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ABSTRACT

The rising volume of datasets has made training machine
learning (ML) models a major computational cost in the en-
terprise. Given the iterative nature of model and parameter
tuning, many analysts use a small sample of their entire
data during their initial stage of analysis to make quick deci-
sions (e.g., what features or hyperparameters to use) and use
the entire dataset only in later stages (i.e., when they have
converged to a specific model). This sampling, however, is
performed in an ad-hoc fashion. Most practitioners cannot
precisely capture the effect of sampling on the quality of
their model, and eventually on their decision-making pro-
cess during the tuning phase. Moreover, without systematic
support for sampling operators, many optimizations and
reuse opportunities are lost.
In this paper, we introduce BlinkML, a system for fast,

quality-guaranteed ML training. BlinkML allows users to
make error-computation tradeoffs: instead of training amodel
on their full data (i.e., full model), BlinkML can quickly train
an approximate model with quality guarantees using a sam-
ple. The quality guarantees ensure that, with high probability,
the approximate model makes the same predictions as the
full model. BlinkML currently supports any ML model that
relies on maximum likelihood estimation (MLE), which in-
cludes Generalized Linear Models (e.g., linear regression,
logistic regression, max entropy classifier, Poisson regres-
sion) as well as PPCA (Probabilistic Principal Component
Analysis). Our experiments show that BlinkML can speed
up the training of large-scale ML tasks by 6.26×–629× while
guaranteeing the same predictions, with 95% probability, as
the full model.
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1 INTRODUCTION

While data management systems have been widely success-
ful in supporting traditional OLAP-style analytics, they have
not been equally successful in attracting modern machine
learning (ML) workloads. To circumvent this, most analytical
database vendors have added integration layers for popu-
lar ML libraries in Python (e.g., Oracle’s cx_Oracle [4], SQL
Server’s pymssql [9], and DB2’s ibm_db [10]) or R (e.g., Ora-
cle’s RODM [11], SQL Server’s RevoScaleR [12], and DB2’s
ibmdbR [6]). These interfaces simply allowmachine learning
algorithms to run on the data in-situ.
However, recent efforts have shown that data manage-

ment systems have much more to offer. For example, materi-
alization and reuse opportunities [15, 16, 31, 93, 106], cost-
based optimization of linear algebraic operators [24, 29, 48],
array-based representations [59, 96], avoiding denormaliza-
tion [64, 65, 89], lazy evaluation [109], declarative inter-
faces [80, 95, 101], and query planning [63, 81, 94] are all
readily available (or at least familiar) database functional-
ities that can deliver significant speedups for various ML
workloads.

One additional but key opportunity that has been largely
overlooked is the sampling abstraction offered by nearly ev-
ery database system. Sampling operators have been mostly
used for approximate query processing (AQP) [27, 32, 35,
45, 54, 68, 73, 82, 84, 85]. However, applying the lessons
learned in the data management community regarding AQP,
we could use a similar sampling abstraction to also speed up
an important class of ML workloads.

Our Goal Given that (sub)sampling is already quite com-
mon in early stages of ML workloads—such as feature selec-
tion and hyper-parameter tuning—we propose a high-level
system abstraction for training ML models, with which an-
alysts can explicitly request error-computation trade-offs
for several important classes of ML models. This involves
systematic support for (i) bounding the deviation of the ap-
proximate model’s predictions from those of the full model
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given a sample size, and (ii) predicting the minimum sam-

ple size with which the trained model would meet a given
prediction error.

Challenges While estimating sampling error is awell-studied
problem for SQL queries [14, 75], it is more involved for ML
models. There are two types of approaches here: (i) those that
estimate the error before training the model (i.e., predictive),
and (ii) those that estimate the error after a model is trained
(i.e., descriptive). A well-known predictive technique is the
so-called VC-dimension [74], which upper bounds the gener-
alization error of amodel. However, given that VC-dimension
bounds are data-independent, they tend to be quite loose in
practice [103]. Overestimated error bounds would lead the
analysts to use the entire dataset even if similar results could
be obtained from a small sample. 1

Common techniques for the descriptive approach include
cross-validation [23] and Radamacher complexity [74]. Since
these techniques are data-dependent, they provide tighter
error estimates. However, they only bound the generaliza-
tion error. While useful for evaluating the model’s quality
on future (i.e., unseen) data, the generalization error pro-
vides little help in predicting how much the model quality
would differ if the entire dataset were used instead of the
current sample. Furthermore, when choosing the minimum
sample size needed to achieve a user-specified accuracy, the
descriptive approaches can be quite expensive: one would
need to train multiple models, each on a different sample
size, until a desirable error tolerance is met. Given that most
ML models do not have an incremental training procedure
(besides a warm start [28]), training multiple models to find
an appropriate sample size might take longer overall than
simply training a model on the full dataset (see Section 5.4).

Our Approach BlinkML’s underlying statistical technique
offers tight error bounds for approximate models (Section 3),
and does so without training multiple approximate models
(Section 4).

BlinkML’s statistical techniques are based on the follow-
ing observation: given a test example x , the model’s pre-
diction is simply a functionm(x ;θ ), where θ is the model
parameter learned during the training phase. Therefore, if
we could understand how θ would differ when trained on a
sample (instead of the entire dataset), we could also infer its
impact on the model’s prediction, i.e.,m(x ;θ ).
Specifically, let θN be the model parameter obtained if

one trains on the entire dataset (say, of size N ), and θn be
the model parameter obtained if one trains on a sample of
size n. Obtaining θn is fast when n ≪ N ; however, θN is
unknown unless we use the entire dataset. Our key idea is

1This is why VC-dimensions are sometimes used indirectly, as a comparative measure
of quality [65].

to exploit the asymptotic distribution of θN − θ̂n to analyt-
ically (thus, efficiently) derive the conditional distribution
of θ̂N | θn , where θ̂n is the random variable for θn , and
θ̂N represents our (limited) probabilistic knowledge of θN
(Theorem 1 and Corollary 1). A specific model parameter θn
trained on a specific sample (of size n) is an instance of θ̂n
The asymptotic distribution of θN − θ̂n is available for the
ML methods relying on maximum likelihood estimation.
This indicates that, while we cannot determine the ex-

act value of θN without training the full model, we can use
θ̂N | θn to probabilistically bound the deviation of θN from
θn , and consequently, the deviation ofm(x ;θN ) fromm(x ;θn)
(Section 3.3). Moreover, we can estimate the deviation of
m(x ;θN ) fromm(x ;θn) for any other sample size, say n, us-
ing only the model trained on the initial sample of size n0
(Section 4). In other words, without having to perform addi-
tional training, we can efficiently search for the minimum
sample size n, with which the approximate model,m(x ;θn)
would be guaranteed, with probability 1 − δ , not to deviate
fromm(x ;θN ) by more than ε .

Difference fromPreviousWork Existing sampling-based
techniques are typically designed for a very specific type
of model, such as non-uniform sampling for linear regres-
sion [17, 22, 34, 36–38, 41, 47], logistic regression [62, 100],
clustering [42, 56], kernel matrices [49, 76], Gaussianmixture
models [70], and point processes [67]. In contrast, BlinkML
exploits uniform random sampling for training a much wider
class of models, i.e., anyMLE-based model; thus, no sampling
probabilities need to be determined in advance. BlinkML’s
contributions also include an efficient accuracy estimation
for the approximate model and an accurate minimum sample
size estimation for satisfying a user-requested accuracy. (See
Sections 6 and 7 for discussions.)

Contributions We make the following contributions:
1. We introduce a system (called BlinkML) that offers error-

computation trade-offs for training any MLE-based ML
model, including Generalized Linear Models (e.g., linear
regression, logistic regression, max entropy classifier, Pois-
son regression) and Probabilistic Principal Component
Analysis. (Section 2)

2. We formally study the sampling distribution of an ap-
proximate model’s parameters, which we use to design
an efficient algorithm that computes the probabilistic dif-
ference between an approximate model and a full one,
without having to train the latter. (Section 3)

3. We develop a technique that can analytically infer the
quality of a new approximate model, only using a previous
model and without having to train the new one. This
ability enables BlinkML to automatically and efficiently
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Figure 1: Interaction difference between traditional ML li-

braries and BlinkML. BlinkML can quickly train an ap-

proximate ML model in accordance to a user-specified accu-

racy request.

infer the appropriate sample size for satisfying an error
tolerance requested by the user. (Section 4)

4. We empirically validate the statistical correctness and
computational benefits of BlinkML through extensive
experiments. (Section 5)

2 SYSTEM OVERVIEW

In this section, we provide an overview of BlinkML. We de-
scribe BlinkML’s user interface in Section 2.1. In Section 2.2,
we formally describe the models supported by BlinkML. We
describe BlinkML’s internal workflow in Section 2.3.

