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Abstract

Machine learning is being deployed in a growing number
of applications which demand real-time, accurate, and
robust predictions under heavy query load. However, most
machine learning frameworks and systems only address
model training and not deployment.

In this paper, we introduce Clipper, a general-purpose
low-latency prediction serving system. Interposing be-
tween end-user applications and a wide range of machine
learning frameworks, Clipper introduces a modular archi-
tecture to simplify model deployment across frameworks
and applications. Furthermore, by introducing caching,
batching, and adaptive model selection techniques, Clip-
per reduces prediction latency and improves prediction
throughput, accuracy, and robustness without modifying
the underlying machine learning frameworks. We evalu-
ate Clipper on four common machine learning benchmark
datasets and demonstrate its ability to meet the latency,
accuracy, and throughput demands of online serving ap-
plications. Finally, we compare Clipper to the Tensor-
flow Serving system and demonstrate that we are able
to achieve comparable throughput and latency while en-
abling model composition and online learning to improve
accuracy and render more robust predictions.

1 Introduction

The past few years have seen an explosion of applications
driven by machine learning, including recommendation
systems [28, 60], voice assistants [18, 26, 55], and ad-
targeting [3,27]. These applications depend on two stages
of machine learning: training and inference. Training is
the process of building a model from data (e.g., movie
ratings). Inference is the process of using the model to
make a prediction given an input (e.g., predict a user’s
rating for a movie). While training is often computation-
ally expensive, requiring multiple passes over potentially
large datasets, inference is often assumed to be inexpen-
sive. Conversely, while it is acceptable for training to take
hours to days to complete, inference must run in real-time,
often on orders of magnitude more queries than during
training, and is typically part of user-facing applications.

For example, consider an online news organization
that wants to deploy a content recommendation service
to personalize the presentation of content. Ideally, the
service should be able to recommend articles at interac-
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Figure 1: The Clipper Architecture.

tive latencies (<100ms) [64], scale to large and growing
user populations, sustain the throughput demands of flash
crowds driven by breaking news, and provide accurate
predictions as the news cycle and reader interests evolve.

The challenges of developing these services differ be-
tween the training and inference stages. On the training
side, developers must choose from a bewildering array of
machine learning frameworks with diverse APIs, models,
algorithms, and hardware requirements. Furthermore, they
may often need to migrate between models and frame-
works as new, more accurate techniques are developed.
Once trained, models must be deployed to a prediction
serving system to provide low-latency predictions at scale.

Unlike model development, which is supported by so-
phisticated infrastructure, theory, and systems, model de-
ployment and prediction-serving have received relatively
little attention. Developers must cobble together the nec-
essary pieces from various systems components, and must
integrate and support inference across multiple, evolving
frameworks, all while coping with ever-increasing de-
mands for scalability and responsiveness. As a result, the
deployment, optimization, and maintenance of machine
learning services is difficult and error-prone.

To address these challenges, we propose Clipper, a
layered architecture system (Figure 1) that reduces the
complexity of implementing a prediction serving stack
and achieves three crucial properties of a prediction serv-
ing system: low latencies, high throughputs, and improved

accuracy. Clipper is divided into two layers: (1) the model
abstraction layer, and (2) the model selection layer. The
first layer exposes a common API that abstracts away the
heterogeneity of existing ML frameworks and models.
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Consequently, models can be modified or swapped trans-
parently to the application. The model selection layer sits
above the model abstraction layer and dynamically se-
lects and combines predictions across competing models
to provide more accurate and robust predictions.

To achieve low latency, high throughput predictions,
Clipper implements a range of optimizations. In the model
abstraction layer, Clipper caches predictions on a per-
model basis and implements adaptive batching to maxi-
mize throughput given a query latency target. In the model
selection layer, Clipper implements techniques to improve
prediction accuracy and latency. To improve accuracy,
Clipper exploits bandit and ensemble methods to robustly
select and combine predictions from multiple models and
estimate prediction uncertainty. In addition, Clipper is
able to adapt the model selection independently for each
user or session. To improve latency, the model selection
layer adopts a straggler mitigation technique to render
predictions without waiting for slow models. Because of
this layered design, neither the end-user applications nor
the underlying machine learning frameworks need to be
modified to take advantage of these optimizations.

We implemented Clipper in Rust and added support for
several of the most widely used machine learning frame-
works: Apache Spark MLLib [40], Scikit-Learn [51],
Caffe [31], TensorFlow [1], and HTK [63]. While these
frameworks span multiple application domains, program-
ming languages, and system requirements, each was
added using fewer than 25 lines of code.

We evaluate Clipper using four common machine learn-
ing benchmark datasets and demonstrate that Clipper
is able to render low and bounded latency predictions
(<20ms), scale to many deployed models even across
machines, quickly select and adapt the best combination
of models, and dynamically trade-off accuracy and la-
tency under heavy query load. We compare Clipper to the
Google TensorFlow Serving system [59], an industrial
grade prediction serving system tightly integrated with
the TensorFlow training framework. We demonstrate that
Clipper’s modular design and broad functionality impose
minimal performance cost, achieving comparable predic-
tion throughput and latency to TensorFlow Serving while
supporting substantially more functionality. In summary,
our key contributions are:

• A layered architecture that abstracts away the com-
plexity associated with serving predictions in exist-
ing machine learning frameworks (§3).

• A set of novel techniques to reduce and bound la-
tency while maximizing throughput that generalize
across machine learning frameworks (§4).

• A model selection layer that enables online model
selection and composition to provide robust and ac-
curate predictions for interactive applications (§5).
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Figure 2: Machine Learning Lifecycle.

2 Applications and Challenges

The machine learning life-cycle (Figure 2) can be divided
into two distinct phases: training and inference. Training
is the process of estimating a model from data. Training is
often computationally expensive requiring multiple passes
over large datasets and can take hours or even days to
complete [11, 29, 41]. Much of the innovation in systems
for machine learning has focused on model training with
the development of systems like Apache Spark [65], the
Parameter Server [38], PowerGraph [25], and Adam [14].

A wide range of machine learning frameworks have
been developed to address the challenges of training.
Many specialize in particular models such as Tensor-
Flow [1] for deep learning or Vowpal Wabbit [34] for
large linear models. Others are specialized for specific
application domains such as Caffe [31] for computer vi-
sion or HTK [63] for speech recognition. Typically, these
frameworks leverage advances in parallel and distributed
systems to scale the training process.

