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ABSTRACT
Many recent machine learning models rely on fine-grained dy-

namic control flow for training and inference. In particular, models

based on recurrent neural networks and on reinforcement learning

depend on recurrence relations, data-dependent conditional execu-

tion, and other features that call for dynamic control flow. These

applications benefit from the ability to make rapid control-flow

decisions across a set of computing devices in a distributed system.

For performance, scalability, and expressiveness, a machine learn-

ing system must support dynamic control flow in distributed and

heterogeneous environments.

This paper presents a programming model for distributed ma-

chine learning that supports dynamic control flow. We describe

the design of the programming model, and its implementation in

TensorFlow, a distributed machine learning system. Our approach

extends the use of dataflow graphs to represent machine learning

models, offering several distinctive features. First, the branches of

conditionals and bodies of loops can be partitioned across many

machines to run on a set of heterogeneous devices, including CPUs,

GPUs, and custom ASICs. Second, programs written in our model

support automatic differentiation and distributed gradient compu-

tations, which are necessary for training machine learning models
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that use control flow. Third, our choice of non-strict semantics en-

ables multiple loop iterations to execute in parallel across machines,

and to overlap compute and I/O operations.

We have done our work in the context of TensorFlow, and it

has been used extensively in research and production. We evalu-

ate it using several real-world applications, and demonstrate its

performance and scalability.
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1 INTRODUCTION
Advances in machine learning and their many applications have

brought into focus conflicting design objectives for the underlying

systems. These systems should be scalable: they should use hard-

ware resources efficiently, on platforms from individual phones

to powerful datacenters that comprise CPUs, GPUs, and custom

ASICs such as TPUs [21, 22]. At the same time, systems should be

expressive and flexible to support both production and research.

As an example, consider the model architecture depicted in Fig-

ure 1. It is a simplified version of one employed at Google for

language processing. This architecture includes two RNN (Recur-

rent Neural Network) layers, and a “mixture of experts” (MoE) that

provides dynamic, learned connections between the RNN layers.
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Figure 1: An example model architecture.

While simple feedforward neural networks are akin to straight-line

code, this architecture makes essential use of dynamic control flow,

with all the difficulties that it entails. An embodiment of the result-

ing system may run over a distributed infrastructure, with many

components on different devices. Implementation choices can have

a large impact on the performance of such a system and its memory

requirements. For instance, RNNs give rise to challenging trade-

offs between memory footprint and computation time (e.g., [17]).

Distributing computations over multiple GPUs and swapping ten-

sors between GPU and host memory can alleviate these memory

constraints, and adds another dimension to those trade-offs.

Both the building blocks of machine learning (e.g., individual

cells in Figure 1) and the architectures built up using these blocks

have been changing rapidly. This pace appears likely to continue.

Therefore, rather than defining RNNs, MoEs, and other features as

primitives of a programming model, it is attractive to be able to

implement them in terms of general control-flow constructs such

as conditionals and loops. Thus, we advocate that machine learning

systems should provide general facilities for dynamic control flow,

and we address the challenge of making them work efficiently in

heterogenous distributed systems consisting of CPUs, GPUs, and

TPUs.

Modern machine learning frameworks typically use dataflow

graphs to represent computations, and a client process to drive

those computations on a collection of accelerators. The frameworks

offer two main approaches for control flow:

• The in-graph approach [1, 2] encodes control-flow decisions

as operations in the dataflow graph.

• The out-of-graph approach [10, 12, 20] implements control-

flow decisions in the client process, using control-flow prim-

itives of a host language (e.g., Python).

When designing TensorFlow [1] we favored the in-graph approach,

because it has advantages at both compile and run time. With this

approach, the machine learning system processes a single unified

dataflow graph, and can perform whole-program optimization. In

particular, it can determine exactly which intermediate values from

the execution of amachine learningmodel are necessary to compute

the gradients that are pervasive inmachine learning algorithms, and

it can decide to cache those values. In addition, this approach allows

the entire computation to stay inside the system runtime during

execution. This feature is important in heterogeneous environments

where communication and synchronization with the client process

can be costly.

If the in-graph dynamic control-flow features of TensorFlow are

not used, a program must rely on the control-flow features of the

host language, or resort to static unrolling. In-graph loops allow

us to obtain more parallelism than out-of-graph loops. There can

be a factor of 5 between the number of iterations per second in a

microbenchmark that compares in-graph and out-of-graph loops

distributed across 8 GPUs on one machine (Section 6.1). We explore

and exploit these advantages in our work.

In our work, high-level control-flow constructs are compiled

to dataflow graphs that include a few simple, powerful primitives

similar to those of dynamic dataflow machines [4, 5]. These graphs

can then be arbitrarily partitioned and executed on a set of hetero-

geneous devices, using a lightweight coordination mechanism.

Since automatic differentiation is an important technique for

training machine learning models, we also show how to support it

efficiently in the presence of dynamic control flow. Given a graph,

we demonstrate how to add a subgraph that computes gradients,

and develop optimizations and memory-management techniques

for this computation. If the original graph includes control-flow

constructs, the new subgraph will as well. These subgraphs can

also be partitioned and executed on a set of heterogeneous devices.

Our implementation allows parallelism and asynchrony, provid-

ing a non-strict semantics: operations in a conditional branch or

a loop iteration can run as soon as their inputs are available. This

property enables us to overlap the execution of control-flow logic

on CPU, compute kernels on GPU, and memory-copy operations

between CPU and GPU.

While it is difficult to measure ease-of-use or flexibility, we have

evidence that our design and implementation are suitable for a

variety of real-world needs. Our code is part of the core Tensor-

Flow distribution, and is used widely in production and research.

We analyzed more than 11.7 million unique graphs for machine

learning jobs at Google over the past year, and found that approx-

imately 65% contain some kind of conditional computation, and

approximately 5% contain one or more loops. Teams that conduct

research on model structures for machine learning, and several

open-source projects (e.g., SyntaxNet [41], TensorFlow Fold [43],

and Sonnet [39]) rely on our work. Accordingly, our evaluation of

performance and scalability reflects results for real applications in

the context of a real system.

The original TensorFlow paper [1] briefly sketched our approach

to dynamic control flow, but did not provide a detailed design or

evaluation. The present work goes much further in both respects.

To the best of our knowledge, there is no previous dataflow system

that supports both distributed control flow and automatic differen-

tiation.

In sum, the main contributions of our work are:

• A design for how to incorporate in-graph dynamic control

flow in machine learning, including, in particular, automatic

differentiation.
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• A corresponding implementation that allows parallel and dis-

tributed execution across CPUs, GPUs, and custom machine

learning accelerators.

• An evaluation that characterizes the performance and scala-

bility of our techniques, and analyzes the impact of various

choices.

• Extensive experience with users, which gives evidence of

the expressiveness and flexibility of the system.

Section 2 discusses programming constructs for control flow

and their applications in machine learning. Section 3 provides an

architectural overview, highlighting challenges related to dynamic

control flow. Section 4 describes our design and implementation.

Section 5 considers two critical aspects of the system: automatic

differentiation and memory management. Section 6 evaluates the

performance and scalability of the system. Section 7 discusses re-

lated work.