2.1 User Interface

In this section, we first describe the interface of a traditional
ML library (e.g., scikit-learn [86], Weka [53], MLlib [1]), and
then present the difference in BlinkML’s interface. To sim-
plify our presentation, here we focus on classificationmodels;
however, our description can be easily generalized to both
regression models (e.g., linear regression) and unsupervised
learning (e.g., PPCA), as described in Appendix C.

Traditional ML Libraries As depicted in Figure 1 (top),
with a typical ML library, the user provides a training set

D ∼ D and specifies a model class (e.g., linear regression,
logistic regression, PPCA) along with model-specific config-
urations (e.g., regularization coefficients for linear or logistic
regression, the number of factors for PPCA). A training set
D is a (multi-)set of N training examples, which we denote
as {(x1,y1), . . . , (xN ,yN )}. The d-dimensional vector xi is
called a feature vector, and a real-valued yi is called a label.
Then, the traditional ML library outputs a modelmN trained
on the given training set. We callmN a full model.
In classification tasks,m(x) predicts a class label for an

unseen feature vector x . For example, if x encodes a review
of a restaurant, a trained logistic regression classifiermN (x)
may predict whether the review is positive or negative.

Table 1: Notations

Sym. Meaning

N the size of dataset
n the size of a sample
D the training set (drawn from a distribution D)
Dn a size-n random sample of D
mN the full model, which is trained on D
mn an approximate model, which is trained on Dn
θN the parameter of the full model
θn the parameter of an approximate model
v(mn ) the probability that mn makes a different prediction

thanmN (for the test set)
ε the error bound on v(mn )

δ the probability of error bound violation
n0 the size of initial training set (10K by default)
D0 a size-n0 random sample of D
m0 an initial model trained on D0

BlinkML In addition to the inputs required by traditional
ML libraries, BlinkML needs one extra input: an approx-

imation contract that consists of an error bound ε and a
confidence level δ . Then, BlinkML returns an approximate

model mn such that the prediction difference betweenmn
andmN is within ε with probability at least 1 − δ . That is,

Pr[v(mn) ≤ ε] ≥ 1 − δ

where v(mn) = Ex∼D(1 [mn(x) ,mN (x)])

where the expectation is over a test set. To estimate the above
probability, BlinkML uses a holdout set that is not used for
training the approximate model. The approximate model
mn is trained on a sample of size n, where the value of n is
automatically inferred by BlinkML.

The following lemma shows that BlinkML’s accuracy guar-
antee also implies a probabilistic bound on the full model’s
generalization error.

Lemma 1. Let εд be the generalization error of BlinkML’s

approximate model; that is, εд = E(x ,y)∼D(1 [mn(x) , y]).
Then, the full model’s generalization error is bounded as:

E(x ,y)∼D(1 [mN (x) , y]) ≤ εд + ε − εд · ε

with probability at least 1 − δ .

We defer the proof to Appendix B. We also empirically con-
firm this result in Section 5.5.

2.2 Supported Models & Abstraction

Here, we formally describe BlinkML’s supported models;
then, we describe how BlinkML expresses the supported
models in an abstract way.

Formal Description of SupportedModels BlinkML sup-
ports any model that can be trained by solving the following
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Figure 2: Architecture of BlinkML.

convex optimization problem:

arg minθ fn(θ ) (1)

where fn(θ ) =
1
n

n∑
i=1

− log Pr(xi ,yi ; θ ) + R(θ ) (2)

Here, Pr(xi ,yi ; θ ) indicates the likelihood of observing the
pair (xi , yi ) given θ , R(θ ) is the optional regularization term
typically used to prevent overfitting, and n is the number of
training examples used. When n=N , this results in training
the full modelmN , and otherwise we have an approximate
modelmn . Different ML models use different expressions for
Pr(xi ,yi ; θ ). We provide specific examples in Appendix A.
The solution θn to the minimization problem in Equa-

tion (1) is a value of θ at which the gradient дn(θ ) = ∇fn(θ )
of the objective function fn(θ ) becomes zero.2 That is,

дn(θn) =

[
1
n

n∑
i=1

q(θn ;xi ,yi )

]
+ r (θn) = 0 (3)

where q(θ ;xi ,yi ) denotes −∇θ log Pr(xi ,yi ;θ ) and r (θ ) de-
notes ∇θR(θ ).

Examples of Supported Models BlinkML currently sup-
ports the following four model classes: linear regression,
logistic regression, max entropy classifier, and PPCA. How-
ever, BlinkML’s core technical contributions (Theorems 1
and 2 in Sections 3 and 4) can be generalized to any ML
algorithms that rely on maximum likelihood estimation.

Model Abstraction A model class specification (MCS) is
the abstraction that allows BlinkML’s components to re-
main generic and not tied to the specific internal logic of
the supported ML models. Each MCS must implement the
following two methods:
1. diff(m1, m2): This function computes the prediction

difference between two modelsm1 andm2, using part of
the training set (i.e., holdout set) that was not used during
model training.

2. grads: This function returns a list of q(θ ;xi ,yi ) + r (θ ) for
i = 1, . . . ,n, as defined in Equation (3). Although iterative
optimization algorithms typically rely only on the average
of this list of values (i.e., the gradient ∇θ fn(θ )), the grads

2 In this work, we assume θn has fully converged to the optimal point, satisfying
Equation (3). The non-fully converged cases can be handled by simply adding small
error terms to the diagonal elements of J in Theorem 1.

function must return individual values (without averag-
ing them), as they are internally used by BlinkML (see
Section 3.4).

BlinkML already includes the necessary MCS definitions for
the currently supported model classes.

2.3 SystemWorkflow

We describe the workflow between BlinkML’s components
depicted in Figure 2. First, Coordinator obtains a size-n0
sampleD0 of the training setD. We callD0 the initial training
set (10K by default). Coordinator then invokes Model Trainer
to train an initial modelm0 on D0, and subsequently invokes
Model Accuracy Estimator to estimate the accuracy ε0 of
m0 (with confidence 1 − δ ). If ε0 is smaller than or equal
to the user-requested error bound ε , Coordinator simply
returns the initial model to the user. Otherwise, Coordinator
prepares to train a second model, called the final modelmn .
To determine the sample size n required for the final model
to satisfy the error bound, Coordinator consults Sample Size
Estimator to estimate the smallest n with which the model
difference betweenmn andmN (i.e., the unknown full model)
would not exceed ε with probability at least 1 − δ . Note that
this operation of Sample Size Estimator does not rely on
Model Trainer; that is, no additional (approximate) models
are trained for estimating n. Finally, Coordinator invokes
Model Trainer (for a second time) to train on a sample of size
n and returnmn to the user. Therefore, in the worst case, at
most two approximate models are trained.

3 MODEL ACCURACY ESTIMATOR

Model Accuracy Estimator estimates the accuracy of an ap-
proximate model. That is, given an approximate modelmn
and a confidence level δ , Model Accuracy Estimator com-
putes ε , such that v(mn) ≤ ε with probability at least 1 − δ .
In Section 3.1, we first overview the process of Model Ac-
curacy Estimator. In Section 3.2, we establish the statistical
properties of the models supported by BlinkML. Then, in
Section 3.3, we explain how BlinkML exploits these statis-
tical properties to estimate the accuracy of an approximate
model. Finally, Section 3.4 describes how to efficiently com-
pute those statistics.

3.1 Accuracy Estimation Overview

To compute the probabilistic upper bound ε , Model Accuracy
Estimator exploits the fact that bothmn andmN are essen-
tially the same function (i.e.,m(x)) but with different model
parameters (i.e., θn and θN ). Although we cannot compute
the exact value of θN without training the full modelmN , we
can still estimate its probability distribution (we explain this
in Section 3.2). The probability distribution of θN is then used
to estimate the distribution of v(mn), which is the quantity
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we aim to upper bound. The upper bound ε is determined
by simply finding the value that is larger than v(mn) for
100 · (1 − δ )% of the holdout examples. (Section 3.3).

3.2 Model Parameter Distribution

In this section, we present how to probabilistically express
the parameter θN of the (unknown) full model mN given
only the parameter θn of an approximate modelmn . Let θ̂n
be a random variable representing the distribution of the
approximate model’s parameters; θn is simply one instance
of θ̂n . We also use θ̂N to represent our (limited) knowledge
of θN . Then, our goal is to obtain the distribution of θn − θ̂N ,
and then use this distribution to estimate the prediction
difference betweenm(θn) andm(θ̂N ).

Intuition Since θn is the value that satisfies Equation (3)
for n training examples (instead of N ), we can obtain the
difference α J between дn(θn) and дN (θ̂N ). In addition, we
can obtain the relationship H between дn(θn) − дN (θ̂N ) and
θn − θ̂N using the Taylor expansion of дn(θ ). Then, we can
finally derive the difference between θn and θ̂N .
Figure 3 depicts this idea intuitively. In the figure, the

slopeH captures the surface of the gradient, and α J captures
the variance of the gradient; α J decreases as n increases.
Thus, if a model is more flexible (e.g., smaller regularization
coefficients), the slope becomes more moderate (i.e., smaller
elements in H ), which leads to a larger distance between θ̂N
and θn given the same α J . In other words, the approximate
model will be less accurate given a fixed sample size. Below,
we formally present this idea. To account for these differ-
ences between models, BlinkML automatically adjusts its
sample size n when it trains an approximate model to satisfy
the requested error bound (Section 4).

