]. This often
leads to larger model sizes (as the model now contains
machine codes but enables a smaller interpreter.). Sec-
ond option is to directly use vendor-specific APIs, such
as iOS CoreML [13], from operating system vendors.
Another approach is to deploy a generic interpreter,
such as Caffe2 or TF/TFLite, that compiles code us-
ing optimized backend. The first approach is compiled
execution which treats ML models as code whereas the
later approach is interpreted execution which treats ML



models as data. Techniques are chosen depending on
design tradeoff suitable in different usage scenarios.

3.4 Mobile Inference Workflow
Facebook develops a collection of internal platforms

and toolkits to simplify the tasks of leveraging ma-
chine learning within its products. FBLearner offers
this ecosystem of machine learning tools, enabling work-
flow execution and management (FBLearner Flow), reg-
istry of pointers to data sources, features, and models
for training and inference (FBLearner Feature Store),
optimal configurations for experiments (FB Learner Au-
toML), real-time prediction service (FBLearner Predic-
tor), among many others [1].

Figure 6 depicts the execution flow for applying ma-
chine learning for edge inference. First, features are
collected and selected for any ML modeling tasks from
FBLearner Feature Store. The Feature Store is essen-
tially a catalog of feature generators, that is hosted on
Facebook’s data centers. Then, a workflow describing
architectures of a model and steps for the model train-
ing and evaluation is built with FBLearner Flow. After
model training and evaluation, the next step is to export
and publish the model so it can be served in one of Face-
book’s production inference tiers. Before models are de-
ployed for edge inference, optimization techniques, such
as quantization, can be applied in the Optimizer.

In general, to improve model accuracy, three approaches
are used iteratively: increasing training data, refining
feature sets, and changing model architectures, by e.g.
increasing the number of layers or sharing embeddings
for features. For performance and memory requirement
reasons, we often quantize portions of models. One ex-
ample is to reduce the precision of a large multi-GB
embedding table from 32-bit single precision float to 8-
bit integers. This process takes place after we verify
that there is little or no measurable impact to model
accuracy. Then, for edge inference, to improve compu-
tational performance while maximizing efficiency, tech-
niques, such as quantization, k-means clustering, exe-
cution engine selection, are employed to create mobile-
specific models. Once the model is deployed to a mo-
bile platform, Caffe2 Runtime interprets models and
call kernels to process inputs. Depending on the hard-
ware architecture and the system stack support, back-
end neural network libraries are used by Caffe2 Runtime
for additional optimization.

4. HORIZONTAL INTEGRATION: MAKING
INFERENCE ON SMARTPHONES

Mobile inference is primarily used for image and video
processing. Therefore, inference speed is typically mea-
sured as the number of inference runs per second. An-
other commonly-used metric is inference time, particu-
larly for latency sensitive applications. To exploit per-
formance optimization opportunities before models are
deployed onto mobile platforms and to ensure fast model
transmission to the edge, Caffe2 implements specific
features, such as compact image representations and
weight [14, 15], channel pruning [16], and quantiza-

tion. In addition, tuning of spatial resolution that con-
trols the processing time of middle layers is particularly
useful for mobile. We also apply commonly-used tech-
niques, such as pruning and quantization, to aggres-
sively cut down the size of DNN models while main-
taining reasonable quality [17].

In addition, to maintain certain performance levels
for good user experience, quantization is used for edge
inference. The use of quantization is a standard in-
dustry practice with support in e.g., Google’s GEMM-
LOWP [18] and Qualcomm’s neural processing SDK [19].
A floating point tensor is linearly quantized into 8 or
fewer bits and all nodes in the data flow graph operate
on this quantized tensor value. To efficiently quantize
node outputs, we need to precompute good quantiza-
tion parameters prior to inference time. There are two
approaches here. One is to modify the graph at training
time to learn the quantization directly–quantization-
aware training [20]. The other is to add a stage af-
ter training to compute appropriate quantizers–post-
training quantization. More advanced quantization tech-
niques at the execution front-end is under investiga-
tion [21, 22, 23].