Inference is the process of evaluating a model to ren-
der predictions. In contrast to training, inference does
not involve complex iterative algorithms and is therefore
generally assumed to be easy. As a consequence, there is
little research studying the process of inference and most
machine learning frameworks provide only basic sup-
port for offline batch inference – often with the singular
goal of evaluating the model training algorithm. How-
ever, scalable, accurate, and reliable inference presents
fundamental system challenges that will likely dominate
the challenges of training as machine learning adoption
increases. In this paper we focus on the less studied but
increasingly important challenges of inference.

2.1 Application Workloads

To illustrate the challenges of inference and provide a
benchmark on which to evaluate Clipper, we describe two
canonical real-world applications of machine learning:
object recognition and speech recognition.

Object Recognition

Advances in deep learning have spurred rapid progress
in computer vision, especially in object recognition prob-
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lems – the task of identifying and labeling the objects
in a picture. Object recognition models form an impor-
tant building block in many computer vision applications
ranging from image search to self-driving cars.

As users interact with these applications, they provide
feedback about the accuracy of the predictions, either
by explicitly labeling images (e.g., tagging a user in an
image) or implicitly by indicating whether the provided
prediction was correct (e.g., clicking on a suggested image
in a search). Incorporating this feedback quickly can be
essential to eliminating failing models and providing a
more personalized experience for users.

Benchmark Applications: We use the well studied
MNIST [35], CIFAR-10 [32], and ImageNet [49] datasets
to evaluate increasingly difficult object recognition tasks
with correspondingly larger inputs. For each dataset, the
prediction task requires identifying the correct label for
an image based on its pixel values. MNIST is a common
baseline dataset used to demonstrate the potential of a
new algorithm or technique, and both deep learning and
more classical machine learning models perform well on
MNIST. On the other hand, for CIFAR-10 and Imagenet,
deep learning significantly outperforms other methods. By
using three different datasets, we evaluate Clipper’s per-
formance when serving models that have a wide variety
of computational requirements and accuracies.

Automatic Speech Recognition

Another successful application of machine learning is au-
tomatic speech recognition. A speech recognition model
is a function from a spoken audio signal to the correspond-
ing sequence of words. Speech recognition models can be
relatively large [10] and are often composed of many com-
plex sub-models trained using specialized speech recog-
nition frameworks (e.g., HTK [63]). Speech recognition
models are also often personalized to individual users to
accommodate variations in dialect and accent.

In most applications, inference is done online as the
user speaks. Providing real-time predictions is essential
to user experience [4] and enables new applications like
real-time translation [56]. However, inference in speech
models can be costly [10] requiring the evaluation of large
tensor products in convolutional neural networks.

As users interact with speech services, they provide
implicit signal about the quality of the speech predictions
which can be used to identify the dialect. Incorporating
this feedback quickly improves user experience by allow-
ing us to choose models specialized for a user’s dialect.

Benchmark Application: To evaluate the benefit of
personalization and online model-selection on a dataset
with real user data, we built a speech recognition ser-
vice with the widely used TIMIT speech corpus [24] and
the HTK [63] machine learning framework. This dataset
consists of voice recordings for 630 speakers in eight di-

alects of English. We randomly drew users from the test
corpus and simulated their interaction with our speech
recognition service using their pre-recorded speech data.

2.2 Challenges

Motivated by the above applications, we outline the key
challenges of prediction serving and describe how Clipper
addresses these challenges.

Complexity of Deploying Machine Learning

There is a large and growing number of machine learning
frameworks [1,7,13,16,31]. Each framework has strengths
and weaknesses and many are optimized for specific mod-
els or application domains (e.g., computer vision). Thus,
there is no dominant framework and often multiple frame-
works may be used for a single application (e.g., speech
recognition and computer vision in automatic captioning).
Furthermore, machine learning is an iterative process and
the best framework may change as an application evolves
over time (e.g., as a training dataset grows to require
distributed model training). Although common model ex-
change formats have been proposed [47, 48], they have
never achieved widespread adoption because of the rapid
and fundamental changes in state-of-the-art techniques
and additional source of errors from parallel implementa-
tions for training and serving. Finally, machine learning
frameworks are often developed by and for machine learn-
ing experts and are therefore heavily optimized towards
model development rather than deployment. As a conse-
quence of these design decisions, application developers
are forced to accept reduced accuracy by forgoing the use
of a model well-suited to the task or to incur the substan-
tially increased complexity of integrating and supporting
multiple machine learning frameworks.

Solution: Clipper introduces a model abstraction layer
and common prediction interface that isolates applications
from variability in machine learning frameworks (§4)
and simplifies the process of deploying a new model or
framework to a running application.

Prediction Latency and Throughput

The prediction latency is the time it takes to render a
prediction given a query. Because prediction serving is
often on the critical path, predictions must both be fast
and have bounded tail latencies to meet service level ob-
jectives [64]. While simple linear models are fast, more
sophisticated and often more accurate models such as
support vector machines, random forests, and deep neu-
ral networks are much more computationally intensive
and can have substantial latencies (50-100ms) [13] (see
Figure 11 for details). In many cases accuracy can be
improved by combining models but at the expense of
stragglers and increased tail latencies. Finally, most ma-
chine learning frameworks are optimized for offline batch
processing and not single-input prediction latency. More-
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over, the low and bounded latency demands of interactive
applications are often at odds with the design goals of
machine learning frameworks.

The computational cost of sophisticated models can
substantially impact prediction throughput. For example,
a relatively fast neural network which is able to render
100 predictions per second is still orders of magnitude
slower than a modern web-server. While batching pre-
diction requests can substantially improve throughput by
exploiting optimized BLAS libraries, SIMD instructions,
and GPU acceleration it can also adversely affect predic-
tion latency. Finally, under heavy query load it is often
preferable to marginally degrade accuracy rather than
substantially increase latency or lose availability [3, 23].

Solution: Clipper automatically and adaptively batches
prediction requests to maximize the use of batch-oriented
system optimizations in machine learning frameworks
while ensuring that prediction latency objectives are still
met (§4.3). In addition, Clipper employs straggler mitiga-
tion techniques to reduce and bound tail latency, enabling
model developers to experiment with complex models
without affecting serving latency (§5.2.2).