Parameter Distribution The following theorem provides
the distribution of θ̂n − θ̂N (its proof is in Appendix B).

Theorem 1. Let J be the Jacobian of дn(θ ) − r (θ ) evaluated at
θn , and let H be the Jacobian of дn(θ ) evaluated at θn . Then,

θ̂n − θ̂N → N(0, α H−1 JH−1), α =
1
n
−

1
N

as n → ∞ and N → ∞. N denotes a normal distribution,

which means that θ̂n − θ̂N asymptotically follows a multivari-

ate normal distribution with covariance matrix α H−1 JH−1
.

Directly computing H and J requires Ω(d2) space where d
is the number of features. This can be prohibitively expensive
when d is large. To address this, these quantities are indi-
rectly computed (as described in Section 3.4 and Section 4.3),
reducing the computational cost to onlyO(d). Our empirical
study shows that BlinkML can scale up to datasets with a
million features (Section 5).

In Theorem 1, J is essentially the covariance matrix of gra-
dients (computed on individual examples). Since BlinkML
uses uniform random sampling, estimating J is simpler; how-
ever, even when non-uniform random sampling is used, J
can still be estimated if we know the sampling probabilities.
By assigning those sampling probabilities in a task-specific
way, one could obtain higher accuracy, which we leave as
future work.

The following corollary provides the conditional distribu-
tion of θ̂N | θn (proof in Appendix B).

Corollary 1. Without any a priori knowledge of θN ,

θ̂N | θn → N(θn , α H−1 JH−1), α =
1
n
−

1
N

as n → ∞ and N → ∞.

The following section uses the conditional distribution
θ̂N | θn (in Corollary 1) to obtain an error bound on the
approximate model.

3.3 Error Bound on Approximate Model

In this section, we describe how Model Accuracy Estimator
estimates the accuracy of an approximate modelmn . Specifi-
cally, we show how to estimate v(mn) without trainingmN .
Let h(θN ) denote the probability density function of the

normal distribution with mean θn and covariance matrix
αH−1 JH−1 (obtained in Corollary 1). Then, we aim to find
the error bound ε of an approximate model that holds with
probability at least 1 − δ . That is,

PrθN [v(mn) ≤ ε] ≥ 1 − δ where

PrθN [v(mn) ≤ ε] =

∫
1 [v(mn ;θN ) ≤ ε] h(θN ) dθN , (4)

mn(x) =m(x ; θn), mN (x) =m(x ; θN | θn)

where the integration is over the domain of θN (∈ Rd );
v(mn ;θN ) is the error ofmn when the full model’s parameter
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is θN ; and 1 [·] is the indicator function that returns 1 if its
argument is true and returns 0 otherwise. Since the above ex-
pression involves the model’s (blackbox) prediction function
m(x), it cannot be analytically computed in general.

To compute Equation (4), BlinkML’s Model Accuracy Es-
timator uses the empirical distribution of h(θN ) as follows.
Let θN ,1, . . . ,θN ,k be i.i.d. samples drawn from h(θN ). Then,∫

1 [v(mn ;θN ) ≤ ε] h(θN ) dθN ≈
1
k

k∑
i=1

1
[
v(mn ;θN ,i ) ≤ ε

]
(5)

To take into account the approximation error in Equation (5),
BlinkML uses conservative estimates on ε as formally stated
in the following lemma (see Appendix B for proof).

Lemma 2. If ε satisfies

1
k

k∑
i=1

1
[
v(mn ;θN ,i ) ≤ ε

]
=

1 − δ

0.95
+

√
log 0.95

−2k

then Pr[v(mn) ≤ ε] ≥ 1 − δ .

The above lemma implies that by using a larger k (i.e., num-
ber of sampled values), we can obtain a tighter ε . To obtain
a large k , an efficient sampling algorithm is necessary. Since
θ̂N follows a normal distribution, one can simply use an exist-
ing library, such as numpy.random. However, BlinkML uses
its own fast, custom sampler to avoid directly computing the
covariance matrix H−1 JH−1 (see Section 4.3).

3.4 Computing Necessary Statistics

We present three methods—(1) ClosedForm, (2) InverseG-
radients, and (3) ObservedFisher—for computing H . Given
H , computing J is straightforward since J = H − Jr , where
Jr is the Jacobian of r (θ ). BlinkML uses ObservedFisher by
default since it achieves high memory-efficiency by avoiding
the direct computations of H .

Method 1: ClosedForm ClosedFormuses the analytic form
of the Jacobian H (θ ) of дn(θ ), and sets θ = θn by the defi-
nition of H . For instance, H (θ ) of L2-regularized logistic
regression is expressed as follows:

H (θ ) =
1
n
X⊤QX + βI

where X is an n-by-d matrix whose i-th row is xi , and Q
is a d-by-d diagonal matrix whose i-th diagonal entry is
σ (θ⊤xi )(1 − σ (θ⊤xi )), and β is the coefficient of L2 regular-
ization. When H (θ ) is available, as in the case of logistic
regression, ClosedForm is fast and exact.

However, inverting H is computationally expensive when
d is large. Also, using ClosedForm is less straightforward
when obtaining analytic expression of H (θ ) is non-trivial.

Method 2: InverseGradients InverseGradients numeri-
cally computes H by relying on the Taylor expansion of
дn(θ ): дn(θn + dθ ) ≈ дn(θn) + Hdθ . Since дn(θn) = 0, the
Taylor expansion simplifies to:

дn(θn + dθ ) ≈ Hdθ

The values of дn(θn + dθ ) and дn(θn) are computed using
the grads function provided by the MCS. The remaining
question is what values of dθ to use for computing H . Since
H is a d-by-d matrix, BlinkML uses d number of linearly
independent dθ to fully construct H . That is, let P be ϵI ,
where ϵ is a small real number (10−6 by default). Also, let
R be the d-by-d matrix whose i-th column is дn(θn + P ·,i )
where P ·,i is the i-th column of P . Then, H ≈ RP−1.

Since InverseGradients only relies on the grads function,
it is applicable to all supported models. Although InverseG-
radients is accurate, it is still computationally inefficient for
high-dimensional data, since the grads function must be
called d times. We study its runtime overhead in Section 5.6.

Method 3: ObservedFisher ObservedFisher numerically
computes H by relying on the information matrix equal-
ity [77].3 According to the information matrix equality, the
covariance matrixC ofq(θn ;xi ,yi ), for i = 1, . . . ,n, is asymp-
totically identical to J (i.e., as n → ∞). In addition, given J ,
we can simply obtain H as H = C + Jr . Our empirical study
in Section 5.6 shows that ObservedFisher is highly accurate
for n ≥ 5K .
Instead of computing the d-by-d matrix C directly, Ob-

servedFisher takes a slightly different approach. That is,
ObservedFisher computes factors U and Σ such that C =
U Σ2U ⊤, where U is a d-by-n matrix, and Σ is an n-by-n
diagonal matrix. As described below, this factor-based ap-
proach is significantly more efficient when d is large, hence
allowing BlinkML to scale up to high-dimensional data.
Specifically, let Q be the n-by-d matrix whose i-th row

is q(θn ;xi ,yi ). Then, ObservedFisher performs the singular
value decomposition of Q⊤ to obtainU , Σ, and V such that
Q⊤ = U ΣV⊤. Then, the following relationship holds:

C = Q⊤Q = U Σ2U ⊤ (6)

As stated above, ObservedFisher never computes C; it only
storesU and Σ, which are used directly for obtaining samples
from N(0,H−1 JH−1) (see Section 4.3). The cost of singular
value decomposition is O(min(n2d,nd2)). When d ≥ n, this
time complexity becomes O(n2d) = O(d) for a fixed sam-
ple size (n0 = 10K by default). Moreover, ObservedFisher
requires only a single call of the grads function. Section 5.6
empirically studies the relationship between n and Observed-
Fisher’s runtime.

3ObservedFisher is also inspired by Hessian-free optimizations [69, 72].
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Figure 4: BlinkML repeats this parameter sampling process

multiple times to estimate the accuracy of an approximate

modelmn (with param θn ) without having to train it.

4 SAMPLE SIZE ESTIMATOR

Sample Size Estimator estimates the minimum sample size n
such that E(mn(x) ,mN (x)) is not larger than the requested
error bound ε with probability at least 1 − δ . In this process,
Sample Size Estimator does not train any additional approxi-
mate models; it only relies on the initial modelm0 given to
this component.