To make the best possible use of limited comput-
ing resources, Caffe2 Runtime integrates two in-house
libraries, NNPACK [24] and QNNPACK [25], which
provide optimized implementation of convolution and
other important CNN operations, and contain platform-
specific optimizations tailored for mobile CPUs.

NNPACK (Neural Networks PACKage) per-
forms computations in 32-bit floating-point precision
and NCHW layout, and targets high-intensity convo-
lutional neural networks, which use convolutional oper-
ators with large kernels, such as 3x3 or 5x5. NNPACK
implements asymptotically fast convolution algorithms,
based on either Winograd transform or Fast Fourier
transform, which employ algorithmic optimization to
lower computational complexity of convolutions with
large kernels by several times. With algorithmic advan-
tage and low-level microarchitecture-specific optimiza-
tions, NNPACK often delivers higher performance for
direct convolution implementation.

QNNPACK (Quantized NNPACK) on the other
hand performs computations in 8-bit fixed-point pre-
cision and NHWC layout. It is designed to augment
NNPACK for low-intensity convolutional networks, e.g.
neural networks with large share of 1x1, grouped, depth-
wise, or dilated convolutions. These types of convolu-
tions do not benefit from fast convolution algorithms,
thus QNNPACK provides a highly efficient implementa-
tion of direct convolution algorithm. Implementation in
QNNPACK eliminates the overhead of im2col transfor-
mation and other memory layout transformations typ-
ical for matrix-matrix multiplication libraries. Over a
variety of smartphones, QNNPACK outperforms state-
of-the-art implementations by approximately an aver-
age of two times.

The choice of two mobile CPU backends help Caffe2
Runtime deliver good performance across a variety of
mobile devices and production use-cases. In the next



section we present the relative performance compari-
son of three state-of-the-art DNN models running on
QNNPACK with quantization compared to running on
NNPACK in floating-point representation.

4.1 Performance optimization versus accuracy
tradeoff

The primary performance benefits with reduced pre-
cision computation come from–(1) reduced memory foot-
print for storage of activations, (2) higher computation
efficiency, and (3) improved performance for bandwidth
bounded operators, such as depthwise convolutions and
relatively small convolutions. Reduced precision com-
putation is beneficial for advanced model architectures.
This inference time speedup is, however, not received
equally well when the technique is applied directly onto
all models.

We compare the inference time speedup of the re-
duced precision computation with 8-bit fixed-point over
the baseline FP32 implementation (under acceptable
accuracy tradeoff). First, the UNet-based Person Seg-
mentation model [26] that relies on 3x3 convolutions
with relatively small spatial extent experiences perfor-
mance regression in the quantized version. This re-
gression is caused by inability to leverage NNPACK’s
highly optimized Winograd-based convolution for both
the low- and the high-end Android smartphones. Fur-
thermore, for the quantized models, additional instruc-
tions are needed to extend elements from 8 to 16 bits for
computation4, leading to additional performance over-
head compared to the FP32 version, which can imme-
diately use loaded elements in multiply-add operations.

For style transfer models, a network with a relatively
small number of channels and large spatial resolution
is used with 3x3 convolutions. We start seeing much
better performance response to QNNPACK-powered re-
duced precision computation. The efficiency reduction
from losing Winograd is compensated by reduced mem-
ory bandwidth for these large spatial domain convolu-
tion.

Finally, when we look at a custom architecture de-
rived from ShuffleNet [27], which leverages grouped 1x1
convolutions and depthwise 3x3 convolutions for the
bulk of the model computation, we see substantial in-
ference performance improvement from reduced mem-
ory bandwidth consumption for the depthwise convo-
lutions. Reduced precision computation on QNNPACK
improves inference performance for the depthwise-separable
models that are increasingly popular in mobile and em-
bedded computer vision applications.

However, in order to maximize performance benefit,
we have to consider both algorithmic and quantization
optimization. Currently, using algorithmic optimization
with e.g. Winograd algorithm for CNNs can disallow
quantization. Therefore, if the benefit from Winograd
transformation is greater than that of quantization, we
see a relative slowdown for quantized models, calling for

4This inefficiency is not inherent to 8-bit fixed-point convo-
lutions, but is caused by restrictions of the NEON instruc-
tion set.
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Figure 7: Performance comparison over several
generations of low-end, mid-end, and high-end
smartphones for two image-based DNN mod-
els, ShuffleNet [27] and Mask-RCNN [28]. The
smartphone performance tier does not always
correspond to inference performance. The per-
formance of DNN models respond to hardware
resources differently.

a better use of quantization that offers more consistent
performance improvement.

