
AntMan: Dynamic Scaling on GPU Clusters for Deep Learning

Wencong Xiao, Shiru Ren⇤, Yong Li, Yang Zhang, Pengyang Hou,
Zhi Li, Yihui Feng, Wei Lin, Yangqing Jia

Alibaba Group

Abstract

Efficiently scheduling deep learning jobs on large-scale GPU
clusters is crucial for job performance, system throughput,
and hardware utilization. It is getting ever more challeng-
ing as deep learning workloads become more complex. This
paper presents AntMan, a deep learning infrastructure that
co-designs cluster schedulers with deep learning frameworks
and has been deployed in production at Alibaba to manage
tens of thousands of daily deep learning jobs across thousands
of GPUs. AntMan accommodates the fluctuating resource de-
mands of deep learning training jobs. As such, it utilizes the
spare GPU resources to co-execute multiple jobs on a shared
GPU. AntMan exploits unique characteristics of deep learn-
ing training to introduce dynamic scaling mechanisms for
memory and computation within the deep learning frame-
works. This allows fine-grained coordination between jobs
and prevents job interference. Evaluations show that AntMan
improves the overall GPU memory utilization by 42% and
computation utilization by 34% in our multi-tenant cluster
without compromising fairness, presenting a new approach
to efficiently utilizing GPUs at scale.

1 Introduction

Over the past years we have witnessed the great success of
Deep Learning (DL) with GPUs. DL already powers several
widely-used products today, spreading across fields including
computer vision, language understanding, speech recognition,
recommendation, advertisement, etc. Therefore, it has become
a vital workload integrated into the production pipeline at
scale. Large companies often build multi-tenant GPU clus-
ters for DL workloads, similar to shared clusters for big-data
analytics.

At Alibaba, we have observed low utilization of GPU
hardware in shared multi-tenant DL clusters, while queu-
ing many jobs waiting for resources. Such low utilization
of DL cluster arises from two main aspects. Firstly, most

⇤Co-first author

DL-production training jobs cannot fully utilize all the GPU
resources throughout their execution. Training a DL model
often requires a mixture of computations, some of which can
hardly be parallelized using GPU, such as graph sampling
in graph neural network [21, 54], feature extraction in adver-
tisement [15, 23], data augmentation in computer vision [56],
etc. Besides, when scaled to distributed training, 90% of the
time can be spent on networking [32]. Secondly, the common
reservation-based approach for cluster scheduling results in
significant GPU idling because DL jobs often cannot consume
partial resources. For example, stochastic gradient descent
(SGD) is synchronous and requires all resources to be avail-
able simultaneously for gang-scheduling [27]. The cluster
scheduler thus forces partially available resources to idle in
reserve until the final request is satisfied.

Packing jobs on shared GPUs can boost GPU utilization
and make the same cluster accomplish more jobs overall.
However, this approach is rarely used in production clusters.
The reason is that although improving GPU utilization is bene-
ficial, it is also critical to guarantee the performance of impor-
tant resource-guarantee jobs (i.e., jobs with resource quota).
Co-executing multiple jobs on the same GPU can result in in-
terference, which leads to significant performance slowdown
of the resource guarantee jobs [48]. What’s more, the job pack-
ing strategy can introduce memory contention on concurrent
jobs, which could even cause the failure of the training jobs
if the resource demands of a job abruptly increase. Therefore,
it is typical in existing production GPU clusters to perform
exclusive allocation of resources on jobs [27].

We present AntMan, a DL system that improves GPU clus-
ter utilization while ensuring fairness and performance of
resource-guaranteed jobs by doing cooperative resource scal-
ing to minimize job interference. New mechanisms are intro-
duced in DL frameworks to allocate the exact required amount
of GPU memory and computation unit dynamically during
the job training. Any spare GPU resources, including GPU
memory and compute cycles, could be leveraged by over-
subscription jobs. AntMan co-designs the cluster scheduler
and DL frameworks to adapt to the inherent fluctuating re-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 533

source characteristics in production jobs, through framework
information aware scheduling, transparent memory extension,
and fast continuous inter-job coordination. With this architec-
ture, AntMan opens a space for policy design of co-executing
DL jobs using GPU resources. In the GPU clusters of Al-
ibaba, AntMan adopts a simple and practical strategy to max-
imize the cluster throughput. While providing performance
guarantee on resource-guarantee jobs, AntMan dispatches
opportunistic jobs to best-effort utilize GPU resources at a
low-priority without any resource guarantees.

We have implemented AntMan by modifying two most
popular DL frameworks, PyTorch [35] and TensorFlow [8],
to expose necessary new primitives for the cluster scheduler
to leverage at runtime. Our scheduling policy is implemented
in a scheduler prototype on top of Kubernetes for evaluation,
and the complete system is fully implemented in Fuxi [52],
the internal scheduler of Alibaba, to serve the production DL
jobs in the GPU clusters.

We evaluate AntMan on a 64 V100-GPU Kubernetes clus-
ter to show the advantages of the new scheduling primitives
and policies with micro-benchmarks and real workloads. The
trace evaluation shows that AntMan can preserve the perfor-
mance of resource-guarantee jobs ideally without preemp-
tion. Moreover, it improves the average Job Completion Time
(JCT) of all jobs by up to 2.05x compared to current produc-
tion cluster scheduler, and 1.84x compared to Gandiva [48], a
state-of-the-art DL cluster scheduler. We also deploy AntMan
in real production clusters and report the evaluations and
statistics on a heterogeneous cluster with over 5000 GPUs.
The cluster statistics shows that AntMan improves the overall
throughput by offering up to 17.1% more GPUs for DL jobs,
significantly reduces the average queuing delay by 2.05x, and
raises the GPU memory and computation unit utilization by
42% and 34% respectively.

The key contributions of this paper are as follows.

• We investigate the comprehensive characteristics of pro-
duction DL clusters to understand low utilization from
three aspects: hardware, cluster scheduling, and job be-
havior (Section 2).

• We introduce two new dynamic scaling mechanisms in
both memory and computation unit management for DL
frameworks to address the challenges of GPU sharing.
The new mechanisms leverage DL job characteristics
to dynamically adjust the resource usage of DL jobs
efficiently during the job execution (Section 3.1).

• Through co-designing the cluster scheduler and DL
frameworks to utilize dynamic scaling mechanisms, we
introduce a new industrial method to GPU sharing. This
maintains the job service-level agreement (SLA) in a
multi-tenant cluster while improving the cluster utiliza-
tion with opportunistic scheduling (Section 3.2 and 3.3).

• By deploying AntMan in Alibaba to serve tens of thou-
sands of daily jobs, we conduct experiments and report
the performance improvement in a cluster with more
than 5000 GPUs, demonstrating a productive approach
in managing multi-tenant DL cluster fairly and efficiently
at scale (Section 5).

2 Motivation

In this section, we start by introducing essential DL terminolo-
gies as the background. We then highlight our observations
by characterising the GPU production cluster to motivate the
design of AntMan. We end by discussing opportunities to
leverage the DL training characteristics.

2.1 Deep Learning Training

Deep learning training often consists of millions of iterations,
and each iteration processes a few samples, called a mini-
batch. Usually, a training mini-batch can be divided into three
phases. Firstly, samples and model weights are calculated to
produce a set of scores, known as a forward pass. Secondly,
a loss error is calculated between the produced scores and
the desired ones using an objective function. The loss is then
spread backwards through the model to compute gradients,
called a backward pass. Finally, the gradients are scaled by
a learning rate, as defined by an optimizer, to update the
model parameters. The computation output of a forward pass
usually includes many data outputs, each of which is called
a tensor. These tensors should be temporarily held in the
memory and consumed by the backward pass to calculate
gradients. Usually, to monitor the model quality in training,
evaluations are periodically triggered.

To train models with massive data, DL generally adopts
data parallelism in multiple GPUs where each GPU is re-
sponsible for processing a subset of data in parallel while
performing gradient synchronizations per mini-batch before
the model update.

In large companies, multi-tenant clusters are commonly
used to improve hardware utilization, where users can some-
times oversubscribe GPU resource quota, especially when
GPU demands burst [33].

2.2 Characterizing Production DL Cluster

We study resource usage in production clusters from three
perspectives: hardware, cluster scheduling, and job behavior.

Low utilization of in-use GPUs. Figure 1 illustrates a one-
week statistic of GPU memory usage and computation unit
utilization. The numbers are collected from one of the produc-
tion clusters with thousands of heterogeneous GPUs. GPU
memory consumption is normalized by the memory capac-
ity of the running GPU due to the heterogeneity in the GPU

534 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
D

F

GPU Resource (%)

 GPU util
 GPU memory

Figure 1: GPU resource
statistic on a GPU produc-
tion cluster.

 0
 20
 40
 60
 80

 100
 120
 140
 160

2-GPU 4-GPU 8-GPU
16-GPU

A
vg

. I
dl

e
G

PU
 (G

PU
*m

in
)

Number of GPU Request

Figure 2: Average GPU idle
waiting waste from gang-
schedule.

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10
 0

 100

 200

 300

 400

 500

G
PU

 u
til

 (%
)

G
PU

 m
em

or
y

(M
B

)

Time (min)

SM util
Memory

Figure 3: DeepFM on Criteo
dataset.