4.1 Quality Estimation sans Training

This section explains how Sample Size Estimator computes
the probability of Ex (mn(x) , mN (x)) ≤ ε given the ini-
tial model m0. Since both models—mn(x) = m(x ; θ̂n) and
mN (x) = m(x ; θ̂N )—are uncertain, Sample Size Estimator
uses the joint probability distributions of θ̂n and θ̂N to com-
pute the probability. To make it clear that both models in-
volve uncertain parameters, we use the following notation:

v(mn ,mN ;θn ,θN ) = Ex∼D(1 [m(x ;θn) ,m(x ;θN )])

The computed probability, i.e., Pr(v(mn ,mN ;θn ,θN ) ≤ ε), is
then used in the following section for finding n that makes
the probability at least 1 − δ .
Like Model Accuracy Estimator, Sample Size Estimator

computes the probability using the i.i.d. samples from the
joint distribution h(θn ,θN ) of (θn ,θN ) as follows:

Pr(v(mn ,mN ;θn ,θN ) ≤ ε) (7)

=

∬
1 [v(mn ,mN ;θn ,θN ) ≤ ε] h(θn ,θN )dθn dθN

≈
1
k

k∑
i=1

1
[
v(mn ,mN ;θn,i ,θN ,i ) ≤ ε

]
(8)

where the integration is over the domain of θn and the do-
main of θN , both of which are Rd . To offset the approxi-
mation error in Equation (8), BlinkML makes conservative
estimates using Lemma 2.
To obtain i.i.d. samples, (θn′,i ,θN ,i ) for i = 1, . . . ,k , from

h(θn′,θN ), Sample Size Estimator uses the following:

Pr(θn ,θN | θ0) = Pr(θN | θn) Pr(θn | θ0)

where the conditional distributions, θN | θn and θn | θ0,
are obtained using Corollary 1. That is, Model Accuracy Es-
timator uses the following two-stage sampling procedure.
It first samples θn,i from N(θ0, α1H

−1 JH−1) where α1 =

(1/n0 − 1/n); then, samples θN ,i from N(θn,i , α2H
−1 JH−1)

where α2 = (1/n − 1/N ). This process is repeated for every
i = 1, . . . ,k to obtain k pairs of (θn,i ,θN ,i ). Figure 4 depicts
this process.

4.2 Sample Size Searching

To find the minimum n such that Pr(v(mn ,mN ;θn ,θN ) ≤

ε) ≥ 1−δ , Sample Size Estimator uses binary search, exploit-
ing that the probability tends to be an increasing function of
n. We first provide an intuitive explanation; then, we present
a formal argument.
Observe that Pr(v(mn ,mN ;θn ,θN ) ≤ ε) relies on the two

model parameters θn and θN . If θn = θN , the probability is
trivially equal to 1. According to Theorem 1, the difference
between those two parameters, i.e., θ̂n−θ̂N , follows a normal
distribution whose covariance matrix shrinks by a factor
of 1/n − 1/N . Therefore, those parameter values become
closer as n → N , which implies that the probability must
increase toward 1 asn → N . The following theorem formally
shows that Pr(v(mn ,mN ;θn ,θN ) ≤ ε) is guaranteed to be an
increasing function for a large class of cases (its proof is in
Appendix B).

Theorem 2. Let h(θ ;γC) be the probability density function

of a normal distribution with mean θN and covariance matrix

γ C , where γ is a real number, and C is an arbitrary positive

semidefinite matrix. Also, let B be the box area of θ such that

v(mn ,mN ;θn ,θN ) ≤ ε . Then, the following function pv (γ )

pv (γ ) =

∫
B
h(θ ;γC)dθ

is a decreasing function of γ .

Since binary search is used, Sample Size Estimator needs to
compute 1

k
∑k

i=1 1
[
v(mn ,mN ;θn,i ,θN ,i ) ≤ ε

]
(in Equation (8))

for different values of n; in total,O(log2(N −n0)) times. Thus,
a fast mechanism for producing i.i.d. samples is desirable.
The following section describes BlinkML’s optimizations.

4.3 Optimizations for Fast Sampling

This section describes how to quickly generate i.i.d. samples
from the normal distribution with covariance matrix (1/n −

1/N )H−1 JH−1. A basic approach would be to use off-the-
shelf functions, such as the one shipped in the numpy.random
module, for every different n. Albeit simple, this basic ap-
proach involves many redundant operations that could be
avoided. We describe two orthogonal approaches to reduce
the redundancy.
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Sampling by Scaling We can avoid invoking a sampling
function multiple times for differentn by exploiting the struc-
tural similarity of the covariance matrices associated with
different n. Let θ̂n ∼ N(0, (1/n − 1/N )H−1 JH−1), and let
θ̂0 ∼ N(0, H−1 JH−1). Then, there exists the following rela-
tionship:

θ̂n =
√

1/n − 1/N θ̂0.

This indicates that we can first draw i.i.d. samples from
the unscaled distributionN(0,H−1 JH−1); then, we can scale
those sampled values by

√
1/n − 1/N whenever the i.i.d. sam-

ples from N(0, (1/n − 1/N )H−1 JH−1) are needed.

AvoidingDirect Covariance Computation When r (θ ) =
βθ in Equation (3) (i.e., no regularization or L2 regulariza-
tion), Sample Size Estimator avoids the direct computations
of H−1 JH−1. Instead, it simply draws samples from the stan-
dard normal distribution and applies an appropriate linear
transformation L to the sampled values (L is obtained shortly).
This approach is used in conjunction with ObservedFisher,
which is BlinkML’s default strategy for computing its nec-
essary statistics (Section 3.4).
Avoiding the direct computation of the covariances has

two benefits. First, we can completely avoid the Ω(d2) cost
of computing/storing H−1 JH−1. Second, sampling from the
standard normal distribution is much faster because no de-
pendencies need to be enforced among sampled values.

We use the following relationship:

z ∼ N(0, I ) ⇒ L z ∼ N(0, L L⊤).

That is, if there exists L such that L L⊤ = H−1 JH−1, we can
obtain the samples of θ̂0 by multiplying L to the samples
drawn from the standard normal distribution.

Specifically, Sample Size Estimator performs the following
for obtaining L. Observe from Equation (6) that J = U Σ2U ⊤.
Since H = J + β , H = U (Σ2 + βI )U ⊤. Thus,

H−1 JH−1 = U (Σ2 + βI )−1U ⊤ U Σ2U ⊤ U (Σ2 + βI )−1U ⊤

⇒ H−1 JH−1 = (UΛ) (UΛ)⊤ = L L⊤

where Λ is a diagonal matrix whose i-th diagonal entry is
si/(s

2
i + β), where si is the i-th singular value of J contained

in Σ. Note that both U and Σ are already available as part
of computing the necessary statistics in Section 3.4. Thus,
computing L only involves a simple matrix multiplication.

5 EXPERIMENTS

Our experimental results show the following:
1. BlinkML reduces training time by 84.04%–99.84% (i.e.,

6.26×–629×) when training 95% accurate models. and by
7.20%–96.47% (i.e., 1.07×–28.31× faster) when training 99%
accurate models. (Section 5.2)

Table 2: Datasets used in our experiments

Dataset # of Rows (N ) Dimension (d) Size

Gas 4,178,504 57 1.9 GB
Power 2,075,259 114 1.8 GB
Criteo 45,840,616 998,922 2.86 GB
HIGGS 11,000,000 28 7.5 GB
MNIST 8,000,000 784 47.5 GB
Yelp 5,261,667 100,000 487 MB

2. The actual accuracy of BlinkML’s approximate models
is, in most cases, even higher than the requested accuracy.
(Section 5.3)

3. BlinkML’s estimated minimum sample sizes are close to
optimal. (Section 5.4)

4. BlinkML is highly effective and accurate even for high-
dimensional data, and its runtime overhead ismuch smaller
than the time needed for training a full model. (Section 5.5)

5. BlinkML’s default statistics computation method, Ob-
servedFisher, is both accurate and efficient. (Section 5.6)

6. BlinkML offers significant benefits in hyperparameter
optimization compared to full model training. (Section 5.7)

7. BlinkML’s sample size estimation is adaptive to the prop-
erties of models. (Section 5.8)

5.1 Experiment Setup

Here, we present our computational environment as well as
the different models and datasets used in our experiments.

Models We tested BlinkML with four different ML models:
1. Linear Regression (Lin). Lin is the standard linear re-

gression model with L2 regularization coefficient β set as
0.001. Different values of β are tested in Section 5.8.

2. Logistic Regression (LR). LR is the standard logistic re-
gression (binary) classifier with L2-regularization coeffi-
cient β set as 0.001.

3. Max Entropy Classifier (ME). ME is the standard max
entropy (multiclass) classifier with L2-regularization coef-
ficient β set as 0.001.

4. PPCA. PPCA is the standard probabilistic principal com-
ponent analysis model [99], with the number of factors q
set as 10.