Model Selection

Model development is an iterative process producing
many models reflecting different feature representations,
modeling assumptions, and machine learning frameworks.
Typically developers must decide which of these models
to deploy based on offline evaluation using stale datasets
or engage in costly online A/B testing. When predictions
can influence future queries (e.g., content recommenda-
tion), offline evaluation techniques can be heavily biased
by previous modeling results. Alternatively, A/B testing
techniques [2] have been shown to be statistically ineffi-
cient — requiring data to grow exponentially in the num-
ber of candidate models. The resulting choice of model
is typically static and therefore susceptible to changes in
model performance due to factors such as feature corrup-
tion or concept drift [52]. In some cases the best model
may differ depending on the context (e.g., user or region)
in which the query originated. Finally, predictions from
more than one model can often be combined in ensem-
bles to boost prediction accuracy and provide more robust
predictions with confidence bounds.

Solution: Clipper leverages adaptive online model se-
lection and ensembling techniques to incorporate feed-
back and automatically select and combine predictions
from models that can span multiple machine learning
frameworks.

2.3 Experimental Setup

Because we include microbenchmarks of many of Clip-
per’s features as we introduce them, we present the experi-
mental setup now. For each of the three object recognition

Dataset Type Size Features Labels

MNIST [35] Image 70K 28x28 10

CIFAR [32] Image 60k 32x32x3 10

ImageNet [49] Image 1.26M 299x299x3 1000

Speech [24] Sound 6300 5 sec. 39

Table 1: Datasets. The collection of real-world benchmark

datasets used in the experiments.

benchmarks, the prediction task is predicting the correct
label given the raw pixels of an unlabeled image as input.
We used a variety of models on each of the object recogni-
tion benchmarks. For the speech recognition benchmark,
the prediction task is predicting the phonetic transcrip-
tion of the raw audio signal. For this benchmark, we
used the HTK Speech Recognition Toolkit [63] to learn
Hidden Markov Models whose outputs are sequences of
phonemes representing the transcription of the sound. De-
tails about each dataset are presented in Table 1.

Unless otherwise noted, all experiments were con-
ducted on a single server. All machines used in the exper-
iments contain 2 Intel Haswell-EP CPUs and 256 GB of
RAM running Ubuntu 14.04 on Linux 4.2.0. TensorFlow
models were executed on a Nvidia Tesla K20c GPUs with
5 GB of GPU memory and 2496 cores. In the scaling ex-
periment presented in Figure 6, the servers in the cluster
were connected with both a 10Gbps and 1Gbps network.
For each network, all the servers were located on the same
switch. Both network configurations were investigated.

3 System Architecture

Clipper is divided into model selection and model abstrac-

tion layers (see Figure 1). The model abstraction layer
is responsible for providing a common prediction inter-
face, ensuring resource isolation, and optimizing the query
workload for batch oriented machine learning frameworks.
The model selection layer is responsible for dispatching
queries to one or more models and combining their pre-
dictions based on feedback to improve accuracy, estimate
uncertainty, and provide robust predictions.

Before presenting the detailed Clipper system design
we first describe the path of a prediction request through
the system. Applications issue prediction requests to Clip-
per through application facing REST or RPC APIs. Pre-
diction requests are first processed by the model selection
layer. Based on properties of the prediction request and
recent feedback, the model selection layer dispatches the
prediction request to one or more of the models through
the model abstraction layer.

The model abstraction layer first checks the predic-
tion cache for the query before assigning the query to
an adaptive batching queue associated with the desired
model. The adaptive batching queue constructs batches of
queries that are tuned for the machine learning framework
and model. A cross language RPC is used to send the
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batch of queries to a model container hosting the model
in its native machine learning framework. To simplify
deployment, we host each model container in a separate
Docker container. After evaluating the model on the batch
of queries, the predictions are sent back to the model ab-
straction layer which populates the prediction cache and
returns the results to the model selection layer. The model
selection layer then combines one or more of the predic-
tions to render a final prediction and confidence estimate.
The prediction and confidence estimate are then returned
to the end-user application.

Any feedback the application collects about the quality
of the predictions is sent back to the model selection layer
through the same application-facing REST/RPC interface.
The model selection layer joins this feedback with the
corresponding predictions to improve how it selects and
combines future predictions.

We now present the model abstraction layer and the
model selection layer in greater detail.

4 Model Abstraction Layer

The Model Abstraction Layer (Figure 1) provides a
common interface across machine learning frameworks.
It is composed of a prediction cache, an adaptive query-
batching component, and a set of model containers con-
nected to Clipper via a lightweight RPC system. This
modular architecture enables caching and batching mech-
anisms to be shared across frameworks while also scaling
to many concurrent models and simplifying the addition
of new frameworks.

4.1 Overview

At the top of the model abstraction layer is the prediction
cache (§4.2). The prediction caches provides a partial
pre-materialization mechanism for frequent queries and
accelerates the adaptive model selection techniques de-
scribed in §5 by enabling efficient joins between recent
predictions and feedback.

The batching component (§4.3) sits below the predic-
tion cache and aggregates point queries into mini-batches
that are dynamically resized for each model container to
maximize throughput. Once a mini-batch is constructed
for a given model it is dispatched via the RPC system to
the container for evaluation.

Models deployed in Clipper are each encapsulated
within their own lightweight container (§4.4), commu-
nicating with Clipper through an RPC mechanism that
provides a uniform interface to Clipper and simplifies the
deployment of new models. The lightweight RPC system
minimizes the overhead of the container-based architec-
ture and simplifies cross-language integration.

In the following sections we describe each of these
components in greater detail and discuss some of the key
algorithmic innovations associated with each.

4.2 Caching

For many applications (e.g., content recommendation),
predictions concerning popular items are requested fre-
quently. By maintaining a prediction cache, Clipper can
serve these frequent queries without evaluating the model.
This substantially reduces latency and system load by
eliminating the additional cost of model evaluation.

In addition, caching in Clipper serves an important role
in model selection (§5). To select models intelligently
Clipper needs to join the original predictions with any
feedback it receives. Since feedback is likely to return
soon after predictions are rendered [39], even infrequent
or unique queries can benefit from caching.