 0
 10
 20
 30
 40
 50
 60
 70
 80

 1200 1400 1600 1800
 0
 5
 10
 15
 20
 25
 30
 35
 40

G
PU

 u
til

 (%
)

G
PU

 m
em

or
y

(G
B

)

Time (second)

SM util
Memory

Figure 4: ESPnet on text-
speech dataset.

memory capacity. As shown in the figure, only 20% of the
GPUs are running applications that consume more than half
of the GPU memory. With regards to the usage of compu-
tation unit, only 10% of the GPUs achieve higher than 80%
GPU utilization. This statistic indicates that both the GPU
memory and computation units are not being fully utilized,
and are thus wasting the expensive hardware resources.

Idle waiting for gang-schedule. To train deep learning
with massive amounts of data, distributed multi-GPU training
is essential. Multi-GPU training jobs require gang-scheduling,
which means a job will not start training unless all required
GPUs are simultaneously available [19, 27]. However, in a
cluster, GPU resources can hardly be satisfied simultaneously.
(e.g., three GPUs might need to be held and then wait for
the last one before launching a 4-GPU job, leaving the three
GPUs in idle waiting mode). The more resources a job re-
quires, the more GPU cycles are wasted when in idle waiting
mode due to partial resource reservation. To understand the
resource waste due to idle waiting, the timestamp of every re-
source grant for every gang-scheduled job was recorded. The
idle waiting time of each GPU (i.e., the gap between the job
launching time and the resource granting time) is summed up
to calculate the total resources wasted in idle waiting for a job.
Figure 2 illustrates the average idle waiting resource waste
for different sizes of jobs. The more GPUs a job requires, the
higher the cost the cluster must pay for holding idle resources.

The unpredictable arrival of upcoming resources is the
reason that reserved resources are left idle. A naïve approach
to improving utilization is to launch other jobs on idle waiting
resources. However, this can cause the large jobs to become
starved and break the scheduling fairness. In addition, once all
resources are satisfied, the burst GPU demand of this resource-
guarantee job can lead to inter-job resource conflicts with the
ones that are currently running in GPUs, which may cause the
jobs to fail. Recently, elastic training (e.g., TorchElastic [7])
is proposed to adapt to the incrementally available resources.
However, it is rarely used in production because of the non-
determinism it introduces to the accuracy [18, 47].

Dynamic resource demand. In addition to the idle wast-
ing from job scheduling, our observation finds that DL jobs
usually cannot fully utilize GPU resources during their life

cycle. Figure 3 illustrates the first 10 minutes of resource
usage when running DeepFM [20] on Criteo dataset. At the
beginning, preprocessing on the dataset only requires CPU.
However, both GPU Streaming Multiprocessor (SM) utiliza-
tion and memory usage are boosted at 275 seconds. Such
dynamic resource demands also commonly exist in other
jobs. Figure 4 illustrates a 10-minute (1200⇠1800 seconds)
profiling on ESPnet [46], an end-to-end speech model train-
ing job. The model training pipeline could contain several
phases. During the training phase, ESPnet consumes 3.6 GB
GPU memory with a dynamic GPU SM utilization up to 70%.
At 1400 seconds, decoding on GPU (around 1400⇠1600 sec-
onds) and synthesis (around 1600⇠1700 seconds) on the CPU
are issued in order to evaluate the model. It is worthy of note
that, the decoding phase requires up to 19 GB GPU memory.
After the evaluation phase, the model training continues. Such
intra-job dynamic resource demand is common in production
DL pipelines, making it hard to predict desired resources. We
also find some jobs periodically become CPU bound, which is
consistent with the observations in neural machine translation
tasks [49]. We omit the result due to space limitation.

The dynamic resource demand actually conflicts with the
fixed resource allocation and the potentially long running time
in the training of deep learning jobs. Jobs requiring sufficient
resources according to their peak usage make expensive hard-
ware underutilized. If not granted sufficient resources, the job
performance may be limited and thus the job completion time
could be delayed. In addition, the memory caching design in
existing DL frameworks (e.g., TensorFlow and PyTorch) also
conceal the temporal memory usage variations [50], which
prevents GPU memory from potential sharing.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000

C
D

F

model size (MB)

Model size

(a) Model size distribution.

 0

 0.2

 0.4

 0.6

 0.8

 0 300 600 900 1200 1500

CD
F

mini-batch time (ms)

Mini-batch time

(b) Mini-batch time distribution.
Figure 5: One-week deep learning tasks statistic.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 535

Tensor
Tensor

GPU Memory

Tensor

Tensor Tensor
Tensor

Tensor
Tensor

Tensor
Tensor

Tensor

GPU Memory GPU Memory GPU MemoryGPU Memory Host Memory

Tensor
Tensor

Tensor

GPU Memory Host Memory

Existing DL framework Dynamic Scaling in AntMan

Shrink Growth

(a) (b) (c) (d) (e) (f)

Figure 6: Dynamic scaling universal memory in AntMan

2.3 Opportunities in DL Uniqueness

The preceding characterization of the production DL cluster
shows that low utilization is common for both GPU mem-
ory and GPU computation unit (i.e., SM). It shows great op-
portunities to improve the cluster throughput with resource
over-subscription. However, the unpredictable inter-job and
intra-job demand burst introduces challenges to safe resource
sharing. Jobs could run out of memory due to resource con-
tention. Besides, in multi-tenant clusters, it is important to pro-
vide performance isolation for jobs holding a resource quota
when the jobs are executed in a resource-sharing approach.
To cater to these challenges when scheduling deep learning
jobs, AntMan leverages the opportunities in the uniqueness
of DL training.

We sample 10K tasks in a week of our production cluster
to understand DL characteristics. We measure model size and
mini-batch size during model training, both shown in Figure 5.
Even though DL training could potentially use as much as 32
to 40 GB GPU memory (e.g., V100 and A100), only a small
portion is used to store the persistent DL model. 90% of DL
models occupy only 500 MB GPU memory.1 The majority
of GPU memory is allocated and freed within the same mini-
batch. Moreover, the DL training cycle is also rather small. As
much as 80% of tasks consume a mini-batch within 600 ms.

We exploit such unique characteristics in several ways to
schedule jobs on shared GPUs. Firstly, due to the small model
size in common, the majority of GPU memory could be sched-
uled among the co-executing jobs. Secondly, mini-batch cy-
cles are generally quite small, allowing fine-grained GPU
memory and computation scheduling at every mini-batch
boundary. This could further allow fast resource coordination
between jobs. Thirdly, mini-batches apply mostly similar com-
putations that can be utilized to profile the job performance,
therefore their progress rate can be created as a performance
metrics to quantify interference.

3 Design

AntMan deeply co-designs cluster schedulers and DL frame-
works to address GPU sharing challenges. In this section, we

1we omit the largest 2% jobs’ model size as the number is business
sensitive.

first describe the new mechanism extensions in DL frame-
works. We then introduce the collaborative scheduling design
to leverage those new primitives. Finally, we present a new
productive policy enabled in the cluster scheduler of Alibaba
to manage DL jobs.

3.1 Dynamic Scaling in DL Frameworks

As mentioned in Section 2.2, DL training clusters exhibit low
utilization due to unsaturated GPU usage in DL workloads
and unique gang-schedule requirements during job schedul-
ing, which contains great potentials that can be exploited to
execute more jobs. However, some challenges need to be ad-
dressed, such as executing jobs at their minimal requirements
while preventing GPU memory usage outbreak failures, adapt-
ing to the fluctuating computation unit usage while limiting
potential interference. At its core, existing DL frameworks
are designed for dedicated GPU executions, which lack key
capabilities when collaborating with other jobs. Such con-
flicts between production DL cluster characteristics and DL
framework limitation motivate the design of dynamic scaling
mechanisms to enhance DL frameworks. The dynamic scaling
mechanisms include the fine-grained dynamic control in two
aspects, GPU memory and computation unit. We elaborate
them next.

3.1.1 Memory Management

A dynamic memory management mechanism is introduced
in AntMan to adapt the allocated memory on the fluctuat-
ing memory demands of a DL training job. This is achieved
by allocating universal memory to DL application tensors,
i.e., switching tensors between GPU and CPU host machine
DRAM across mini-batches. Modern operating systems sup-
port paging in memory management at the granularity of
memory pages, where they use disk as memory when they run
out of physical memory. AntMan adopts a similar approach,
however, this is carried out in an application-specific granular-
ity, tensor, which can be transparently migrated in universal
memory addresses at runtime. In this way, DL frameworks
can support the dynamic GPU memory upper limit.

Figure 6 illustrates the memory management in existing DL
frameworks as well as the differences to AntMan. The total

536 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Time

Memory

T0 T1

Growth

a

a

(a) Scaling for memory burst up.

Memory

TimeT0 T1

GPU CPU

Shrink

Growth

b

b

(b) Scaling to secure memory.

Figure 7: Leveraging mini-batch behavior to scale memory
efficiently.

number of cached GPU memory size (i.e., red dash line) in-
creases with tensors created in DL frameworks (Figure 6a⇠b).
In order to eliminate the expensive overheads in memory al-
locations and de-allocations, and also to speed up training
among mini-batches, the GPU memory is cached in a global
memory allocator inside DL frameworks after tensors are de-
stroyed. Prevalently, some tensors are used only in certain
stages of DL training (e.g., data preprocessing, evaluation),
which are no longer required. However, this portion of cached
GPU memory is not released (Figure 6c). This cached mem-
ory design in DL frameworks optimizes individual job perfor-
mance at the cost of losing sharing potentials.