BlinkML is configured to use the BFGS optimization al-
gorithm for low-dimensional datasets (d < 100) and to
use a memory-efficient alternative, called L-BFGS, for high-
dimensional datasets (d ≥ 100).

Datasets We used six real-world datasets. The key charac-
teristics of these datasets are summarized in Table 2.
Linear Regression:

1. Gas: This dataset contains chemical sensor readings ex-
posed to gas mixtures at varying concentration levels [44].



BlinkML: Efficient Maximum Likelihood Estimation SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

0%
20%
40%
60%
80%
100%

Speedup (left Y-axis) Time Saving (right Y-axis)
80
%

85
%

90
%

95
%

96
%

97
%

98
%

99
%

10
0%

1×
10×
100×
103×

104×

Requested Accuracy ((1 − ε ) × 100%)

(a) Lin, Gas

0%
20%
40%
60%
80%
100%

80
%

85
%

90
%

95
%

96
%

97
%

98
%

99
%

10
0%

1×

10×

100×

103×

Requested Accuracy ((1 − ε ) × 100%)

(b) LR, Criteo

0%
20%
40%
60%
80%
100%

80
%

85
%

90
%

95
%

96
%

97
%

98
%

99
%

10
0%

1×

10×

100×

103×

Requested Accuracy ((1 − ε ) × 100%)

(c) ME, MNIST

0%
20%
40%
60%
80%
100%

90
%

95
%

99
%

99
.5%

99
.9%

99
.95
%

99
.99
%

10
0%

1×

10×

100×

Requested Accuracy ((1 − ε ) × 100%)

(d) PPCA, MNIST

0%
20%
40%
60%
80%
100%

80
%

85
%

90
%

95
%

96
%

97
%

98
%

99
%

10
0%

1×

10×

100×

103×

Requested Accuracy ((1 − ε ) × 100%)

(e) Lin, Power

0%
20%
40%
60%
80%
100%

80
%

85
%

90
%

95
%

96
%

97
%

98
%

99
%

10
0%

1×
10×
100×
103×

104×

Requested Accuracy ((1 − ε ) × 100%)

(f) LR, HIGGS

0%
20%
40%
60%
80%
100%

80
%

85
%

90
%

95
%

96
%

97
%

98
%

99
%

10
0%

1×

10×

100×

Requested Accuracy ((1 − ε ) × 100%)

(g) ME, Yelp

0%
20%
40%
60%
80%
100%

90
%

95
%

99
%

99
.5%

99
.9%

99
.95
%

99
.99
%

10
0%

1×

10×

100×

Requested Accuracy ((1 − ε ) × 100%)

(h) PPCA, HIGGS

Figure 5: BlinkML’s speedups compared to full model training (the accuracies of the approximate models are studied in

Figure 6).

We use the sensor reading as a target variable and gas
concentration levels as independent variables.

2. Power: This dataset contains power consumption mea-
surements [7]. We use the household power consumption
as a target variable and global power consumptions as
independent variables.

Logistic Regression:

3. Criteo: This is a click-through rates dataset made publicly
available by Criteo Labs [5]. The label of each example
indicates if an ad was clicked or not.

4. HIGGS: This is a Higgs bosons simulation dataset [18]. Each
example is a pair of physical properties of an environment
and a binary indicator of Higgs bosons production.

Max Entropy Classifier:

5. MNIST: This is a hand-written digits image dataset (a.k.a.
infinite MNIST [8]). Each example is a pair of an image
(intensity value per pixel) and the actual digit in the image.

6. Yelp: This is a collection of publicly available Yelp re-
views [13]. Each example is a pair of an English review
and a rating (between 0 and 5).

Probabilistic Principal Component Analysis:

7. MNIST: We use the features of MNIST for PPCA.
8. HIGGS: We use the features of HIGGS for PPCA.
For each dataset, we used 80% for training and 20% for testing.

Environment All of our experiments were conducted on
an EC2 cluster with one m5.4xlarge node as a master and
five m5.2xlarge nodes as workers.4 We used Python 3.6

4m5.4xlarge instances had 16 CPU cores and 64 GB memory. m5.2xlarge instances
had 8 CPU cores and 32 GB memory.

shipped with Conda [3] and Apache Spark 2.2 shipped with
Cloudera Manager 5.11.

5.2 Training Time Savings

This section measures the time savings by BlinkML, com-
pared to training the full model. We used eight model and
dataset combinations: (Lin, Gas), (Lin, Power), (LR, Criteo),
(LR, HIGGS), (ME, MNIST), (ME, Yelp), (PPCA, MNIST), and
(PPCA, HIGGS). For Lin, LR and ME, we varied the requested
accuracy (1−ε)×100% from 80% to 99%. For PPCA, we varied
the requested accuracy ((1 − ε) × 100%) from 90% to 99.99%.
We fixed δ at 0.05. For each case, we repeated BlinkML’s
training 20 times.
Figure 5 shows BlinkML’s speedups and training time

savings in comparison to full model training. The full model
training times were 345 seconds for (Lin, Gas), 876 seconds
for (Lin, Power), 5,727 seconds for (LR, Criteo), 530 seconds
for (LR, HIGGS), 35,361 seconds for (ME, MNIST), 3,048 sec-
onds for (ME, Yelp), 35 seconds for (PPCA, MNIST), and 2
seconds for (PPCA, HIGGS).

Two patterns were observed. First, as expected, BlinkML
took relatively longer for training a more accurate approxi-
mate model. This is because BlinkML’s Sample Size Estima-
tor correctly estimated that a larger sample was needed to
satisfy the requested accuracy. Second, the relative training
times were longer for complex models (ME took longer than
LR). This is because multi-class classification (by ME) in-
volves more possible class labels; thus, even a small error in
parameter values could lead to misclassification, so a larger
sample was needed to sufficiently upper bound the chances
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Figure 6: The correctness of BlinkML. The requestedmodel accuracies were compared to the actual model accuracies. Inmost

cases, 95% of the actual model accuracies were (or equivalently, the 5th percentile of the actual accuracies was) higher than

the requested accuracies.

of a misclassification. Nevertheless, training 95% accurate
ME models on MNIST still took only 1.53% of the time needed
for training a full model. In other words, even in this case, we
observed a 65.27× speedup, or equivalently, 98.47% savings in
training time. In all cases, BlinkML’s ability to automatically
infer appropriate sample sizes and train approximate models
on those samples led to significant training time savings. In
the subsequent section, we analyze the actual accuracies of
those approximate models.

5.3 Accuracy Guarantees

As stated in Equation (8) in Section 4, the actual accuracy
of BlinkML’s approximate model is guaranteed to never be
less than the requested accuracy, with probability at least
1−δ . In this section, we also empirically validate BlinkML’s
accuracy guarantees. Specifically, we ran an experiment to
compare the requested accuracies and the actual accuracies
of the approximate models returned by BlinkML.
We varied the requested accuracy from 80% to 99% and

requested a confidence level of 95%, i.e., δ = 0.05. The results
are shown in Figure 6 for the same combinations of models
and datasets used in the previous section.
In each case, 5th percentile of the actual accuracies was

higher than the requested accuracy. In other words, in 95%
of the cases, the delivered accuracy was higher than the
requested one, confirming that BlinkML’s probabilistic ac-
curacy guarantees were satisfied.

Notice that, in some cases, e.g., (LR, Criteo), (ME, MNIST),
the actual accuracies remained identical even though the re-
quested accuracieswere different. Thiswas due toBlinkML’s
design. Recall that BlinkML first trains an initial modelm0

and then trains a subsequent model only when the estimated
model difference ε0 ofm0 is higher than the requested error ε .
In the aforementioned cases, the initial models were already
accurate enough; therefore, no additional models needed to
be trained. Consequently, the actual accuracies did not vary
in those cases. In other words, the actual accuracies of those
initial models were higher than the requested accuracies.

5.4 Sample Size Estimation

Sample Size Estimator (SSE) is responsible for estimating
the minimum sample size, which is a crucial operation in
BlinkML. Too large a sample eliminates the training time
savings; likewise, too small a sample can violate the accuracy
guarantees. In this section, we examine SSE’s operations in
BlinkML. We analyze both the accuracy and the efficiency
of SSS.