2 PROGRAMMINGWITH CONTROL FLOW
In this section, we briefly review TensorFlow’s programming model

and describe its support for dynamic control flow. We also discuss

how dynamic control flow is being used in machine learning.

2.1 Programming Interface
TensorFlow employs a two-level programming model: program-

mers construct a dataflow graph using a high-level programming

language; and the TensorFlow runtime takes a complete dataflow

graph, optimizes it, and executes it on a set of devices. TensorFlow

provides language bindings for many programming languages in-

cluding Python, Java, and Go. In this paper, we use Python for

illustration.

To simplify the task of constructing machine learning models,

TensorFlow’s API exposes a large collection of pre-defined oper-

ators. The operators are embedded as functions in the host pro-

gramming languages. They support a wide range of mathematical

operations on tensors, which are dense multi-dimensional arrays

of basic data types such as float, integer, and string. The operators

also include control-flow constructs, based on the work described

in this paper. The most basic ones are cond and while_loop, for
expressing conditional and iterative computation, respectively:

• cond(pred, true_fn, false_fn) represents a conditional
computation, where pred is a boolean tensor, and true_fn
and false_fn are functions that construct the subgraphs for
the respective branches. Both true_fn and false_fn return
a tuple of tensors, with matching data types for each com-

ponent; the result of cond is a tuple of tensors, representing

the result of the branch that executes.

• while_loop(pred, body, inits) represents an iterative

computation, where pred and body are functions that con-
struct the subgraphs for the loop termination condition and

the loop body; inits is a tuple of tensors that specifies the
initial values of the loop variables. Both pred and body take a
tuple of loop variables as arguments; pred returns a boolean
tensor, and body returns a tuple of updated loop variables.

Other control-flow constructs include higher-order functions such

as map_fn, foldl, foldr, and scan. However, the number of primi-

tives remains small: the higher-order functions are actually defined

def scan(fn, elems, init):
elem_ta =

TensorArray(dtype=elems.dtype).unstack(elems)
result_ta = TensorArray(dtype=init.dtype)
n = elem_ta.size()
def pred(i, a, ta):

return i < n
def body(i, a, ta):

a_out = fn(a, elem_ta.read(i))
ta = ta.write(i, a_out)
return (i + 1, a_out, ta)

_, _, r =
while_loop(pred, body, (0, init, result_ta))

return r.stack()

Figure 2: The scan operator can be defined using while_loop
and TensorArrays.

in terms of while_loop. We support automatic differentiation for

all these operators.

TensorFlow provides a few common data structures, including

mutable variables and queues, and—as in conventional programs—

data structures are an important tool for organizing a dynamic

computation. TensorFlow initially lacked support for arrays of

tensors with random read/write accesses, and we therefore aug-

mented it with a new type of TensorArray objects. Unlike other

data structures, TensorArrays can be used to store values consumed

and produced by loops in a differentiable way, and they are a use-

ful complement to loops. The basic operations on a TensorArray

are ta.read(ix), which reads the array element at index ix, and
ta.write(ix, t), which writes the value t at index ix. A tensor

may be converted to or from a TensorArray using the ta.unstack()
and ta.stack() methods, respectively. We also support automatic

differentiation for these operations (Section 5.2). TensorArrays are

now used extensively in advanced machine learning models.

As an illustration of the expressiveness of our primitives, Fig-

ure 2 shows how we can define a higher-order scan, or general-
ized prefix-sum function, in terms of TensorArray objects and a

while_loop(). Given a tensor elems with dimensions [n, . . . ],
and an initial value init, scan computes a new tensor that con-

tains the values of the expressions: fn(init, elems[0,. . . ]),
fn(fn(init, elems[0,. . . ]), elems[1,. . . ]), . . . . It exem-

plifies a common computation pattern in machine learning: a tensor

elems is first unstacked into a TensorArray of subtensors, elem_ta;
a function fn is then repeatedly applied to those subtensors; and

finally the results are packed back into a single tensor.

2.2 Control Flow in Machine Learning
Most traditional neural networks (including multi-layer percep-

trons and convolutional neural networks) were static, in the sense

that they were composed of a fixed number of layers, each with

fixed operators. For learning over sequences (in particular, with

RNNs), fixed-length iterations would typically be unrolled statically.

In cases where some dynamic behavior was desired, the typical

solution was to use client-side control-flow decisions.
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However, for the past few years, we have seen growing demand

for dynamic control flow, especially in applications of recurrent and

tree neural networks [3, 16, 24] and of reinforcement learning [26].

This section gives a few examples.

Beyond its programming-model implications, this trend raises

the bar for implementations. For example, dynamic RNN models

may operate over sequences of thousands of inputs. Since memory

usage often grows linearly with sequence length, the amount of

memory available on an accelerator is often the key factor that

limits sequence length. Thus, this trend implies that memory opti-

mizations are increasingly important. We address these challenges

in later sections.

RNNs. The basic computation pattern of an RNN is to apply a

cell function to every element of a sequence. A cell function takes

as input a sequence element and the current “state” value; it returns

an output sequence element and the updated state value, which is

used when processing the next element. RNNs are thus well-suited

for processing sequential data; some of their variants can also be

applied to trees and other unbounded data structures.

RNNs are widely used in machine learning. One important appli-

cation of RNNs is Neural Machine Translation (NMT) [40, 45], for

which a model is composed of an encoder and a decoder. Both the

encoder and decoder can conveniently be expressed as while-loops

on variable-length sentences. We implemented the dynamic_rnn
operator in TensorFlow using while-loops and TensorArray objects.

An RNN cell can be very compute-intensive, so we often need

to distribute its execution across multiple devices. Some recent

advances in RNN models have made the cell function itself per-

form a dynamic computation. For example, Adaptive Computation

Time [16] uses a nested while-loop to learn how many computa-

tional steps to take at each time step of the outer loop of the RNNs.

This application exercises our support for distributed execution of

nested while-loops, and for their automatic differentiation.

Another example is the inclusion of an MoE layer inside the RNN

cell [38]. Such a layer typically comprises a set of experts—simple

neural networks that are specialized for a particular prediction

task—and a gating function that chooses which experts to consult

for a particular example. The experts and the gating function are

subnetworks with trainable parameters. Since there can be a large

number of experts (e.g., a few thousand in some NMT models)

each typically with 1 million parameters, the experts are typically

distributed across many machines.

Reinforcement learning. Reinforcement learning is a form of ma-

chine learning where an agent interacts with its environment by

performing a sequence of actions according to some learned policy

and receives rewards either at each interaction or after a sequence

of interactions. The agent’s goal is to choose actions that maximize

the sum of these rewards.

Unlike in standard supervised learning, the agent’s actions and

the resulting rewards need not be deterministic or differentiable, so

traditional backpropagation is insufficient and additional training

techniques are required. These techniques generally benefit from

dynamic control flow.

For example, some of our users write in-graph while-loops in

which the agent interacts with its environment, repeatedly, and

at each step the agent’s actions are chosen by sampling according

to learned probabilities. The expectation on the total rewards is a

differentiable function of those probabilities, so can be optimized

by gradient descent. Other users employ in-graph conditionals

to dynamically read or write agent experiences to an in-graph

database in parallel to the generation of the agent’s actions. Some

users also employ in-graph conditionals to create agents that choose

whether to act randomly (explore) or act according to a learned

policy (exploit).