For example, even with a small ensemble of four mod-
els (a random forest, logistic regression model, and linear
SVM trained in Scikit-Learn and a linear SVM trained in
Spark), prediction caching increased feedback processing
throughput in Clipper by 1.6x from roughly 6K to 11K
observations per second.

The prediction cache acts as a function cache for the
generic prediction function:

Predict(m: ModelId, x: X) -> y: Y

that takes a model id m along with the query x and com-
putes the corresponding model prediction y. The cache
exposes a simple non-blocking request and fetch API.
When a prediction is needed, the request function is in-
voked which notifies the cache to compute the prediction
if it is not already present and returns a boolean indicat-
ing whether the entry is in the cache. The fetch function
checks the cache and returns the query result if present.

Clipper employs an LRU eviction policy for the pre-
diction cache, using the standard CLOCK [17] cache
eviction algorithm. With an adequately sized cache, fre-
quent queries will not be evicted and the cache serves
as a partial pre-materialization mechanism for hot items.
However, because adaptive model selection occurs above

the cache in Clipper, changes in predictions due to model
selection do not invalidate cache entries.

4.3 Batching

The Clipper batching component transforms the concur-
rent stream of prediction queries received by Clipper into
batches that more closely match the workload assump-
tions made by machine learning frameworks while simul-
taneusly amortizing RPC and system overheads. Batching
improves throughput and utilization of often costly physi-
cal resources such as GPUs, but it does so at the expense
of increased latency by requiring all queries in the batch
to complete before returning a single prediction.

We exploit an explicitly stated latency service level ob-
jective (SLO) to increase latency in exchange for substan-
tially improved throughput. By allowing users to specify
a latency objective, Clipper is able to tune batched query
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evaluation to maximize throughput while still meeting the
latency requirements of interactive applications. For ex-
ample, requesting predictions in sufficiently large batches
can improve throughput by up to 26x (the Scikit-Learn
SVM in Figure 4) while meeting a 20ms latency SLO.

Batching increases throughput via two mechanisms.
First, batching amortizes the cost of RPC calls and in-
ternal framework overheads such as copying inputs to
GPU memory. Second, batching enables machine learning
frameworks to exploit existing data-parallel optimizations
by performing batch inference on many inputs simultane-
ously (e.g., by using the GPU or BLAS acceleration).

As the model selection layer dispatches queries for
model evaluation, they are placed on queues associated
with model containers. Each model container has its own
adaptive batching queue tuned to the latency profile of that
container and a corresponding thread to process predic-
tions. Predictions are processed in batches by removing
as many queries as possible from a queue up to the max-
imum batch size for that model container and sending
the queries as a single batch prediction RPC to the con-
tainer for evaluation. Clipper imposes a maximum batch
size to ensure that latency objectives are met and avoid
excessively delaying the first queries in the batch.

Frameworks that leverage GPU acceleration such as
TensorFlow often enforce static batch sizes to maintain
a consistent data layout across evaluations of the model.
These frameworks typically encode the batch size directly
into the model definition in order to fully exploit GPU
parallelism. When rendering fewer predictions than the
batch size, the input must be padded to reach the defined
size, reducing model throughput without any improve-
ment in prediction latency. Careful tuning of the batch
size should be done to maximize inference performance,
but this tuning must be done offline and is fixed by the
time a model is deployed.

However, most machine learning frameworks can ef-
ficiently process variable-sized batches at serving time.
Yet differences between the framework implementation
and choice of model and inference algorithm can lead to
orders of magnitude variation in model throughput and
latency. As a result, the latency profile – the expected time
to evaluate a batch of a given size – varies substantially
between model containers. For example, in Figure 3 we
see that the maximum batch size that can be executed
within a 20ms latency SLO differs by 241x between the
linear SVM which does a very simple vector-vector multi-
ply to perform inference and the kernel SVM which must
perform a sequence of expensive nearest-neighbor calcu-
lations to evaluate the kernel. As a consequence, the linear
SVM can achieve throughput of nearly 30,000 qps while
the kernel SVM is limited to 200 qps under this SLO.
Instead of requiring application developers to manually
tune the batch size for each new model, Clipper employs
a simple adaptive batching scheme to dynamically find
and adapt the maximum batch size.

4.3.1 Dynamic Batch Size

We define the optimal batch size as the batch size that max-
imizes throughput subject to the constraint that the batch
evaluation latency is under the target SLO. To automati-
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cally find the optimal maximum batch size for each model
container we employ an additive-increase-multiplicative-
decrease (AIMD) scheme. Under this scheme, we addi-
tively increase the batch size by a fixed amount until the
latency to process a batch exceeds the latency objective.
At this point, we perform a small multiplicative back-
off, reducing the batch size by 10%. Because the optimal
batch size does not fluctuate substantially, we use a much
smaller backoff constant than other Additive-Increase,
Multiplicative-Decrease schemes [15].

Early performance measurements (Figure 3) suggested
a stable linear relationship between batch size and latency
across several of the modeling frameworks. As a result,
we also explored the use of quantile regression to estimate
the 99th-percentile (P99) latency as a function of batch
size and set the maximum batch size accordingly. We
compared the two approaches on a range of commonly
used Spark and Scikit-Learn models in Figure 4. Both
strategies provide significant performance improvements
over the baseline strategy of no batching, achieving up to
a 26x throughput increase in the case of the Scikit-Learn
linear SVM, demonstrating the performance gains that
batching provides. While the two batching strategies per-
form nearly identically, the AIMD scheme is significantly
simpler and easier to tune. Furthermore, the ongoing adap-
tivity of the AIMD strategy makes it robust to changes
in throughput capacity of a model (e.g., during a garbage
collection pause in Spark). As a result, Clipper employs
the AIMD scheme as the default.

4.3.2 Delayed Batching

Under moderate or bursty loads, the batching queue may
contain less queries than the maximum batch size when
the next batch is ready to be dispatched. For some models,
briefly delaying the dispatch to allow more queries to
arrive can significantly improve throughput under bursty
loads. Similar to the motivation for Nagle’s algorithm [44],
the gain in efficiency is a result of the ratio of the fixed
cost for sending a batch to the variable cost of increasing
the size of a batch.