Accuracy To analyze the accuracy of SSS, we implemented
three other baselines: FixedRatio, RelativeRatio, and IncEsti-
mator. FixedRatio always used 1% samples for training ap-
proximate models. RelativeRatio used (1 − ε) ∗ 10% samples
for training approximate models (e.g., 9.5% sample for 95%
requested accuracy). IncEstimator gradually increased the
sample size until the approximate model trained on that sam-
ple satisfied the requested accuracy; the sample size at k-th
iteration was 1000 · k2. We tested these three baselines and
BlinkML on both (Lin, Power) and (LR, Criteo).
Figure 7a shows the results. Since FixedRatio and Rela-

tiveRatio set the sample sizes regardless of the model, they
either failed to satisfy the requested accuracies or were overly
costly. In contrast, IncEstimator and BlinkML adjusted their
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Figure 7: The effectiveness and efficiency of BlinkML’s sample size estimator. Two baselines (FixedRatio and RelativeRatio)

either failed to satisfy the requested accuracies or were costly. IncEstimator met the requested accuracies, but was often quite

slow.
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Figure 8: (Left)BlinkML’s runtime overhead, (Middle) generalization error (i.e., the errors on test sets), and (Right) the number

of iterations taken by an optimization algorithm (L-BFGS) for different numbers of features. In (a), the ratio above each bar is

BlinkML’s entire training time compared to full training.

sample sizes according to the models and the requested ac-
curacies; hence, they were able to satisfy the requested ac-
curacies. However, IncEstimator was much more expensive
than BlinkML, as described next.

Efficiency Tomeasure the efficiency, wemeasured the train-
ing times of BlinkML and all three baselines. To show the
overhead of SSS, we also measured BlinkML’s training time
excluding the time spent by SSS (referred to as “BlinkML’s
pure training time”). Figure 7b shows the results. In this fig-
ure, the runtimes of IncEstimator were significantly larger
than those of BlinkML. For instance, IncEstimator took 5,704
seconds for a 99% accurate model of (LR, Criteo), while
BlinkML took only 228 seconds (i.e., 25× faster than IncEs-
timator). Moreover, the runtime overhead of SSS was small
enough to keep BlinkML’s entire approximate training fast
enough. We also study this overhead more systematically, as
reported in the following section.

5.5 Impact of Data Dimension

In this section, we analyze the impact of data dimension (i.e.,
the number of features) on BlinkML’s runtime overhead,
generalization error, and number of optimization iterations.

Runtime Overhead To analyze BlinkML’s runtime over-
head, we separately measured (1) the time taken for training
an initial model (using a sample of size n0), (2) the time
taken by ObservedFisher for computing statistics, (3) the

time taken for sample size estimation, and (4) the time taken
for training a final model. Figure 8a shows the results for
(LR, Criteo). As expected, the times for statistics computa-
tions and sample size estimation increased as the number of
features increased. However, the overall training time was
still significantly smaller than training the full model (e.g.,
0.8% for 100K features).

Generalization Error Figure 8b compares the generaliza-
tion error (or equivalently, test error) of full models and
BlinkML’s approximate models. Since BlinkML probabilis-
tically guarantees that its approximate models produce the
same predictions as the full models (for the same number of
features), the generalization errors of BlinkML’s approxi-
mate models were highly similar to those of the full models.
Moreover, the full model’s generalization errors were within
the predicted bounds for more than 95% of the test cases (as
stated in Lemma 1).

Number of Iterations Lastly, to better understand the rea-
son behind BlinkML’s training time savings, we measured
the number of iterations taken by an optimization algorithm
(i.e., L-BFGS). Figure 8c shows the results. In general, the
number of iterations for BlinkML were comparable to those
for full model training. The number of iterations were similar
between the full training and BlinkML’s training, indicat-
ing that BlinkML’s time savings are indeed due to faster
gradient computations (because of sampling).
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Figure 9: A study of statistics computationmethods: (left) a comparison of estimated parameter variances to the actual param-

eter variances, and (right) a comparison of two statistics computation methods.

5.6 Statistics Computation

In this section, we compare ClosedForm, InverseGradients,
and ObservedFisher in terms of both accuracy and efficiency.
This analysis serves as an empirical justification for why
ObservedFisher is BlinkML’s default choice.

Accuracy To compare the accuracy, we first estimated the
variances of the parameters using each of ClosedForm, In-
verseGradients, and ObservedFisher. Then, we computed the
ratio between those estimated variances and the actual vari-
ances. Thus, a ratio close to 1 would indicate high accuracy.
Figure 9 shows the results for (Lin, Power). In general, for
small samples (n ≤ 1000), ObservedFisher was relatively in-
accurate in comparison to other methods. However, as the
sample size increased, the accuracy of all methods improved
(i.e., the ratio approached 1.0); further, the accuracy of Ob-
servedFisher was comparable to other methods. Recall that
ClosedForm is applicable to certain types of models (e.g., Lin
and LR) while InverseGradients and ObservedFisher are ap-
plicable to all MLE-based models. Overall, the estimated vari-
ances of the parameters were larger than the actual variances,
showing that BlinkML’s probabilistic guarantees were met.
Below, we compare the runtime overhead of InverseGradi-
ents and ObservedFisher.

Efficiency For an in-depth comparison of InverseGradients
and ObservedFisher, we used two more combinations (LR,
HIGGS) and (ME, MNIST). Recall from Table 2 that HIGGS is
a low-dimensional dataset (d = 28) while MNIST is high-
dimensional (d = 784). We used each method to compute the
covariance matrix H−1 JH−1, which determines the parame-
ter distribution in Theorem 1 (Section 3). We measured the
runtime of each method and calculated the accuracy of its
estimated covariance matrix. To measure the accuracy, we
calculated the average Frobenius norm, i.e., (1/d2) ∥Ct−Ce ∥F ,
where Ct was the true covariance matrix and Ce was the es-
timated covariance matrix.
Figure 9b summarizes the results of this experiment. For

the low-dimensional data (HIGGS), the runtimes and accura-
cies of the two methods were comparable. While their accu-
racies remained comparable for the high-dimensional data
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Figure 10: Hyperparameter optimization

(MNIST), their performance differed. Since InverseGradients
had to invoke the grads function repeatedly (i.e., d times),
its runtime increased drastically. In contrast, ObservedFisher
had to call the grads function only once.

5.7 Hyperparameter Optimization

This section studies BlinkML’s overall benefit for perform-
ing hyperparameter optimization. Specifically, we compared
BlinkML to a traditional approach (i.e., full model training)
in searching for an optimal combination of a feature set and
a hyperparameter. As performed by the Random Search hy-
perparameter optimization method [21], we first generated
a sequence of (pairs of) a randomly chosen feature set and
a regularization coefficient. Then, we let BlinkML train a
series of 95% accurate models using the feature set and the
regularization coefficient in the sequence. Similarly, we let
the traditional approach train a series of exact models using
the same combination of the feature set and the regulariza-
tion coefficient.
Figure 10 shows the result, where each dot represents a

model. Within half an hour, BlinkML trained 961 models
while the traditional approach was able to train only 3. Both
BlinkML and the traditional approach found the second-
best model (with test accuracy 74%) at the second iteration
(since they used the same sequence); however, BlinkML took
only 1.03 seconds while the traditional approach took 817
seconds. After 387 seconds (about 6 mins), BlinkML found
the best model (with test accuracy 75%; found at iteration
#91), while the traditional approach could not find the model
in an hour. The sizes of the samples used by BlinkML varied
between 10,000 and 9,211,426, depending on the feature set
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and the regularization coefficient. Note that this is expected,
since BlinkML automatically chooses the smallest sample
size that is still large enough to train an accurate model. We
study BlinkML’s sample size estimation in more detail in
the following section.

5.8 Impact of Model Complexity on

Estimated Sample Sizes

We also study the impact of model complexity (i.e., regu-
larization coefficients and the number of parameters) on
BlinkML’s estimated sample size. Intuitively, if a model
is more complex (i.e., smaller regularization coefficients or
more parameters), a larger sample would be needed to satisfy
a user-requested error bound.

Figure 11 shows the results. The left subfigure (Figure 11a)
shows that as the regularization coefficient increased, the
estimated sample size decreased. The right subfigure (Fig-
ure 11b) shows that as the model had a larger number of
parameters, the estimated sample size increased. Both obser-
vations are consistent with our intuition (Section 3).

6 RELATEDWORK

In this section, we first discuss three types of work closely
related to BlinkML: Sampling for ML, Hyperparameter Op-
timization, and Feature Selection. We summarize their key
contributions in Table 3.
Next, we overview the approaches inspired by familiar

database techniques (DBMS-Inspired Optimization) and the
recent advances in statistical optimization methods (Faster
Optimization Algorithms).

Sampling for ML Sampling for ML has been extensively
studied in the literature. Typically, the sampling is optimized
for a specific type of model, such as linear regression [17,
22, 30, 34, 36–38, 41, 47], logistic regression [62, 100], clus-
tering [42, 56], Kernel matrices [49, 76], point processes [67],
and Gaussian mixture model [70]. Woodruf [102] overviews
sketching techniques for least squares and low rank approxi-
mation. Zombie [16] employs a clustering-based active learn-
ing technique for training approximate models, but does
not offer any error guarantees. In contrast, BlinkML offers

probabilistic error guarantees for any MLE-based model. Co-
hen [30] studies uniform sampling for ML, but for only linear
regression. Bottou [25] and Shalev-Shwartz [91] study the
optimization errors.