Other usage. In addition to these examples of applications that

emphasize machine learning architectures, we have seen several

more mundane but useful applications of dynamic control flow. For

instance, some of our users have relied on in-graph while-loops for

programming training loops. (Generally, training loops are defined

out-of-graph, in the host high-level programming language.) In this

use case, a single coordinator process controls many workers that

may not even be located in the same datacenter; in-graph control

flow allows workers to make progress on training independently,

without synchronizing with the coordinator between steps. Others

have relied on in-graph conditionals for doing updates selectively,

for example updating model parameters only when updates are suf-

ficiently large, or updating only some model parameters in certain

training steps.

3 SYSTEM ARCHITECTURE
In this section we review TensorFlow as a representative system

architecture for a modern machine learning system [1], and discuss

how dynamic control flow fits into it.

The core TensorFlow runtime is implemented in C++ for portabil-

ity and performance. The runtime exports a client API to front-ends

for various languages (such as Python, Go, Java, and C++), whose

role is to provide a high-level interface for building a dataflow graph,

and manage the execution of that graph across a set of workers.

In Section 4, we describe how the control-flow constructs in the

client program are compiled into a dataflow graph representation

for optimization and execution.

The TensorFlow runtime is responsible for the execution of

the dataflow graph. It includes optimizations such as common

subexpression elimination and constant propagation. To enable

distributed execution on heterogeneous systems, a central coor-

dinator automatically maps the nodes in the graph to the given

set of devices, then partitions the graph into a set of subgraphs,

one per device. When this partitioning would cut an edge between

two devices, it automatically replaces the edge with a pair of com-

munication operations, Send(t, k) and Recv(k), which share a

rendezvous key. After partitioning, each subgraph is shipped to

the corresponding device, then executed by a device-local executor.
The local executors communicate directly among themselves using

Send and Recv operations, with no involvement from the central

coordinator. When a tensor needs to be transported across devices,

Send(t, k) publishes the tensor t under the rendezvous key k
on the sender’s device, and Recv(k) pulls the tensor under key k
from the sender’s device, blocking until it has been produced if

necessary.

Dynamic control flow introduces additional challenges in the

above design. Without control flow, each operation in the graph

executes exactly once, so every value can be assigned a unique
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Figure 3: The control-flow primitives.

name, and every Send/Recv pair a unique rendezvous key at graph-

construction time. With control flow, this property no longer holds:

an operation in a loop can execute zero or more times, and therefore

the unique names and rendezvous keys must be generated dynami-

cally to distinguish multiple invocations of the same operations.

One attractive feature of TensorFlow is that it imposes no re-

strictions on partitioning: an operation can be assigned to a device

provided the device has the capability to run the corresponding

computation, independently of graph topology or other considera-

tions. By design, our control-flow extensions preserve this impor-

tant feature. Therefore, a conditional branch or a loop body can

be arbitrarily partitioned to run across many devices. For condi-

tional computation, we must provide a mechanism to inform any

waiting Recv operations on untaken branches, to reclaim resources.

Similarly, for iterative computation, we must provide a mechanism

to allow a loop-participating partition to start its next iteration

or terminate its computation. The next section explains how we

realize these behaviors.

TensorFlow does not aspire to provide fine-grained fault toler-

ance, and the iterative programs that use our mechanism typically

run to completion between coarse-grained checkpoints. Because the

typical duration of a computation using our control-flow constructs

is much shorter than the expected mean time between failures,

we rely on TensorFlow’s coarse-grained checkpointing mechanism

without changes.

4 DESIGN AND IMPLEMENTATION
We rely on a small set of flexible, expressive primitives that serve as

a compilation target for high-level control-flow constructs within

a dataflow model of computation. We explain these primitives in

Section 4.1. In Section 4.2, we then describe how we use these prim-

itives for compilation. Finally, in Sections 4.3 and 4.4, we describe

our design and implementation for local and distributed execution,

respectively.

4.1 Control-Flow Primitives
Figure 3 shows our control-flow primitives namely Switch, Merge,
Enter, NextIteration, and Exit. These primitives resemble those

introduced in the classic dynamic dataflow machines developed by

Dennis [13] and Arvind et al. [4, 5]. With these primitives, every

execution of an operation takes place within a “frame”; concretely,

here, frames are dynamically allocated execution contexts associ-

ated with each iteration of a loop. In TensorFlow without control

flow, each operation in the graph executes exactly once; when ex-

tended with control flow, each operation executes at most once per

frame.

The following is a brief description of the intended semantics.

• Switch takes a data input d and a boolean input p, and for-

wards the data to one of its outputs df or dt, based on the

value of predicate p.
• Merge forwards one of its available inputs d1 or d2 to its

output; Merge is unlike other TensorFlow primitives in that

it is enabled for execution when any of its inputs is available.

• Enter forwards its input to a child frame with a given name.

There can be multiple Enter operations for the same child

frame, each asynchronously making a different tensor avail-

able to the child frame. The child frame is created when the

first Enter is executed in the runtime.

• Exit forwards a value computed in a frame to its parent

frame. There can be multiple Exits to the parent frame,

each asynchronously making a tensor available to the parent

frame.

• NextIteration forwards its input to the next iteration’s

frame. Iteration N + 1 begins when the first NextIteration
operation is executed at iteration N . There can be multiple

NextIterations in a frame.

4.2 Compilation of Control-Flow Constructs
We compile high-level control-flow constructs into dataflow graphs

that comprise the primitives presented above. Next we outline the

basics of the graph construction for conditionals and while-loops.

The translation of cond(p, true_fn, false_fn) uses only

Switch and Merge. We invoke true_fn and false_fn respectively
to construct the two branches of a cond. During the construction of

a branch, we capture any external tensor (not created in the branch),

and insert a Switch to guard its entering into the branch. The guard
ensures that any operations in a branch will be executed only when

that branch is taken. The external tensors may become available at

very different times; we use one Switch for each external tensor

in order to maximize parallelism. Each branch may return several

tensors, and both branches must return the same number and type

of tensors. For each output, we add a Merge in order to merge the

true and false branches, thus enabling downstream computation as

soon as possible.

Figure 4 sketches the dataflow graph for a while-loop with a

single loop variable. (If there were multiple loop variables, there

would be a separate set of Enter, Merge, Switch, NextIteration,
and Exit nodes for each of them, so that multiple iterations can run

in parallel.) The loop predicate and the loop body are represented by

the subgraphs Gpred and Gbody, respectively. The output of Merge is
used as the input to Gpred to compute the loop termination condition

p, and as an input to Switch, which forwards the tensor either

to Exit to terminate the current loop or to Gbody to start a new

iteration. The graph is cyclic so the result of the loop body can go

from one iteration to the next. Any external tensors used in Gpred or
Gbody are captured and treated as loop constants. We automatically
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Figure 4: Dataflow graph for a while-loop.

insert an Enter for each external tensor to make it accessible in the

loop body. When a new iteration is started, all the loop constants

become available to that iteration automatically.