In Figure 5, we compare the gain in efficiency (mea-
sured as increased throughput) from delayed batching for
two models. Delayed batching provides no increase in
throughput for the Spark SVM because Spark is already
relatively efficient at processing small batch sizes and can
keep up with the moderate serving workload using batches
much smaller than the optimal batch size. In contrast, the
Scikit-Learn SVM has a high fixed cost for processing a
batch but employs BLAS libraries to do efficient parallel
inference on many inputs at once. As a consequence, a
2ms batch delay provides a 3.3x improvement in through-
put and allows the Scikit-Learn model container to keep
up with the throughput demand while remaining well be-
low the 10-20ms latency objectives needed for interactive
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Figure 5: Throughput Increase from Delayed Batching.

interface Predictor <X,Y> {

List <List <Y>> pred_batch(List <X> inputs );

}

Listing 1: Common Batch Prediction Interface for Model

Containers. The batch prediction function is called via the RPC

interface to compute the predictions for a batch of inputs. The

return type is a nested list because each input may produce

multiple outputs.

applications.

4.4 Model Containers

Model containers encapsulate the diversity of machine
learning frameworks and model implementations within
a uniform “narrow waist” remote prediction API. To add
a new type of model to Clipper, model builders only need
to implement the standard batch prediction interface in
Listing 1. Clipper includes language specific container
bindings for C++, Java, and Python. The model container
implementations for most of the models in this paper only
required a few lines of code.

To achieve process isolation, each model is managed in
a separate Docker container. By placing models in sepa-
rate containers, we ensure that variability in performance
and stability of relatively immature state-of-the-art ma-
chine learning frameworks does not interfere with the
overall availability of Clipper. Any state associated with
a model, such as the model parameters, is provided to the
container during initialization and the container itself is
stateless after initialization. As a result, resource intensive
machine learning frameworks can be replicated across
multiple machines or given access to specialized hard-
ware (e.g., GPUs) when needed to meet serving demand.

4.4.1 Container Replica Scaling

Clipper supports replicating model containers, both lo-
cally and across a cluster, to improve prediction through-
put and leverage additional hardware accelerators. Be-
cause different replicas can have different performance
characteristics, particularly when spread across a clus-
ter, Clipper performs adaptive batching independently for
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each replica.

In Figure 6 we demonstrate the linear throughput scal-
ing that Clipper can achieve by replicating model contain-
ers across a cluster. With a four-node GPU cluster con-
nected through a 10Gbps Ethernet switch, Clipper gets a
3.95x throughput increase from 19,500 qps when using a
single model container running on a local GPU to 77,000
qps when using four replicas each running on a different
machine. Because the model containers in this experiment
are computationally intensive and run on the GPU, GPU
throughput is the bottleneck and Clipper’s RPC system
can easily saturate the GPUs. However, when the clus-
ter is connected through a 1Gbps switch, the aggregate
throughput of the GPUs is higher than 1Gbps and so the
network becomes saturated when replicating to a second
remote machine. As machine-learning applications begin
to consume increasingly bigger inputs, scaling from hand-
crafted features to large images, audio signals, or even
video, the network will continue to be a bottleneck to
scaling out prediction serving applications. This suggests
the need for research into efficient networking strategies
for remote predictions on large inputs.

5 Model Selection Layer

The Model Selection Layer uses feedback to dynam-
ically select one or more of the deployed models and
combine their outputs to provide more accurate and ro-
bust predictions. By allowing many candidate models to
be deployed simultaneously and relying on feedback to
adaptively determine the best model or combination of
models, the model selection layer simplifies the deploy-
ment process for new models. By continuously learning
from feedback throughout the lifetime of an application,
the model selection layer automatically compensates for
failing models without human intervention. By combin-
ing predictions from multiple models, the model selection
layer boosts application accuracy and estimates prediction
confidence.

There are a wide range of techniques for model selec-

interface SelectionPolicy <S, X, Y> {

S init ();

List <ModelId > select(S s, X x);

pair <Y, double > combine(S s, X x,

Map <ModelId , Y> pred);

S observe(S s, X x, Y feedback ,

Map <ModelId , Y> pred);

}

Listing 2: Model Selection Policy Interface.

tion and composition that span a tradeoff space of com-
putational overhead and application accuracy. However,
most of these techniques can be expressed with a simple
select, combine, and observe API. We capture this API
in the model selection policy interface (Listing 2) which
governs the behavior of the model selection layer and
allows users to introduce new model selection techniques
themselves.

The model selection policy (Listing 2) defines four es-
sential functions as well as a few basic types. In addition
to the query and prediction types X and Y, the state type S

encodes the learned state of the selection algorithm. The
init function returns an initial instance of the selection pol-
icy state. We isolate the selection policy state and require
an initialization function to enable Clipper to efficiently
instantiate many instances of the selection policy for fine-
grained contextualized model selection (§5.3). The select

and combine functions are responsible for choosing which
models to query and how to combine the results. In addi-
tion, the combine function can compute other information
about the predictions. For example, in §5.2.1 we leverage
the combine function to provide a prediction confidence
score. Finally, the observe function is used to update the
state S based on feedback from front-end applications.

In the current implementation of Clipper we provide
two generic model selection policies based on robust ban-
dit algorithms developed by Auer et al. [6]. These algo-
rithms span a trade-off between computation overhead
and accuracy. The single model selection policy (§5.1)
leverages the Exp3 algorithm to optimally select the best
model based on noisy feedback with minimal computa-
tional overhead. The ensemble model selection policy
(§5.2) is based on the Exp4 algorithm which adaptively
combines the predictions to improve prediction accuracy
and estimate confidence at the expense of increased com-
putational cost from evaluating all models for each query.
By implementing model selection policies that provide
different cost-accuracy tradeoffs, as well as an API for
users to implement their own policies, Clipper provides
a mechanism to easily navigate the tradeoffs between ac-
curacy and computational cost on a per-application basis.
Furthermore, users can modify this choice over time as
application workloads evolve and resources become more
or less constrained.
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Framework Model Size (Layers)

Caffe VGG [54] 13 Conv. and 3 FC
Caffe GoogLeNet [57] 96 Conv. and 5 FC
Caffe ResNet [29] 151 Conv. and 1 FC
Caffe CaffeNet [22] 5 Conv. and 3 FC
TensorFlow Inception [58] 6 Conv, 1 FC, & 3 Incept.

Table 2: Deep Learning Models. The set of deep learning mod-

els used to evaluate the ImageNet ensemble selection policy.