Hyperparameter Optimization Automatic hyperparam-
eter optimization (i.e., AutoML) has been pursued by Au-
toWeka [97], auto-sklearn [43], andGoogle’s CloudAutoML [2].
These techniques have typically taken a Bayesian approach
to hyperparameter optimization [90]. The ML community
has also studied how to optimize deep neural networks [20,
21, 71]. What BlinkML offers is orthogonal to these hyperpa-
rameter optimization methods, since BlinkML speeds up the
individual model training via approximation, while hyperpa-
rameter optimization methods focus on finding an optimal
sequence of hyperparameters to test.

Feature Selection Choosing a relevant set of features is an
important task in ML [26, 51]. Feature selection can either be
performed before training a final model [57] or during model
training relying on sparsity-inducing models [78, 104]. One
approach to accelerate feature selection is preprocessing the
data in advance [106]. BlinkML can be used in conjunction
with these methods.

DBMS-Inspired Optimization A salient feature of data-
base systems is their declarative interface (SQL) and the
resulting optimization opportunities. These ideas have been
applied to speed up ML workloads. SystemML [24, 40, 48]
ScalOps [101], Pig latin [80], and KeystoneML [95] propose
high-level ML languages for automatic parallelization and
materialization, as well as easier programming. Hamlet [65]
and others [64, 89] avoid expensive denormalizations. Hem-
ingway [81], MLBase [61], and TuPAQ [94] automatically
choose an optimal plan for a given ML workload. SciDB [59,
96], MADLib [29, 55], and RIOT [109] exploit in-database
computing. Kumar et al. [63] uses a model selection man-
agement system to unify feature engineering [15], algorithm
selection, and parameter tuning. NoScope [58], tKDC [46],
and NSH [83] speed up the prediction at the cost of more
preprocessing.

Faster Optimization Algorithms Advances in optimiza-
tion algorithms are largely orthogonal to ML systems; how-
ever, understanding their benefits is necessary for developing
faster ML systems. Recent advances can be categorized into
software- and hardware-based approaches.
Software-based methods are mostly focused on improv-

ing gradient descent variants (e.g., SGD), where a key ques-
tion is how to adjust the step size in order to accelerate the
convergence rate towards the optimal solution [92]. Recent
advances include adaptive rules for accelerating this rate,
e.g., Adagrad [39], Adadelta [105], RMSprop [98], and Adam
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Table 3: Previous work on Sampling for ML / Hyperparameter Optimization / Feature Selection

Approach Key Contributions

Sampling
for ML

Coreset (LR) [17, 41, 47] Proposes a coreset (non-uniform sample) for linear regression
Cohen [30] Approximates linear regression with uniform random sampling
Derezinski [34] Proposes volume sampling for linear regression
Zombie [16] Applies active learning to sampling
Drineas [36–38],
Bhojanapalli [22]

Develops non-uniform sampling (based on leverage scores) for linear
regression

Wang [100], Krishnapuram [62] Develops non-uniform sampling for logistic regression
Coreset (Clustering) [42, 56] Proposes a coreset (non-uniform sample) for clustering
Gittens [49], Musco [76] Approximates kernel matrices (i.e., matrices containing inner products)
Coreset (GMM) [70] Proposes a coreset (non-uniform sample) for Gaussian mixture models
Li [67] Proposes sampling for point processes
SafeScreening [79] Removes non-support vectors prior to training a SVM model
BlinkML (ours) Develops efficient algorithms for training MLE models with error guar-

antees

Hyperparameter
Optimization

AutoWeka [97], auto-sklearn [43],
Cloud AutoML [2]

Applies a wide range of feature selection & hyperparameter optimization
techniques to existing ML frameworks/libraries

Bergstra [21], Bergstra [20] Optimizes hyperparameter optimization for deep neural network
Maclaurin [71] Proposes gradient-based hypeparameter optimization
Shahriari [90] Reviews Bayesian approach to hyperparameter optimization
Bardenet [19] Proposes a colloborative hyperparameter tuning among similar tasks
TuPAQ [94] Provides a systematic support for hyperparameter optimization

Feature
Selection

Guyon [51], Boyce [26], John [57] Introduces concepts related to feature selection
Ng [78], Yang [104] Performs feature selection via sparse models
AutoWeka [97] See the description above
Columnbus [106] Optimizes feature selection by materialization

[60]. Hogwild! [87] and related techniques [50, 52, 108] dis-
able locks to speed up SGD via asynchronous updates. There
is also recent work on rediscovering the benefits of quasi-
Newton optimization methods, e.g., showing that minibatch
variants of quasi-Newton methods (such as L-BFGS or CG)
can be superior to SGD due to their higher parallelism [66].

Hardware-based techniques speed up training by relaxing
strict precision requirements, e.g., DimmWitted [107] and
BuckWild! [33].

7 CONCLUSION

In this work, we have developed BlinkML, an approximate
machine learning system with probabilistic guarantees for
MLE-based models. BlinkML uses sampling to dramatically
reduce time and computational costs, which is particularly
beneficial in the early stages of model tuning. Through an ex-
tensive set of experiments on several large-scale, real-world
datasets, we showed that BlinkML produced 95% accurate

models of linear regression, logistic regression, max entropy
classifier, and Probabilistic Principal Component Analysis,
while using only 0.16%–15.96% of the time needed for train-
ing the full model. Our future plan is to extend beyond the
maximum likelihood estimation models, such as decision
trees, Gaussian Process regression, Naïve Bayes classifiers,
and Deep Boltzmann Machines [88]. We also plan to open-
source BlinkML, with wrappers for various popular ML
libraries, including scikit-learn (Python), glm (R), and MLlib.
Finally, given that BlinkML’s underlying techniques are ex-
tensible to non-uniform sampling, we plan to further explore
task- and model-specific non-uniform sampling strategies.
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A MODEL ABSTRACTION EXAMPLES

This section shows that BlinkML-supported ML models can
be cast into the abstract form in Equation (2). For illustration,
we use logistic regression and PPCA.

Logistic Regression The objective function of logistic re-
gression captures the difference between true class labels
and the predicted class labels. An optional regularization
term may be placed to prevent a model from being overfit-
ted to a training set. For instance, the objective function of
L2-regularized logistic regression is expressed as follows:

fn(θ ) = −

[
1
n

n∑
i=1

ti logσ (θ⊤xi ) + (1 − ti ) logσ (1 − θ⊤xi )

]
+
β

2
∥θ ∥2

where σ (y) = 1/(1 + exp(y)) is a sigmoid function, and β is
the coefficient that controls the strength of the regularization
penalty. The observed class labels, i.e., ti for i = 1, . . . ,n, are
either 0 or 1. The above expression is minimized when θ is set
to the value at which the gradient ∇fn(θ ) of fn(θ ) becomes
a zero vector; that is,

∇fn(θ ) =

[
1
n

n∑
i=1

(σ (θ⊤xi ) − ti )xi

]
+ β θ = 0

It is straightforward to cast the above expression into Equa-
tion (3). That is, q(θ ;xi , ti ) = (σ (θ⊤xi )− ti )xi and r (θ ) = β θ .

PPCA The objective function of PPCA captures the differ-
ence between the covariance matrix S of the training set and
the covariance matrix C = ΘΘ⊤ + σ 2I reconstructed from
the q number of extracted factors Θ, as follows:

fn(Θ) =
1
2

(
d log 2π + log |C | + tr(C−1S)

)
where d is the dimension of feature vectors. Θ is a d-by-q
matrix in which each column represents a factor, and σ is
a real-valued scalar that represents the noise in data not
explained by those factors. The optimal value for σ can be
obtained once the values for Θ are determined. The value of
q, or the number of the factors to extract, is a user parameter.
The above expression fn(Θ) is minimized when its gradient

https://www.cs.cmu.edu/~epxing/Class/10701/slides/lecture16-VC.pdf
https://www.cs.cmu.edu/~epxing/Class/10701/slides/lecture16-VC.pdf
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∇Θ fn(Θ) becomes a zero vector; that is,

∇Θ f (Θ) = C
−1(Θ − S C−1Θ) = 0

The above expression can be cast into the form in Equation (3)
by observing S = (1/n)

∑n
i=1 xix

⊤
i .

5 That is,q(Θ;xi ) = C−1Θ−
C−1xix⊤

i C
−1Θ and r (Θ) = 0. ti is omitted on purpose since

PPCA does not need observations (e.g., class labels). Al-
though we used a matrix form Θ in the above expression for
simplicity, BlinkML internally uses a vector θ when pass-
ing parameters among components. The vector is simply
flattened and unflattened as needed.

B DEFERRED PROOFS

B.1 Generalization Error

Proof of Lemma 1. BlinkML’s error guarantee is proba-
bilistic because of the random sampling process for obtaining
Dn . This proof exploits the fact that this random sampling
process is independent of the distribution of (x ,y) ∼ D.

