
A Unified Architecture for Accelerating Distributed DNN Training in
Heterogeneous GPU/CPU Clusters

Yimin Jiang⇤†, Yibo Zhu†, Chang Lan‡, Bairen Yi†, Yong Cui⇤, Chuanxiong Guo†

⇤Tsinghua University, †ByteDance, ‡Google

Abstract
Data center clusters that run DNN training jobs are inher-

ently heterogeneous. They have GPUs and CPUs for computa-
tion and network bandwidth for distributed training. However,
existing distributed DNN training architectures, all-reduce
and Parameter Server (PS), cannot fully utilize such heteroge-
neous resources. In this paper, we present a new distributed
DNN training architecture called BytePS. BytePS can lever-
age spare CPU and bandwidth resources in the cluster to
accelerate distributed DNN training tasks running on GPUs.
It provides a communication framework that is both proved
optimal and unified – existing all-reduce and PS become two
special cases of BytePS. To achieve the proved optimality in
practice, BytePS further splits the functionalities of a parame-
ter optimizer. It introduces a Summation Service abstraction
for aggregating gradients, which is common for all the op-
timizers. Summation Service can be accelerated by AVX
instructions and can be efficiently run on CPUs, while DNN
model-related optimizer algorithms are run on GPUs for com-
putation acceleration. BytePS can accelerate DNN training
for major frameworks including TensorFlow, PyTorch and
MXNet. For representative DNN training jobs with up to 256
GPUs, BytePS outperforms the state-of-the-art open source
all-reduce and PS by up to 84% and 245%, respectively.

1 Introduction
In recent years, research on Deep Neural Networks (DNNs)
has experienced a renaissance. DNNs have brought break-
throughs to computer vision [32, 43], speech recognition and
synthesis [33, 69], natural language processing (NLP) [26],
and many other areas. Training these DNN models usually
requires a huge amount of arithmetic computation resources.
Consequently, GPUs are preferred. To run many such tasks
and achieve high resource utilization, large GPU clusters with
thousands or more GPUs are introduced [29, 35, 52, 71].

Such GPU clusters have not only GPUs, but also CPUs and
high speed networks. GPU machines typically also have high-
end CPUs [2, 11]. There may also be CPU-only machines
used for training data pre-processing and generation, e.g.,

in reinforcement learning. These GPU/CPU machines are
connected by high-speed Ethernet or Infiniband network to
facilitate distributed training. Based on our experience in
operating production GPU clusters (§3.1) and recent literature
from others [35], GPUs are usually better utilized while there
are often spare CPU and bandwidth resources.

There are two major families of distributed training archi-
tectures, all-reduce [54] and Parameter Server (PS) [44]. They
are both based on data parallelism (§2). In a task that uses
all-reduce, only GPU machines are involved. In an iteration,
GPUs compute the gradients of the model parameters inde-
pendently, and then aggregate gradients using the all-reduce
primitive. In PS tasks, both GPU machines and CPU machines
can be used. Different from all-reduce, the gradients are sent
to PS, which typically runs on CPU machines and aggregates
the received gradients. PS then runs certain DNN training
optimizer, e.g., SGD [76] or Adam [42] and sends back the
updated model. For both all-reduce and PS, the above happens
in every iteration, until the training finishes.

All-reduce and PS are quite different, in both theory and
practice. Given a set of GPU machines without additional
CPU machines, all-reduce is proved to be bandwidth opti-
mal [54]. However, with additional CPU and bandwidth re-
sources, the optimality of all-reduce no longer holds – we
find that, in theory, PS can offer even better performance by
utilizing additional CPU machines to aid the GPU machines
(§2). It seems to be a good opportunity to accelerate DNN
training because GPU clusters indeed have spare CPU and
bandwidth resources (§3.1). Unfortunately, in practice, all
the existing PS have inferior performance for multiple design
reasons, as we shall see soon in this paper. It is therefore not
a surprise to see that distributed DNN training speed records
are dominated by all-reduce [27, 49, 73].

We are thus motivated to design BytePS 1, an architecture
that is communication-optimal, both in theory and in practice.
Fundamentally, both all-reduce and PS are theoretically op-
timal only in very specific GPU/CPU setups, while are not
1The name BytePS was chosen in the early stage of this project [4]. However,
it is conceptually different from the conventional PS architecture.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 463

the optimal for more generic settings, e.g., there are some fi-
nite additional CPU resources. By carefully allocating traffic
loads, BytePS unifies the cases where PS or all-reduce is the-
oretically optimal, and generalizes the optimality to any given
number of GPU/CPU machines with different PCIe/NVLink
configurations, with analytical proofs.

On top of that, BytePS pushes its real-world performance
close to the theoretical limit, by removing bottlenecks in exist-
ing PS designs. With fast high-speed networks, we found that
CPUs are not fast enough for the full fledged DNN optimiz-
ers. We introduce a new abstraction, Summation Service, to
address this issue. We split an optimizer into gradient aggre-
gation and parameter update. We keep gradient aggregation
in Summation Service running on CPUs and move param-
eter update, which is more computation intensive, to GPUs.
In addition, in implementation, we incorporated the idea of
pipelining and priority-scheduling from prior work [34, 55]
and resolved multiple RDMA-related performance issues.

As a drop-in replacement for all-reduce and PS, BytePS
aims to accelerate distributed training without changing the
DNN algorithm or its accuracy at all. Prior work on top of all-
reduce and PS, like tensor compression [21, 45], can directly
apply to BytePS. Our BytePS implementation supports pop-
ular DNN training frameworks including TensorFlow [20],
PyTorch [53], and MXNet [22] with Horovod-like [60] API
and native APIs.

This paper makes the following contributions:

• We design a new distributed DNN training architecture,
BytePS, for heterogeneous GPU/CPU clusters. With spare
CPU cores and network bandwidth in the cluster, BytePS
can achieve communication optimality 2 for DNN training
acceleration. BytePS provides a unified framework which
includes both all-reduce and PS as two special cases.

• We further optimize the intra-machine communication. We
explain the diverse and complicated topology in GPU ma-
chines and present the optimal strategy and principles.

• We propose Summation Service, which accelerates DNN
optimizers by keeping gradient summation running in
CPUs, and moving parameter update, which is the more
computation intensive, to GPUs. This removes the CPU
bottleneck in the original PS design.

As a major online service provider, we have deployed
BytePS internally and used it extensively for DNN training.
We evaluate BytePS using six DNN models and three training
frameworks in production data centers. The results show that
with 256 GPUs, BytePS consistently outperform existing all-
reduce and PS solutions by up to 84% and 245%, respectively.
We also released an open source version [4], which attracted
interests from thousands in the open source community, sev-
eral top-tier companies and multiple research groups.
2The optimality means to achieve minimized communication time for data-
parallel distributed DNN training, given a fixed number of GPUs.

2 Background
2.1 Distributed DNN Training
A DNN model consists of many parameters. DNN training
involves three major steps: (1) forward propagation (FP),
which takes in a batch of training data, propagates it through
the DNN model, and calculates the loss function; (2) back-
ward propagation (BP), which uses the loss value to compute
the gradients of each parameter; (3) parameter update, which
uses the aggregated gradients to update the parameters with a
certain optimizer (e.g., SGD [76], Adam [42], etc.). Training
a DNN refines the model parameters with the above three
steps iteratively, until the loss function reaches its minimal.

On top of it, users can optionally run distributed train-
ing. The most popular distributed DNN training approach
is data parallelism, which partitions the dataset to multiple
distributed computing devices (typically GPUs) while each
GPU holds the complete DNN model. Since the data input
to each GPU is different, the gradients generated by BP will
also be different. Thus data parallelism demands all GPUs to
synchronize during each training iteration.

In large enterprises or in public clouds, users often run
these DNN training tasks in shared GPU clusters. Such clus-
ters are built with hundreds to thousands of GPU machines
connected by high-speed RDMA networks [35, 52]. Those
GPU machines typically have multiple GPUs, tens of CPU
cores, hundreds of GB of DRAM, and one to several 100Gb/s
NICs. These clusters run many training jobs simultaneously,
with many jobs using GPUs intensively while not using CPUs
heavily. A public dataset on a DNN cluster [35] indicates that
50% of hosts have CPU utilization lower than 30%.

For distributed training, there are two families of data paral-
lelism approaches, i.e., all-reduce and Parameter Server (PS).
In what follows, we introduce all-reduce and PS and analyze
their communication overheads. We assume that we have
n GPU machines for a data-parallel training job. The DNN
model size is M bytes. The network bandwidth is B.

2.2 All-reduce
Originated from the HPC community, all-reduce aggregates
every GPU’s gradients in a collective manner before GPUs
update their own parameters locally. In all-reduce, no addi-
tional CPU machine is involved. Ring is the most popular
all-reduce algorithm. All-reduce has been optimized for many
years, and most state-of-the-art training speed records are
achieved using all-reduce, including classical CNN-based Im-
ageNet tasks [27, 36, 49, 73], RNN-based language modeling
tasks [56], and the pre-training of BERT [26, 74].

Fig. 1 shows an example of ring-based all-reduce for three
nodes. We can dissect an all-reduce operation into a reduce-
scatter and an all-gather. Reduce-scatter (Fig. 1(a)) partitions
the whole M bytes into n parts, and use n rings with different
starting and ending point to reduce the n parts, respectively.
Each node will send (n�1)M/n traffic, because each node

464 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

acts as the last node for just 1 ring and thus sends 0, while for
each of the other n�1 rings, it must send M/n bytes.

Next, all-gather requires each node to broadcast its reduced
part to all other (n�1) nodes using a ring. In the end, all nodes
have identical data that have been all-reduced (Fig. 1(c)).
Similar to reduce-scatter, each node also sends (n�1)M/n
egress traffic during this operation.

Adding the two steps together, in an all-reduce operation,
each node sends (and receives) 2(n� 1)M/n traffic to (and
from) the network. With B network bandwidth, the time re-
quired is 2(n�1)M/nB, which is proved to be the optimal in
topologies with uniformed link bandwidth [54], assuming no
additional resources.

In hierarchical topologies with non-uniformed link band-
width, the optimal hierarchical strategy would require at least
2(n0 �1)M/n0B0 communication time, where B0 is the slowest
link bandwidth and n0 is the number of nodes with the slowest
links. In distributed DNN training, n0 is usually the number of
GPU machines and B0 is usually the network bandwidth per
machine. For simplicity and without impacting our analysis,
below we assume each machine has just one GPU and is con-
nected by the same network bandwidth, i.e., n = n0,B = B0.

All-reduce has no way to utilize additional non-worker
nodes, since it was designed for homogeneous setup. Next,
we will show that the 2(n�1)M/nB communication time is
no longer optimal with additional CPU machines.

2.3 Parameter Server (PS)
The PS architecture [44] contains two roles: workers and PS.
Workers usually run on GPU machines, perform FP and BP,
and push the gradients to PS. PS aggregates the gradients
from different workers and update the parameters. Finally,
workers pull the latest parameters from PS and start the next
iteration. According to our experience in industry, the PS
processes usually run on CPUs because of cost-effectiveness.
Since GPUs (and GPU memory) are much more expensive
than CPUs,3 we want GPUs to focus on the most computation-
intensive tasks instead of storing the model parameters.

There are two placement strategies for PS. One is non-
colocated mode (Fig. 2(a)), in which PS processes are de-
ployed on dedicated CPU machines, separate from the GPU
machines. Suppose that we have k CPU machines,4 the DNN
model will be partitioned into k parts and stored on the k ma-
chines, respectively. In every iteration, each GPU worker must
send M bytes gradients and receives M bytes parameters back.
Each CPU machine must receive in total nM/k gradients from
the GPU workers and send back nM/k parameters.