AntMan turns to the approach of scaling the GPU memory
upper limit. It proactively detects in-used memory to shrink
the cached memory to introspectively adjust GPU memory
usage to an appropriate fit. This is done by monitoring applica-
tion performance and memory requirements when processing
mini-batches (Figure 6d). Furthermore, new primitives are
provided to shrink the upper limit of GPU memory at runtime,
even below the actual GPU memory demand of a job. AntMan
uses its greatest effort to allocate tensors on GPU devices,
however, tensors can be allocated outside of GPU with the
host memory if GPU memory is still lacking (Figure 6e). With
such universal memory support, jobs can continue to process
even below their actual GPU memory requirements, where we
find workloads slowdown the performance differently (Sec-
tion 3.3). Tensors can be allocated back to GPU automatically
when the GPU memory’s upper limit increases (Figure 6f).

Paging in operating systems introduces costly page copy be-
tween the memory and disk. In contrast, thanks to the unique
pattern of DL, tensor copy between the GPU and CPU host
DRAM is explicitly avoided. Identical tensors are created
across mini-batches, and therefore, AntMan exploits this pat-
tern to adjust the upper limit of the memory at the boundary
of the mini-batches. Figure 7a illustrates how memory scaling
addresses the burst demand. At T0, the memory requirement
of a running DL training job increases, due to the limited
upper-bound of GPU memory, some tensors cannot be placed
in the GPU memory, and are instead created using the host
memory. AntMan detects the usage of the host memory, and
at T1, it raises the GPU memory’s upper limit for that job
according to the usage of the host memory, which allows

GPU

GPU kernels of Job-A

Launch kernel Op dependencyOp execution

GPU kernels of Job-B

1 2 3 4 5 6

(a) Job-A executes in a GPU exclusively despite some idle cycles.

GPU

DL framework
Op executor CPU Op

GPU Op

CPU Op CPU Op CPU Op

GPU Op GPU Op GPU Op GPU Op

1 2 31 2 3 4 5

(b) Job-A significantly interfered by Job-B.

GPU

CPU Op CPU Op CPU Op CPU Op

GPU Op GPU Op GPU Op GPU Op

GPU Op

GPU Op

GPU OpIdleTime IdleTime

DL framework
Op executor

GPU Op
Manager

1 2 3 4 5 61 2

(c) GpuOpManager of Job-B controls the interference.

Figure 8: Computation management to run two jobs in a
shared GPU without interference.

the tensors to be fully allocated in the GPU device for the
next mini-batch. Note that, the performance of this running
job might slowdown in a mini-batch as tensors are placed in
the host memory. However, such performance overheads are
negligible, considering a typical DL training often requires
millions of mini-batches. The overhead of memory shrinkage
and growth is quantified in Section 5. Furthermore, AntMan
provides fine-grained GPU memory scheduling at runtime.
A training job might shrink to secure memory resources for
other jobs, and grow back after other jobs are finished, as
shown in Figure 7b. It illustrates that a DL job scales down at
T0 and scales up at T1, at the cost of some tensors allocated
on the host memory. Therefore, the usage of the remaining
GPU memory between T0 and T1 for jobs running in the same
shared GPU is secured.

3.1.2 Computation Management

Dynamic computation unit management is a mechanism in-
troduced in AntMan to control the GPU utilization of a DL
training job. Modern operating systems (e.g., Linux) support
cgroups, which limits, accounts for, and isolates the CPU
resources that a process requires [1]. AntMan introduces a
similar method of dynamically isolating the GPU computation
resource access of DL-specific processes at runtime.

When multiple DL jobs are launched on the same GPU,
the interference is mainly caused by the potential GPU kernel
queuing delay and PCIe bus contention [14], which could

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 537

result in consistent performance downgrades across all jobs if
packing jobs are running on the same model and configura-
tion [48]. Our observation shows that jobs slowdown in dif-
ferent ways if different jobs are packed together (Section 5.1).
This is because jobs have different capabilities at acquiring
GPU computation units. Consequently, job performance can
barely guarantee or predict in GPU sharing, resulting in dif-
ficulties on the deployment of GPU sharing for multi-tenant
clusters. Figure 8 illustrates an example of GPU computa-
tion unit interference for two jobs that are executed on the
same GPU. Figure 8a illustrates how Job-A executes on a
GPU in a fine-grained manner. In short, GPU kernels will be
placed in order and processed by the GPU computation unit
one by one. Note that, in Figure 8, Job-A might not be able
to fully saturate the GPU, resulting in idle GPU cycles and
low GPU utilization which can potentially be used by other
jobs. Therefore, Job-B is scheduled on this GPU (Figure 8b).
The GPU operators of Job-B launch kernels (green blocks)
executed in the GPU, which can fill it up, and thus delay the
execution of other GPU kernels (blue blocks), leading to the
poor performance of Job-A. The interference mainly comes
from the lack of ability to control the execution frequency
of GPU kernels. To address this issue, We introduce a GPU
operator manager in DL framework(Figure 8c). Existing DL
frameworks issue GPU kernels in the GPU operator once its
control dependency is satisfied. In AntMan, the execution
of GPU operator is dedicated to a newly-introduced mod-
ule, called GpuOpManager. When a GPU operator is ready
to execute, it is added to GpuOpManager instead of being
directly launched. The main idea of GpuOpManager is to
control the launching frequency by delaying the execution of
GPU operators. In this way, AntMan introduces a new prim-
itive to limit the GPU utilization of a DL training job using
GpuOpManager. GpuOpManager continuously profiles the
GPU operators execution time and simply distributes idle time
slots before launching the GPU operators. Note that, GpuOp-
Manager only delays the GPU kernel execution. Therefore,
the potential dependencies among operators (including GPU
operators and CPU operators) are retained, meaning that CPU
operators can continue if possible. As illustrated in Figure 8c,
the third CPU operator is not blocked, however, the fourth one
is delayed as it depends on the second GPU operator, which
has its execution delayed by the GpuOpManager.

3.2 Collaborative Scheduler

In this section, we describe how we co-design the cluster
scheduler and DL frameworks to leverage the dynamic scaling
mechanisms mentioned above for collaborative scheduling.
We focus on the overall architecture of AntMan and how
different modules operate. The detailed policy description is
in the next section.

As shown in Figure 9, AntMan adopts a hierarchical ar-
chitecture, where a global scheduler is responsible for job

Global Scheduler

Data statistic flow Control flow

Scheduler

Cluster Stats

Local Coordinator

TF Job
GPU0

……

Coordinator

Local Stats Job Stats

Device Stats

GPU1

……

GpuUtil
GpuMem
MiniBatch
PeakMem
MinMem

Job-A Job-B …

HostMem

30%
5.6 GB
300 ms
5.6 GB
0.5 GB
0 GB

40%
5.1 GB
233 ms
6.5 GB
0.2 GB
1.4 GB

Device
Info

DL
Job
Info

…

Local Coordinator TF Job

PyTorch Job
GPU0

……

Coordinator

Local Stats Job Stats

Device Stats

Scheduling
decision

Figure 9: Collaborative scheduling workflow of AntMan.

scheduling. Each working server contains a local coordinator
that is responsible for managing the job execution using the
primitives of dynamic resource scaling through considering
the statistics reported from DL frameworks. AntMan is de-
signed for multi-tenant GPU clusters. In a multi-tenant cluster,
each tenant usually owns certain resources, annotated as a re-
source quota (i.e., number of GPUs), which is the concurrent
performance guarantee resources that can be assigned to the
jobs of that tenant. The sum of the GPU resource quota of each
tenant is less equal to the total capacity of a GPU cluster. In
AntMan, jobs are classified into resource-guarantee jobs and
opportunistic jobs by global scheduler with different schedul-
ing policies applied (Section 3.3). Resource-guarantee jobs
consume a certain amount of GPU resources quota of their
corresponding tenants while opportunistic jobs do not. There-
fore, AntMan ensures that the performance of the resource-
guarantee jobs should be consistent with that in exclusive
executions.

In AntMan, similar to conventional cluster schedulers, the
scheduling decision is dispatched from the global scheduler
to the local coordinator. In addition, the local coordinator
introspectively schedules the GPU resources to DL training
jobs using the dynamic scaling mechanisms (Section 3.1).
Therefore, the scheduling decisions can be treated as a top-
down control flow. In contrast, data statistic flow information
is collected by statistic modules of the local coordinator and
aggregated on the cluster statistic module in a bottom-up ap-
proach to help make scheduling decisions, which is similar to
Apollo [10]. Alongside with the hardware information (e.g.,
GPU utilization, GPU memory usage), AntMan also lever-
ages detailed job information reported by DL frameworks,
including mini-batch duration, peak memory usage, minimal
memory usage, and host memory consumption, etc. This in-
formation can also assist job scheduling decisions made by
the global scheduler. For example, peak memory and minimal
memory usage are used to indicate the GPU memory size
that can be made available quickly. Mini-batch time shows
how soon the GPU memory can be available for another DL
training job, which can affect the scheduling decisions of the
global scheduler when launching jobs.

538 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Algorithm 1 scheduleJob(in job, out nodes)

1: nodes0 f indNodes(job.gpu,constraints job.topo)
2: nodes1 f indNodes(job.gpu,constraints M)
3: nodes2 minLoadNodes(nodes1, job.gpu)
4: if job.isResourceGuarantee:
5: if numGPUs(nodes0)>= job.gpu:
6: return nodes0
7: else:

8: reserve(nodes0)
9: else:

10: return nodes2

Once a job is launched on a GPU server, a local scheduler
takes over the management of its end-to-end execution. Due
to the load fluctuation of a DL training job, a local coordinator
acts in an introspective mode to perform continual job control
to DL frameworks. More specifically, it collects the statistics
from the hardware and DL frameworks of all jobs, which is
used to control job performance via resource usage adjust-
ments (e.g., shrink GPU memory) through the new primitives
we introduced in Section 3.1.