The generalization error of the full model can be bounded
as follows:

E(x ,y)∼D(1 [mN (x) , y]) =

∫
1 [mN (x) , y] p(x)dx

=

∫
(mn(x) , y ∧mn(x) =mN (x))

∨ (mn(x) = y ∧mn(x) ,mN (x))p(x)dx

≤

∫
(mn(x) , y) ∨ (mn(x) = y ∧mn(x) ,mN (x))p(x)dx

≤

∫
(mn(x) , y)p(x)dx

+

∫
(mn(x) = y ∧mn(x) ,mN (x))p(x)dx

By definition,
∫
(mn(x) , y)p(x)dx = εд . Based on the in-

dependence we stated above and Pr(Ex (mn(x) ,mN (x)) ≤
ε) ≥ 1 − δ ,∫

(mn(x) = y ∧mn(x) ,mN (x))p(x)dx ≤ (1 − εд) · ε

with probability at least 1 − δ . Thus,

E(x ,y)∼D(1 [mN (x) , y]) ≤ εд + ε − εд · ε

with probability at least 1 − δ . □

B.2 Model Parameter Distribution

Proof of Theorem 1. We first derive the distribution of
θ̂n −θ∞, which will then be used to derive the distribution of
θ̂n − θ̂N . Our derivation is the generalization of the result in
[77]. The generalization is required since the original result
does not include r (θ ).

5This sample covariance expression assumes that the training set is zero-centered.

Let θ∞ be the parameter values at which д∞(θ ) becomes
zero. Since the size of the training set is only N , θ∞ exists
only conceptually. Since θn is the optimal parameter values,
it satisfies дn(θn) = 0. According to the mean-value theorem,
there exists θ̄ between θn and θ∞ that satisfies:

H (θ̄ )(θn − θ∞) = дn(θn) − дn(θ∞) = −дn(θ∞)

where H (θ̄ ) is the Jacobian of дn(θ ) evaluated at θ̄ . Note that
дn(θn) is zero since θn is obtained by finding the parameter
at which дn(θ ) becomes zero.
Applying the multidimensional central limit theorem to

the above equation produces the following:
√
n

(
θ̂n − θ∞

)
= −H (θ̄ )−1 √n дn(θ∞)

= −H (θ̄ )−1 1
√
n

n∑
i=1

(q(θ∞;xi ,yi ) + r (θ∞)) (9)

n→∞
−−−−→ N(0, H−1 JH−1) (10)

whereH is a shorthand notation ofH (θ̄ ). Tomake a transition
from Equation (9) to Equation (10), an important relationship
called the information matrix equality is used. According to
the information matrix equality, the covariance of q(θ ;xi ,yi )
is equal to the Hessian of the negative log-likelihood expres-
sion, which is equal to J .

Now, we derive the distribution of θ̂n − θ̂N . We use the fact
that θ̂N is the optimal parameter for DN , which is a union of
Dn and DN − Dn , where θ̂n is the optimal parameter for Dn .
To separately capture the randomness stemming from Dn
andDN −Dn , we introduce two random variablesX1,X2 that
independently follow N(0, H−1 JH−1). From Equation (10),
θ̂n − θ∞ → (1/

√
n)X1. Also, let qi = q(θ∞;xi ,yi ) for simplic-

ity; then,

√
N

(
θ̂N − θ∞

)
= −H−1 1

√
N
(

n∑
i=1

qi +
N−n∑
i=1

qi )

= −H−1

[ √
n

√
N

1
√
n

n∑
i=1

qi +

√
N − n
√
N

1
√
N − n

N−n∑
i=1

qi

]
n→∞ and N→∞
−−−−−−−−−−−−−→

√
n

√
N
X1 +

√
N − n
√
N

X2

Since θ̂n − θ̂N = (θ̂n − θ∞) − (θ̂N − θ∞), and the limit of each
of (θ̂n − θ∞) and (θ̂N − θ∞) exists,

θ̂n − θ̂N →
1
√
n
X1 −

√
n

N
X1 −

√
N − n

N
X2

=

(
1
√
n
−

√
n

N

)
X1 −

√
N − n

N
X2

Note that θ̂n − θ̂N asymptotically follows a normal distribu-
tion, since it is a linear combination of two random variables
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that independently follow normal distributions. Thus,

θ̂n − θ̂N
n→∞ and N→∞
−−−−−−−−−−−−−→

N
©«0,

(
1
√
n
−

√
n

N

)2

H−1 JH−1 +

(√
N − n

N

)2

H−1 JH−1ª®¬
= N

(
0,

(
1
n
−

1
N

)
H−1 JH−1

)
□

Proof of Corollary 1. Observe that θ̂n − θ̂N and θ̂N −

θ∞ are independent because they are jointly normally dis-
tributed and the covariance between them is zero, as shown
below:

Cov(θ̂n − θ̂N , θ̂N − θ∞)

=
1
2

(
Var(θ̂n − θ̂N + θ̂N − θ∞) − Var(θ̂n − θ̂N ) − Var(θ̂N − θ∞)

)
=

1
2

(
1
n
−

(
1
n
−

1
N

)
−

1
N

)
H−1 JH−1 = 0

Thus, Var(θ̂n−θN ) = Var(θ̂n−θ̂N | θN ) = α H−1 JH−1, which
implies

θ̂n ∼
(
θN , α H−1 JH−1) (11)

Using Bayes’ theorem,

Pr(θN | θn) = (1/Z ) Pr(θn | θN ) Pr(θN )

for some normalization constant Z . Since there is no pref-
erence on Pr(θN ), we set a constant to Pr(θN ). Then, from
Equation (11), θ̂N | θn ∼ N(θn ,α H−1 JH−1). □

Proof of Lemma 2. We first define three events A, B, and
C as follows:

A : v(mn) ≤ ε

B :
∫

1 [v(mn) ≤ ε1] h(θN ) dθN ≥
1 − δ

0.95

C :
1
k

k∑
i=1

1
[
v(mn ;θN ,i ) ≤ ε1

]
=

1 − δ

0.95
+

√
log 0.95

−2k

It suffices to show that P(A | C) ≥ 1 − δ , for which we use
the relationship P(A | C) = P(A | B) P(B | C).
First, by the basic relationship between the probability

and the indicator function, P(A | B) = (1 − δ )/0.95.
Second, by the Hoeffding’s inequality,

Pr

[
a ≥ b −

√
log 0.95

−2k

]
≥ 0.95

where a =

∫
1 [v(mn ;θN ) ≤ ε] h(θN ) dθN

b =
1
k

k∑
i=1

1
[
v(mn ;θN ,i ) ≤ ε1

]

since b is the degree-k U-statistics of a. Thus, P(B | C) ≥

0.95.
Therefore, P(A | C) = P(A | B) P(B | C) ≥ (1 − δ )/0.95 ×

0.95 = 1 − δ . □

B.3 Sample Size Estimation

Proof of Theorem 2. Without loss of generality, we prove
Theorem 2 for the case where the dimension of training ex-
amples, d , is 2. It is straightforward to generalize our proof
for the case with an arbitrary d . Also, without loss of gener-
ality, we assume B is the box area bounded by (−1,−1) and
(1, 1). Then, pv (γ ) is expressed as∫ (1,1)

(−1,−1)

1√
(2π )2 |γC |

exp
(
−θ⊤(γC)−1θ

)
dθ

To prove the theorem, it suffices to show that γ1 < γ2 ⇒

pv (γ1) > pv (γ2) for arbitrary γ1 and γ2. By definition,

pv (γ1) =

∫ (1,1)

−(1,1)

1√
(2π )2 |γ1C |

exp
(
−θ⊤(γ1C)

−1 θ
)
dθ

By substituting
√
γ1/γ2 θ for θ ,

pv (γ1) =

∫ √
γ2/γ1 (1,1)

−
√
γ2/γ1 (1,1)

1√
(2π )2 |γ2C |

exp
(
−θ⊤(γ2C)

−1 θ
)
dθ

>

∫ (1,1)

−(1,1)

1√
(2π )2 |γ2C |

exp
(
−θ⊤(γ2C)

−1 θ
)
dθ = pv (γ2)

because the integration range for pv (γ1) is larger. □

C MODEL SIMILARITIES

The model difference v(mn) defined for classification in Sec-
tion 2.1 can be extended to regression and unsupervised
learning in a straightforward way, as follows. The experi-
ment results in Section 5 used these definitions for corre-
sponding models.

Regression For regression, v(mn) captures the expected
prediction difference betweenmn andmN .

v(mn) =
(
Ex∼D[(mn(x) −mN (x))

2]
)1/2

Unsupervised Learning For unsupervised learning, the
model difference captures the difference between the model
parameters. For instance, BlinkML uses the following ex-
pression for PPCA:

v(mn) = 1 − cosine(θn , θN )
where θn and θN are the parameters ofmn andmN , respec-
tively, and cosine(·, ·) indicates the cosine similarity.
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