3AWS price sheet [18] shows that p3.16xlarge (8 NVIDIA V100 GPUs and
64 CPU cores) costs nearly $25 per hour. However, r4.16xlarge, which is
the same as p3.16xlarge minus GPUs, costs only $4.2 per hour.

4In this paper, for simplicity, we assume that a CPU machine has the same
network bandwidth as a GPU machine. If not, all analysis and design will
remain valid as long as the number of CPU machines scales accordingly.
For example, use 4⇥ CPU machines if their bandwidth is 25% of GPU
machines.

A0 B0 C0

A2 B2 C2 A1 B1 C1

ΣA B0 C0

A2 B2 ΣC A1 ΣB C1

ΣA ΣB ΣC

ΣA ΣB ΣC ΣA ΣB ΣC

A0 B0 C0 A2 B2 C2A1 B1 C1

ΣA ΣB ΣC

Worker-0 Worker-1 Worker-2

Server-0 Server-1 Server-2

A0 B0 C0 A2 B2 C2A1 B1 C1

ΣA ΣB ΣC
Machine-0 Machine-1 Machine-2

(a) Reduce-scatter

A0 B0 C0

A2 B2 C2 A1 B1 C1

ΣA B0 C0

A2 B2 ΣC A1 ΣB C1

ΣA ΣB ΣC

ΣA ΣB ΣC ΣA ΣB ΣC

A0 B0 C0 A2 B2 C2A1 B1 C1

ΣA ΣB ΣC

Worker-0 Worker-1 Worker-2

Server-0 Server-1 Server-2

A0 B0 C0 A2 B2 C2A1 B1 C1

ΣA ΣB ΣC
Machine-0 Machine-1 Machine-2

(b) All-gather

A0 B0 C0

A2 B2 C2 A1 B1 C1

ΣA B0 C0

A2 B2 ΣC A1 ΣB C1

ΣA ΣB ΣC

ΣA ΣB ΣC ΣA ΣB ΣC

A0 B0 C0 A2 B2 C2A1 B1 C1

ΣA ΣB ΣC

Worker-0 Worker-1 Worker-2

Server-0 Server-1 Server-2

A0 B0 C0 A2 B2 C2A1 B1 C1

ΣA ΣB ΣC
Machine-0 Machine-1 Machine-2

(c) Result
Figure 1: The communication workflow of all-reduce.

A0 B0 C0

A2 B2 C2 A1 B1 C1

ΣA B0 C0

A2 B2 ΣC A1 ΣB C1

ΣA ΣB ΣC

ΣA ΣB ΣC ΣA ΣB ΣC

A0 B0 C0 A2 B2 C2A1 B1 C1

ΣA ΣB ΣC

Worker-0 Worker-1 Worker-2

Server-0 Server-1 Server-2

A0 B0 C0 A2 B2 C2A1 B1 C1

ΣA ΣB ΣC
Machine-0 Machine-1 Machine-2

(a) Non-colocated mode

A0 B0 C0

A2 B2 C2 A1 B1 C1

ΣA B0 C0

A2 B2 ΣC A1 ΣB C1

ΣA ΣB ΣC

ΣA ΣB ΣC ΣA ΣB ΣC

A0 B0 C0 A2 B2 C2A1 B1 C1

ΣA ΣB ΣC

Worker-0 Worker-1 Worker-2

Server-0 Server-1 Server-2

A0 B0 C0 A2 B2 C2A1 B1 C1

ΣA ΣB ΣC
Machine-0 Machine-1 Machine-2

(b) Colocated mode
Figure 2: The communication pattern of PS. A solid arrow line
indicates the network traffic. A dashed arrow line represents the
loop-back (local) traffic.

Assuming k = n, PS would theoretically be faster than
all-reduce, as summarized in Table 1. In fact, PS is com-
munication optimal in such setting, since M is the absolute
lower bound each GPU machine has to send and receive.
However, with fewer CPU machines (smaller k), the commu-
nication time nM/kB on CPU machines would increase and,
if k n/2, become slower than all-reduce. The network band-
width of GPU machines would become under-utilized because
the CPU machines would be the communication bottleneck.

The other strategy is colocated mode (Fig. 2(b)), which
does not use any CPU machines. Instead, it starts a PS process
on every GPU worker and reuses its spare CPU resources. The
PS and GPU worker on the same machine will communicate
through loopback traffic. In this case, it is easy to calculate
that communication time is the same as all-reduce (Table 1).
All-reduce vs. PS. They have different communication pat-
terns. PS uses a bipartite graph. Non-colocated PS can lever-
age additional CPU and bandwidth resources to aid GPU
machines, while may under-utilize the resources of GPU ma-
chines. Colocated PS and all-reduce utilize the GPU worker
resources better, while cannot use additional CPU machines.

Another difference is that PS supports asynchronous train-
ing, which allows GPU workers to run at different speed and
mitigates the impact of stragglers, while all-reduce does not
support it. However, asynchronous training is less popular
because it can slow down model convergence. We will mainly
focus on synchronous training in this paper while briefly ad-
dress asynchronous training in §5.

3 Motivation and BytePS Architecture
3.1 Motivation
Before the deployment of BytePS in our internal GPU clusters,
our users mostly used all-reduce as the distributed training
architecture due to its higher performance than existing PS
designs. The remaining users choose PS for tasks where asyn-
chronous training is acceptable or preferable. With multiple
years of experience and efforts on accelerating DNN tasks
and improving resource utilization, we have the following
observation.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 465

Table 1: The theoretical communication time required by each
training iteration. n is the number of GPU machines. k is the number
of additional CPU machines. M is the model size. B is the network
bandwidth. We will revisit the Optimal? row in §4.1.

All-reduce Non-Colocated PS Colocated PS
Time 2(n�1)M

nB max(M
B , nM

kB) 2(n�1)M
nB

Optimal? Only if k = 0 Only if k = n Only if k = 0

Opportunity: there are spare CPUs and bandwidth in
production GPU clusters. Large-scale GPU clusters simulta-
neously run numerous jobs, many of which do not heavily use
CPUs or network bandwidth. Fig. 3 shows a 3-month trace
collected from one of our GPU clusters that have thousands
of GPUs. The GPUs have been highly utilized in that period
(approaching 96% allocation ratio in peak times). We find
that, 55%-80% GPU machines have been assigned as GPU
workers for at least one distributed training task. This leaves
the network bandwidth of 20%-45% GPU machines unused
because they are running non-distributed jobs.5 The cluster-
wide average CPU utilization is only around 20%-35%. This
aligns with the findings in prior work from Microsoft [35].

This observation, combined with the all-reduce vs. non-
colocated PS analysis in §2.1, inspires us – if we can better
utilize these spare CPUs and bandwidth, it is possible to ac-
celerate distributed training jobs running on given GPUs.
Existing all-reduce and PS architectures are insufficient.
Unfortunately, the analysis in §2.1 also shows that all-reduce
and PS have a common issue: they do not utilize additional
CPU and bandwidth resources well. All-reduce and colocated
PS only use resources on GPU workers, and non-colocated
PS may not fully utilize the CPU cores and NIC bandwidth
on GPU workers. The former is communication optimal only
when k = 0, while the latter is optimal only when k = n. When
the number of CPU machine k is 0 < k < n, neither would be
optimal. We defer further analysis to §4.1. Here, we use an
experiment to show the end-to-end performance of existing
all-reduce and PS.

Fig. 4 shows the training speed of VGG-16 [63] using 32
V100 GPUs (4 GPU machines), with 100GbE RDMA net-
work. The batch size is 32 images for each GPU. We run the
latest MXNet native PS RDMA implementation [1] and (one
of) the most popular all-reduce library NCCL-2.5.7 [13]. We
also tested TensorFlow’s native PS, and got similar results. We
vary the number of additional CPU machines for each setup.
All-reduce plot is flat because additional CPU machines are
of no use, while PS has the worst performance even with
additional CPU machines. Both of them are far from optimal.
Even with ByteScheduler [55], which is a state-of-the-art tech-
nique that can improve the communication performance, both
all-reduce and PS are still far from the linear scaling, i.e., 32⇥
of single-GPU training speed. This is because ByteScheduler
5Our machines have dedicated but slower NIC for data I/O. This is a common
practice in industry [52]. In addition, data I/O traffic is usually much smaller
than the distributed training traffic between GPU machines.

2020-01-01
2020-01-21

2020-02-10
2020-03-01

2020-03-21
0%

50%

100%
% G3U Pachines
foU Gist-tUaining
AveUage C3U
utilization

Figure 3: Daily statistics of our internal DNN training clusters from
2020-01-01 to 2020-03-31.

Figure 4: VGG-16 training performance of different architectures.
We use 4 GPU machines with 32 GPUs in total. Linear Scaling
represents the maximal performance (in theory) of using 32 GPUs.

works on top of PS or all-reduce, and thus has the same limi-
tations. BytePS outperforms all of above at any given number
of CPU machines (more in §7).
Our solution: BytePS. It is a unified architecture for dis-
tributed DNN training that can leverage spare CPU and band-
width resources. It achieves the following goals.

First, BytePS is always communication optimal with any
additional CPU and bandwidth resources, i.e., 0 k n, al-
located by the cluster scheduler. In practice, the volume of
spare resources can be dynamic (Fig. 3), so BytePS must adapt
well. In addition, the hardware setup of GPU machines can
be diverse, especially the internal PCIe or NVLink topology.
BytePS is also proved optimal in intra-machine communi-
cation. All-reduce and PS, when they are communication
optimal, are two special cases of BytePS (§4).

Second, BytePS can achieve communication time very
close to the theoretical optimal. This is important, as shown
in the existing PS case – PS performance is far from its theo-
retical limit. We found that original PS designs have several
implementation bottlenecks (which we will discuss in §6). But
even after all the bottlenecks are removed, PS performance is
still inferior to optimal. This leads to BytePS’s second design
contribution: Summation Service. We find that running the
full optimizers on CPU can be a bottleneck. We divide the
computation of optimizers and only put summation on CPUs.
We will elaborate the rationale of this design in §5.

All the BytePS designs are generic to DNN training.
BytePS can therefore accelerate various DNN training frame-
works including TensorFlow, PyTorch, and MXNet. We start
from presenting BytePS’s architecture.

3.2 Architecture Overview
Fig. 5 shows the architecture of BytePS. BytePS has two
main modules – Communication Service (CS) and Summa-
tion Service (SS). In BytePS, we aim to leverage any CPU
resources, whether on GPU machines or CPU machines, to

466 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

GPU
Computation Summation

Service

Communication
Service

CPU Machine0

GPU Machine0

…Summation
Service

CPU Machinek-1
Summation
Service

Summation
Service

Communication
Service

GPU Machinen-1

…

GPU
Computation

Figure 5: BytePS architecture. Solid lines: the connection between
CPU machines and GPU machines. Dashed lines: the data flow
inside GPU machines.

achieve the best communication efficiency. This is achieved
by SS, which runs on the CPU of every machine, including
the CPU machines and GPU machines. The CPU machines
may not necessarily be actual CPU-only machines. For exam-
ple, our in-house cluster scheduler can allocate CPUs on the
GPU machines that run non-distributed jobs and have spare
CPU cores and network bandwidth. This improves the overall
cluster resource utilization.

Another important property of SS is that it is much simpler
than common PS server processes, which run full fledged
DNN algorithm optimizers. In contrast, SS is only responsible
for receiving tensors that are sent by CS, summing up the
tensors and sending them back to CS.