This approach supports arbitrary nestings of conditionals and

loops. For example, a loop body can contain a conditional.

4.3 Local Execution
Recall that TensorFlow partitions a dataflow graph into a set of

subgraphs. Each subgraph runs on a separate device, managed by

a local executor that runs on the device’s host. (The host’s CPU is

also represented as a device.) This subsection describes how such a

local executor can support dynamic control flow.

The local executor is conceptually straightforward. It starts from

the source nodes and repeatedly executes the nodes that become

ready. A node, with the exception of Merge, becomes ready when all

its inputs are available. All Recv nodes in a subgraph are regarded

as source nodes.

For graphs without control-flow constructs, every node is ex-

ecuted exactly once and the execution ends when all nodes have

been executed. Dynamic control flow introduces new complexity.

An operation now can be executed any number of times. The execu-

tor must manage the (possibly concurrent) execution of multiple

instances of the same operation, and to determine the completion

of the entire execution.

We redesigned the local executor of TensorFlow to handle dy-

namic control flow. In order to track the tensors generated by dif-

ferent invocations of the same operation, each tensor inside the

executor is represented as a tuple (value, is_dead, tag), where value
is a tensor value, is_dead is a boolean that indicates whether the ten-
sor is on an untaken branch of a Switch, and tag is a globally unique
identifier for the tensor. Intuitively, the tag defines a dynamic execu-

tion context—a frame, in the terminology of Section 4.1. Each loop

iteration starts a new frame, and within a frame an operation is

executed at most once. As a result, the tag is used to distinguish the

tensors generated by different iterations. This distinction is critical

for the correct rendezvous of Send and Recv operations, since tags

are used as the rendezvous keys.

The executor implements the evaluation rules shown in Figure 5.

Each evaluation rule Eval(e, c) = r describes how to evaluate

expression e in frame c, yielding output r. The operations Enter

Eval(Switch(p, d), c) = (r1, r2), where
r1 = (value(d), p || is_dead(d), tag(d))
r2 = (value(d), !p || is_dead(d), tag(d))

Eval(Merge(d1, d2), c) = r, where
r = if is_dead(d1) then d2 else d1

Eval(Enter(d, name), c) = r, where
r = (value(d), is_dead(d), tag(d)/name/0)

Eval(Exit(d), c) = r, where
r = (value(d), is_dead(d), c.parent.tag)

Eval(NextIteration(d), c) = r, where
tag(d) = tag1/name/n
r = (value(d), is_dead(d), tag1/name/(n+1))

Eval(Op(d1, ..., dm), c) = (r1, ..., rn), where
value(r1), ..., value(rn) =

Op(value(d1), ..., value(dm))
is_dead(ri) =

is_dead(d1) || ... || is_dead(dm), for all i
tag(ri) = tag(d1), for all i

Figure 5: Evaluation rules for control-flow operators.

and Exit create and delete execution frames, respectively; for sim-

plicity, the rules do not show this. All the inputs to an operation

must have the same matching tag; c.parent is c’s parent frame,

with c.parent.tag as its tag.

The last rule applies to all non-control-flow operations. In the

implementation, the actual computation is performed only when

none of the inputs are dead. If there is a dead input, we skip the

computation and propagate a dead signal downstream. This propa-

gation of deadness is useful for supporting distributed execution,

as explained in the next subsection. The choice to propagate the

tag of the first input is arbitrary; all inputs must have the same tag.

While these rules allow multiple loop iterations to run in parallel,

more parallelism typically results in more memory consumption.

We therefore incorporate knobs in the local executor that allow us

to limit the degree of parallelism. In our evaluation, we generally

find that a limit of 32 works well—better than 1, which would be

easy to achieve with stricter implementation strategies, but also

better than no limit at all. The optimal value depends on the details

of the hardware and the model.

4.4 Distributed Execution
The main challenge for distributed, dynamic control flow arises

when the subgraph of a conditional branch or loop body is parti-

tioned across devices. We favor a design that allows the executors of

the partitions to make progress independently, with no centralized

coordinator. We do not require synchronization after loop itera-

tions, as this would severely limit parallelism. Each device that

participates in a loop can start the next iteration or exit once it re-

ceives the value of the loop predicate. A partition can have multiple

iterations running in parallel, and partitions can work on different
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Figure 6: Distributed execution of a while-loop.

iterations of the same loop. The local executors communicate only

via Send and Recv operations. A centralized coordinator is involved

only in the event of completion or failure.

We first look at conditionals, and consider a Recv operation on

an untaken branch. A Recv is always ready and can be started

unconditionally. So the system would block, without reclaiming

resources, if the corresponding Send is never executed. The solu-
tion is to propagate an is_dead signal across devices from Send
to Recv. The propagation may continue on any number of devices.

This propagation scheme handles distributed execution of nested

conditionals, and interacts well with distributed execution of loops.

However, when there are many Send–Recv pairs across devices on

a rarely taken conditional branch, the large number of is_dead sig-
nals may cause performance issues. These situations seldom arise,

but we have prototyped an optimization that transmits an is_dead
signal only once to the destination device and, there, broadcasts it

to all Recv operations.

For the distributed execution of a loop, at each iteration, each

partition needs to know whether to proceed or exit. We address

this need by automatically rewriting the graph with simple control-

loop state machines. For example, Figure 6 shows the result of

partitioning a simple while-loop across two devices. The loop body

contains only one operation Op assigned to device B. In B’s partition
we add a control-loop state machine (blue shade in the figure),

which controls the Recv operations inside the loop. The dotted lines
are control edges, and impose an order on operations. Suppose that

device A is executing the loop predicate P at iteration i; distributed
execution may then proceed as follows:

• On A, Recv awaits a value from B. A sends P to B, so B knows

the decision on iteration i and, depending on whether P is
true, A sends either the input tensor for Op or a dead signal

to B.

• On B, if Recv for Op gets a real tensor from A, B executes

Op and sends back a real tensor. Otherwise, if the Recv gets

an is_dead signal, B propagates the signal through Op and
sends an is_dead signal back to A. If Recv for Switch gets

true, the control-loop state machine further enables Recvs
for the next iteration. Otherwise, the control loop terminates,

and so does execution on B.

• Back on A, if Recv gets a real tensor, the next iteration is

started. Otherwise, execution terminates.

The overhead for the distributed execution of a loop is that every

participating device needs to receive a boolean at each iteration

from the device that produces the loop predicate. However, the com-

munication is asynchronous and computation of the loop predicate

can often run ahead of the rest of the computation. Given typi-

cal neural network models, this overhead is minimal and largely

hidden.

To make things concrete, let us take a brief look at GPU execu-

tion. In this setting, the compute and I/O operations typically run on

GPU as a sequence of asynchronous kernels, whereas control-flow

decisions are made by the local executor for the GPU on the host.

From the point of view of this local executor, a GPU kernel is con-

sidered completed once it is enqueued into the correct GPU stream.

(Correctness is guaranteed by the sequential execution of the ker-

nels in a single stream and proper cross-stream synchronization.)