3.3 Scheduling Policy

In this section, we first present the goal of our cluster sched-
uler. Then we describe the detailed policies applied in global
scheduler and local coordinator. Finally, we introduce the job
upgrade in our system.

Goal. There is an inherent tension between providing fair-
ness (e.g., to ensure SLAs of DL jobs with guaranteed re-
sources) and achieving high resource utilization (e.g., GPU
utilization), because of the constant fluctuation in both the
load on a cluster and the resource needs of a job. Prevalent
production DL cluster schedulers often trade fairness in cer-
tain ways for efficiency. For example, spare resources are
allocated to over-provision tenants. However, such GPU re-
sources can hardly get back without preemption. Generally,
preemption is rarely used as it fails running jobs while wastes
expensive GPU cycles. Besides, [27] also reports the out-of-
order behavior which discriminates large jobs (i.e., allocating
more GPUs), leading to unfairness by preferring small jobs.
In AntMan, multi-tenant fairness is our primary goal, and the
second priority is to improve the cluster efficiency therefore to
achieve higher throughput. AntMan achieves fairness with the
polices that are implemented in both the global scheduler and
the local coordinator, powered by the dynamic scaling mech-
anisms. Furthermore, GPU opportunistic jobs are introduced
in AntMan to steal idle cycles in GPUs so as to maximize
cluster utilization.

Global scheduler. As a multi-tenant cluster scheduler, the
global scheduler maintains multiple queues of tenants where

jobs arrive and decides GPU locations allocated for jobs. For
resource-guarantee jobs and opportunistic jobs, AntMan ap-
plies different scheduling polices as shown in Algorithm 1.
findNodes is a function that returns the node and GPU candi-
dates which satisfy the job request with an optional param-
eter to specify constraints. Global scheduler fairly allocates
resource-guarantee jobs given sufficient GPU resources. In
addition, resource-guarantee jobs are optimized to maximize
the job performance using the free GPU resources, i.e., GPUs
that are not allocated to other resource-guarantee jobs (line
5-6). For instance, a distributed resource-guarantee job that
uses all-reduce communication strategy (e.g., NCCL [5]) can
be scheduled on one server to utilize the NVLink [6] for
high-performance communication. However, if the resource
request of a job can partially be satisfied, the global scheduler
reserves the resources for this job, and waits for others to meet
the gang-scheduling requirement (line 7-8). Such insufficient
resource reservation exists mainly for resource quota (e.g.,
three GPUs left while there is a request for four) and resource
fragmentation (e.g., request four GPUs in the same server,
however only four are available spread across servers). The
reserved resources will never be occupied by other resource-
guarantee jobs, however, they can be utilized by opportunistic
jobs.

By default, the global scheduler will estimate the queu-
ing time for jobs without GPU quota granted. Those jobs
that suffer long queuing delay will be automatically executed
as opportunistic jobs. To schedule opportunistic jobs, global
scheduler aims to utilize free resources to the best of its abil-
ity. It allocates opportunistic jobs on GPUs by considering
the actual GPU utilization, even when some other jobs run
on those GPUs. Only GPUs with a utilization of less than M
(set as 80% for now) in the past 10 seconds can be selected as
candidates. AntMan adopts a heuristic strategy to allocate op-
portunistic jobs on the freest candidates (i.e., minLoadNodes,
line 9-10). In this way, there are some jobs allocated on the
same GPU, where they are managed by the local coordinator.
We will elaborate their coordinated execution next. Note that,
although AntMan automatically selects opportunistic jobs by
default, it also allows users to manually identify the job type at
the point of submission; for example, as a resource-guarantee
job explicitly to ensure SLAs. A job can also be specified as
an opportunistic job that will never occupy the tenant’s re-
source quota, and vice versa. In practice, users usually submit
jobs in opportunistic mode to avoid the potential queuing de-
lay, aiming to perform debugging and hyper-parameter tuning,
which are both driven by early feedbacks [48, 51].

Local coordinator. The main responsibility of the local co-
ordinator is to collaborate the execution of jobs on shared
GPUs. Next, we first introduce how local coordinator ensures
the performance of resource-guarantee jobs at shared exe-
cution. Then, we describe the approach to handle resource
demand surges of a resource-guarantee job. Finally, we in-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 539

troduce a greedy approach in AntMan to maximize the ag-
gregated job performance when a GPU is only shared by
opportunistic jobs. These approaches are achieved by uti-
lizing the information reported from both GPU device and
DL frameworks, and by instructing the memory management
module (Section 3.1.1) and computation management module
(Section 3.1.2) in DL frameworks.

A GPU is allocated to only one resource-guarantee job
as it consumes GPU quota. However, in AntMan, it is pos-
sible that there are some opportunistic jobs executed on this
GPU. As such, the local coordinator must prevent the resource-
guarantee job from interfering by other co-located jobs at run-
time. When a resource-guarantee job arrives on a GPU that
runs with opportunistic jobs, the local coordinator first limits
the opportunistic jobs in using GPU, for both GPU memory
and GPU SM. By reducing the GPU usage of the opportunis-
tic jobs, the newly launched resource-guarantee job will be
capable of persistently initializing the training variables (i.e.,
model) in the GPU memory. In addition, when launching a
DL training job, the GPU device needs to be initialized by the
DL framework, which takes more time if the GPU is in a high
load. Once the resource-guarantee job is stably executed, the
local coordinator will allocate the rest of the GPU memory to
the opportunistic jobs. Furthermore, it gradually increases the
GPU computation unit usage of opportunistic jobs without
interfering with resource-guarantee jobs by monitoring the
job performance (i.e., mini-batch time). Similarly, when an
opportunistic job arrives on a shared GPU, the local coordina-
tor raises its GPU resource usage in a step-like fashion under
the condition that the resource-guarantee job is not affected.

During the job execution, the resource demand of both the
GPU memory and GPU computation unit might surge beyond
the currently available resources (Section 2.2). To be aware of
such dynamic resource demand, the local coordinator moni-
tors the metrics that are reported by DL frameworks (e.g., host
memory usage, mini-batch time). Therefore, when a resource-
guarantee job increases the GPU memory requirement, the
tensors are temporarily stored using host memory, thanks to
the universal memory (Section 3.1.1). The local coordinator
shrinks the GPU memory usage of other opportunistic jobs
and raises the GPU memory limit of the resource-guarantee
job to recover its performance. It is similar for GPU computa-
tion unit usage coordination. Note that, AntMan relies on the
application level metric (i.e., mini-batch time) to indicate the
job performance of resource-guarantee jobs. If it observes an
unstable performance in the resource-guarantee job, it adopts
a pessimistic strategy to limit the usage of GPU resources of
other opportunistic jobs.

GPU resources can also be idle waiting without any
resource-guarantee jobs (e.g., due to gang-schedule as de-
scribed in Section 2.2). In this case, if there is only one oppor-
tunistic job, the GPU resources can be fully utilized by this
job without any constraints. Sometimes, it is possible that a
GPU is occupied by multiple opportunistic jobs. Under this

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 10 20 30 40 50 60 70 80 90 100N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

GPU memory limit (%)

SR VGG ResNet

Figure 10: Workloads show diversity in performance sen-
sitivity given insufficient memory.

scenarios, AntMan optimizes the aggregated job performance
by maximizing GPU memory efficiency. With the dynamic
scaling mechanisms enabled, we find that different workloads
show differences in sensitivity regarding the performance
slowdown from memory limitations. The peak memory usage
of a job is limited using the dynamic memory scaling mecha-
nism, and the host memory is thereby used for the remainder
of the excess. As illustrated in Figure 10, Super Resolution
(SR) model suffers only around 25% performance slowdown
even with a 90% reduction in its device memory. VGG16 [43]
model on Cifar10 dataset (VGG) can keep most of its original
performance even after reducing its device memory by half.
ResNet50 [22] on ImageNet dataset (ResNet) is sensitive to
memory shrinkage; a 10% memory reduction introduces more
than 60% slowdown. Therefore, when the total GPU memory
demand of opportunistic jobs exceeds the GPU’s memory
capacity, AntMan adopts a simple heuristic approach which
allocates GPU memory to the job that improves the normal-
ized aggregated job performance at best. This is carried out
via an introspective trial-and-error allocation.

Job upgrade. In AntMan, opportunistic jobs are executed
at best-effort level to improve the cluster utilization. However,
this is done without an SLA guarantee. The global scheduler
upgrades these jobs given sufficient resources to complete
them quickly. For distributed synchronous DL training, the
partial upgrade does not help because the performance down-
grade of a worker can be broadcast to the entire job. Thus, the
global scheduler checks if all GPUs are filled up in opportunis-
tic jobs. Once all task instances are ready to upgrade and the
resource quota is sufficient, AntMan prefers to upgrade the
opportunistic job rather than launch a new one. Global sched-
uler notifies local coordinator to tag it as a resource-guarantee
job and consumes the tenant’s GPU quota to accomplish the
job upgrade.

540 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

4 Implementation

At Alibaba, DL training jobs are executed in Docker con-
tainers with our customized versions of DL frameworks. The
APIs of the DL frameworks are compatible with the commu-
nity version however with AntMan’s features enhanced. A
prototype custom cluster scheduler is implemented on Ku-
bernetes [11] for evaluation. AntMan is fully implemented
in our internal cluster scheduler, Fuxi [52], to serve the daily
production training jobs on several clusters with thousands of
GPUs each.