The other module, CS, is responsible for internally syn-
chronizing the tensors among multiple (if there are) local
GPUs and externally communicating with SS. Every train-
ing iteration, each CS must send in total M bytes (the DNN
model size) to and receive M bytes from SS. In synchronous
distributed training, the tensors are model gradients.

CS contains several design points of BytePS. First, it de-
cides the traffic volume to each SS (both internal and external).
The load assignment strategy is based on our analysis of the
optimal communication strategy (§4.1). Second, it chooses
the best local tensor aggregation strategy depending on dif-
ferent internal GPU and NIC topology (§4.2) of the GPU
machines. Finally, both CS and SS should be optimized for
RDMA in modern high-speed data centers (§6.2).

This architecture enables BytePS to flexibly utilize any
number of additional CPU resources and network bandwidth.
When the number of CPU machines is 0, i.e., k = 0, the com-
munication will fallback to only using SSs on GPU machines.
When the number of CPU machines is the same as GPU ma-
chines, BytePS is as communication optimal as non-colocated
PS. In other cases, BytePS can leverage SSs on all machines
together. In fact, our analytical results will reveal the optimal
communication strategy with any number of CPU machines,
while PS and all-reduce are just two specific points in the
whole problem space.

4 BytePS Communication Design
4.1 Inter-machine Communication
In BytePS, all networking communication is between CS and
SS. To prevent a bottleneck node from slowing down the

whole system, we must balance the communication time of
all machines. In what follows, we assume the network has
full bisection bandwidth, which is a common practice in deep
learning clusters [52]. We also assume that the full bisection
bandwidth can be fully utilized due to the newly introduced
RDMA congestion control algorithms, e.g., DCQCN [75].

On each CPU machine, the summation workload of its SS
determines the network traffic. For example, if a SS is re-
sponsible for summing up x% of the DNN model, the CPU
machine would send and receive x%⇥M bytes traffic to every
GPU machine during each training iteration. However, the
network traffic of a GPU machine is determined by the com-
bination of CS and SS running on it. Due to this difference,
BytePS classifies SS into SSCPU and SSGPU based on whether
they run on CPU machines or GPU machines.

To minimize the communication time, BytePS assigns
MSSCPU bytes summation workload to each SSCPU . MSSCPU
is given in Eq. 1, where k� 1 is the number of CPU machines
and n � 2 is the number of GPU machines, and k n. Out-
side these constraints, the communication time of BytePS falls
back to trivial solutions like PS (when k > n) and all-reduce
(when k = 0), as §4.1.1 shows.

MSSCPU =
2(n�1)

n2 + kn�2k
M (1)

Similarly, BytePS assigns MSSGPU bytes to each SSGPU .

MSSGPU =
n� k

n2 + kn�2k
M (2)

Eq. 1 and Eq. 2 show the workload assignment strategy
that is optimal for minimizing the communication time. The
analysis is in §4.1.1. In practice, the DNN model consists of
tensors with variable sizes and may not allow us to perfectly
assign workloads. BytePS uses an approximation method. It
partitions the tensors into small parts no larger than 4MB.6
Then, all CSs consistently index each part and hash the indices
into the range of [0,n2 + kn�2k). CSs will send and receive
tensors to SSs based on the hash value and approximate the
probabilities according to Eq. 1 and Eq. 2. Consistent indexing
and hashing guarantee that the same part from all GPUs will
be sent to and processed by the same SS.

4.1.1 Communication Efficiency Analysis

Next, we present the communication time analysis of BytePS.
To simplify the analysis, we assume that the model size M is
much larger than the partition size (4MB in our case). Parti-
tioning enables BytePS not only to better balance the sum-
mation workloads, but also to well utilize the bidirectional
network bandwidth by pipelining sending and receiving, as
shown in [34, 55]. So, we further assume that sending and
receiving the whole M bytes can fully overlap with negligible
overhead. We have the following result.
6While we find that 4MB partition size works reasonably well in our envi-
ronment, BytePS allow users to tune the partition size value.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 467

Theorem 1. The SS workload assignment given by Eq. 1 and
Eq. 2 is optimal for minimizing communication time.

Proof. We first consider the network traffic of a GPU machine.
It runs a CS module and an SS module. CS should send and
receive M bytes in total. However, when it communicates
with the SS on the same GPU machine, the traffic does not
go over the network. So, a CS module will send and receive
M�MSSGPU bytes. An SS module on a GPU machine must
receive and send MSSGPU from other n�1 GPU machines, i.e.,
(n�1)MSSGPU in total. Adding them together, a GPU machine
with network bandwidth B requires communication time tg:

tg =
M+(n�2)MSSGPU

B
(3)

Similarly, if k > 0, we can get that a CPU machine with net-
work bandwidth B requires communication time tc:

tc = MSSCPU /B (4)
In addition, the sum of all the SS workload should be equal
to the total model size.

M = kMSSCPU +nMSSGPU (5)
From Eq. 5, it is clear that the larger MSSCPU is, the smaller
MSSGPU is. Consequently, when n � 2, the larger tc is, the
smaller tg is (or tg is unchanged if n = 2). In addition, we
know that the final communication time is max(tc, tg).

To minimize the communication time, tc and tg need to be
equal. If they are not equal, say tc > tg, it means the commu-
nication time can be further reduced by decreasing MSSCPU
and thus bring down tc.

We let tc = tg and combine Eq. 3, Eq. 4, and Eq. 5. Solving
the equations with MSSGPU and MSSCPU as variables, we can
get the optimal values as given by Eq. 1 and Eq. 2.

Based on Theorem 1, combine Eq. 3 and Eq. 2, we have
the optimal communication time, which is used in Fig. 12.

topt =
2n(n�1)M

(n2 + kn�2k)B
(6)

From Eq. 2, we can see that when the numbers of CPU
machines and GPU machines are the same, MSSGPU = 0, which
means that we do not need any SSGPU . This is because the
CPU machines already provide enough aggregate bandwidth.
BytePS falls back to non-colcated PS. Similarly, when the
number of CPU machines is 0, BytePS falls back to all-reduce
and colocated PS.

Of course, the more interesting case is the general case
when 0 < k < n. We use the communication time of the plain
all-reduce and non-colocated PS as the two baselines. We
define the acceleration ratio ga as the communication time
of the plain all-reduce divided by that of the general case.
Similary, gp is defined as the acceleration ratio compared to
the non-colocated PS case. We have

ga =
n2 + kn�2k

n2 ,gp =
n2 + kn�2k

2k(n�1)
(7)

0 2

1 3

4 6

5 7

NIC
QPI

P0 P1 P2 P3

0

CPU0
MemNIC

P0

1 2 3

P1

4 5 6 7

CPU1
Mem

QPI

0

CPU0
MemNIC

P0

1 2 3

P1

CPU1
Mem

4 5 6 7

CPU0
Mem

CPU1
Mem

0 2

1 3

4 6

5 7

NIC
P0 P1 P2 P3

CPU0
Mem

CPU1
Mem

(a) PCIe-only topology

0 2

1 3

4 6

5 7

NIC
QPI

P0 P1 P2 P3

0

CPU0
MemNIC

P0

1 2 3

P1

4 5 6 7

CPU1
Mem

QPI

0

CPU0
MemNIC

P0

1 2 3

P1

CPU1
Mem

4 5 6 7

CPU0
Mem

CPU1
Mem

0 2

1 3

4 6

5 7

NIC
P0 P1 P2 P3

CPU0
Mem

CPU1
Mem

(b) Outgoing data flow
Figure 6: PCIe-only machine topology and BytePS data flow. Gray
boxes are GPUs. Only the outgoing direction (from GPUs to net-
work) is shown in the data flow figure. Incoming is the opposite.

When k = n and n! •, ga = 2. When k is small, gp can
be quite big, as the communication bandwidth is severely
bottlenecked by the CPU machines in non-colocated PS. For
example, when n = 32 and k = 16, we have ga = 1.46 and
gp = 1.52, respectively. It means that BytePS can theoretically
outperform all-reduce and PS by 46% and 52%, respectively.

We note that adding more CPU machines beyond k = n
does not help, since the communication bottleneck will be-
come the NIC bandwidth of the GPU machines.

4.2 Intra-machine Communication
In §4.1, we design the optimal inter-machine communication
strategy. In practice, we find that intra-machine communi-
cation is equally important. There are often multiple GPUs
in a machine. CS must aggregate/broadcast the tensors be-
fore/after communicating with SS. This can create congestion
on the PCIe links and prevent NIC from fully utilizing its
bandwidth B. Moreover, the GPU machine’s internal topol-
ogy can be diverse in data centers. Below, we share the two
most common machine setups in our environment and our
corresponding solution. We present several principles that can
apply to other machine setups in §4.2.3.

4.2.1 PCIe-only Topology
Fig. 6(a) shows a setup in our production environment. A GPU
machine has two NUMA CPUs connected via QPI. The eight
GPUs are split into two groups and connected to two PCIe
switches, respectively. The NIC is 100Gbps and connected
to the PCIe of one of the CPUs. All PCIe links in figure are
3.0 x16 (128Gbps theoretical bandwidth). The CPU memory
and QPI has > 300Gbps bandwidth, which are less likely the
communication bottleneck. We call this PCIe-only topology.
For this machine model, we measure that the throughput of
GPU-to-GPU memory copy is ⇡105Gbps within the same
PCIe switch. The throughput of GPU-to-GPU memory copy
across PCIe switches, however, is only ⇡80Gbps.

Unfortunately, many existing training frameworks ignore
such details of internal topology. For example, TensorFlow
PS, MXNet PS and even the “hierarchical all-reduce” mode of
Horovod use a straightforward reduce or reduce-scatter across
all GPUs on the same machine. This would lead to cross-PCIe
switch memory copy, which is unfortunately slower.

468 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

C0

S0 Sp-1

Cp-1
QPI

N0 Nn-1N1 Npn-1N(p-1)n

...
...

...

Figure 7: Notations of the PCIe-only topology.

In contrast, BytePS lets GPUs under the same PCIe switch
sum the tensors first, then copy to CPU and let CPU do the
global summation, and finally broadcast back the global sum.
We call it CPU-assisted aggregation. Specifically, it consists
of the following steps.

1. Reduce-Scatter: Suppose each PCIe switch has l GPUs.
These l GPUs perform a reduce-scatter which incurs (l�
1)M/l traffic only inside the PCIe switch. When it finishes,
each GPU should hold M/l aggregated data.

2. GPU-CPU Copy: Each GPU copies its M/l data to CPU
memory, which incurs M/l traffic along the route. Every
PCIe switch would generate M aggregated data.

3. CPU-Reduce: CPU reduces the data from all PCIe
switches and generates the aggregated data across all
GPUs. This reduction does not incur any PCIe traffic.

4. Networking: CS sends the data to SS and receives globally
aggregated data from SS.

5. CPU-GPU Copy: Each GPU copies its M/l partition from
CPU memory back to itself. This incurs M/l traffic from
the CPU to each GPU.

6. All-Gather: Each GPU performs an all-gather operation
with those that are under the same PCIe switch. This incurs
(l�1)M/l traffic inside the switch.