So once we allow parallel iterations, the local executor will typically

run completely in parallel to the compute and I/O operations and

on separate computing resources. Therefore, as we will show in

Section 6, dynamic control flow gives the same performance as

static unrolling.

5 AUTOMATIC DIFFERENTIATION AND
MEMORY MANAGEMENT

Machine learning algorithms often rely on gradient-based methods

for optimizing a set of parameters. During the training of models,

gradient computations usually take more than half of the compute

time. It is therefore critical to make these computations efficient

and scalable.

TensorFlow supports automatic differentiation: given a dataflow

graph that represents a neural network, TensorFlow generates effi-

cient code for the corresponding distributed gradient computations.

This section describes how we extend automatic differentiation to

control-flow constructs, and (briefly) the treatment of TensorArrays.

This section also describes techniques for memory management.

Although these techniques are motivated by automatic differentia-

tion, they are not specific to this purpose.

5.1 Backpropagation with Control Flow
TensorFlow includes a reverse-mode automatic differentiation (au-

todiff) library that implements the well-known backpropagation

algorithm [35], and we describe here its support for (potentially

nested) cond and while_loop constructs.

We first revisit the basic autodiff algorithm used in TensorFlow.

The tf.gradients() function computes the gradients of a scalar

function, f (x1,x2, . . .), with respect to a set of parameter tensors,

x1,x2, . . ., using the following algorithm, which implements the

vector chain rule:
1

(1) Identify the subgraphG of operations between the symbolic

tensor representing y = f (x1,x2, . . .) and each parameter

tensor x1,x2, . . ..
(2) For each edge in G, which represents an intermediate value

t in f , set Grads[t] := 0. Set Grads[y] := 1.

1
Parr and Howard survey the necessary calculus to understand this algorithm [31].
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Figure 7: An operation and its gradient function.

(3) Traverse the vertices of G in reverse topological order. For

each vertex representing an intermediate operation

o1, . . . ,on = Op(i1, . . . , im ),

invoke the corresponding “gradient function”

∂i1, . . . , ∂im = OpGrad(i1, . . . , im ,Grads[o1], . . . ,Grads[on ]).

Add each ∂ik to Grads[ik ].

(4) After traversing every vertex, the gradient
∂y
∂xk

is Grads[xk ].

TensorFlow includes a library of gradient functions that corre-

spond tomost of its primitive operations. Figure 7 shows a schematic

example of such a gradient function, G(Op), which depends on both

the partial derivative of y with respect to the original Op’s output
(gz) and the original Op’s inputs (x and y). As a concrete example,

the tf.matmul(x, y) operation has the following (simplified) gra-

dient function, which computes gradients with respect to matrices

x and y:

# NOTE: `op` provides access to the inputs
# and outputs of the original operation.
def MatMulGrad(op, g_z):

x, y = op.inputs
g_x = tf.matmul(g_z, tf.transpose(y))
g_y = tf.matmul(tf.transpose(x), g_z)
return g_x, g_y

Tensors x and y are used in the gradient function, so will be kept in

memory until the gradient computation is performed. The resulting

memory consumption is a major constraint on our ability to train

deep neural networks, as we need values from all layers of the for-

ward computation (that is, of the computation being differentiated)

for the gradient computation. The same difficulty applies to neural

networks with loops. We return to this topic in Section 5.3.

We describe here the mechanisms that enable TensorFlow’s au-

todiff algorithm to perform backpropagation through control-flow

constructs. Each operation in the graph is associated with a “control-

flow context” that identifies the innermost control-flow construct

of which that operation is a member. When the backpropagation

traversal first encounters a new control-flow context, it generates a

corresponding control-flow construct in the gradient graph.

w = tf.Variable(tf.random_uniform((10, 10))
x = tf.placeholder(tf.float32, (10, 10))
a_0 = x
a_1 = tf.matmul(a_0, w)
a_2 = tf.matmul(a_1, w)
a_3 = tf.matmul(a_2, w)
y = tf.reduce_sum(a_3)
g_y = 1.0
g_w = 0.0
# The gradient of reduce_sum is broadcast.
g_a_3 = tf.fill(tf.shape(a_3), g_y)
# Apply MatMulGrad() three times; accumulate g_w.
g_a_2 = tf.matmul(g_a_3, tf.transpose(w))
g_w += tf.matmul(tf.transpose(a_2), g_a_3)
g_a_1 = tf.matmul(g_a_2, tf.transpose(w))
g_w += tf.matmul(tf.transpose(a_1), g_a_2)
g_a_0 = tf.matmul(g_a_1, tf.transpose(w))
g_w += tf.matmul(tf.transpose(a_0), g_a_1)

Figure 8: Computing the gradient of a loop by unrolling.

The gradient for tf.cond(pred, true_fn, false_fn) with

output gradients g_z is

tf.cond(pred, true_fn_grad(g_z), false_fn_grad(g_z)).

To obtain the true_fn_grad function, we apply tf.gradients()
to the symbolic outputs ti of true_fn, but setting the initial gradi-

ents Grads[ti ] := g_z[i]; the same logic applies to false_fn_grad.
The logic for tf.while_loop(cond, body, loop_vars) is

more complicated. To understand its key components, consider

the following simple program that iteratively multiplies an input

matrix x by a parameter matrix w:

w = tf.Variable(tf.random_uniform((10, 10))
x = tf.placeholder(tf.float32, (10, 10))
a = tf.while_loop(

lambda i, a_i: i < 3,
lambda i, a_i: (i + 1, tf.matmul(a_i, w)),
[0, x])

y = tf.reduce_sum(a)
g_w = tf.gradients(y, x)

In this simple example, we can take advantage of the loop bound

being a constant. Figure 8 illustrates how we might unroll the loop

statically and apply the gradient functions for tf.matmul() and

tf.reduce_sum():2

This example highlights three features of the general solution:

(1) The gradient of a tf.while_loop() is another loop that

executes the gradient of the loop body for the same number

of iterations as the forward loop, but in reverse. In general,

this number is not known statically, so the forward loop

must be augmented with a loop counter.

(2) The gradient of each differentiable loop variable becomes

a loop variable in the gradient loop. Its initial value is the

2
In the general case, the loop bound may depend on the input data—e.g., based on the

length of a sequence in an RNN—and we must construct a tf.while_loop() for the
gradients.
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Figure 9: Saving a tensor for reuse in backpropagation.

gradient with respect to the corresponding loop output (e.g.,

g_a_3 in the example).

(3) The gradient of each differentiable tensor that is constant in

the loop (e.g., g_w in the example) is the sum of the gradients

for that tensor at each iteration.

In addition, intermediate values a_1, a_2, and a_3 from the forward

loop are used in the gradient loop. The performance of our solution

depends heavily on how we treat such intermediate values. There

are typically many such values, such as the inputs of a matrix

multiplication or the predicate of a conditional nested in the loop.

We avoid the computational expense of recomputing these values by

automatically rewriting the forward loop to save any intermediate

values that the gradient loop needs. We introduced a stack data

structure into TensorFlow to save values across loops: the forward

computation pushes onto the stacks, the gradient computation pops.