4.1 Deep Learning Framework

Dynamic scaling mechanisms are implemented in two popular
deep learning frameworks, TensorFlow [8] and PyTorch [35],
on versions v1.12 and v1.3.1 respectively. The implementa-
tion in TensorFlow takes 4000 lines of code (mostly in C++).
The implementation in PyTorch takes about 2000 lines of
code (500 lines in Python and 1500 lines in C++).

The modification of DL frameworks is mostly in three
components: memory allocator, executor, and interfaces. As
it adopts a similar implementation in both frameworks, we
mainly use TensorFlow terminology to describe the de-
tails. To enable dynamic universal memory, BFCAllocator
(CUDACachingAllocator in PyTorch) is modified to intro-
duce an adjustable upper limit for memory. The memory
allocator keeps track of the total bytes of memory allocation
and triggers out-of-memory when total bytes exceed the upper
limit. In addition, a new interface is introduced to the memory
allocator to allow emptying of cached memory at any time.
A new universal memory allocator, UniversalAllocator,
is also added to wrap the GPU memory allocator and host
memory allocator (i.e., using cudaHostMalloc for memory
allocation). When a memory allocation is triggered by the
request of a tensor, UniversalAllocator tries to allocate the
memory using the GPU memory allocator and treats the CPU
memory allocator as a backup if there is insufficient GPU
memory left over. Note that, the UniversalAllocator main-
tains a set data structure that records the pointers of memory
regions allocated by GPU, which is used to classify the mem-
ory pointers for de-allocation.

To enable dynamic computation unit scaling, a
GpuOpManager with an operator processing queue, which
runs in a standalone thread, is introduced in DL frameworks.
The operator executor of TensorFlow is modified accordingly
to insert GPU operators to GpuOpManager queue in order
so as to dedicate the execution of GPU operators to it.
GpuOpManager may delay the actual execution of the GPU
operators based on a limited percentage of the computation
capacity.

The statistics of memory usage patterns and the execution
information are aggregated for the local coordinator. The DL
frameworks and local coordinator communicate through the

file system. They both have a monitor thread to check the
file for receiving either job statistics or control signals. To
minimize the overhead of memory management, the dynamic
scaling of memory is triggered at the mini-batch boundaries
(end of session.run()).

4.2 Cluster Scheduler

A custom scheduler is implemented on Kubernetes [11] as a
prototype to evaluate AntMan. The implementation requires
around 2000 lines of code in Python. Overall, Kubernetes is
responsible for cluster management and for executing jobs in
Docker containers. Our global scheduler uses Python APIs to
monitor the events in Kubernetes’s API server for scheduling.
Local coordinators are deployed as a DaemonSet in Kuber-
netes. Each coordinator monitors certain paths of the file
system to collect the reported information for each job. The
aggregated job and device information are stored in ETCD, a
built-in distributed key-value store in Kubernetes. Therefore,
global scheduler directly reads states in ETCD when making
scheduling decisions.

AntMan has been fully implemented in Alibaba’s internal
cluster scheduler, Fuxi [52]. The implementation of global
scheduler takes about 10000 LOC, including failover support
and testing. The local coordinator implementation takes about
2000 LOC. Both of them are written in C++. The DL in-
frastructure is coupled with the big-data infrastructure, as DL
jobs are part of the data pipeline. Fuxi adopts an architec-
ture that optimizes for high performance scheduling, and it
currently does not have ETCD. Global scheduler and local
coordinator shall maintain their own aggregated device and
job information and use RPC for communication.

5 Evaluation

In this section, we first show micro-benchmark results to
demonstrate the effectiveness and efficiency of AntMan mech-
anisms. We then evaluate the benefits of AntMan in a small
cluster with 64 V100 GPUs to compare the policies with real
workloads. Finally, we present the evaluation results on a
production cluster with more than 5000 heterogeneous GPUs
(V100 and P100). All the experiments are conducted on a
cloud GPU cluster with 8 servers, unless explicitly stated. Ev-
ery server is equipped with a 96-core Intel Xeon Platinum
8163 (Skylake) @2.50GHz with 736GB RAM, running Cen-
tOS 7.7. Each server has 8 NVIDIA V100 GPUs (32 GB
GPU memory, with NVLink) powered by NVIDIA driver
418.87, CUDA 10.0, and CUDNN 7. The cloud GPU clus-
ter is managed by Kubernetes; jobs are submitted through
KubeFlow, and are executed in Docker containers. Only data-
parallel is evaluated with synchronous training for jobs that
require more than 1 GPU because they are common, although
asynchronous training can also be supported. The trace in
the experiment consists of 9 models, 2 of them implemented

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 541

Model Arrival GpuMem BS Quota
Job-A GCN 0 min 3.5 GB 1400 No
Job-B ResNet 26 min 30.0 GB 360 Yes

Table 1: Setup and information of two jobs.

Preempt FIFO Pack UMem AntMan
Job-A Failed 43.0 43.1 43.4 43.9
Job-B 91.1 108.2 Failed 541.6 91.8

Table 2: Job status and JCT (min) of two jobs executing in
different configurations.

in PyTorch 1.3.1 and 7 of them implemented in TensorFlow
1.12.

5.1 Benchmark

In this section, we evaluate the dynamic scaling mechanism
of AntMan in two aspects, memory and computation unit. We
first demonstrate that dynamic memory scaling is indispens-
able in preventing failure and ensuring job performance. We
then measure the efficiency of memory shrinkage and growth
on typical workloads and detail the timeline on a ResNet-50
benchmark. Finally, we demonstrate the ability of dynamic
computation unit scaling on avoiding job interference, by
packing two jobs in a shared GPU.

Dynamic GPU memory scaling. To demonstrate that dy-
namic memory scaling is essential for sharing GPUs with
multiple jobs, two typical jobs are chosen to construct a typ-
ical scenario. As shown in Table 1, Job-A is a GCN model
that arrives at 0 minutes. Its peak GPU memory usage is 3.5
GB and is submitted by users without a resource quota. Job-B
is a ResNet-50 task that arrives 26 minutes later. In total, it
consumes 30 GB GPU memory and is submitted with a re-
source quota guarantee, which means it should run directly to
meet the SLA requirements. The cluster has only one 32 GB
GPU left and both jobs are scheduled on this GPU at arrival.
Both jobs are run in the setup described above multiple times,
but with different action policies when Job-B arrives. Table 2
shows the job status and job completion time (JCT) in min-
utes for both jobs with different configurations. At Job-B’s
arrival, the scheduler can choose to preempt Job-A. In this
way, Job-B can be directly scheduled and finished in 91.1
minutes at the cost of Job-A’s failure. The second choice is
to run Job-B in a first-in-first-out (FIFO) mode. Job-B will
not be launched until Job-A is finished, which introduces an
extra 17.1-minute queuing delay. The third choice is to pack
two jobs in the same GPU as proposed in Gandiva [48]. In
this case, Job-B eventually fails because of the insufficient
GPU memory (28.5 GB) granted. UMem indicates running
Job-B in packing mode with the support of AntMan’s uni-
versal memory, but without the coordinated scaling on the

(a) A shrink-growth profiling on
ResNet-50.

 0

 50

 100

 150

 200

VGG16
InceptionV3

GoogleNet

O
ve

rh
ea

d
(m

s) Growth
Shrink

(b) Overhead of GPU memory
scaling for typical models.

Figure 11: Efficiency of GPU memory scaling in AntMan.

GPU memory limit (Section 3.1.1). Host memory are used
when running out of GPU memory. Thus, Job-B will not fail
from out-of-memory, however, it takes 514.6 minutes to fin-
ish and violates the SLA. AntMan leverages both universal
memory and dynamic GPU memory scaling to coordinate job
execution. It allocates sufficient device memory to Job-B as
it runs with a resource quota, and offers the rest part of GPU
memory to Job-A to allow it run as efficiently as possible.
More specifically, when Job-B arrives, AntMan coordinates
two jobs to shrink the GPU memory usage of Job-A and grow
the GPU memory of Job-B. Job-B uses 30 GB GPU memory
and Job-A uses the 2 GB left over, and 1.5 GB host memory.
Note that, the performance of Job-B is still slightly slower
compared to the preemptive scenario. This is because even
though the required GPU memory is sufficient through dy-
namic scaling of AntMan, Job-B is still interfered in by the
co-execution with Job-A in the computation unit.

Efficient memory shrinkage and growth. To demonstrate
the efficiency of the dynamic memory scaling mechanism, a
ResNet-50 job is run and the memory shrinkage and growth
are manually triggered in order. As shown in Figure 11a,
the performance is measured by monitoring the in-use GPU
memory using both Nvidia API and memory statistics in DL
frameworks. As Figure 11a indicates, the memory shrink from
17.6 GB to 1.3 GB takes only 17 ms. The GPU memory usage
grows back to 17.6 GB in 143 ms, which is slower than the
memory shrink. This is because GPU memory is allocated on
demand with deep learning forward computation. Thus, the
measured time includes both the forward computation time,
which is essential to this mini-batch, and the memory alloca-
tion overhead. To understand the actual overhead, the time
cost and memory usage of the next mini-batch are also plot-
ted. The mini-batch with GPU memory growth takes 234 ms
and the next mini-batch, which utilizes the cached memory,
takes 119 ms to accomplish. Therefore, the growth overhead
of ResNet-50 model is 115 ms. The same approach is applied
to measure memory scaling overhead on other typical DL
models. Figure 11b summarizes the overhead measured for
VGG16 [43], Inception3 [45], and GoogleNet [44], which
adjust GPU memory at a size of 17 GB, 16 GB, and 4 GB

542 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 100 200 300 400 500

SM
 u

til
 (%

)

Time (second)

ResNet50 ESPnet

(a) Packing mode.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 100 200 300 400 500

SM
 u

til
 (%

)

Time (second)

ResNet50 ESPnet

(b) Adaptive computation adjust-
ment mode.