Fig. 6(b) shows the traffic of step 1 to 3. Step 4 to 6 use
the same links but the opposite direction. With CPU-assisted
aggregation, the PCIe switch to CPU link would carry only
M traffic in each direction, much lower than doing collective
operation directly on eight GPUs (7M/4 traffic). Meanwhile,
the traffic on each PCIe switch to GPU link would be (2l�
1)M/l. Let l = 4 (each PCIe has four GPUs), this is 7M/4,
remaining the same as the existing approach. Fundamentally,
BytePS leverages the spare CPUs on the GPU machine to
avoid the slow GPU-to-GPU cross-PCIe switch memory copy.
Optimality Analysis. We now analyze the communication
optimality of the above strategy. Fig. 7 shows a more generic
PCIe-only topology with variable number of GPUs and PCIe
switches. We do not plot the NIC as in Fig. 6(a) because
under that topology, the NIC has dedicated PCIe lanes and
will not compete for the PCIe bandwidth with GPUs. The
system architecture is modeled as a hierarchical graph G =
(V,E). Denote N as the set of leaf nodes (GPUs), S as the
set of intermediate nodes (switches), C as the set of CPU
nodes. V = N[S[C. Each edge e(vx,vy) in E represents the
bandwidth from vertex vx to vy, and we denote t(vx,vy) as the
amount of traffic sent from vx to vy. We further define p as

the number of switches (p� 2), and n as the leaf nodes that
each switch connects (n� 2).

We assume the following features of G: (1) Each edge
in E is duplex and the bandwidth of both directions are
equal. Denote b(vx,vy) as the bandwidth of e(vx,vy), then
b(vx,vy) = b(vy,vx); (2) We assume G is symmetric. The
bandwidth at the same layer of the tree is equivalent. For ex-
ample, b(S j,Cj) = b(Sk,Ck) and b(Nx,S j) = b(Ny,S j) hold
for any j,k 2 [0, p�1], x,y 2 [jn,(j+1)n�1]; (3) The mem-
ory and QPI bandwidth is much higher than the PCIe links
and is less likely to be the bottleneck. In the following, we
only focus on the PCIe links.

The GPUs from N0 to Npn�1 need to sum their data. We
can either use CPU-assisted aggregation mentioned before,
or use brute-force copy that needs each GPU to copy its entire
data to C directly. In practice, the optimal solution should
be a combination of these two strategies, depending on the
value of b(S j,C j) and b(Ni,S j). The intuition is that we apply
brute-force copy on x of the data, and CPU-assisted aggrega-
tion on y of the data (x+ y = 1). Under certain x and y, the
job completion time J can be minimized. We calculate the
traffic of two links respectively. On e(S j,Cj), the traffic is
composed of n times brute-force copy plus the traffic of CPU-
assisted aggregation. On e(Ni,Cj), the traffic is composed of
one brute-force copy and the complete traffic of CPU-assisted
aggregation.

t(S j,Cj) = n⇤ xM+
yM
n
⇤n = (nx+ y)M (8)

t(Ni,S j) = xM+(
2(n�1)

n
+

1
n
)yM = (

2n�1
n

y+ x)M (9)

Since J is determined by J = max(t(Ni,S j)
b(Ni,S j)

,
t(S j ,Cj)
b(S j ,Cj)

), the
optimal J is highly related to the two bandwidth terms. On our
own PCIe machines (Fig. 6(a)), we measure that both b(Ni,S j)
and b(S j,Cj) are 13.1GB/s (105Gbps). Let M=1GB and n= 4,
combining Equation (8), (9) and x+ y = 1, we are trying to
find a x 2 [0,1] such that argminx J(x) = max(3x+1

13.1 ,
7�3x
52.4).

Solve it and we will get the optimal solution is x⇤ = 1/5 and
J⇤ = 0.129s. This means the optimal solution works like this:
each GPU applies brute-force copy on its 1/5 data, and uses
CPU-assisted aggregation for the rest 4/5 data. Therefore, we
have the following key conclusions:
CPU-assisted aggregation is near-optimal. When x = 0, the
solution is our CPU-assisted aggregation, and the job comple-
tion time is J(0) = 0.141s. As calculated, the optimal time is
0.129s. Thus, our strategy closely approximates the optimal
solution, with 9% difference on performance. However, in
practice, brute-force copy heavily stresses the CPU memory
– any tensor that uses brute-force copy would consume 4⇥
CPU memory bandwidth compared with CPU-assisted aggre-
gation. CPU memory does not really have 4⇥ bandwidth of
PCIe links, especially for FP16 summation (Fig. 9(b). Conse-
quently, we choose not to use brute-force copy at all and stick

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 469

to CPU-assisted aggregation.
CPU-assisted aggregation is better than ring-based all-
reduce. We have the job completion time for ring-based
all-reduce as Jar =

2(np�1)M
np⇤bbottleneck

. Similarly, for CPU-assisted
aggregation we have Jca = M

b(S j ,Cj)
⇤ max(1, 2n�1

kn), where

k = b(Ni,S j)
b(S j ,Cj)

. In our case, k = 1 and bbottleneck < b(S j,Cj), so it
is easy prove that Jca < Jar always holds for any n, p� 2. For
example, using the value from our PCIe machines, let p = 2,
n = 4, bbottleneck = 80Gbps (bandwidth of memory copy that
crosses PCIe switches) and b(S j,Cj) = 105Gbps we get that
Jca is 23.7% smaller than Jar.

4.2.2 NVLink-based Topology
Fig. 8(a) shows the other machine model in our data center –
a GPU machine with NVLinks. There are four PCIe switches,
each connecting two GPU cards. The GPUs are also con-
nected via NVLinks. The NVLinks give every GPU in total
1.2Tbps GPU-GPU bandwidth, much higher than the PCIe
link. The NIC is connected to one of the PCIe switches.

With NVLink, GPU-to-GPU communication can com-
pletely avoid consuming PCIe bandwidth. So, we no longer
need CPU-assisted aggregation. However, we find that exist-
ing framework, including the most popular GPU all-reduce im-
plementation NCCL (used by TensorFlow, PyTorch, MXNet
and Horovod), is again sub-optimal.

The problem is that the topology is not symmetric consid-
ering the NIC, which is connected to only one (out of four)
PCIe switch. The NIC and the two GPUs under the same PCIe
switch have to compete for the PCIe bandwidth of P0�CPU0.
Remember that not only CS uses this PCIe bandwidth, but also
the SS runs on this same GPU machine uses it! P0�CPU0
again becomes the bottleneck in the whole communication.

Based on the analysis, we should leave as much P0�CPU0
PCIe bandwidth as possible to the NIC during local aggre-
gation. For this topology, BytePS uses reduce and broadcast
instead of reduce-scatter and all-gather – tensors from all
GPUs are first reduced to GPU2 and the result is then copied
to CPU0 memory from GPU2. Fig. 8(b) shows those steps.
Later, when CS gets the aggregated results from SS, GPU2
would copy the data into GPU memory and broadcast them
to other GPUs. This way, we completely prevent GPUs from
using the P0�CPU0 bandwidth for communication, so the
NIC can run to full 100Gbps bandwidth.

This approach seems to create traffic hotspots on GPU2.
However, NVLinks has much larger bandwidth than PCIe
links, so inter-GPU communication is never the bottleneck
even on the hotspots. Meanwhile, the P1 �CPU0 PCIe
link used for GPU-CPU copy has approximately the same
100Gbps bandwidth as the NIC, so it is not a bottleneck either.

BytePS has achieved the optimal result – there is no intra-
machine bandwidth bottleneck. Existing solutions like NCCL,
unfortunately, tends to let GPUs use the P0�CPU0 bottleneck
link because of the proximity between GPU0 and the NIC.

0 2

1 3

4 6

5 7

NIC
QPI

P0 P1 P2 P3

CPU0
Mem

CPU1
Mem

0 2

1 3

4 6

5 7

NIC
P0 P1 P2 P3

CPU0
Mem

CPU1
Mem

(a) NVLink-based topology

0 2

1 3

4 6

5 7

NIC
QPI

P0 P1 P2 P3

CPU0
Mem

CPU1
Mem

0 2

1 3

4 6

5 7

NIC
P0 P1 P2 P3

CPU0
Mem

CPU1
Mem

(b) Outgoing data flow

Figure 8: NVLink-based machine topology and BytePS data flow.
Only the outgoing direction is shown in the data flow figure.

Consequently, its communication performance is lower than
our solution in the NVLink-based machines.

4.2.3 Discussion
The solutions for PCIe-only and NVLink-based topology are
quite different. This shows that there is no one-fit-all optimal
solution. The intra-matchine communication must adapt to
different internal topologies. Admittedly, there are certainly
more topologies than the above two used in our environment.
However, we believe that the above two are representative,
since they are similar to the reference design recommended
by server vendors [15] and NVIDIA [11], respectively.

Despite the difference, we summarize two principles – 1)
always avoid direct GPU-to-GPU memory copy when the two
GPUs are not under the same PCIe switch because it is slow
in practice. 2) Always minimize traffic on the PCIe switch to
CPU link that is shared by GPUs and NIC. We propose the
following best practice procedure. Let Sn be the number of
PCIe switches with GPUs and NIC, and Sg be the number of
PCIe switches with only GPUs.

1. If Sn > 0 and Sg > 0, the topology is asymmetric like
our NVLink-based topology. CS should use reduce and
broadcast, with GPUs that are not competing with NICs
as reduce or broadcast roots.

2. If Sn = 0 or Sg = 0, the topology is symmetric like our
PCIe-only case. CS should use reduce-scatter and all-
gather to balance traffic on all PCIe switches. CPU-assisted
aggregation (§4.2.1) should be used if no NVLink.

Multi-NIC topology. Although the two specific topologies
we discussed have only one NIC, the above principles can
directly extend to multi-NIC topology – it only changes the
value of Sn and Sg.
GPU-direct RDMA (GDR). GDR can potentially reduce the
PCIe traffic. However, GDR requires the GPU and the RDMA
NIC to be on the same PCIe switch, otherwise the throughput
can be less than 50Gbps even with 100GbE NIC [12], which
is also confirmed by our own measurements. Consequently,
GDR does not benefit our settings – PCIe-only topology does
not satisfy the requirement, and we already avoided any PCIe
bottlenecks for NVLink-based topology. In addition, most
clouds like AWS do not support GDR. Therefore, BytePS
does not use GDR for now.

470 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

(a) Parameter update on different de-
vices. (Mtum: Momentum [65])

(b) Throughput of CPU summation
on different floating point tensors.

Figure 9: CPU is slow for optimizers but not for summation.

We can see that the optimal intra-machine communication
strategy is tightly coupled with the internal topology. Build-
ing a profiler to automatically detect the topology, probe the
bandwidth, and generate the best strategy is interesting future
work.

5 Summation Service
To get the optimal inter-machine communication time (§4.1),
BytePS needs a module that can run on the CPU of every
machine and communicate with CS. The question is, what is
its role in the training algorithm? Our initial attempt was to
follow the previous PS design [44], in which the PS processes
are responsible for running the optimizer. The optimizer ag-
gregates the gradients from all GPUs and updates the DNN
model parameters using various optimizers.
The CPU bottleneck. Unfortunately, soon we found that the
CPUs became a bottleneck in the system. We use an exper-
iment to demonstrate this. We train the VGG16 DNN [63]
using a typical non-colocated PS setting: using one Tesla
V100 GPU machine and one CPU machine (Intel Xeon Plat-
inum CPU, 32 cores with hyper-threading and Intel MKL [7])
connected by 100GbE Ethernet. The GPU machine runs the
forward and backward propagation, and the CPU machine
runs the optimizer using all the 32 CPU cores.