Figure 9 shows the graph structure that implements this stack-based

state saving. The implementation uses a different stack for each

intermediate value that is reused in the gradient loop, in order to

allow individual gradients to be computed asynchronously. We

prefer to use a regular tensor to store each intermediate value,

because each intermediate value might have a different shape, and

packing the values into a dense, contiguous array would incur

unnecessary memory copies. However, if the loop variables have a

static shape and the iteration count has a static upper bound, the

XLA [46] compiler may lower the stack operations to read/write

operations on a contiguous mutable array.

Correctness requires care to preserve the proper ordering of

stack operations. Performance considerations lead us to making

the stack operations asynchronous, so that they can run in parallel

with the actual computation. For example, in Figure 9, Op (and even
operations in subsequent iterations) can potentially run in parallel

with Push. As Section 5.3 explains, this asynchrony is important

for overlapping compute and I/O operations. For correctness, we

add explicit control dependencies to enforce ordering of the stack

operations.

Our implementation has additional optimizations, often with

the goal of reducing memory usage. For example, if a value is

immediately reduced in the gradient code by an operation that

computes its shape, rank, or size, we move this operation into the

forward loop. Moreover, for calculations that accumulate gradients,

we introduce subgraphs that sum gradients eagerly into new loop

variables.

Our approach also accommodates nested control-flow constructs.

When a conditional nests inside a while-loop, we push the guard

values at all forward iterations onto a stack, and pop those values

to control the conditionals in the gradient loop. For nested loops,

we apply our techniques recursively. Although we hope this ex-

planation gives the intuition for control-flow operator gradients, a

rigorous mathematical treatment is beyond the scope of this paper.

The literature on automatic differentiation has considered the ques-

tion of correctness of the semantics of control flow with respect to

the mathematical notion of differentiation (e.g., [8]), and our algo-

rithms follow these established principles. That said, this question

remains a subject of ongoing research [33].

5.2 Backpropagation with TensorArrays
TensorArrays constitute an important element of our programming

model, so automatic differentiation must treat them correctly and

efficiently. For this purpose, we require that each location of a

TensorArray may be written only once in the forward computa-

tion being differentiated, but allow multiple reads from the same

location. This requirement is satisfied by common applications of

TensorArrays.

The TensorFlow runtime represents TensorArrays as “resource

objects”, which are containers for mutable state. Each TensorArray

ta exposes an opaque handle ta.handle. Operations such as write
and read accept a TensorArray handle as their primary argument.

During backpropagation, for each forward TensorArray a new

TensorArray of the same size is created to hold gradient values. The

operation ta.grad(), when executed, either creates or performs a

table lookup for the gradient TensorArray associated with handle

ta.handle. The TensorArray operations are duals of each other: the
gradient of ta.read(ix) is ta.grad().write(ix, gix), and vice
versa, and the gradient of ta.unstack(ts) is ta.grad().stack(),
and vice versa. When there are multiple reads to the same location,

the gradient TensorArray holds the sum of the partial gradients

generated by the reads. Our implementation ensures the proper

ordering of reads and writes while allowing parallelism.

5.3 Memory Management
The memory demands described above are critical on specialized

devices such as GPUs, where memory is typically limited to no

more than 16GB. We employ several techniques for alleviating this

scarcity. We rely on memory swapping, taking advantage of tempo-

ral locality. We move tensors from GPU to CPU memory (which is

relatively abundant) when they are pushed onto stacks, and bring

them back gradually before they are needed in backpropagation.

The key to achieving good performance in memory swapping is to

overlap compute and I/O operations. This goal requires the seamless

cooperation of several system components.

First, as explained above, multiple iterations of a loop can run in

parallel, and the stack push and pop operations are asynchronous

and can run in parallel with the computation proper. The forward

computation can run ahead without waiting for the completion of

I/O operations. Conversely, during the gradient computation, the

I/O operations can run ahead, prefetching the tensors that will be

needed next.
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Figure 10: Dataflow dependencies in a distributed while-loop.

Second, in the context of GPUs, we use separate GPU streams

for compute and I/O operations to further improve the overlap of

these two classes of operations. Each stream consists of a sequence

of GPU kernels that are executed sequentially. Kernels on different

streams can run in parallel with respect to each other. We therefore

use (at least) three streams for compute, CPU-to-GPU transfer,

and GPU-to-CPU transfer operations, respectively. Thus, we run

compute kernels in parallel with independent memory-transfer

kernels. Of course, special care must be taken when there is a causal

dependency between two kernels on different streams. We rely on a

combination of TensorFlow control edges and GPU hardware events

to synchronize the dependent operations executed on different

streams.

Our implementation of the scheme described above watches the

memory consumption reported by the TensorFlow memory alloca-

tor, and only starts to swap when memory consumption reaches

a predefined threshold. We also do not swap small tensors or the

same value more than once.

This scheme has a large impact. For instance, as Section 6 de-

scribes, for an example RNN model for processing sequences, with-

out memory swapping, we run out of memory for sequences of

length 500. With memory swapping, we can handle sequences of

length 1000 with little overhead, and available host memory is the

primary factor limiting the maximum sequence length.

6 EVALUATION
In this section, we evaluate our design and implementation, focus-

ing on key design choices, and comparing against performance

baselines. In particular, our main comparisons against TensorFlow

without in-graph dynamic control flow are Table 1 (comparing with

the system with swapping disabled), Figure 14 (comparing with

static unrolling), and Section 6.5 (comparing with out-of-graph con-

trol flow). Other experiments (in particular Figures 12 and 15) give

evidence of the performance benefits of our approach relative to

more simplistic approaches that would limit parallelism or distri-

bution. We focus on these baselines because they permit the most

direct, apples-to-apples comparison.

For all the experiments, unless otherwise stated, we run Tensor-

Flow on a shared production cluster, consisting of Intel servers with

NVidia Tesla K40 GPUs connected by Ethernet across a production

networking fabric, and reported performance numbers are averages

across five or more repeated runs.

6.1 Data Dependencies
In this experiment we use simple microbenchmarks to evaluate the

performance and scalability of distributed iterative computation.

The benchmark is a single while-loop with its loop body partitioned

to run on a cluster of GPUs. First we consider two common patterns

of data dependence for the loop body: one where there is no coordi-

nation between devices, and one where devices synchronize at the

end of each iteration using a barrier (e.g., AllReduce), as illustrated
in Figures 10(a) and 10(b). Such computation patterns are quite

common in multi-layer architectures with MoEs and RNNs.

We evaluate the overall system capacity in terms of the number

of iterations per second it can support when running a while-loop

distributed across a set of GPUs. Each GPU is hosted on a separate

machine in the cluster. The computation f on each GPU is a very

small matrix operation, optionally followed by a barrier B across

all GPUs, so this experiment gives us the maximum number of

distributed iterations the system can handle at various scales.

Figure 11 shows the number of iterations achieved per second as

we vary the number of machines from 1 to 64. We plot the median

and 5th/95th percentile performance from 5000 trials. When the

loop body has no cross-device dependencies, the system can support

over 20, 000 iterations per second on a single machine, decreasing to

2014with 64machines. (i.e., 457µs per iteration). If the loop contains
a barrier operation, this reduces to 809 iterations per second (1235µs
per iteration).