Figure 12: The SM utilization rates of packing mode in
Gandiva [48] and an adaptive computation adjustment
mode in AntMan for a 500s segment of execution of ESP-
net and ResNet-50.

respectively. Given a dynamic memory scaling interval of one
minute, the largest overhead (i.e., VGG16) is still negligible
(only 0.4%).

Dynamic GPU computation unit scaling. To demonstrate
the adaptive computation adjustment is essential for sharing
GPU between multiple jobs, the SM utilization rates when
running two typical jobs under packing mode and adaptive
computation mode are characterized separately. As shown
in Figure 12, the resource-guarantee job is an PyTorch job
with ESPnet [46] model on the speech-text dataset. It co-
executes with an opportunistic job which is a TensorFlow
job with ResNet-50 [22] model on ImageNet [16]. Compared
to ResNet-50, ESPnet consumes less SM and less memory.
Therefore, packing these two jobs together into one GPU in-
curs a relatively higher GPU kernel queuing delay for the
ESPnet and eventually leads to an SLA violation. Figure 12a
illustrates that ESPnet is poor at competing GPU computa-
tion cycles compared to ResNet-50. The utilization of ESPnet
remains mostly at 30% which is lower than in Figure 12b.
ResNet-50 launches many more kernels per unit time than
ESPnet, therefore, it consumes more GPU computation time.
These results show that the end-to-end execution time of ES-
Pnet increases dramatically from 20.1 minutes (when running
on a dedicated GPU) to 105.2 minutes (when running together
with ResNet-50).

Figure 12b illustrates that AntMan can leverage adaptive
computation adjustment to utilize the left over resources as
much as possible while still satisfying the SLA requirements.
Specifically, AntMan introduces a feedback-based adjustment
approach that continuously monitors the performance of re-
source guarantee jobs and uses performance feedbacks to
adjust the GPU kernel launching frequency of opportunistic
jobs. As shown in Figure 12b, the SM utilization rates of
the training stage (the first 140 seconds) of ESPnet fluctuate
between 5% and 50%. In this scenario, AntMan continuously
adjusts the GPU kernel launching frequency of ResNet-50
to ensure the training performance of ESPnet. Therefore, the

Model Type Dataset

20%
ResNet-50 [22] CV ImageNet [16]

VGG16 [43] CV Cifar10 [30]
SuperResolution [42] CV BSD300 [34]

20% Bert [17] NLP SQuAD [38]
20% ESPnet [46] Speech Corp.Data

20% GraphSAGE [21] Rec. PPI [55]
GCN [29] Rec. Cora [41]

20% DIN [53] Ad. Corp.Data
Wide & Deep [15] Ad. Corp.Data

Table 3: Deep learning models and the ratios in the trace.

results reflected in this figure is that the SM utilization rates
of ResNet-50 are constantly fluctuating between 30% to 90%
within the first 140 seconds of execution. In contrast, the de-
coding stage (between 140 and 390 seconds) of ESPnet runs
without consuming GPU computation cycles. Therefore, the
SM utilization rates of ResNet-50 are relatively high at this
stage As a result, by leveraging adaptive computation adjust-
ments, the end-to-end execution time of ESPnet remains 20.8
minutes while ResNet-50 maintains 57% performance.

5.2 Trace Experiment

Workloads. Nine state-of-the-art deep learning models are
selected from Github, together with open datasets, as summa-
rized in Table 3. As the datasets of speech and advertisement
are too small for evaluation, the internal datasets of Alibaba
are used for the experiment. The models are classified into
categories according to their application domains and they are
evenly mixed up (20%). The job runtime of the trace is config-
ured according to the distribution reported by Microsoft [48].
As a simplified multi-tenant setup, deep learning training jobs
of the trace are randomly dispatched into two tenants. Tenant-
A has 64-GPU quota and Tenant-B has no quota. Therefore,
all Tenant-A’s jobs are resource-guarantee jobs, and all jobs
in Tenant-B are opportunistic jobs.

Baseline. The experiment compares AntMan to another
GPU production cluster scheduler, Apache YARNs capacity
scheduler (YARN-CS), which is used in Microsoft Philly [19,
28]. Gandiva [48], a state-of-the-art DL scheduling system,
is also used for comparison. Gandiva introduces a series of
primitives in DL for scheduling, including packing, migra-
tion, and time-slicing. The packing strategy of Gandiva is
used in this experiment, which greedily schedules jobs to the
GPUs with lowest GPU utilization and sufficient GPU mem-
ory. The migration and time-slicing proposed in Gandiva are
to solve resource fragmentation and benefit AutoML, which
are orthogonal to AntMan. Note that, Gandiva relies on job
profiling information (i.e., GPU utilization, GPU memory us-
age) for greedy packing decisions. Such profiling can hardly

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 543

 0

 400

 800

 1200

 1600

YARN-CS
Gandiva

AntMan

Ti
m

e
(M

in
)

JCT
Makespan

(a) Comparison of YARN-CS,
Gandiva, and AntMan.

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 400 600

CD
F

JCT (Mins)

YARN-CS
YARN-CS-preempt

Gandiva
AntMan

(b) Job completion time of
resource-guarantee jobs.

Figure 13: Trace experiment on 64 V100 GPUs.

be achieved in a production cluster, as its outputs might affect
the successor tasks of DL pipeline. In the trace experiment,
profiling information is unknown to both AntMan and YARN-
CS.

Results. Figure 13a shows the average job completion time
(JCT) and the makespan for the three schedulers when ex-
ecuting the same synthesized job trace in a cluster with 64
V100 GPUs. Compared to the capacity scheduler and Gandiva,
AntMan improves average JCT by 2.05x and 1.84x. The total
makespan is also reduced by 1.76x and 1.67x respectively.
To understand the improvements brought about by AntMan,
we config YARN-CS to run with preemption, which allows
jobs in Tenant-A to preempt jobs in Tenant-B for execution.
The JCT of resource-guarantee jobs (Tenant-A) are shown
in Figure 13b. This shows the JCT of AntMan is almost the
same as YARN-CS-preempt, however, YARN-CS-preempt
achieves it with 46% of jobs being preempted. AntMan re-
spects the jobs of Tenant-A and schedules them once their
resource quota are satisfied, while conducting a performance
control on the co-executing opportunistic jobs to avoid inter-
ference. Conversely, Gandiva delays the completion time of
these jobs because of the lack of performance isolation and
dynamic resource scaling.

5.3 Cluster Experiment

AntMan has been deployed on the production clusters of
Alibaba to serve tens of thousands of daily deep learning
training jobs. To verify the design and implementation of
AntMan while ensuring it works properly, experiments and
statistics are conducted on a heterogeneous GPU cluster with
over 5000 GPUs.

To illustrate the cluster efficiency improvement provided
by AntMan, one-week statistics were collected in December
2019, right before the deployment of AntMan, as the baseline.
It is compared to the number collected in April 2020, after
AntMan was fully deployed for weeks. However, as the jobs
of these two weeks are different, the average JCT cannot be
compared directly. Therefore, we focus on system metrics

Avg. 90% tile 95% tile
Dec. 2019 1132 1978 5960
Apr. 2020 550 124 489

Table 4: One-week queuing delay statistic in seconds.

Interference 0% 0⇠1% 1⇠2% 2⇠3% 3⇠4%
of jobs 9895 26 30 20 29

Table 5: Interference analysis on mini-batch time for 10K
production jobs

comparison because the jobs of this cluster come from the
same departments in Alibaba. The comparison shows that
AntMan provides up to 17.1% extra GPUs for DL training
jobs in this cluster. Hardware statistics show that AntMan
achieves a 42% improvement on average for GPU memory
usage and a 34% improvement on average for GPU utilization.
Table 4 illustrates the queuing delay of jobs selected from
a one-week period when roughly the same number of jobs
arrive at the cluster. It illustrates that on average, the job queu-
ing delay reduces by 2.05x and the tail latency significantly
reduces by more than an order of magnitude, thanks to the
cluster throughput improvement.

To measure the performance of resource-guarantee jobs
in co-execution, 10000 jobs were randomly sampled from
one week in April 2020 which both have the phases executing
exclusively and co-executing with other jobs. For each job, the
mini-batch time was recorded for both its dedicated execution
and packing execution with other jobs. The mini-batch time
difference between these two scenarios was calculated and any
gaps larger than 10 ms were considered as interfered (10 ms is
small enough to be considered as mini-batch fluctuation). In
this way, the interference ratio for each job could be calculated.
As shown in Table 5, 99% of the jobs suffer zero performance
downgrades during job packing.