Fig. 9(a) shows that, even with 32 cores and MKL-enabled,
running the optimizer on the CPU machine can slow down the
end-to-end training speed. It means the CPU cannot match
the network bandwidth and becomes a bottleneck (§6). As
the optimizer algorithm gets more complicated (from sim-
pler SGD to the more complicated RMSProp), the bottleneck
effect becomes more severe.
The root cause. The CPU bottleneck is caused by the lim-
ited memory bandwidth. Popular optimizers such as Adam
can easily exhaust the memory bandwidth of modern CPUs.
For example, the peak transfer rate of a 6-channel DDR4-
2666 memory setup is up to 1024 Gbps combining read
and write [8]. It is easy to estimate that, for example, the
Adam optimizer [42] requires more than 10x memory ac-
cess (read+write) for applying every gradient update. Adding
that 100Gbps NIC consumes 200 Gbps memory bandwidth
(read+write), the 1024 Gbps memory bandwidth is simply not
sufficient for Adam to process 100 Gbps gradient stream.
CPU is good at summation. The above experiment leads us
to rethink the tasks placed on CPUs.The computation of an

fp

bp

update

sum

comm

GPU

optimizer

Network

CPU

fp

bp

update

sum

comm

GPU

optimizer

Network

CPU

fp

bp

update

sum

comm

GPU

optimizer

Network

CPU

fp

bp

update

sum

GPU

optimizer

CPU

fp

bp

update

sum

GPU

optimizer

CPU

fp

bp

update

sum

GPU

optimizer

CPU

(a) PS

fp

bp

update

sum

comm

GPU

optimizer

Network

CPU

fp

bp

update

sum

comm

GPU

optimizer

Network

CPU

fp

bp

update

sum

comm

GPU

optimizer

Network

CPU

fp

bp

update

sum

GPU

optimizer

CPU

fp

bp

update

sum

GPU

optimizer

CPU

fp

bp

update

sum

GPU

optimizer

CPU

(b) All-reduce

fp

bp

update

sum

comm

GPU

optimizer

Network

CPU

fp

bp

update

sum

comm

GPU

optimizer

Network

CPU

fp

bp

update

sum

comm

GPU

optimizer

Network

CPU

fp

bp

update

sum

GPU

optimizer

CPU

fp

bp

update

sum

GPU

optimizer

CPU

fp

bp

update

sum

GPU

optimizer

CPU

(c) BytePS

Figure 10: Component placement comparison between all-reduce,
PS and BytePS.

optimizer can be divided into two steps, gradient summation
and parameter update, as Fig. 10 shows.

Fortunately, modern x86 CPUs are good at summation
thanks to the highly optimized AVX instructions [47]. In
Fig. 9(b), we show the summation throughput on the same
CPUs as above, using synthetic floating point tensors. The
throughput is more than 200Gbps for both FP16 and FP32 pre-
cision, higher than the 100Gbps NIC bandwidth. Therefore,
summation on CPU will not be a bottleneck.
BytePS’s solution. Based on these observations, BytePS de-
couples the two steps of optimizer. We move the computation-
intensive parameter update to GPUs and places only sum-
mation on CPUs – this is why we name the CPU module
Summation Service (SS). SS not only prevents the CPU from
being the bottleneck, but also largely reduces the CPU over-
head. With carefully implementation using AVX and OpenMP,
SS only consumes fewer than 3 CPU cores when it runs at
100Gbps throughput. Fig. 10 gives a high-level comparison
over PS, all-reduce and BytePS on how they place different
components in DNN training onto GPU and CPU resources.

Since Summation Service moves parameter update to GPU
machines, all the GPU machines need to perform the same pa-
rameter update calculation, whereas parameter update needs
to be done only once in traditional PS. BytePS hence uses
more computation cycles for parameter update than PS. This
is a tradeoff we made willingly, to accelerate end-to-end train-
ing speed. We define SS overhead ratio as the FLOPs for
parameter update over the sum of FP and BP FLOPS. The ra-
tio is 138 MFLOPs / 32 GFLOPs, 26 MFLOPs / 7.8 GFLOPs,
387 MFLOPs / 494 GFLOPs for VGG-16, ResNet-50, BERT-
large using SGD as the optimizer, all are less than 0.5%. The
introduced overhead is negligible, compared to the training
speedup (Fig. 9(a)). The above ratio definition assumes batch
size of 1. DNN training typically uses batch size of tens or
hundreds. Parameter update is done once per batch, hence the
additional overhead is even smaller in practice.

We note that Horovod [60] has the option to move gradient
aggregation to CPUs by first copying the tensors to CPU mem-
ory and then performing CPU-only all-reduce. Since it still
only relies on the CPUs and bandwidth on GPU machines, it
does not provide communication-wise advantages compared
with directly all-reduce on GPUs. BytePS is different: it lever-
ages additional CPU machines for gradient summation, while
keeps parameter update on GPUs.
Support asynchronous training. Although separating the

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 471

summation and update brings us performance benefits, it
breaks an important feature of the original PS: the support of
asynchronous training like Asynchronous Parallel [25]. Asyn-
chronous Parallel relies on the PS processes keeping the most
updated model parameters, which is not directly compatible
with the design of SS. To bridge this gap, we re-design a new
workflow that can enable asynchronous training with SS, as
shown in Fig. 11(b). In short, GPU updates parameters and
computes the delta parameters first. CS sends them and re-
ceives latest parameters. SS keeps adding delta parameters to
the latest parameters. Next, we prove that this new training
workflow is equivalent to Asynchronous Parallel in terms of
algorithm convergence.

Theorem 2. The asynchronous algorithm for BytePS is equiv-
alent to Asynchronous Parallel [25].

Proof. Consider one SS connected with n CSs. We say a
CS stores the local model parameters, and a SS holds the
latest version of parameters. The high level idea of our proof
is to show that our algorithm generates identical state (i.e.,
same parameter for the SS module and n CS modules) with
Asynchronous Parallel, given the same communication order
(push and pull order). We use f as a general representation
of the optimizer. The optimizations thus can be represented
as w w+ f (gi,t), where gi,t represents the gradients of CSi
(i2 [0,n�1]) at iteration t (t 2 [1,T]). Denote wps and wbyteps
as the parameter in PS and BytePS, respectively. And denote
wi,t as the parameter on each workeri (for PS) or CS (for
BytePS) at iteration t. The parameter is initiated to w0 for all
CSs and the SS. After T iterations, we can obtain the updated
parameter as:

wps = w0 +
T

Â
t=1

n�1

Â
i=0

f (gi,t) (10)

wbyteps = w0 +
T

Â
t=1

n�1

Â
i=0

Dwi,t (11)

Next, we use induction to prove that Dwi,t = f (gi,t) holds
for any i and t. (1) Base case t = 1: Given initial param-
eter w0, we obtain the gradient gi,1 from w0. In Parameter
Server, workeri pushes gi,1 to the server and get updated as
wps,1 = w0 + f (gi,1). In BytePS, CSi pushes f (gi,1) to SS
and get updated as wbyteps,1 = w0 + f (gi,1). So Dwi,t = f (gi,t)
holds for t = 1. Meanwhile, the parameter on workeri or CSi
is the same on both architectures after receiving the response
from the server or SS. (2) Inductive step: If the lemma we
want to prove holds for t = k(k � 1), the gradient gi,k+1 is
computed from the same wk. Similar to the base case, we ob-
tain wps,k+1 =wk+ f (gi,k+1) and wbyteps,k+1 =wk+ f (gi,k+1).
So Dwi,t = f (gi,t) holds for t = k+1. By the principle of in-
duction, Dwi,t = f (gi,t) holds for all t 2 N.

Return to (10) and (11). Since Dwi,t = f (gi,t) holds for
any i and t, we get wps = wbyteps. This completes the proof

fpbp

updatesum

GPU
CPU

gt
!t+1

(a) PS-async

fpbp

update

sum!"t= "'t+1- "t

GPU
CPU "t+1

overwrite
"'t+1

(b) BytePS-async
Figure 11: Asynchronous training workflow comparison between
PS and BytePS. g is the gradients. w is the parameters.

because the parameter of our algorithm and Asynchronous
Parallel are equivalent after any T batches.

6 Implementation
While the core of BytePS is generic for any training frame-
work, BytePS also implements plugins for TensorFlow, Py-
Torch and MXNet, for user-friendliness. The core is imple-
mented in C++, while the framework plugins contain both
C++ and Python. In total, BytePS consists of about 7.8K lines
of Python code, and 10K lines of C++ code. As a major online
service provider, we have deployed BytePS internally. BytePS
has also been open-sourced [4] and attracted thousands of
users.

6.1 Multi-Stage Pipeline
A common way to speed up a multi-step procedure is to build
a multi-stage pipeline that overlaps the processing time of
each step. We incorporated the idea of tensor partition and
pipelining from prior work [34, 55]. For example, for PCIe-
only topology, CS has six steps. It maps to a 6-stage pipeline
in BytePS runtime. We implement BytePS to be flexible in
constructing the pipeline without recompiling. Each stage in
the pipeline is implemented as an independent thread with
a priority queue of tensors. The priority is assigned similar
to [34,55]. As analyzed in §4.1.1, large tensors are partitioned
to multiple smaller tensors no more than 4MB. Next, each
small tensor is enqueued to the first queue and moves towards
the next queue once a stage finishes processing it, until it is
dequeued from the last one.

6.2 Address RDMA Performance Issues
For inter-machine communication, we use RDMA RoCEv2.
Each machine has one 100GbE NIC, and the RDMA network
provides full bisection bandwidth. To get the full benefit of
RDMA, we have gone through a full design and debug journey
which we share as follows.
RDMA Memory Management. To improve the perfor-
mance, we aim to avoid unnecessary memory copies [72]
and achieve zero-copy on CPU memory. BytePS is based
on RDMA WRITE because it is the most performant among
common RDMA verbs [39]. Conventional one-sided RDMA
operations (WRITE and READ) require at least two round-
trips: getting the remote address, and writing (reading) the
value to (from) that address [39, 40, 50, 70]. We optimize
the process by leveraging the fact that DNN training always
sends the same set of tensors in every iteration. Only at the

472 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Table 2: BytePS throughput with a pair of CPU machine and GPU
machine running microbenchmark.

Solution baseline +shm +shm
+aligned all

Throughput
in Gbps 41 52

(1.27x)
76

(1.85x)
89

(2.17x)

first iteration, BytePS initializes all the required tensors, reg-
ister the buffer with RDMA NIC and exchange all the remote
addresses. Then BytePS stores the remote buffer information
and reuse it directly in the rest iterations.
Address Slow Receiver Symptom. We also run into the slow
receiver symptom as reported in [30] – the NICs are send-
ing out many PFCs into the network. Those excessive PFCs
slow down tensor transmission can cause collateral damage
to other traffic. Here we report several additional causes of
such symptom and how we address them.

Our first finding is that internal RDMA loopback traffic
can cause internal incast, and push the NIC to generate PFC.
BytePS runs both CS and SS on each GPU machine. The
traffic between them, which we call loopback traffic, does
not consume NIC’s external Ethernet bandwidth, but does
consume internal CPU-NIC PCIe bandwidth. Initially, we did
not add any special design – we stuck to RDMA verbs [9]
for loopback traffic and thought the NIC DMA can handle it.
However, we realize that it creates a 2:1 incast on the NIC,
with RX and loopback as two ingress ports and the DMA to
memory engine as one egress port!

To solve it, we implement a shared memory (shm) data
path. When CS detects that SS is on the same machine as
itself, CS simply notifies SS that the data is in shared memory.
After SS finishes summation, SS copies the results from its
own buffer back to CS’s shared memory. Consequently, the
loopback RDMA traffic is eliminated.