5.1 Single Model Selection Policy

We can cast the model-selection process as a multi-armed
bandit problem [43]. The multi-armed bandit1 problem
refers the task of optimally choosing between k possi-
ble actions (e.g., models) each with a stochastic reward
(e.g., feedback). Because only the reward for the selected

action can be observed, solutions to the multi-armed ban-
dit problem must address the trade-off between exploring

possible actions and exploiting the estimated best action.

There are numerous algorithms for the multi-armed
bandits problem with a wide range of trade-offs. In this
work we first explore the use of the simple randomized
Exp3 [6] algorithm which makes few assumptions about
the problem setting and has strong optimality guaran-
tees. The Exp3 algorithm associates a weight si = 1
for each of the k deployed models and then randomly
selects model i with probability pi = si/∑k

j=1 s j. For
each prediction ŷ, Clipper observes a loss L(y, ŷ) ∈ [0,1]
with respect to the true value y (e.g., the fraction of
words that were transcribed correctly during speech recog-
nition). The Exp3 algorithm then updates the weight,
si← si exp(−ηL(y, ŷ)/pi), corresponding to the selected
model i. The constant η determines how quickly Clipper
responds to recent feedback.

The Exp3 algorithm provides several benefits over man-
ual experimentation and A/B testing, two common ways
of performing model-selection in practice. Exp3 is both
simple and robust, scaling well to model selection over
a large number of models. It is a lightweight algorithm
that requires only a single model evaluation for each pre-
diction and thus performs well under heavy loads with
negligible computational overhead. And Exp3 has strong
theoretical guarantees that ensure it will quickly converge
to an optimal solution.

5.2 Ensemble Model Selection Policies

It is a well-known result in machine learning [8,12,30,43]
that prediction accuracy can be improved by combining
predictions from multiple models. For example, bootstrap
aggregation [9] (a.k.a., bagging) is used widely to reduce
variance and thereby improve generalization performance.
More recently, ensembles were used to win the Netflix
challenge [53], and a carefully crafted ensemble of deep
neural networks was used to achieve state-of-the-art ac-

1The term bandits refers to pull-lever slot machines found in casinos.
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Figure 7: Ensemble Prediction Accuracy. The linear ensem-

bles are composed of five computer vision models (Table 2)

applied to the CIFAR and ImageNet benchmarks. The 4-agree

and 5-agree groups correspond to ensemble predictions in which

the queries have been separated by the ensemble prediction con-

fidence (four or five models agree) and the width of each bar

defines the proportion of examples in that category.

curacy on the speech recognition corpus Google uses to
power their acoustic models [30]. The ensemble model se-
lection policies adaptively combine the predictions from
all available models to improve accuracy, rather than se-
lect individual models.

In Clipper we use linear ensemble methods which com-
pute a weighted average of the base model predictions.
In Figure 7, we show the prediction error rate of linear
ensembles on two benchmarks. In both cases linear ensem-
bles are able to marginally reduce the overall error rate.
In the ImageNet benchmark, the ensemble formulation
achieves a 5.2% relative reduction in the error rate simply
by combining off-the-shelf models (Table 2). While this
may seem small, on the difficult computer vision tasks for
which these models are used, a lot of time and energy is
spent trying to achieve even small reductions in error, and
marginal improvements are considered significant [49].

There are many methods for estimating the ensemble
weights including linear regression, boosting [43], and
bandit formulations. We adopt the bandits approach and
use the Exp4 algorithm [6] to learn the weights. Unlike
Exp3, Exp4 constructs a weighted combination of all base
model predictions and updates weights based on the indi-
vidual model prediction error. Exp4 confers many of the
same theoretical guarantees as Exp3. But while the accu-
racy when using Exp3 is bounded by the accuracy of the
single best model, Exp4 can further improve prediction
accuracy as the number of models increases. The extent to
which accuracy increases depends on the relative accura-
cies of the set of base models, as well as the independence
of their predictions. This increased accuracy comes at the
cost of increased computational resources consumed by
each prediction in order to evaluate all the base models.
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Figure 8: Behavior of Exp3 and Exp4 Under Model Failure.

After 5K queries the performance of the lowest-error model is

severely degraded, and after 10k queries performance recovers.

Exp3 and Exp4 quickly compensate for the failure and achieve

lower error than any static model selection.

The accuracy of a deployed model can silently degrade
over time. Clipper’s online selection policies can automat-
ically detect these failures using feedback and compensate
by switching to another model (Exp3) or down-weighting
the failing model (Exp4). To evaluate how quickly and
effectively the model selection policies react in the pres-
ence of changes in model accuracy, we simulated a severe
model degradation while receiving real-time feedback.
Using the CIFAR dataset we trained five different Caffe
models with varying levels of accuracy to perform object
recognition. During a simulated run of 20K sequential
queries with immediate feedback, we degraded the accu-
racy of the best-performing model after 5K queries and
then allowed the model to recover after 10K queries.

In Figure 8 we plot the cumulative average error rate
for each of the five base models as well as the single
(Exp3) and ensemble (Exp4) model selection policies. In
the first 5K queries both model selection policies quickly
converge to an error rate near the best performing model
(model 5). When we degrade the predictions from model
5 its cumulative error rate spikes. The model selection
policies are able to quickly mitigate the consequences of
the increase in errors by learning to divert queries to the
other models. When model 5 recovers after 10K queries
the model selection policies also begin to improve by
gradually sending queries back to model 5.

5.2.1 Robust Predictions

The advantages of online model selection go beyond de-
tecting and mitigating model failures to leveraging new
opportunities to improve application accuracy and perfor-
mance. For many real-time decision-making applications,
knowing the confidence of the prediction can significantly
improve the end-user experience of the application.

For example, in many settings, applications have a
sensible default action they can take when a prediction is
unavailable. This is critical for building highly available
applications that can survive partial system failures or

when building applications where a mistake can be costly.
Rather than blindly using all predictions regardless of the
confidence in the result, applications can choose to only
accept predictions above a confidence threshold by using
the robust model selection policy. When the confidence
in a prediction for a query falls below the confidence
threshold, the application can instead use the sensible
default decision for the query and avoid a costly mistake.