6 Related Work

GPU memory management. To optimize the limited
and valued GPU memory for supporting larger batch-size
DNN training, vDNN [39], Capuchin [36], CDMA [40], and
Gist [26] adopts eviction, prefetching, and re-computation to
reduce the GPU memory footprint, leveraging application-
specific knowledge. Salus [50] packs multiple jobs in the
same process to share the GPU memory management, how-
ever, with interference in co-execution. In addition, running
multiple jobs in a process could potentially broadcast the
failures, especially when given a significantly high failure
ratio [27, 51]. AntMan provides a universal memory manage-
ment design using dynamic GPU and CPU memory swapping
at the granularity of tensors for the fluctuant load, which com-
plements the memory swapping and re-computation policies.

544 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Interference and performance isolation. Performance
isolation is critical in modern operating systems and shared
CPU clusters. Linux uses cgroups [1] to control the CPU and
memory usage of a process. However, it rarely has support for
general GPU applications. A series of research works, such as
Quincy [25] and Entropy [24], optimize the job performance
for fair sharing on CPU clusters. In AntMan, the character-
istic of DL jobs is leveraged to provide fine-grained control
on GPU memory and computation unit at runtime, which is
similar to cgroups, but on an application level.

The interference issue of multiplexing jobs on a GPU has
been well studied. Baymax [14] shares GPUs by mitigating
queuing delay and PCIe contention. Prophet [13] tries to
predict co-executed GPU workload performance using an an-
alytical model. AntMan introduces an operator management
module in the executor of the DL framework, leveraging the
inherent periodical mini-batch iteration cycles as a metric
for inter-job coordination. It controls the frequency of GPU
kernel launches and resolves the contention in both the GPU
computation unit and PCIe.

NVIDIA MPS can co-operate with multi-process CUDA
applications in a GPU. MPS support is not production ready
yet [4]. The resource limit cannot be changed at the runtime
of a client process which violates the fluctuant characteristic.
Moreover, MPS merges CUDA execution in only one con-
text, resulting in the termination of all clients for any fatal
GPU exceptions. rCUDA [37] and FlexDirect [3] of VMWare
Bitfusion allow jobs to be remotely executed on a shared
GPU.

GPU cluster scheduling Today, DL training jobs in multi-
tenant production clusters are managed by infrastructures
such as Kubernetes or YARN [9,28], where jobs are allocated
on dedicated GPUs, leading to common low utilization [27].
Gandiva [48] proposes time-slicing, migration, and packing
to allow GPU sharing. Time-slicing and migration switch
the GPU usage among jobs in coarse-grained, and therefore
cannot improve GPU utilization. The packing approach pro-
posed in Gandiva [48] could potentially introduce significant
unpredictable resource contention, which violates the fairness
requirements of a shared multi-tenant cluster. Themis [33]
addresses the unfairness of placement-sensitive character-
istic in DL jobs by proposing a long term fairness object.
Gandiva f air [12] addresses the fairness issue of multi-size job
time-slicing and proposes an automated trading mechanism.
AlloX [31] efficiently and fairly schedules DL jobs in inter-
changeable resources by modelling the scheduling problem
as a min-cost bipartite matching problem. AntMan introduces
opportunistic DL jobs as low-priority jobs to best-effort uti-
lize the GPU cycles, which is complementary to the fairness
metrics and policies proposed above.

Elastic training. To utilize the idle GPUs introduced by
gang-scheduling and to support fault-tolerance in DL training,

TorchElastic [7] and ElasticDL [2] are designed to start train-
ing with any number of available GPUs. A common problem
of these elastic DL frameworks is that the model training ac-
curacy can hardly be guaranteed or reproduced, and are thus
rarely used in production.

7 Conclusion

We present AntMan, a deep learning infrastructure deployed
in the GPU production clusters of Alibaba. AntMan intro-
duces dynamic scaling primitives in deep learning frame-
works, allowing flexible fine-grained control of GPU re-
sources for individual deep learning jobs at runtime. By uti-
lizing the effective primitives mentioned above, AntMan co-
designs cluster scheduler and deep learning frameworks for
cooperative job management, allowing GPUs to be utilized
by over-provision of opportunistic jobs at best-effort while
avoiding the interference to other jobs. AntMan improves the
overall GPU memory utilization and the computation unit
utilization of Alibaba’s GPU clusters by 42% and 34% re-
spectively without compromising fairness.

Acknowledgements

We would like to thank our shepherd Roxana Geambasu and
the anonymous reviewers for their valuable comments and
suggestions. We would also like to thank Chen Xing, Jin
Ouyang, Xinyuan Li, Lixue Xia for their help in improving
quality of writing.

References

[1] cgroups. https://en.wikipedia.org/wiki/
Cgroups.

[2] ElasticDL. https://github.com/
sql-machine-learning/elasticdl/.

[3] FlexDirect of VMware BitFusion.
https://www.vmware.com/content/dam/
digitalmarketing/vmware/en/pdf/whitepaper/
vmw-bitfusion-docs-flexdirect-whitepaper.
pdf.

[4] MPS. https://github.com/NVIDIA/
nvidia-docker/issues/419.

[5] NCCL. https://developer.nvidia.com/nccl/.

[6] NVLink. https://www.nvidia.com/en-us/
data-center/nvlink/.

[7] TorchElastic. https://github.com/pytorch/
elastic.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 545

https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://github.com/sql-machine-learning/elasticdl/
https://github.com/sql-machine-learning/elasticdl/
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/whitepaper/vmw-bitfusion-docs-flexdirect-whitepaper.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/whitepaper/vmw-bitfusion-docs-flexdirect-whitepaper.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/whitepaper/vmw-bitfusion-docs-flexdirect-whitepaper.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/whitepaper/vmw-bitfusion-docs-flexdirect-whitepaper.pdf
https://github.com/NVIDIA/nvidia-docker/issues/419
https://github.com/NVIDIA/nvidia-docker/issues/419
https://developer.nvidia.com/nccl/
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/
https://github.com/pytorch/elastic
https://github.com/pytorch/elastic

[8] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, et al.
TensorFlow: A System for Large-Scale Machine Learn-
ing. In 12th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 16), volume 16,
pages 265–283. USENIX Association, 2016.

[9] Scott Boag, Parijat Dube, Benjamin Herta, Waldemar
Hummer, Vatche Ishakian, K Jayaram, Michael Kalan-
tar, Vinod Muthusamy, Priya Nagpurkar, and Florian
Rosenberg. Scalable multi-framework multi-tenant life-
cycle management of deep learning training jobs. In
Workshop on ML Systems, NIPS, 2017.

[10] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jin-
gren Zhou, Zhengping Qian, Ming Wu, and Lidong
Zhou. Apollo: Scalable and Coordinated Scheduling
for Cloud-Scale Computing. In 11th USENIX Sympo-
sium on Operating Systems Design and Implementa-
tion (OSDI 14), pages 285–300, Broomfield, CO, 2014.
USENIX Association.

[11] Brendan Burns, Brian Grant, David Oppenheimer, Eric
Brewer, and John Wilkes. Borg, Omega, and Kubernetes.
ACM Queue, 14:70–93, 2016.

[12] Shubham Chaudhary, Ramachandran Ramjee, Muthian
Sivathanu, Nipun Kwatra, and Srinidhi Viswanatha. Bal-
ancing efficiency and fairness in heterogeneous gpu clus-
ters for deep learning. In Proceedings of the Fifteenth
European Conference on Computer Systems, pages 1–
16, 2020.

[13] Quan Chen, Hailong Yang, Minyi Guo, Ram Srivatsa
Kannan, Jason Mars, and Lingjia Tang. Prophet: Precise
qos prediction on non-preemptive accelerators to im-
prove utilization in warehouse-scale computers. In Pro-
ceedings of the Twenty-Second International Conference
on Architectural Support for Programming Languages
and Operating Systems, pages 17–32, 2017.

[14] Quan Chen, Hailong Yang, Jason Mars, and Lingjia
Tang. Baymax: Qos awareness and increased utilization
for non-preemptive accelerators in warehouse scale com-
puters. In Proceedings of the Twenty-First International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’16, At-
lanta, GA, USA, April 2-6, 2016, pages 681–696. ACM,
2016.

[15] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal
Shaked, Tushar Chandra, Hrishi Aradhye, Glen Ander-
son, Greg Corrado, Wei Chai, Mustafa Ispir, et al. Wide
& deep learning for recommender systems. In Proceed-
ings of the 1st workshop on deep learning for recom-
mender systems, pages 7–10, 2016.

[16] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In Computer Vision and Pattern Recog-
nition, 2009. CVPR 2009. IEEE Conference on, pages
248–255. IEEE, 2009.

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: pre-training of deep bidi-
rectional transformers for language understanding. In
Proceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1
(Long and Short Papers), pages 4171–4186. Association
for Computational Linguistics, 2019.

[18] Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter No-
ordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tul-
loch, Yangqing Jia, and Kaiming He. Accurate, large
minibatch SGD: training imagenet in 1 hour. CoRR,
abs/1706.02677, 2017.

[19] Juncheng Gu, Mosharaf Chowdhury, Kang G Shin, Yibo
Zhu, Myeongjae Jeon, Junjie Qian, Hongqiang Liu, and
Chuanxiong Guo. Tiresias: A GPU cluster manager
for distributed deep learning. In 16th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 19), pages 485–500, 2019.

[20] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li,
and Xiuqiang He. Deepfm: A factorization-machine
based neural network for CTR prediction. In Proceed-
ings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence, IJCAI 2017, Melbourne, Aus-
tralia, August 19-25, 2017, pages 1725–1731. ijcai.org,
2017.