Our Second finding is that we need to use page-aligned
memory for RDMA. Otherwise PFCs may be triggered. Our
hypothesis is that hardware DMA aligns the transfer unit
to the page size (e.g., 4096 bytes). Therefore, using a page-
aligned address is more friendly to DMA engine as it reduces
the number of pages needed to be written.

Our third finding is that the RDMA NIC RX performance
can be impacted by how the concurrent send is implemented!
In the end, we not only use page-aligned memory, but also en-
force only one scatter-gather entry (sge) per RDMA WRITE
on the sender side.7

After all the optimization, BytePS implementation can run
as expected. Table 2 shows the performance improvement
after each of the above three optimizations is applied. The
NIC generates negligible PFCs.

As we have discussed in §4.1, BytePS creates many many-
to-one communication patterns in the network. Many-to-one

7In the whole process, we contacted with the NIC vendor and had lengthy
discussion with their software and hardware experts. As of writing, we have
not got the official root cause of the last two problems.

is well-known for creating incast and packet loss in TCP/IP
network [66]. But BytePS uses RDMA/RoCEv2 which de-
pends on a lossless fabric and DCQCN [75] for congestion
control. We do not observe incast issue in BytePS.

6.3 BytePS Usage
BytePS [4] is easy to use. We provide Python interfaces that
are almost identical to Horovod, PyTorch native API and
TensorFlow native API. Users can choose either of them and
migrate to BytePS with minimal efforts. For example, for
a Horovod-MNIST example [19], we only need to change
one line of Python code, from "import horovod" to "import
byteps". In fact, we are able to convert most of our internal
Horovod-based training tasks to BytePS automatically.

7 Evaluation
In this section, we show that BytePS not only achieves opti-
mal communication performance in microbenchmarks, but
also significantly accelerate training jobs in production envi-
ronment. We list a few highlights regarding the high fidelity
of the results.

• All resources used are allocated by the scheduler of produc-
tion clusters. The scheduler uses non-preemptive resource
scheduling – once a training job is scheduled, it will have a
fixed number of CPU machines that will not change. Even
the most large-scale tasks we show use < 5% GPUs of a
cluster that runs many production tasks.

• We use large training batch sizes. Smaller batch sizes mean
less GPU memory consumption but more communication,
so the end-to-end improvement will be more evident. How-
ever, all our tasks use almost full GPU memory, so the
speedup numbers against all-reduce and PS are the lower
bound of BytePS.

• Although we cannot disclose any specific models that are
used internally, the tasks and DNN model structures shown
are highly representative of production workloads. The
code is also available publicly for reproducibility [5].

• We compare BytePS with the state-of-the-art PS and all-
reduce implementation without modification. For example,
we do not apply the RDMA optimizations mentioned in
§6.2 on native-PS and all-reduce.

The cluster we use has a RoCEv2 network with full bisec-
tion bandwidth. All the machines have one 100GbE NIC. We
note that TensorFlow, PyTorch and MXNet can overlap the
DNN computation and communication [34, 55], thus even a
small improvement in end-to-end performance can indicate a
large improvement in communication.

7.1 Inter-machine Microbenchmarks
First, we use microbenchmarks to show the pure inter-
machine communication performance of different architec-
tures. We allocate eight 1-GPU machines from the cluster
scheduler. We run a dummy task in which all GPU workers

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 473

Figure 12: Communication goodput of 8⇥ 1-GPU machines with
varying number of additional CPU machines. The point-to-point
RDMA goodput is⇡ 90Gbps in our network, so we plot the “optimal”
line based on B = 90Gbps and the analysis in §4.1.

(a) PCIe-only GPU machines

(b) NVLink-based GPU machines

Figure 13: End-to-end performance with different number of CPU
machines. The training is run with PyTorch on 8 GPU machines
each with 8 GPUs. Each CPU machine uses < 4 cores.

just keep reducing large tensors on GPU and record the com-
munication goodput. We verify that no other distributed job
is placed on the same physical machines.

Fig. 12 shows that BytePS performance is very close to
the theoretical optimum (§4.1), with 1-9% difference for dif-
ferent number of CPU machines. All-reduce, as expected, is
close to the optimal only if there is no additional CPU ma-
chine, while remain the same even if there are CPU machines.
The (MXNet) PS does not run optimizer in this case, but is
mainly bottlenecked by issues described in §6.2. In practice,
if PS runs DNN optimizer algorithms, the performance will be
worse than all-reduce even with k = n CPU machines (Fig. 4).
In contrast, because of the Summation Service design, BytePS
would not be affected in real training tasks shown below.

7.2 Leverage CPU Machines
Next, we show that BytePS can indeed leverage different num-
bers of CPU machines to speed up training. In Fig. 13, we use
8 GPU machines, each with 8 Tesla V100 32GB GPUs, and
is either PCIe-only or NVLink-based topology. We vary the
number of CPU machines from 0 to 8. We compare BytePS
end-to-end training performance against state-of-the-art all-
reduce implementation (Horovod 0.19 and NCCL 2.5.7) as
the baseline. We test two DNN models, UGATIT GAN [41]
(one of the most popular models for image generation) and
GPT-2 [57] (one of the most popular NLP models for text gen-
eration), both implemented in PyTorch. The per GPU batch

(a) PCIe-only GPU machines (b) NVLink-based GPU machines

Figure 14: Topology-aware intra-machine communication. The
training is run with PyTorch on 8 GPU machines each with 8 GPUs
and no additional CPU machine.

size is 2 images for UGATIT, and 80 tokens for GPT-2. We
will evaluate more models, frameworks and machines in §7.4.

Fig. 13 shows that, with more CPU machines, BytePS can
run faster – up to 20% than without CPU machines. The SS
on each CPU machine only consumes no more than 4 CPU
cores. It is usually easy for our scheduler to find sufficient
CPUs that are on machines running non-distributed jobs. It is
free (or << 10% costs compared with the expensive GPUs)
speedup for the cluster. Compared with all-reduce, BytePS is
consistently faster in any cases and can be up to 45% faster in
the best case. On NVLink-based GPU machines, the speedup
is higher because the communication bottleneck is more on
the network instead of PCIe links. Finally, models have differ-
ent speedup due to different model sizes and FLOPs. In the
examples we show, GAN is more communication intensive,
so the end-to-end gain of BytePS is larger.

7.3 Adapt to Intra-machine Topology
Next, we show the benefits of BytePS intra-machine commu-
nication strategy. The software and hardware configurations
are the same as in §7.2. To better compare with the all-reduce
baseline, we run the jobs without any CPU machines. Thus,
BytePS does not take any advantages explained in §7.2. For
PCIe-only GPU machines (Fig. 14(a)), we run BytePS with
1) strawman strategy, the same as common all-reduce or PS
and 2) the optimal solution in §5. We see that the optimal
intra-machine solution has up to 20% gain as well.

For NVLink-based GPU machines (Fig. 14(b)), we use
different sets of GPUs as the local reduce roots. BytePS’s op-
timal solution, as explained in §4.2.2, is root = 2. root = 2,3
means CS chooses GPU 2 and 3 as the reduce root in a
round robin manner. It has almost the same performance
because GPU 3 is not competing for PCIe bandwidth with the
NIC, either. It is an alternatively optimal solution. However,
root = all has poorer performance. Communication-wise, it
is equivalent to Horovod’s hierarchical mode. root = 0 is
the worst because it competes hardest with the NIC. Unfor-
tunately, it is equivalent to Horovod’s normal mode (plain
NCCL all-reduce).

One thing to note is that even without any optimization,
BytePS still outperforms all-reduce. We discuss this in §8.

474 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

(a) TensorFlow, ResNet-50, batch=256 images (b) MXNet, VGG-16, batch=96 images (c) PyTorch, UGATIT, batch=2 images
Figure 15: Computer Vision models. The batch sizes are per GPU.

(a) TensorFlow, Transformer, batch=3072 tokens (b) MXNet, BERT-Large, batch=8192 tokens (c) PyTorch, GPT-2, batch=80 tokens
Figure 16: NLP models. The batch sizes are per GPU.

7.4 Scalability
To demonstrate BytePS’s performance at different scales, we
run six different training jobs using 8 to 256 Tesla V100 32GB
GPUs, i.e., 1 GPU machine to 32 GPU machines. Due to the
constraint of free resources, we only use NVLink-based GPU
machines. The six different jobs cover three frameworks, Ten-
sorFlow, PyTorch and MXNet. We have introduced two of the
models, UGATIT and GPT-2 in §7.2. The rest four models are
ResNet-50 [32], VGG-16 [63] (two of the most popular mod-
els for image classification and extraction), Transformer [67]
(one of the most popular models for machine translation) and
BERT [26] (one of the most popular models for natural lan-
guage understanding). We take the official implementation
of these models and slightly modify them (no more than 20
lines of code) to use PS, all-reduce and BytePS, respectively.

For BytePS, we evaluate its performance with and without
CPU machines. When there are CPU machines, the num-
ber of CPU machines is equal to GPU machines. For all-
reduce, we use Horovod with NCCL for all cases. For PS, we
show the native implementation from TensorFlow and MXNet
with RDMA support enabled. PS uses the same resources as
BytePS with CPU machines. PyTorch does not have official
PS implementation, so it does not have PS results. We also
provide the speed of linear scaling as the upper bound. We use
trained images per second as the speed metric for computer
vision models, and tokens per second for NLP models.

Fig. 15 and Fig. 16 show very consistent results – BytePS
with CPU machines is always the best and BytePS without
CPU machines is the second. The native PS of both Ten-
sorFlow or MXNet are always the poorest. All-reduce al-
ways has a clear advantage over PS, but is inferior to BytePS.
When training with 256 GPUs, the speedup of BytePS over
all-reduce is 10% to 84% with CPU machines, and 9% to
53% without CPU machines. From 8 GPUs to 256 GPUs,
the speedup becomes larger. We expect that with even more

GPUs, BytePS will have even larger advantage.
We see that models have different system scalability,8

which is determined by the model sizes and FLOPs. The most
scalable model is ResNet-50. BytePS achieves 97.5% scal-
ing efficiency with 256 GPUs. All-reduce also performs well,
achieving 88% scaling efficiency. It is not surprising that prior
work is fond of training ResNet at large scale [49, 73] with
all-reduce. Nevertheless, other models are more challenging,
with UGATIT as the least scalable one. Even BytePS only
achieves 74% scaling efficiency. For such communication
intensive models, BytePS has the most gain over all-reduce
(84% with 256 GPUs). Despite UGATIT, BytePS has at least
91.6% scaling factor for the rest five 256-GPU training jobs.

We analyze the breakdown of performance improvement
by comparing native-PS and BytePS, since they both use
the same number of additional CPU machines. For example,
BytePS outperforms native-PS by 52% with 256 GPUs on
VGG-16 (Fig. 15(b)). Among the 52% improvement, we find
that 19% comes from optimal communication design (intra-
server), 18% comes from Summation Service, and the rest
15% comes from better implementation mentioned in §6.