While this section represents the way designs are cur-
rently done today, as more hardware and better (co-
)processors (e.g., CPUs/GPUs/DSPs) make their way
onto mobile devices we will take advantage of the addi-
tional computation performance by using more accurate
models. Next we present two approaches for enabling
mobile inference at Facebook. First is the horizontal in-
tegration that enables Facebook Apps to run efficiently
across a variety of mobile platforms. Second is the ver-
tical integration for the VR application domain.

4.2 An augmented reality example
Smart cameras are designed to add intelligence to

cameras, i.e., processing images directly on an edge de-
vice. This feature improves user experience by reduc-
ing latency and bandwidth usage. In addition to image
classification models, advanced machine learning tech-
niques are applied to estimate and improve the quality
of photos and videos for various Facebook services, to
understand digital contents locally, directly on smart-
phones.

The challenges with smart cameras are large com-
putational demands for delivering real-time inference.
To enable smart cameras on mobile platforms running
the Facebook App, we train mobile specific models,
compress weights for transmission, and execute quan-
tized models. We design a collection of image clas-
sification models tailored for smartphones. To lessen
the transmission cost, models can be compressed us-
ing a Deep Compression-like pipeline. As previously
discussed, quantization is also considered. Finally, to
improve inference performance, some of the models are
processed using an 8-bit fixed point datatype for the
weights. Additionally, models shipped with the k-means
quantization method typically use 5 or 6 bits for the
weights.



DNN features DNN models MACs Weights
Hand Tracking U-Net [29] 10x 1x
Image Model-1 GoogLeNet [30] 100x 1x
Image Model-2 ShuffleNet [27] 10x 2x
Pose Estimation Mask-RCNN [28] 100x 4x
Action Segmentation TCN [31] 1x 1.5x

Table 1: DNN-powered features for Oculus.

4.3 DNN model performance across a wide spec-
trum of smartphones

Figure 7 illustrates the performance of two important
Facebook DNN models, i.e., classification and human
pose estimation, across multiple generations of smart-
phones in the different performance tiers. The x-axis
represents multiple generations of smartphones in the
low-end, mid-end, and high-end performance tiers whereas
the y-axis plots the normalized inference time speedup
over the first smartphone generation in the low-end tier.
First, we observe that the performance tier does not al-
ways directly correspond to inference performance. The
newest generation of smartphones in the low-end tier
offer competitive inference performance as that in the
mid-end tier for both DNN models.

Furthermore, the performance of DNN models re-
spond to different degree of hardware resources differ-
ently. For example, the DNN model used for human
bounding box and keypoint detection (Mask-RCNN [28])
demands much higher compute and memory resource
capacities. Thus, when comparing the inference time
speedup between the latest generation of smartphones
between the low-end and high-end performance tiers,
we see a much higher performance speedup for smart-
phones equipped with more abundant resources–5.62
times speedup for Gen-4/High-End over 1.78 times speedup
for Gen-4/Low-End. Although we still see higher infer-
ence time speedup in the latest generation of high-end
smartphones, the speedup is less pronounced for the
DNN model used for classification (ShuffleNet [27]).

This model-specific inference time comparison projects
the performance of realistic DNN models onto the di-
verse spectrum of smartphone platforms described in
Section 2. In addition to the previously-shown peak
performance analysis for the deployed smartphones in
the wild, Figure 7 shows how different generations of
smartphones across the different performance tiers re-
act to two realistic DNN models. It is important to
continue strong performance scaling for the remaining
smartphones in the entire market for higher product
penetration.