By evaluating predictions from multiple competing
models concurrently we can obtain an estimator of the
confidence in our predictions. In settings where models
have high variance or are trained on random samples from
the training data (e.g., bagging), agreement in model pre-
dictions is an indicator of prediction confidence. When
evaluating the combine function in the ensemble selection
policy we compute a measure of confidence by calculating
the number of models that agree with the final prediction.
End user applications can use this confidence score to
decide whether to rely on the prediction. If we only con-
sider predictions where multiple models agree, we can
substantially reduce the error rate (see Figure 7) while
declining to predict a small fraction of queries.

5.2.2 Straggler Mitigation

While the ensemble model selection policy can improve
prediction accuracy and help quantify uncertainty, it in-
troduces additional system costs. As we increase the size
of the ensemble the computational cost of rendering a
prediction increases. Fortunately, we can compensate for
the increased prediction cost by scaling-out the model ab-
straction layer. Unfortunately, as we add model containers
we increase the chance of stragglers adversely affecting
tail latencies.

To evaluate the cost of stragglers, we deployed ensem-
bles of increasing size and measured the resulting predic-
tion latency (Figure 9a) under moderate query load. Even
with small ensembles we observe the effect of stragglers
on the P99 tail latency, which rise sharply to well beyond
the 20ms latency objective. As the size of the ensemble
increases and the system becomes more heavily loaded,
stragglers begin to affect the mean latency.

To address stragglers, Clipper introduces a simple best-
effort straggler-mitigation strategy motivated by the de-
sign choice that rendering a late prediction is worse than
rendering an inaccurate prediction. For each query the
model selection layer maintains a latency deadline de-
termined by the latency SLO. At the latency deadline
the combine function of the model selection policy is in-
voked with the subset of the predictions that are available.
The model selection policy must render a final predic-
tion using only the available base model predictions and
communicate the potential loss in accuracy in its confi-
dence score. Currently, we substitute missing predictions
with their average value and define the confidence as the
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fraction of models that agree on the prediction.

The best-effort straggler-mitigation strategy prevents
model container tail latencies from propagating to front-
end applications by maintaining the latency objective as
additional models are deployed. However, the straggler
mitigation strategy reduces the size of the ensemble. In
Figure 9b we plot the reduction in ensemble size and find
that while tail latencies increase significantly with even
small ensembles, most of the predictions arrive by the
latency deadline. In Figure 9c we plot the effect of ensem-
ble size on accuracy and observe that this ensemble can
tolerate the loss of small numbers of component models
with only a slight reduction in accuracy.

5.3 Contextualization

In many prediction tasks the accuracy of a particular
model may depend heavily on context. For example, in
speech recognition a model trained for one dialect may
perform well for some users and poorly for others. How-
ever, selecting the right model or composition of models
can be difficult and is best accomplished online in the
model selection layer through feedback. To support con-
text specific model selection, the model selection layer
can be configured to instantiate a unique model selec-
tion state for each user, context, or session. The context
specific session state is managed in an external database
system. In our current implementation we use Redis.

To demonstrate the potential gains from personalized
model selection we hosted a collection of TIMIT [24]

voice recognition models each trained for a different di-
alect. We then evaluated (Figure 10) the prediction error
rates using a single model trained across all dialects, the
users’ reported dialect model, and the Clipper ensemble
selection policy. We first observe that the dialect-specific
models out-perform the dialect-oblivious model, demon-
strating the value of context to improve prediction accu-
racy. We also observe that the ensemble selection policy
is able to quickly identify a combination of models that
out-performs even the users’ designated dialect model by
using feedback from the serving workload.

6 System Comparison

In addition to the microbenchmarks presented in §4 and
§5, we compared Clipper’s performance to TensorFlow
Serving and evaluate latency and throughput on three
object recognition benchmarks.

TensorFlow Serving [59] is a recently released predic-
tion serving system created by Google to accompany their
TensorFlow machine learning training framework. Simi-
lar to Clipper, TensorFlow Serving is designed for serving
machine learning models in production environments and
provides a high-performance prediction API to simplify
deploying new algorithms and experimenting with new
models without modifying frontend applications. Tensor-
Flow Serving supports general TensorFlow models with
GPU acceleration through direct integration with the Ten-
sorFlow machine learning framework and tightly couples
the model and serving components in the same process.

TensorFlow Serving also employs batching to acceler-
ate prediction serving. Batch sizes in TensorFlow Serving
are static and rely on a purely timeout based mechanism to
avoid starvation. TensorFlow Serving does not explicitly
incorporate prediction latency objectives which must be
achieved by manually tuning the batch size. Furthermore,
TensorFlow Serving was designed to serve one model at
a time and therefore does not directly support feedback,
dynamic model selection, or composition.

To better understand the performance overheads intro-
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duced by Clipper’s layered architecture and decoupled
model containers, we compared the serving performance
of Clipper and TensorFlow Serving on three TensorFlow
object recognition deep networks of varying computa-
tional cost: a 4-layer convolutional neural network trained
on the MNIST dataset [42], the 8-layer AlexNet [33]
architecture trained on CIFAR-10 [32], and Google’s 22-
layer Inception-v3 network [58] trained on ImageNet.
We implemented two Clipper model containers for each
TensorFlow model, one that calls TensorFlow from the
more standard and widely used Python API and one that
calls TensorFlow from the more efficient C++ API. All
models were run on a GPU using hand-tuned batch sizes
(MNIST: 512, CIFAR: 128, ImageNet: 16) to maximize
the throughput of TensorFlow Serving. The serving work-
load measured the maximum sustained throughput and
corresponding prediction latency for each system.

Despite Clipper’s modular design, we are able to
achieve comparable throughput to TensorFlow Serving
across all three models (Figure 11). The Python model
containers suffer a 15-18% performance hit compared
to the throughput of TensorFlow Serving, but the C++
model containers achieve nearly identical performance.
This suggests that the high-level Python API for Ten-
sorFlow imposes a significant performance cost in the
context of low-latency prediction-serving but that Clipper
does not impose any additional performance degradation.