8 Observations and Discussion
In this section, we share several of our observations and dis-
cussions, with the aim to inspire future research.
BytePS outperforms all-reduce even without extra CPU
machines. Theoretically, the communication time is the same
for all-reduce and BytePS when no additional CPU machines
are available (§4.1). In practice, we observe that BytePS still
outperforms all-reduce significantly in this case. One reason
is that BytePS has a better intra-machine communication
strategy than all-reduce. However, even without intra-machine
optimization, BytePS still outperforms all-reduce (see Fig. 14
in §7). We hypothesize that BytePS has the advantage of
8We focus on system scalability and do not discuss algorithm scalability, i.e.
the hyperparameter tuning and convergence speed with more GPUs.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 475

allowing more “asynchronicity” than all-reduce. All-reduce
usually requires additional out-of-band synchronization to
ensure the consistent order across nodes, while BytePS does
not have this overhead. However, to analyze it, we need a
distributed profiler that can build the complete timeline of the
execution and communication across all nodes in distributed
training.
GPU cluster scheduler should consider dynamic CPU re-
sources. By leveraging additional CPU machines, BytePS
can speedup DNN training. Since BytePS can adapt to any
number of CPU machines, it enables elasticity – the cluster
scheduler can scale in or out CPU machines for existing jobs
based on real time conditions. Most existing schedulers keep
the number of GPUs of a job static because of convergence
problems [16, 74]. Fortunately, the number of CPU machines
in BytePS only impacts system performance but not model
convergence. We plan to add elasticity support to BytePS,
which will enable BytePS to dynamically schedule CPU re-
sources during the training process.
Model-parallelism support. BytePS can accelerate the com-
munication when reducing tensors across GPUs. Some model
parallelism methods, such as Megatron-LM [62] and Mesh-
TensorFlow [61], also rely on the all-reduce primitive for
communication. Therefore, BytePS can also accelerate them
by replacing the all-reduce operations.

9 Related Work
Acceleration of computation: To accelerate the forward
propagation and backward propagation, the community has
worked out many advanced compilers and libraries, includ-
ing cuDNN [10], MKL [7], TVM [23], XLA [17], Astra [64]
and other computation graph optimization, e.g., Tensor Fu-
sion [14] and graph substitution [37]. They focus on speeding
up DNN computation. They are complementary to and can
be used with BytePS.
Acceleration of communication: There are several direc-
tions for accelerating communication: (1) Gradient compres-
sion [21, 45] is proposed to reduce the communication traf-
fic, i.e., using half precision for gradient transmission, at the
cost of potential degradation of accuracy. (2) Communica-
tion scheduling and pipelining: Recent work explores to bet-
ter overlap the computation and communication by priority-
based scheduling and tensor partition [31, 34, 55]. The ideas
are that tensor partition enables simultaneous bidirectional
communication, and that during communication, the former
layers have higher priority because they are needed sooner
for FP of the next iteration. Those ideas are complementary
to BytePS, and they have been integrated into our implemen-
tation. Pipedream [51] adds parallelism between multiple
batches. BytePS can also potentially accelerate its data paral-
lel stages.
Hierarchical all-reduce: Some work proposes to leverage
the hierarchical topology [24, 49] during all-reduce, in order
to minimize the traffic at bottleneck links. However, they still

rely on the assumption that resources are homogeneous while
overlooking CPU resources. BytePS can outperform them
by leveraging the heterogeneous resources. In fact, the lat-
est NCCL includes hierarchical, tree-based all-reduce, which
does not differ much from the results in §7.
Intra-machine optimization: Blink [68] also optimizes mul-
tiple GPU communication inside a single machine, by lever-
aging hybrid transfers on NVLinks and PCIe links. How-
ever, Blink does not optimize the distributed training cases,
where the main communication bottleneck is the NIC and its
PCIe connection instead of the much faster NVLinks. BytePS
carefully schedules the intra-machine traffic to utilize the
bottleneck bandwidth better – the NIC bandwidth. Our intra-
machine design also considers the PCIe bandwidth consumed
by the NIC, while Blink is only focused on GPU’s PCIe con-
nections.
New hardware chips or architecture for accelerating
DNN training: Recently, there are many new chips, like
TPU [38] and Habana [6], that are specifically designed
for DNN training. In fact, the design of BytePS is not
GPU-specific, and should apply to them as long as they
are also PCIe devices. Some also propose using Infini-
Band switch ASIC [28] to accelerate all-reduce, or using P4
switches [58, 59] to accelerate PS. E3 [46] leverages Smart-
NICs to accelerate network applications, and can potentially
benefit BytePS by offloading the gradient summation from
CPUs to SmartNICs. PHub [48] proposes a rack-scale hard-
ware architecture with customized network configurations,
e.g., 10 NICs on one server. BytePS focuses on using gen-
erally available CPU and GPU servers in commodity data
centers.

10 Conclusion
BytePS is a unified distributed DNN training acceleration sys-
tem that achieves optimal communication efficiency in hetero-
geneous GPU/CPU clusters. BytePS handles cases with vary-
ing number of CPU machines and makes traditional all-reduce
and PS as two special cases of its framework. To further accel-
erate DNN training, BytePS proposes Summation Service and
splits a DNN optimizer into two parts: gradient summation
and parameter update. It keeps the CPU-friendly part, gradi-
ent summation, in CPUs, and moves parameter update, which
is more computation heavy, to GPUs. We have implemented
BytePS and addressed numerous implementation issues, in-
cluding those that affect RDMA performance. BytePS has
been deployed, extensively used and open sourced [4]. Mul-
tiple external projects have been developed based on it. The
Artifact Appendix to reproduce the evaluation is at [3].

11 Acknowledgement
We thank our shepherd Rachit Agarwal and the anony-
mous reviewers for their valuable comments and sugges-
tions. Yimin Jiang and Yong Cui are supported by NSFC
(No. 61872211), National Key RD Program of China (No.
2018YFB1800303).

476 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] A Light-weight Parameter Server Interface. https:
//github.com/dmlc/ps-lite.

[2] Amazon EC2 P3 Instances. https://aws.amazon.c
om/ec2/instance-types/p3/.

[3] Artifact Appendix. https://github.com/byteps/
examples/blob/master/osdi20ae.pdf.

[4] BytePS. https://github.com/bytedance/byteps.

[5] Evaluation Code. https://github.com/byteps/ex
amples.

[6] Habana. https://habana.ai/.

[7] Intel MKL. https://software.intel.com/en-us
/mkl.

[8] Intel Xeon Platinum 8168 Processor. https://ark.in
tel.com/content/www/us/en/ark/products/120
504/intel-xeon-platinum-8168-processor-33m
-cache-2-70-ghz.html.

[9] Libibverbs. https://www.rdmamojo.com/2012/05
/18/libibverbs/.

[10] NVIDIA cuDNN. https://developer.nvidia.com
/cudnn.

[11] NVIDIA DGX-1. https://www.nvidia.com/data-
center/dgx-1/.

[12] NVIDIA GPU Direct RDMA Benchmark. https://
devblogs.nvidia.com/benchmarking-gpudirect
-rdma-on-modern-server-platforms/.

[13] NVIDIA NCCL. https://developer.nvidia.com
/nccl.

[14] NVIDIA TensorRT Inference Library. https://devb
logs.nvidia.com/deploying-deep-learning-nv
idia-tensorrt/.

[15] Supermicro PCIe Root Architectures for GPU Systems.
https://www.supermicro.org.cn/products/sys
tem/4U/4029/PCIe-Root-Architecture.cfm.

[16] Train ImageNet in 18 Minutes. https://www.fast.a
i/2018/08/10/fastai-diu-imagenet/.

[17] XLA. https://www.tensorflow.org/xla.

[18] Amazon EC2 Pricing on demand. https://aws.amaz
on.com/ec2/pricing/on-demand/, 2019.

[19] TensorFlow MNIST Example with Horovod. https:
//github.com/horovod/horovod/blob/master/e
xamples/tensorflow_mnist.py, 2020.

[20] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: A System for Large-Scale Machine Learn-
ing. In OSDI 2016.

[21] Chia-Yu Chen, Jungwook Choi, Daniel Brand, Ankur
Agrawal, Wei Zhang, and Kailash Gopalakrishnan. Ada-
comp: Adaptive Residual Gradient Compression for
Data-parallel Distributed Training. In AAAI 2018.

[22] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang,
Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang,
and Zheng Zhang. MXNet: A Flexible and Efficient Ma-
chine Learning Library for Heterogeneous Distributed
Systems. In LearningSys 2015.

[23] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Yan, Haichen Shen, Meghan Cowan,
Leyuan Wang, Yuwei Hu, Luis Ceze, et al. TVM: An
Automated End-to-End Optimizing Compiler for Deep
Learning. In OSDI 2018.

[24] Minsik Cho, Ulrich Finkler, and David Kung. Blue-
Connect: Novel Hierarchical All-Reduce on Multi-tired
Network for Deep Learning. In SysML 2019.

[25] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen,
Matthieu Devin, Mark Mao, Andrew Senior, Paul
Tucker, Ke Yang, Quoc V Le, et al. Large Scale Dis-
tributed Deep Networks. In NIPS 2012.

[26] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: Pre-training of Deep Bidi-
rectional Transformers for Language Understanding.
arXiv preprint arXiv:1810.04805, 2018.

[27] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tul-
loch, Yangqing Jia, and Kaiming He. Accurate, Large
Minibatch SGD: Training Imagenet in 1 Hour. arXiv
preprint arXiv:1706.02677, 2017.

[28] Richard L Graham, Devendar Bureddy, Pak Lui, Hal
Rosenstock, Gilad Shainer, Gil Bloch, Dror Goldenerg,
Mike Dubman, Sasha Kotchubievsky, Vladimir Koush-
nir, et al. Scalable Hierarchical Aggregation Protocol
(SHArP): A Hardware Architecture for Efficient Data
Reduction. In COMHPC 2016.

[29] Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin,
Yibo Zhu, Myeongjae Jeon, Junjie Qian, Hongqiang Liu,
and Chuanxiong Guo. Tiresias: A GPU Cluster Manager
for Distributed Deep Learning. In NSDI 2019.

[30] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni,
Jianxi Ye, Jitu Padhye, and Marina Lipshteyn. RDMA
Over Commodity Ethernet at Scale. In SIGCOMM 2016.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 477

https://github.com/dmlc/ps-lite
https://github.com/dmlc/ps-lite
https://aws.amazon.com/ec2/instance-types/p3/
https://aws.amazon.com/ec2/instance-types/p3/
https://github.com/byteps/examples/blob/master/osdi20ae.pdf
https://github.com/byteps/examples/blob/master/osdi20ae.pdf
https://github.com/bytedance/byteps
https://github.com/byteps/examples
https://github.com/byteps/examples
https://habana.ai/
https://software.intel.com/en-us/mkl
https://software.intel.com/en-us/mkl
https://ark.intel.com/content/www/us/en/ark/products/120504/intel-xeon-platinum-8168-processor-33m-cache-2-70-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120504/intel-xeon-platinum-8168-processor-33m-cache-2-70-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120504/intel-xeon-platinum-8168-processor-33m-cache-2-70-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120504/intel-xeon-platinum-8168-processor-33m-cache-2-70-ghz.html
https://www.rdmamojo.com/2012/05/18/libibverbs/
https://www.rdmamojo.com/2012/05/18/libibverbs/
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://www.nvidia.com/data-center/dgx-1/
https://www.nvidia.com/data-center/dgx-1/
https://devblogs.nvidia.com/benchmarking-gpudirect-rdma-on-modern-server-platforms/
https://devblogs.nvidia.com/benchmarking-gpudirect-rdma-on-modern-server-platforms/
https://devblogs.nvidia.com/benchmarking-gpudirect-rdma-on-modern-server-platforms/
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
https://devblogs.nvidia.com/deploying-deep-learning-nvidia-tensorrt/
https://devblogs.nvidia.com/deploying-deep-learning-nvidia-tensorrt/
https://devblogs.nvidia.com/deploying-deep-learning-nvidia-tensorrt/
https://www.supermicro.org.cn/products/system/4U/4029/PCIe-Root-Architecture.cfm
https://www.supermicro.org.cn/products/system/4U/4029/PCIe-Root-Architecture.cfm
https://www.fast.ai/2018/08/10/fastai-diu-imagenet/
https://www.fast.ai/2018/08/10/fastai-diu-imagenet/
https://www.tensorflow.org/xla
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/
https://github.com/horovod/horovod/blob/master/examples/tensorflow_mnist.py
https://github.com/horovod/horovod/blob/master/examples/tensorflow_mnist.py
https://github.com/horovod/horovod/blob/master/examples/tensorflow_mnist.py

[31] Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, and
Roy H Campbell. TicTac: Accelerating Distributed
Deep Learning with Communication Scheduling. In
SysML 2019.