Figure 11 demonstrates that, for both patterns of data depen-

dency, the overhead of distributed execution remains acceptable

as the number of machines increases. The Barrier result is within
a factor of two of the global barrier scaling results of Naiad [27,

Figure 6(b)], although the variance here is much lower. Other ex-

periments (in particular, those in Figure 15) further characterize the

scaling that results from distributed execution using non-synthetic

workloads.

Next we evaluate the benefits of running multiple iterations in

parallel. We run our simple benchmark on 8 GPUs in a single server

and vary the number of parallel iterations from 1 to 32. The loop

consists of 8 layers of computation, one for each GPU; and each

GPU performs a 1024x1024 matrix multiplication before passing

the result of its computation to the next. Each GPU has a data

dependency on its state from the previous loop iteration, and on

the output of the previous GPU. The loop iterations are additionally

serialized as shown in Figure 10(c). Note that the loop condition has
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Figure 11: Performance of a distributed while-loop with a
trivial body on a GPU cluster.

no data dependency on the body—when computing on GPUs, this

independence can often allow CUDA kernels from many iterations

to be enqueued on a stream for future execution.

We measure performance both on a K40 equipped server, as in

the previous experiment, and on NVidia’s flagship DGX-1 machine

equipped with 8 V100 GPUs, plotting the median and 5th/90th

percentiles from 5000 trials.

Figure 12 demonstrates that running iterations in parallel is

crucial for achieving the inherent parallelism from the 8 GPUs;

computation is automatically pipelined so as to mask any data

dependencies. On the K40 machine, we reach the peak performance

when the setting for parallel iterations is above 8. On the faster V100

serverwe achieve highest performancewith 4 parallel iterations, but

additional parallelism introduces scheduling noise. This experiment

also gives us a comparison with out-of-graph loop execution. When

the parallel iteration count is set to 1, loop iterations are executed

sequentially, similarly to straightforward out-of-graph execution

driven by a single thread. As Figure 12 indicates, in-graph control

flow makes it easy to exploit parallelism, here giving 5 times more

iterations per second than the unparallelized approach.

6.2 Memory Management
In this experiment we evaluate the effectiveness of swapping mem-

ory between CPU and GPU. TensorFlow’s RNN implementation

(known as dynamic_rnn) is based on our work, and has been used

in a wide variety of machine learning applications, including Neu-

ral Machine Translation (see Section 2). We use dynamic_rnn in

our experiments. The model architecture in this experiment is a

single-layer LSTM [19] with 512 units. The RNN implementation is

available in the current distribution of TensorFlow [42].

One key measure for RNN performance is the ability to train on

long sequenceswith large batch sizes. Long sequences are important

in many applications; examples include patient history in health

care, view history in web sites that recommend content, and signal

sequences in speech or music. The use of sufficiently large batch

sizes is crucial for efficiency on devices such as GPUs. Table 1 shows
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Figure 12: Effect of changing the number of iterations that
are allowed to run concurrently.

the performance of training as we increase the sequence length

from 100 to 1000. All results are for a single GPUwith batch size 512.

When memory swapping is disabled, we run out of memory (OOM)

at sequences of length a little over 500. When memory swapping is

enabled, we can train on sequences of length 1000with no overhead.

This increase in sequence length allows users to train substantially

larger and deeper networks (e.g., with multiple LSTM layers) at

no additional cost. For those models, the maximum length of a

sequence whose state fits in GPU memory would decrease even

further (e.g., to 500/8 for an 8-layer LSTM model) in the absence

of optimizations such as swapping or model parallelism (which we

discuss in Section 6.4).

We attribute this scalability to the ability to overlap compute

operations with the I/O operations for memory swapping. This

ability arises from the combination of parallel iterations, multi-

stream asynchronous GPU kernel execution, and asynchronous

state saving in gradient computations (§5.3). Figure 13 shows the

timelines for the kernels executed on both the compute and I/O

streams of the GPU. The kernels on the compute stream (labeled as

Compute) are the compute operations of the LSTMs; the kernels

on the two I/O MemCpy streams (labeled as DtoH and HtoD) are

copy kernels that transfer tensors between CPU and GPU. The

figure shows a time window from the forward computation, so the

GPU-to-CPU stream (DtoH) is active and the CPU-to-GPU stream

(HtoD) is mostly idle. As the figure indicates, the execution of the

compute kernels and the I/O kernels proceed in parallel, so the

total elapsed time with memory swapping is almost identical to the

elapsed time without it.

Training time per loop iteration (ms), by sequence length

Swap 100 200 500 600 700 900 1000

Disabled 5.81 5.78 5.75 OOM OOM OOM OOM

Enabled 5.76 5.76 5.73 5.72 5.77 5.74 5.74

Table 1: Training time per loop iteration for an LSTMmodel
with increasing sequence lengths.
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Figure 13: Timelines for the GPU kernels with memory swapping enabled.
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Figure 14: Performance comparison of dynamic control flow
against static unrolling.

6.3 Dynamic Control Flow vs. Static Unrolling
An alternative to using dynamic_rnn is to rely on static loop un-

rolling. Static unrolling eliminates dynamic control flow and there-

fore gives a good baseline in understanding the performance of

dynamic control flow.

Figure 14 shows the total elapsed times of running one training

step with various batch sizes. All results are for a single-layer LSTM

running on one GPU with sequence length 200. We see a small

slowdown of between 3% and 8%, and the slowdown decreases

as we increase the batch size (and hence the computation). The

slowdown is largely due to the overhead of dynamic control flow.

We also consider the memory consumption of dynamic_rnn
against static unrolling. In some configurations, dynamic_rnn can

handle substantially longer sequences than static unrolling. For

example, for a single layer LSTM model of 2048 units and batch

size 256, dynamic_rnn can handle sequences of length 256 while

static unrolling runs out of memory at 128. Static unrolling exposes

the entire unrolled dataflow graph (and hence all the potential
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Figure 15: Parallel speedup for an 8-layer LSTM as we vary
the number of GPUs from 1 to 8.

parallelism) to the runtime. The abundant parallelism poses a chal-

lenge to the runtime as the order of the operations can dramatically

impact memory usage. With dynamic control flow, the additional

structure enables the runtime to choose an execution order that is

both time- and memory-efficient.

6.4 Model Parallelism
For several reasons such as better memory utilization, users of-

ten want to train models in parallel across multiple devices. For

example, a multi-layer RNN can be parallelized across multiple

GPUs by assigning each layer to a different GPU. In our approach,

this strategy is expressed as a single loop that is partitioned across

GPUs. Recall that in Figure 12, we show how a microbenchmark

performs in such a setting. We now evaluate the performance of

an end-to-end training step of a realistic 8-layer LSTM model on 8

GPUs. Figure 15 shows the total elapsed time as we vary the number

of GPUs. We observe a parallel speedup from 1 to 8 GPUs, and a

speedup of 5.5× at 8 GPUs. As expected, the speedup is sub-linear,

due to the additional DMA overhead when using multiple GPUs,
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Figure 16: Dynamic control flow in Deep Q-Networks.

but this is mitigated by the ability to overlap computation in multi-

ple iterations. The running time includes the gradient computation,

so this experiment additionally illustrates the performance of the

parallel and distributed execution of gradient computations.