For these serving workloads, the throughput bottleneck
is inference on the GPU. Both systems utilize additional
queuing in order to saturate the GPU and therefore max-
imize throughput. For the Clipper model containers, we
decomposed the prediction latency into component func-
tions to demonstrate the overhead of the modular system
design. The predict bar is the time spent performing infer-
ence within TensorFlow framework code. The queue bar
is time spent queued within the model container waiting
for the GPU to become available. The top bar includes
the remaining system overhead, including query serializa-
tion and deserialization as well as copying into and out
of the network stack. As Figure 11 illustrates, the RPC
overheads are minimal on these workloads and the next
prediction batch is queued as soon as the current batch is
dispatched to the GPU for inference. TensorFlow Serving
utilizes a similar queueing method to saturate the GPU,
but because of the tight integration between TensorFlow
Serving and the TensorFlow inference code, they are able
to push the queueing into the TensorFlow framework code
itself running in the same process.

By achieving comparable performance across this
range of models, we have demonstrated that through care-
ful design and implementation of the system, the modular
architecture and substantially broader set of features in
Clipper do not come at a cost of reduced performance on
core prediction-serving tasks.
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Figure 11: TensorFlow Serving Comparison. Comparison of

peak throughput and latency (p99 latencies shown in error bars)

on three TensorFlow models of varying inference cost. TF-C++

uses TensorFlow’s C++ API and TF-Python the Python API.

7 Limitations

While Clipper attempts to address many challenges in the
context of prediction serving there are a few key limita-
tions when compared to other designs like TensorFlow
Serving. Most of these limitations follow directly from
the design of the Clipper architecture which assumes mod-
els are below Clipper in the software stack, and thus are
treated as black-box components.

Clipper does not optimize the execution of the mod-
els within their respective machine learning frameworks.
Slow models will remain slow when served from Clip-
per. In contrast, TensorFlow Serving is tightly integrated
with model evaluation, and hence is able to leverage GPU
acceleration and compilation techniques to speedup infer-
ence on models created with TensorFlow.

Similarly, Clipper does not manage the training or re-
training of the base models within their respective frame-
works. As a consequence, if all models are out-of-date
or inaccurate Clipper will be unable to improve accuracy
beyond what can be accomplished through ensembles.

8 Related Work

The closest projects to Clipper are LASER [3], Velox [19],
and TensorFlow Serving [59]. The LASER system was
developed at LinkedIn to support linear models for ad-
targeting applications. Velox is a UC Berkeley research
project to study personalized prediction serving with
Apache Spark. TensorFlow Serving is the open-source
prediction serving system developed by Google for Ten-
sorFlow models. In our experiments we only compare
against TensorFlow Serving, because LASER is not pub-
licly available, and the current prototype of Velox has
very limited functionality.

All three systems propose mechanisms to address la-
tency and throughput. Both LASER and Velox utilize
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caching at various levels in their systems. In addition,
LASER also uses a straggler mitigation strategy to ad-
dress slow feature evaluation. Neither LASER or Velox
discuss batching. Conversely, TensorFlow Serving does
not employ caching and instead leverages batching and
hardware acceleration to improve throughput.

LASER and Velox both exploit a form of model de-
composition to incorporate feedback and context similar
to the linear ensembles in Clipper. However, LASER does
not incorporate feedback in real-time, Velox does not
support bandits and neither system supports cross frame-
work learning. Moreover, the techniques used for online
learning and contextualization in both of these systems
are captured in the more general Clipper selection policy.
In contrast, TensorFlow Serving has no mechanism to
achieve personalization or adapt to real-time feedback.

Finally, LASER, Velox, and TensorFlow Serving are
all vertically integrated; they focused on serving predic-
tions from a single model or framework. In contrast, Clip-
per supports a wide range of machine learning models
and frameworks and simultaneously addresses latency,
throughput, and accuracy in a single serving system.

Application Specific Prediction Serving: There has
been considerable prior work in application and model
specific prediction-serving. Much of this work has fo-
cused on content recommendation, including video-
recommendation [20], ad-targeting [27, 39], and product-
recommendations [37]. Outside of content recommen-
dation, there has been recent success in speech recogni-
tion [36, 55] and internet-scale resource allocation [23].
While many of these applications require real-time pre-
dictions, the solutions described are highly application-
specific and tightly coupled to the model and workload
characteristics. As a consequence, much of this work
solves the same systems challenges in different applica-
tion areas. In contrast, Clipper is a general-purpose system
capable of serving many of these applications.

Parameter Server: There has been considerable
work in the learning systems community on parameter-
servers [5, 21, 38, 62]. While parameter-servers do focus
on reduced latency and caching, they do so in the context
of model training. In particular they are a specialized type
of key-value store used to coordinate updates to model
parameters in a distributed training system. They are not
typically used to serve predictions.

General Serving Systems: The high-performance
serving architecture of Clipper draws from prior work
on highly-concurrent serving systems [45,46,50,61]. The
division of functionality into vertical stages introduced
by [61] is similar to the division of Clipper’s architecture
into independent layers. Notably, while the dominant cost
in data-serving systems tends to be IO, in prediction serv-
ing it is computation. This changes both physical resource
allocation and batching and latency-hiding strategies.

9 Conclusion

In this work we identified three key challenges of pre-
diction serving: latency, throughput, and accuracy, and
proposed a new layered architecture that addresses these
challenges by interposing between end-user applications
and existing machine learning frameworks.

As an instantiation of this architecture, we introduced
the Clipper prediction serving system. Clipper isolates
end-user applications from the variability and diversity in
machine learning frameworks by providing a common pre-
diction interface. As a consequence, new machine learn-
ing frameworks and models can be introduced without
modifying end-user applications.

We addressed the challenges of prediction serving la-
tency and throughput within the Clipper Model Abstrac-
tion layer. The model abstraction layer lifts caching and
adaptive batching strategies above the machine learn-
ing frameworks to achieve up to a 26x improvement in
throughput while maintaining strict bounds on tail latency
and providing mechanisms to scale serving across a clus-
ter. We addressed the challenges of accuracy in the Clipper
Model Selection Layer. The model selection layer enables
many models to be deployed concurrently and then dy-
namically selects and combines predictions from each
model to render more robust, accurate, and contextualized
predictions while mitigating the cost of stragglers.

We evaluated Clipper using four standard machine-
learning benchmark datasets spanning computer vision
and speech recognition applications. We demonstrated
Clipper’s capacity to bound latency, scale heavy work-
loads across nodes, and provide accurate, robust, and con-
textual predictions. We compared Clipper to Google’s
TensorFlow Serving system and achieved parity on
throughput and latency performance, demonstrating that
the modular container-based architecture and substantial
additional functionality in Clipper can be achieved with
minimal performance penalty.
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