5. VERTICAL INTEGRATION: PROCESS-
ING VR INFERENCE FOR OCULUS

Oculus platforms create new forms of interactions by
running multiple DNNs for tasks including hand, face,
and body tracking. To provide a high-quality user ex-
perience the models must run at a steady frame rate of
30 to 60 FPS, three times greater than mobile image
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Figure 8: Inference time performance compari-
son between CPU and DSP.

and video performance requirements. Moreover, head-
sets include multiple cameras to cover a wide field of
view. This puts the performance requirements of VR
platforms on the order of many hundreds of inference
per second. This presents a significant challenge for
embedded devices as all processing has to be performed
on-device with high performance delivery. To overcome
the particular design challenges in the VR design space,
for mobile inference, Facebook takes a vertical design
approach. In the case of Oculus, we explore and assess
the suitability of Qualcomm Hexagon DSPs for DNN
models by offloading the most computationally demand-
ing DNNs and compare performance across used models
running on DSPs and CPUs.

5.1 DNN models and hardware used for VR
platforms

The Oculus VR platform explores many state-of-the-
art DNN models. Models are programmed in PyTorch
1.0 and the weights are quantized with PyTorch 1.0’s
int8 feature for mobile inference. Table 1 shows some of
the key DNN models explored by Oculus: Hand Track-
ing, Image Classification Model-1, Image Classification
Model-2, Pose Estimation, and Action Segmentation.

For mobile inference, the DNN models are offloaded
using PyTorch 1.0’s CPU and Facebook ’s BoltNN DSP
inference backends. The CPU model utilizes a big.LITTLE
core cluster with 4 Cortex-A73 and 4 Cortex-A53 and
a Hexagon 620 DSP. All CPU cores are set to the max-
imum performance level. The four high-performance
CPU cores are used by the DNN models. The DSP



10

20
FP

S

2.5

5.0

Po
we

r (
W

)

0 100 200 300 400 500
Time (Sec)

40

50

Te
m

p 
(C

)

CPU DSP

Figure 9: Inference frames-per-second perfor-
mance, power, and temperature comparison for
a vision model for Oculus. Thermal throttling
(marked with dotted lines) prevents CPU from
operating at an acceptable FPS performance
level.

shares the same memory space with the mobile CPU
cores and has a separate layer of caches, making it con-
venient to program but also isolated enough to prevent
cache thrashing for other concurrent processes running
on the mobile CPU. As we will later see in Section 6,
dependable, stable execution is an important feature to
have to guarantee user experience.

5.2 DSP evaluation results and analysis
Figure 8 compares the FPS of the DSP and CPUs for

all models. DSP clearly outperforms CPU for all the
models that come with various complexity and archi-
tectures, achieving an average speedup of 1.91x, rang-
ing from 1.17 to 2.90 times. The highest speedup comes
from models with simple convolution operations, such
as in the Hand Tracking and the Image Classification
Models.

When intensive memory-bound operations are involved,
such as depth-wise convolutions in the ShuffleNet-based
image classification and pose estimation models, the
speedup of DSP over CPU becomes less pronounced.
This is because the memory load-store operations are at
the granularity of the vector width or coarser, e.g., more
than 128B in Hexagon DSPs. Thus, additional mem-
ory transformation is needed, introducing extra perfor-
mance overhead. Furthermore, for memory-bound lay-
ers, such as grouped convolutions or depth-wise con-
volutions, extra computations are required to optimize
the memory layout of activations and filters, in order to
fully take advantage of the SIMD units. Finally, across
all models, additional system overhead can come from
remote procedure calls that flush the L2 cache on the
chipset.

In addition to using the amount of performance speedup
to determine where a DNN model should be executed,
designs for AR/VR wearables must consume as little
power consumption as possible for prolonged battery

life and for ergonomic requirement of platform temper-
ature. We compare the performance, power, and tem-
perature of the post estimation model running on the
CPU versus the DSP. Figure 9 shows that the CPU im-
plementation consumes twice as much power as that of
the DSP in the beginning. Then, thermal throttling
kicks in so the power consumption of the CPU imple-
mentation drops while still using 18% more power than
the DSP. The thermal throttling has a significant ef-
fect on performance, degrading the FPS performance to
10 frames-per-second. For lower platform power con-
sumption and operating temperature, Facebook takes
the vertical-designed approach to offload DNN models
using the BoltNN DSP backend for its VR platforms.