6.5 An Application: Reinforcement Learning
Finally, we consider the benefits of dynamic control flow in an

archetypical application: we describe how Deep Q-Networks (DQN)

[26], a benchmark reinforcement learning algorithm, can be imple-

mented with dynamic control flow. While DQN has already been

superseded by newer methods, this example is representative of

uses of dynamic control flow in reinforcement learning, including

more recent algorithms.

Figure 16 shows a diagram of the DQN algorithm. DQN augments

a neural network with a database in which it stores its incoming

experiences, periodically sampling past experiences to be employed

for Q-Learning, a form of reinforcement learning. Q-Learning uses

these experiences along with a second neural network, called the

target network, to train the main network. The target network is

periodically updated to reflect a snapshot of the main network.

The DQN algorithm includes many conditionals: different expe-

riences cause different types of writes to the database, and sampling

of experiences, Q-Learning, and updates to the target network are

each performed conditionally based on the total amount of experi-

ence received.

A baseline implementation of DQN without dynamic control

flow requires conditional execution to be driven sequentially from

the client program. The in-graph approach fuses all steps of the

DQN algorithm into a single dataflow graph with dynamic control

flow, which is invoked once per interaction with the reinforcement

learning environment. Thus, this approach allows the entire com-

putation to stay inside the system runtime, and enables parallel

execution, including the overlapping of I/O with other work on a

GPU. It yields a speedup of 21% over the baseline. Qualitatively,

users report that the in-graph approach yields a more self-contained

and deployable DQN implementation; the algorithm is encapsu-

lated in the dataflow graph, rather than split between the dataflow

graph and code in the host language.

7 RELATEDWORK
Our approach to control flow draws on a long line of research on

dynamic dataflow architectures, going back to the work of Arvind

et al. [4, 5]. The timely dataflow model [28], implemented in the

Naiad system [27], can be seen as a recent embodiment of those

architectures. It supports distributed execution, with protocols for

tracking the progress of computations. The control-loop state ma-

chines we describe in Section 4.4 constitute a specialized approach

for this tracking that is more lightweight and efficient for the task;

this approach, although suitable for our purposes, would be difficult

to extend to incremental computations of the kind that Naiad en-

ables. Naiad does not support heterogeneous systems, so does not

address some of the problems that we studied, in particular mem-

ory management across heterogenous devices. Nor does it address

automatic differentiation, which is crucial for machine learning

applications.

Some systems for machine learning, such as Theano [6, 9] and

CNTK [36], allow the programmer to create a computation graph,

for example with a Python front-end, and then to launch the execu-

tion of this graph, following the in-graph approach described in the

introduction. Theano allows this graph to contain control-flow con-

structs, but Theano’s support for control flow is relatively limited.

In particular, Theano allows neither nested loops, nor the parallel

or distributed execution of control-flow constructs; its automatic

differentiation often requires more computation and is therefore

less efficient than the approach in this paper. In a discussion of

limitations and challenges related to control flow, the developers of

Theano have written that they find TensorFlow’s approach appeal-

ing [2].

Other systems for machine learning, such as Torch [12], Chainer

[44], and PyTorch [34], blur this phase distinction: a graph appears

to be executed as it is defined, either on one input example at a time

or on manually specified batches. Because the graph is not given

ahead of time, optimizations are more difficult. These systems are

typically based on Python, and expose Python’s control-flow con-

structs, which do not come with support for distributed execution

and memory management across heterogeneous devices. The two

approaches are reconciled in systems such as MXNet [10, 14], which

supports both (but without control flow in graphs), and with Tensor-

Flow’s “imperative mode” and “eager mode” extensions [23, 37].

While we favor embedding control flow in a static graph, oth-

ers have proposed more dynamic distributed execution engines

that support similar control flow. For example, CIEL represents a

program as an unstructured “dynamic task graph” in which tasks

can tail-recursively spawn other tasks, and imperative control-flow

constructs are transformed into continuation-passing style [29].

Nishihara et al. recently described a system for “real-time machine

learning” that builds on these ideas, and adds a decentralized and

hierarchical scheduler to improve the latency of task dispatch [30].

Programming models based on dynamic task graphs are a direct fit

for algorithms that make recursive traversals over dynamic data

structures, such as parse trees [15]. By contrast, in our approach

this recursion must be transformed into iteration, for example using

the transformation that Looks et al. describe [24]. The drawback of

an unstructured dynamic task graph is that the individual tasks are

black boxes, and more challenging to optimize holistically.

The wish to save memory is fairly pervasive across machine

learning systems, in part because of the important role of GPUs

and other devices with memory systems of moderate size. Some

techniques based on recomputation specifically target the memory
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requirements of backpropagation [11, 17]. These techniques con-

cern feed-forward graphs, LSTMs, and RNNs, rather than arbitrary

graphs with control-flow constructs; for particular classes of graphs,

clever algorithms yield efficient recomputation policies, sometimes

optimal ones. Our work on swapping belongs in this line of research.

So far, we have emphasized the development of mechanisms, and

relatively simple but effective policies for their use. In future work

we may explore additional algorithms and also the application of

reinforcement learning to swapping and recomputation decisions.

Finally, our research is related to a substantial body of work

on automatic differentiation (e.g., [18, 25, 32]). That work includes

systems for automatic differentiation of “ordinary” programming

languages (e.g., Fortran, C, or Python) with control-flow constructs.

It has generally not been concerned with parallel and distributed

implementations—perhaps because working efficiently on large

datasets, as in deep learning, has not been a common goal [7].

8 CONCLUSIONS
This paper presents a programming model for machine learning

that includes dynamic control flow, and an implementation of that

model. This design enables parallel and distributed execution in

heterogeneous environments. Automatic differentiation contributes

to the usability of the control-flow constructs. The implementation

allows us to leverage GPUs and custom ASICs with limited memory,

and supports applications that make frequent control-flow decisions

across many devices. Our code is part of TensorFlow; it has already

been used widely, and has contributed to new advances in machine

learning.

Dynamic control flow relates to active areas of machine learning,

which may suggest opportunities for further work. In particular,

conditional computation, where parts of a neural network are active

on a per-example basis, has been proposed as a way to increase

model capacity without a proportional increase in computation; re-

cent research has demonstrated architectures with over 100 billion

parameters [38]. Also, continuous training and inference may rely

on streaming systems, perhaps using the dynamic dataflow archi-

tectures that we adapt, as suggested by work on timely dataflow

and differential dataflow [28]. Further research on abstractions and

implementation techniques for conditional and streaming compu-

tation seems worthwhile.

Dynamic control flow is an important part of bigger trends that

we have begun to see in machine learning systems. Control-flow

constructs contribute to the programmability of these systems, and

enlarge the set of models that are practical to train using distributed

resources. Going further, we envision that additional programming-

language facilities will be beneficial. For instance, these may in-

clude abstraction mechanisms and support for user-defined data

structures. The resulting design and implementation challenges

are starting to become clear. New compilers and run-time systems,

such as XLA [46], will undoubtedly play a role.
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