[32] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep Residual Learning for Image Recognition.
In CVPR 2016.

[33] Geoffrey Hinton, li Deng, Dong Yu, George Dahl, Abdel-
rahman Mohamed, Navdeep Jaitly, Andrew Senior, Vin-
cent Vanhoucke, Phuongtrang Nguyen, Tara Sainath,
and Brian Kingsbury. Deep Neural Networks for Acous-
tic Modeling in Speech Recognition: The Shared Views
of Four Research Groups. Signal Processing Magazine,
IEEE, 2012.

[34] Anand Jayarajan, Jinliang Wei, Garth Gibson, Alexandra
Fedorova, and Gennady Pekhimenko. Priority-based
Parameter Propagation for Distributed DNN Training.
In SysML 2019.

[35] Myeongjae Jeon, Shivaram Venkataraman, Amar Phan-
ishayee, Junjie Qian, Wencong Xiao, and Fan Yang.
Analysis of Large-Scale Multi-Tenant GPU Clusters
for DNN Training Workloads. In ATC 2019.

[36] Xianyan Jia, Shutao Song, Wei He, Yangzihao Wang,
Haidong Rong, Feihu Zhou, Liqiang Xie, Zhenyu Guo,
Yuanzhou Yang, Liwei Yu, et al. Highly Scalable
Deep Learning Training System with Mixed-precision:
Training Imagenet in Four Minutes. arXiv preprint
arXiv:1807.11205, 2018.

[37] Zhihao Jia, Oded Padon, James Thomas, Todd Warsza-
wski, Matei Zaharia, and Alex Aiken. TASO: Opti-
mizing Deep Learning Computation with Automatic
Generation of Graph Substitutions. In SOSP 2019.

[38] Norman P Jouppi, Cliff Young, Nishant Patil, David Pat-
terson, Gaurav Agrawal, Raminder Bajwa, Sarah Bates,
Suresh Bhatia, Nan Boden, Al Borchers, et al. In-
datacenter performance analysis of a tensor processing
unit. In ISCA 2017.

[39] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
FaSST: Fast, Scalable and Simple Distributed Transac-
tions with Two-Sided (RDMA) Datagram RPCs. In
OSDI 2016.

[40] Anuj Kalia, Michael Kaminsky, and David G Andersen.
Using RDMA efficiently for Key-value Services. In
SIGCOMM 2014.

[41] Junho Kim, Minjae Kim, Hyeonwoo Kang, and
Kwanghee Lee. U-GAT-IT: Unsupervised Genera-
tive Attentional Networks with Adaptive Layer-Instance
Normalization for Image-to-Image Translation. arXiv
preprint arXiv:1907.10830, 2019.

[42] Diederik P. Kingma and Jimmy Ba. Adam: A Method
for Stochastic Optimization. In ICLR, 2015.

[43] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. ImageNet Classification with Deep Convolutional
Neural Networks. In NIPS 2012.

[44] Mu Li, David G Andersen, Jun Woo Park, Alexander J
Smola, Amr Ahmed, Vanja Josifovski, James Long, Eu-
gene J Shekita, and Bor-Yiing Su. Scaling Distributed
Machine Learning with the Parameter Server. In OSDI
2014.

[45] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and
William J Dally. Deep Gradient Compression: Reducing
the Communication Bandwidth for Distributed Training.
arXiv preprint arXiv:1712.01887, 2017.

[46] Ming Liu, Simon Peter, Arvind Krishnamurthy, and
Phitchaya Mangpo Phothilimthana. E3: Energy-
Efficient Microservices on SmartNIC-Accelerated
Servers. In ATC 2019.

[47] Chris Lomont. Introduction to Intel Advanced Vector
Extensions. Intel white paper, 23, 2011.

[48] Liang Luo, Jacob Nelson, Luis Ceze, Amar Phanishayee,
and Arvind Krishnamurthy. Parameter Hub: A Rack-
scale Parameter Server for Distributed Deep Neural Net-
work Training. In SoCC 2018.

[49] Hiroaki Mikami, Hisahiro Suganuma, Yoshiki Tanaka,
and Yuichi Kageyama. Massively Distributed SGD:
ImageNet/ResNet-50 Training in a Flash. arXiv preprint
arXiv:1811.05233, 2018.

[50] Christopher Mitchell, Yifeng Geng, and Jinyang Li. Us-
ing One-Sided RDMA Reads to Build a Fast, CPU-
Efficient Key-Value Store. In ATC 2013.

[51] Deepak Narayanan, Aaron Harlap, Amar Phanishayee,
Vivek Seshadri, Nikhil R Devanur, Gregory R Ganger,
Phillip B Gibbons, and Matei Zaharia. PipeDream: Gen-
eralized Pipeline Parallelism for DNN Training. In
SOSP 2019.

[52] Tony Paikeday. Steel for the AI Age: DGX SuperPOD
Reaches New Heights with NVIDIA DGX A100. http
s://blogs.nvidia.com/blog/2020/05/14/dgx-s
uperpod-a100/, May 2020.

[53] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-
ban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. In NIPS 2019.

478 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://blogs.nvidia.com/blog/2020/05/14/dgx-superpod-a100/
https://blogs.nvidia.com/blog/2020/05/14/dgx-superpod-a100/
https://blogs.nvidia.com/blog/2020/05/14/dgx-superpod-a100/

[54] Pitch Patarasuk and Xin Yuan. Bandwidth Optimal All-
reduce Algorithms for Clusters of Workstations. Journal
of Parallel and Distributed Computing, 2009.

[55] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao,
Bairen Yi, Chang Lan, Chuan Wu, and Chuanxiong Guo.
A Generic Communication Scheduler for Distributed
DNN Training Acceleration. In SOSP 2019.

[56] Raul Puri, Robert Kirby, Nikolai Yakovenko, and Bryan
Catanzaro. Large Scale Language Modeling: Converg-
ing on 40GB of Text in Four Hours. In SBAC-PAD
2018.

[57] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario
Amodei, and Ilya Sutskever. Language Models are Un-
supervised Multitask Learners. OpenAI Blog, 2019.

[58] Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan,
Marco Canini, and Panos Kalnis. In-network Compu-
tation Is A Dumb Idea Whose Time Has Come. In
HotNets 2017.

[59] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob
Nelson, Panos Kalnis, Changhoon Kim, Arvind Krish-
namurthy, Masoud Moshref, Dan RK Ports, and Pe-
ter Richtárik. Scaling Distributed Machine Learn-
ing with In-network Aggregation. arXiv preprint
arXiv:1903.06701, 2019.

[60] Alexander Sergeev and Mike Del Balso. Horovod: Fast
and Easy Distributed Deep Learning in TensorFlow.
CoRR, 2018.

[61] Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin
Tran, Ashish Vaswani, Penporn Koanantakool, Peter
Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff
Young, Ryan Sepassi, and Blake Hechtman. Mesh-
TensorFlow: Deep Learning for Supercomputers. arXiv
preprint arXiv:1811.02084, 2018.

[62] Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-LM: Training Multi-Billion Parameter Lan-
guage Models Using Model Parallelism. arXiv preprint
arXiv: 1909.08053, 2019.

[63] Karen Simonyan and Andrew Zisserman. Very Deep
Convolutional Networks for Large-scale Image Recog-
nition. arXiv preprint arXiv:1409.1556, 2014.

[64] Muthian Sivathanu, Tapan Chugh, Sanjay S Singapuram,
and Lidong Zhou. Astra: Exploiting Predictability to
Optimize Deep Learning. In ASPLOS 2019.

[65] Ilya Sutskever, James Martens, George Dahl, and Ge-
offrey Hinton. On the Importance of Initialization and
Momentum in Deep Learning. In ICML 2013.

[66] Vijay Vasudevan, Amar Phanishayee, Hiral Shah, Elie
Krevat, David G. Andersen, Gregory R. Ganger, Garth A.
Gibson, and Brian Mueller. Safe and Effective Fine-
grained TCP Retransmissions for Datacenter Communi-
cation. In SIGCOMM 2009.

[67] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is All You Need. In
NIPS 2017.

[68] Guanhua Wang, Shivaram Venkataraman, Amar Phan-
ishayee, Jorgen Thelin, Nikhil Devanur, and Ion Stoica.
Blink: Fast and Generic Collectives for Distributed ML.
In MLSys 2020.

[69] Yuxuan Wang, R. J. Skerry-Ryan, Daisy Stanton,
Yonghui Wu, Ron J. Weiss, Navdeep Jaitly, Zongheng
Yang, Ying Xiao, Zhifeng Chen, Samy Bengio, Quoc V.
Le, Yannis Agiomyrgiannakis, Rob Clark, and Rif A.
Saurous. Tacotron: A Fully End-to-End Text-To-Speech
Synthesis Model. CoRR, abs/1703.10135, 2017.

[70] Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo
Chen. Deconstructing RDMA-enabled Distributed
Transactions: Hybrid is Better! In OSDI 2018.

[71] Wencong Xiao, Romil Bhardwaj, Ramachandran Ram-
jee, Muthian Sivathanu, Nipun Kwatra, Zhenhua Han,
Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu Zhang,
et al. Gandiva: Introspective Cluster Scheduling for
Deep Learning. In OSDI 2018.

[72] Bairen Yi, Jiacheng Xia, Li Chen, and Kai Chen. To-
wards Zero Copy Dataflows Using RDMA. In SIG-
COMM 2017 Posters and Demos.

[73] Chris Ying, Sameer Kumar, Dehao Chen, Tao Wang, and
Youlong Cheng. Image Classification at Supercomputer
Scale. arXiv preprint arXiv:1811.06992, 2018.

[74] Yang You, Jing Li, Jonathan Hseu, Xiaodan Song, James
Demmel, and Cho-Jui Hsieh. Reducing BERT Pre-
Training Time from 3 Days to 76 Minutes. arXiv
preprint arXiv:1904.00962, 2019.

[75] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong
Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra Pad-
hye, Shachar Raindel, Mohamad Haj Yahia, and Ming
Zhang. Congestion Control for Large-Scale RDMA
Deployments. In SIGCOMM 2015.

[76] Martin Zinkevich, Markus Weimer, Lihong Li, and
Alex J Smola. Parallelized Stochastic Gradient Descent.
In NIPS 2010.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 479

	Introduction
	Background
	Distributed DNN Training
	All-reduce
	Parameter Server (PS)

	Motivation and BytePS Architecture
	Motivation
	Architecture Overview

	BytePS Communication Design
	Inter-machine Communication
	Communication Efficiency Analysis

	Intra-machine Communication
	PCIe-only Topology
	NVLink-based Topology
	Discussion

	Summation Service
	Implementation
	Multi-Stage Pipeline
	Address RDMA Performance Issues
	BytePS Usage

	Evaluation
	Inter-machine Microbenchmarks
	Leverage CPU Machines
	Adapt to Intra-machine Topology
	Scalability

	Observations and Discussion
	Related Work
	Conclusion
	Acknowledgement