Despite higher performance, lower power consump-
tion and operating temperature, the DSP implementa-
tion comes with significantly higher programming over-
head. First, because most DSP architectures support
fixed-point data types and operations, DNN models need
to be quantized. Depending on the application do-
main and models, this may cause substantial accuracy
loss. It also requires developers to port model operators
to fixed-point implementation; otherwise, this can eas-
ily become the performance bottleneck for light-weight
operations. Furthermore, developers must pay addi-
tional attention to optimize memory layout; otherwise
the memory hierarchy can become a contentious re-
source, leading to additional delay.

Last but not least, an important, yet less explored
and understood factor to determine where DNN mod-
els should be run at—CPU versus accelerators—is in-
ference time variation. Even if one can hand optimized
CPU implementation such that the inference time meets
the application-specific performance target, and the power
and temperature results are competitive, offloading ML
models to accelerators may still be more desirable, de-
spite the higher programming overhead. We next in-
troduce the role of performance variability for mobile
inference.

6. MAKING INFERENCE IN THE WILD:
PRACTICAL CONSIDERATIONS FOR PRO-
CESSING ON MOBILE DEVICES

Performance variability is a practical concern for Face-
book because it is challenging to make guarantees on
quality of service. Real time constraints and model ac-
curacy are often competing objectives: higher-quality
models take longer to process but provide more ac-
curacy. For example, we might conservatively use a
smaller, less computationally expensive model to meet
a 95% performance target across all devices and all
App instances. However, if we had a better way to
model and predict performance variability we could put
tighter bounds and could use different models tuned
to maximize accuracy while meeting real-time perfor-
mance/FPS metrics to provide the best user experience
(FPS) and service (model accuracy). In this section we
show how much performance can vary and suggest a
simple way to model it.
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Figure 10: The inference time performance im-
proves over generations of iPhones. However,
within each generation, significant inference per-
formance variability is observed with a large
number of outliers.

6.1 Performance variability observed in the pro-
duction environment

To arrive at an optimal design point, we perform rig-
orous evaluations for Facebook services and use the per-
formance characterization results to drive better solu-
tions. A key observation we derive from the perfor-
mance data is that mobile inference performance ex-
hibits significant variability, even across the same device
running the same software stack. Figure 10 shows the
inference time performance of the most time-consuming
convolutional neural network layer of a key model across
several generations of iPhone SoCs (x-axis). As ex-
pected, we see that the inference time (y-axis) is the
lowest for the most recent generation of iPhones, i.e.,
Apple A-11 processors. Somewhat less intuitive is the
observed wide performance variability of inference per-
formance – even within the same generations of iPhone
SoCs.

We examine the inference performance results inter-
nally using our small-scale smartphone benchmarking
lab. While we see a general trend of performance vari-
ability across key machine learning models, the degree
of performance variability is much less pronounced, usu-
ally less than 5%. This presents a challenge as ideally
we would benchmark new models under the exact con-
ditions we expect the models to run. From our obser-
vations this undertaking seems impractical as it would
require a fleet of devices.

The much higher performance variability in the pro-
duction environment is likely due to higher system ac-
tivities in deployed smartphones and the environment
the smartphones are in (e.g., the ambient temperature
or how many Apps a user allows to run concurrently).
Concurrent processes or background activities cause re-
source contention, leading to performance perturbation [32].
Furthermore, the performance of mobile processors is
not only limited by processor junction temperature but
also smartphone surface temperature for ergonomic re-
quirements [33, 34]. This means that, depending on
how and where smartphones are used, the likelihood of
thermal throttling is potentially much higher in the pro-
duction environment, representing more realistic usage
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Figure 11: The inference time follows an approx-
imate Gaussian distribution with the mean cen-
tered at 2.02ms and the standard deviation of
1.92ms.

scenarios. Finally, process variation and battery aging
also contribute to performance variability. To have rep-
resentative performance results and analysis, it is im-
portant to perform in-field studies for machine learning
designs and performance evaluation in the mobile space.

6.2 Do the performance variability character-
istics follow certain trends or statistical dis-
tributions?

It is clear that inference performance on smartphones
is non-deterministic and follows a wide distribution. This
is highly undesirable as the non-deterministic inference
time translates directly into varied quality of user expe-
rience. If we were able to model and predict variability,
we could optimize designs by, for example, customiz-
ing networks to best suit different mobile platforms and
users depending on situations. In-field functionality and
performance evaluation is an important part of our it-
erative model fine-tuning process.