[21] William L. Hamilton, Zhitao Ying, and Jure Leskovec.
Inductive representation learning on large graphs. In
Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing
Systems 2017, 4-9 December 2017, Long Beach, CA,
USA, pages 1024–1034, 2017.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[23] Xinran He, Junfeng Pan, Ou Jin, Tianbing Xu, Bo Liu,
Tao Xu, Yanxin Shi, Antoine Atallah, Ralf Herbrich,
Stuart Bowers, et al. Practical lessons from predicting
clicks on ads at facebook. In Proceedings of the Eighth
International Workshop on Data Mining for Online Ad-
vertising, pages 1–9, 2014.

546 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[24] Fabien Hermenier, Xavier Lorca, Jean-Marc Menaud,
Gilles Muller, and Julia L. Lawall. Entropy: a consoli-
dation manager for clusters. In Proceedings of the 5th
International Conference on Virtual Execution Environ-
ments, VEE 2009, Washington, DC, USA, March 11-13,
2009, pages 41–50. ACM, 2009.

[25] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi
Wieder, Kunal Talwar, and Andrew Goldberg. Quincy:
fair scheduling for distributed computing clusters. In
Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles, pages 261–276. ACM,
2009.

[26] Animesh Jain, Amar Phanishayee, Jason Mars, Lingjia
Tang, and Gennady Pekhimenko. Gist: Efficient data
encoding for deep neural network training. In 2018
ACM/IEEE 45th Annual International Symposium on
Computer Architecture (ISCA), pages 776–789. IEEE,
2018.

[27] Myeongjae Jeon, Shivaram Venkataraman, Amar Phan-
ishayee, Junjie Qian, Wencong Xiao, and Fan Yang.
Analysis of large-scale multi-tenant GPU clusters for
DNN training workloads. In 2019 USENIX Annual
Technical Conference (USENIX ATC 19), pages 947–
960, 2019.

[28] Myeongjae Jeon, Shivaram Venkataraman, Junjie Qian,
Amar Phanishayee, Wencong Xiao, and Fan Yang.
Multi-tenant gpu clusters for deep learning workloads:
Analysis and implications. Tech. Rep., 2018.

[29] Thomas N. Kipf and Max Welling. Semi-supervised
classification with graph convolutional networks. In
5th International Conference on Learning Representa-
tions, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net, 2017.

[30] Alex Krizhevsky, Geoffrey Hinton, et al. Learning mul-
tiple layers of features from tiny images. 2009.

[31] Tan N Le, Xiao Sun, Mosharaf Chowdhury, and Zhenhua
Liu. Allox: compute allocation in hybrid clusters. In
Proceedings of the Fifteenth European Conference on
Computer Systems, pages 1–16, 2020.

[32] Liang Luo, Peter West, Arvind Krishnamurthy, Luis
Ceze, and Jacob Nelson. Plink: Discovering and exploit-
ing datacenter network locality for efficient cloud-based
distributed training, 2020.

[33] Kshiteej Mahajan, Arjun Balasubramanian, Arjun
Singhvi, Shivaram Venkataraman, Aditya Akella, Amar
Phanishayee, and Shuchi Chawla. Themis: Fair and effi-
cient GPU cluster scheduling. In 17th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 20), pages 289–304, 2020.

[34] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database
of human segmented natural images and its application
to evaluating segmentation algorithms and measuring
ecological statistics. In Proc. 8th Int’l Conf. Computer
Vision, volume 2, pages 416–423, July 2001.

[35] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information
Processing Systems, pages 8024–8035, 2019.

[36] Xuan Peng, Xuanhua Shi, Hulin Dai, Hai Jin, Weiliang
Ma, Qian Xiong, Fan Yang, and Xuehai Qian. Ca-
puchin: Tensor-based gpu memory management for
deep learning. In Proceedings of the Twenty-Fifth Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages
891–905, 2020.

[37] Javier Prades and Federico Silla. Gpu-job migration:
The rcuda case. IEEE Trans. Parallel Distrib. Syst.,
30(12):2718–2729, 2019.

[38] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. Squad: 100, 000+ questions for machine
comprehension of text. In Proceedings of the 2016
Conference on Empirical Methods in Natural Language
Processing, EMNLP 2016, Austin, Texas, USA, Novem-
ber 1-4, 2016, pages 2383–2392. The Association for
Computational Linguistics, 2016.

[39] Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Ar-
slan Zulfiqar, and Stephen W. Keckler. vdnn: Virtualized
deep neural networks for scalable, memory-efficient neu-
ral network design. In 49th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, MICRO 2016,
Taipei, Taiwan, October 15-19, 2016, pages 18:1–18:13.
IEEE Computer Society, 2016.

[40] Minsoo Rhu, Mike O’Connor, Niladrish Chatterjee, Jeff
Pool, Youngeun Kwon, and Stephen W Keckler. Com-
pressing dma engine: Leveraging activation sparsity for
training deep neural networks. In 2018 IEEE Inter-
national Symposium on High Performance Computer
Architecture (HPCA), pages 78–91. IEEE, 2018.

[41] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise
Getoor, Brian Gallagher, and Tina Eliassi-Rad. Collec-
tive classification in network data. AI Mag., 29(3):93–
106, 2008.

[42] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes
Totz, Andrew P Aitken, Rob Bishop, Daniel Rueckert,
and Zehan Wang. Real-time single image and video

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 547

super-resolution using an efficient sub-pixel convolu-
tional neural network. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pages 1874–1883, 2016.

[43] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition.
In 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015.

[44] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Ser-
manet, Scott Reed, Dragomir Anguelov, Dumitru Erhan,
Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pages 1–9, 2015.

[45] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception
architecture for computer vision. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2818–2826, 2016.

[46] Shinji Watanabe, Takaaki Hori, Shigeki Karita, Tomoki
Hayashi, Jiro Nishitoba, Yuya Unno, Nelson Enrique
Yalta Soplin, Jahn Heymann, Matthew Wiesner, Nanxin
Chen, Adithya Renduchintala, and Tsubasa Ochiai. Es-
pnet: End-to-end speech processing toolkit. In Inter-
speech, pages 2207–2211, 2018.

[47] Pijika Watcharapichat, Victoria Lopez Morales,
Raul Castro Fernandez, and Peter R. Pietzuch. Ako:
Decentralised deep learning with partial gradient ex-
change. In Proceedings of the Seventh ACM Symposium
on Cloud Computing, Santa Clara, CA, USA, October
5-7, 2016, pages 84–97. ACM, 2016.

[48] Wencong Xiao, Romil Bhardwaj, Ramachandran Ram-
jee, Muthian Sivathanu, Nipun Kwatra, Zhenhua Han,
Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu Zhang,
Fan Yang, and Lidong Zhou. Gandiva: Introspective
cluster scheduling for deep learning. In 13th USENIX
Symposium on Operating Systems Design and Imple-
mentation, OSDI 2018, Carlsbad, CA, USA, October 8-
10, 2018, pages 595–610. USENIX Association, 2018.

[49] Wencong Xiao, Zhenhua Han, Hanyu Zhao, Xuan Peng,
Quanlu Zhang, Fan Yang, and Lidong Zhou. Scheduling
CPU for gpu-based deep learning jobs. In Proceedings
of the ACM Symposium on Cloud Computing, SoCC
2018, Carlsbad, CA, USA, October 11-13, 2018, page
503. ACM, 2018.

[50] Peifeng Yu and Mosharaf Chowdhury. Salus: Fine-
grained GPU sharing primitives for deep learning appli-
cations. CoRR, abs/1902.04610, 2019.

[51] Ru Zhang, Wencong Xiao, Hongyu Zhang, Yu Liu,
Haoxiang Lin, and Mao Yang. An empirical study on
program failures of deep learning jobs. In Proceedings
of the 42nd International Conference on Software Engi-
neering, ICSE ’20, pages 1159–1170, NY, USA, 2020.
Association for Computing Machinery.

[52] Zhuo Zhang, Chao Li, Yangyu Tao, Renyu Yang, Hong
Tang, and Jie Xu. Fuxi: a fault-tolerant resource man-
agement and job scheduling system at internet scale. In
Proceedings of the VLDB Endowment, volume 7, pages
1393–1404. VLDB Endowment Inc., 2014.

[53] Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan,
Han Zhu, Xiao Ma, Yanghui Yan, Junqi Jin, Han Li, and
Kun Gai. Deep interest network for click-through rate
prediction. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining, pages 1059–1068, 2018.

[54] Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang
Zhou, Baole Ai, Yong Li, and Jingren Zhou. Aligraph:
a comprehensive graph neural network platform. Pro-
ceedings of the VLDB Endowment, 12(12):2094–2105,
2019.

[55] Marinka Zitnik and Jure Leskovec. Predicting multi-
cellular function through multi-layer tissue networks.
Bioinformatics, 33(14):i190–i198, 2017.

[56] Barret Zoph, Ekin D. Cubuk, Golnaz Ghiasi, Tsung-Yi
Lin, Jonathon Shlens, and Quoc V. Le. Learning data
augmentation strategies for object detection. CoRR,
abs/1906.11172, 2019.

548 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

	Introduction
	Motivation
	Deep Learning Training
	Characterizing Production DL Cluster
	Opportunities in DL Uniqueness

	Design
	Dynamic Scaling in DL Frameworks
	Memory Management
	Computation Management

	Collaborative Scheduler
	Scheduling Policy

	Implementation
	Deep Learning Framework
	Cluster Scheduler

	Evaluation
	Benchmark
	Trace Experiment
	Cluster Experiment

	Related Work
	Conclusion