Figure 11 illustrates the histogram for the inference
time of the key machine learning layer across three dif-
ferent generations of iPhone mobile SoCs. In particu-
lar, the inference time for A11 follows an approximate
Gaussian distribution with the mean centered at 2.02ms
and the standard deviation of 1.92ms. A recent work
by Gaudette et al. [35] shares similar observations for
mobile applications in general and proposes modeling
techniques to predict the non-determinism in perfor-
mance with general forms of Gaussian. The follow-on
work [36] takes a data-driven approach with the use of
arbitrary polynomial chaos expansions which approxi-
mates stochastic systems by a set of orthogonal polyno-
mial bases, without any assumption of workload/system
statistical distribution. With the ability to model per-
formance variability, a certain level of inference perfor-
mance can be guaranteed, leading to overall better qual-
ity of user experience.

In summary, the significant performance variability
observed for mobile inference introduces varied user ex-
perience. If taking a classic approach to modeling and
evaluating ML model performance and energy efficiency
with an average value of experimental runs, designers
risk the chance for delivering the required level of per-



formance quality. Thus, particularly for mobile infer-
ence benchmarking, it is critical to describe how severe
performance variability is for a design. One option is
to represent evaluation results (for e.g., inference time
performance) with the information of average, maxi-
mum, minimum, and standard deviation of experimen-
tal measurement values. Furthermore, our observation
here also pinpoints the importance of in-field studies for
machine learning designs.

7. DISCUSSION AND FUTURE DIRECTIONS
This section discusses the implications from the re-

sults shown in this paper which influence the important
design decisions within Facebook. We also highlight the
research directions for the years to come.

The majority of mobile inference run on CPUs.
Given all the engineering efforts put into accelerating
DNN inference with co-processors and accelerators, it
is somewhat counterintuitive that inference on Android
devices are processed on mobile CPUs. The reality is
that it is currently too challenging to maintain code
bases optimized to perform well across the wide range
of Android devices (Section 2). Moreover, as illustrated
in Figure 1, even if we did port all inference to run
on co-processors, the performance gains would not be
substantial enough to justify the implementation effort.

Most inference run on CPUs that are at least
six years old. Future facing research is important, but
the reality is that having large-scale, global impact on
smartphones may be further off than what we think.
As presented in Section 2, most inference are made on
processors released in 2011 and 2012, respectively. This
isn’t just a case of old smartphones that are still being
out there or being left on. A major portion of these
smartphones are sold in the recent one to two years.
To provide the same experience to all Facebook users,
substantial software optimization efforts are targeted in
optimizing inference for these CPUs—ones that repre-
sent the largest market share.

The performance difference between a mobile
CPU and GPU/DSP is not 100×. Given the per-
formance gap between server CPUs and GPUs is usually
60-100×, one might suspect that a similar trend is found
on the mobile side. However, this is not the case. Mo-
bile GPUs, and even DSPs, are less than 9 × faster than
mobile CPUs. Similar finding is found in [6]. This is
largely because mobile GPUs were not designed to pro-
cess the same class of high-resolution graphics render-
ing that discrete GPUs are. Mobile GPUs help offload
image processing in a relatively low-end environment.
DSPs are slightly more promising–mobile inference are
slowly transitioning to execute on DSPs. Furthermore,
many mobile CPUs come with a decently provisioned
SIMD unit, which when properly programmed provides
sufficient performance for vision-based inference.

Programmability is a primary roadblock to us-
ing mobile co-processors/accelerators. As seen in
Section 2, one of the main challenges with using GPUs
and DSPs is programmability. For Android smartphones,
OpenCL is not reliable enough for a business at the

scale of Facebook . DSPs have more robust software
stacks. However, porting code still takes a long time
as the implementation must be signed and whitelisted
by DSP vendors. The story for Apple devices is bet-
ter, partially because there is so much less variety of
devices and software. Metal also plays a large role as
it is relatively straightforward to use. Therefore, many
iPhone inference are run on mobile GPUs. With the
introduction of Vulkan and DSP engineering efforts, in-
ference are making their way into co-processors. Look-
ing forward, more research and engineering effort put
into making existing mobile GPU and DSP hardware
more amenable to processing DNN inference has a high
impact to ML adoption at the edge.

Co-processors and accelerators are used for
power and stable performance; speedup is of-
ten secondary. The main reason mobile inference are
ported to a co-processor is for improved efficiency and
dependable, predictable execution time. While there
are applications that require specialized hardware for
performance, we suspect this finding is not a Facebook
or DNN-specific phenomenon. Because our main focus
is end-user usability, unless the performance gain is sig-
nificant (e.g., 50x) and achieved using better tools and
infrastructure, it is unlikely most of these accelerators
will actually be utilized when found on mobile devices.

Accuracy is a priority, but it must come with
a reasonable model size. The accuracy of a DNN
model can be tied directly to user experience [1]. It is
also generally true that larger models result in higher
accuracy. When it comes to mobile, it is important to
maximize accuracy while keeping model sizes reason-
able. Facebook focuses on model architecture optimiza-
tion to identify highly-accurate models while minimiz-
ing the number of parameters and MACs. Trained mod-
els are then further refined for efficiency with aggressive
quantization and weight/channel pruning. Looking for-
ward, methods to improve architecture search, includ-
ing techniques, such as BayesOpt [37, 38], AutoML [39]
and [40], are of important interest.

There is also a big push for generally applicable opti-
mizations. Recent work on hardware for machine learn-
ing and efficient training and inference has substantially
advanced the state-of-the-art [41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62,
63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77].
Many of the ideas being published in the top architec-
ture conferences are custom hardware specific and not
applicable to general-purpose existing SoCs.

Performance variability is a real problem. An
often overlooked issue in the architecture research com-
munity is performance variability, which results in a
serious concern for real-time and user-facing systems.
Optimizing designs for the average case risks user ex-
perience for a large portion of the market share while
targeting designs for all mobile devices in the market
implies conservative design decisions. It is important to
present performance results taking into account perfor-
mance distribution, particularly for mobile inference.

Researchers need to consider full-picture and



system effects. Accelerating mobile inference on the
edge is an important task. However, DNNs brings de-
sign challenges across the entire computing ecosystem.
For example, many are looking at weight and activ-
ity sparsity to improve inference execution. However,
many models are quite large and many users do not
have access to high-speed/reliable connections. Com-
pression can provide us with new abilities for model
deployment. Generally speaking, in addition to new ac-
celerator designs, it is important to have more holistic
system solutions.

The absolute numbers make it look like everything
runs on CPUs and life is fine. However, if you look at the
trend—many more devices are increasingly supporting
NPUs and programmable interfaces such as NN API.
While it may not be intuitive to read that all mobile
inference run on CPUs even when GPUs and DSPs are
readily available, minimizing power consumption is still
a major optimization goal which can only be addressed
with specialized hardware. Having a wide spectrum of
mobile chipsets means that it may be easier to get your
hardware accelerator into one of the SoCs. Maybe this
is a sign that computer architecture is shifting more
towards computer system organization.

8. CONCLUSION
The increasing importance of deep learning-based ap-

plications brings many exciting opportunities yet di-
verse and complicated design challenges at the edge.
This paper presents the state of the industrial practices
for realizing machine learning inference at the edge. We
take a data-driven approach by first showing the im-
portant trends of hardware heterogeneity in the smart-
phone space and the maturity of the software stack.
This leads to important design decisions for deep learn-
ing application development at scale. On the other
hand, enabling inference for systems such as virtual re-
ality platforms, we take a vertical integration approach.
By doing so, performance acceleration with co-processors
is far more realistic, leading to faster inference time,
lower power consumption, and more importantly re-
duced performance variability. While this paper demon-
strates the possibilities of deep learning inference at the
edge, we pinpoint the importance of in-field studies in
order to capture the performance variability effect in the
production environment. We hope the observations, in-
sights, and our design principles for different edge plat-
forms provided in this paper can help guide our com-
munity to better design and evaluate deep learning in-
ference at the edge.
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