
Computing Education as a Foundation for 21st Century Literacy
Mark Guzdial

University of Michigan, Computer Science & Engineering
Ann Arbor, Michigan
mjguz@umich.edu

ABSTRACT
Teaching programming as a way to express ideas, communicate
with others, and understand our world is one of the oldest goals for
computing education. The inventor of the term “computer science”
saw it as the third leg of STEM literacy. In this talk, I lay out the
history of the idea of universal computational literacy, some of
what it will take to get there, and how our field will be different
when we do.

CCS CONCEPTS
• Social and professional topics → Computing education; •
Applied computing→ Interactive learning environments.

KEYWORDS
computational literacy, CS for All, computational thinking, history
ACM Reference Format:
Mark Guzdial. 2019. Computing Education as a Foundation for 21st Century
Literacy. In Proceedings of the 50th ACM Technical Symposium on Computer
Science Education (SIGCSE ’19), February 27-March 2, 2019, Minneapolis, MN,
USA. ACM, New York, NY, USA, Article 4, 3 pages. https://doi.org/10.1145/
3287324.3290953

1 OUR MISSION: “AT ALL EDUCATION
LEVELS”

The mission of the ACM Special Interest Group on Computer Sci-
ence Education1 is to serve as a global forum for educators about
the learning and teaching of “computing” (not just computer science)
“at all levels.” This is a bold and noble mission. One of the earliest
goals of computer science was exactly this – to provide computing
to teachers and students at all levels.

Alan Perlis, the first ACM Turing Award laureate, argued in 1961
that all university students take a course in “computers,” and that
they should all learn programming [9]. He argued that program-
ming gave students a new way to see the world and solve problems
– within their own discipline. He said, “Given then the appropri-
ate computer, the capability of developing programming systems,
the proper freshman course2, and possibly a good follow-up pro-
gram, the computer will achieve its ultimate role as handmaiden to
scholarly university activities.”
1https://sigcse.org/sigcse/about/profile
2Even Perlis saw the challenge of computing education as mostly about CS1.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCSE ’19, February 27-March 2, 2019, Minneapolis, MN, USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5890-3/19/02.
https://doi.org/10.1145/3287324.3290953

Like Perlis, Seymour Papert was interested in the computer as a
support for learning activities, especially for children. He made the
claim “that children can learn to program and learning to program
can affect the way that they learn everything else" [8]. His point
is not to teach computer science for its own sake, or as vocational
training, but as a support for learning in any discipline.

The earliest reason for teaching students about computers was
to support learning in science, engineering, and mathematics (what
we now call STEM). George Forsythe published the term computer
science in an article in the Journal of Engineering Education [4].
For Forsyth, computers were the third leg of literacy for STEM
students. He wrote in 1968 [5], “The most valuable acquisitions in
a scientific or technical education are the general-purpose mental
tools which remain serviceable for a lifetime. I rate natural language
andmathematics as themost important of these tools, and computer
science as a third.”

Alan Kay [7] and Andrea diSessa [2] used the term “literacy”
to describe this use of computation as a medium, like reading and
writing. Kay wrote, “Computer literacy is a contact with the activity
deep enough to make the computational equivalent of reading and
writing fluent and enjoyable.” We can study reading and writing
for their own sake, but for most of us, reading and writing is what
enables us to express ideas, to communicate with others, and to
understand our world. Literacy supports and affects how we learn.
diSessa and his students developed Boxer as a environment in which
students could develop computational literacy for a lifetime.

When I read SIGCSE’s mission, I hear the mandate of Forsythe,
Perlis, and everyone who has wanted computing to play a role in
learning “at all levels.” This is our organization’s mission, to serve
educators who bring computing to all students.

2 WHEN COMPUTING IS LIKE
MATHEMATICS AND SCIENCE

Computing education will look entirely different when we teach
students at all levels to use computing as a literacy, like reading,
writing, and mathematics. We are currently struggling with the
overwhelming weight of rapidly rising enrollments [1], but we need
to prepare for much greater numbers if we are to meet this mandate.
We need to plan for dramatic growth.

Here is one way to think about the scale of that growth. The
SIGCSE Technical Symposium draws about 1700 attendees. ACM
SIGCSE’s International Computing Education Research Conference
(ICER) has about 150 attendees. The K-12 CS teachers conference
(CSTA) had about 750 attendees last year. Let’s consider the dif-
ference in scale when we are reaching students “at all education
levels.” Mathematics and science today is taught to all students,
and there are conferences dedicated to supporting those teachers.
Here in the US, the National Council of Teachers of Mathematics

https://doi.org/10.1145/3287324.3290953
https://doi.org/10.1145/3287324.3290953
https://sigcse.org/sigcse/about/profile
https://doi.org/10.1145/3287324.3290953


SIGCSE ’19, February 27-March 2, 2019, Minneapolis, MN, USA M. Guzdial

had 1,000 attendees at their research conference, and 9,000 at their
annual meeting. The National Science Teachers Association has 9–
12,000 attendees annually at their national conference. Computing
education may not ever look exactly like science or mathematics,
but the scale to reach everyone is likely comparable.

Computing education will need decades to reach this scale. We
are a young discipline, at 50 years old. In contrast, the American
Society of Engineering Education (ASEE) recently celebrated their
125th year. The National Council of Teachers of Mathematics was
started in 1920, so it soon will be 100 years old. At SIGCSE’s 100th
anniversary, we may still be talking about achieving Forsythe’s
vision of computing as a literacy alongside text and mathematics.

3 CHANGING COMPUTING EDUCATION
Meeting the needs of students “at all education levels” is going to
require changes in what we teach and how we teach. My thinking
about the core principles of computing education has been shaped
by an award-winning paper at ICER 2017 [10]. Katie Rich and her
co-authors defined learning trajectories for K-12 computer science
concepts, but their work is not limited to elementary and secondary
school students. Their goal was to identify the most fundamental
ideas needed to learn programming. Some of those ideas are:

• Precision and completeness are important when writing
instructions in advance.

• Different sets of instructions can produce the same outcome.
• Programs aremade by assembling instructions from a limited
set.

• Some tasks involve repeating actions.
• Programs use conditions to end loops.

For most of us, these are so automatic that we may not even
explicitly teach them. However, students (at all levels) do not know
these ideas and need to be taught them. Even subsets of these
fundamental ideas are important and powerful.

Computing education means different things to different au-
diences [6]. Millions of children use the programming language
Scratch, but most use only a small part of Scratch’s capabilities. For
example, a great many Scratch projects use no repetition at all, or
never use conditionals to end loops [3]. Computing is so powerful
that you can say something useful and interesting without even
including everything on Katie Rich’s list. Literacy does not require
mastery or even use of all the concepts of programming. Fluency
is the goal, and scholarly interests can be served with only a small
piece of computing.

This last summer, I visited the London Science Museum and
saw the device in Figure 1, an printing telegraph machine from
1860. It is an anachronism today, not just because it’s a telegraph
machine. The developers of this device recognized the powerful
idea of generating the Morse code for a letter with a keystroke. But
the only keyboard they had at hand was a piano keyboard. Printing
telegraph machines date from 1840, but the QWERTY keyboard
was only patented in 1868. For almost 30 years, if you wanted a
keyboard, a piano keyboard was the only option.

Computing education is only 50 years old. We may be in the
period before our QWERTY keyboards are invented. Some of what
we are inventing may not last long. It may become an anachronism.

Figure 1: An 1860 Hughes’ Printing Telegraph Machine.

We have to consider that what we see as computing education may
be a great idea with a piano keyboard attached. Things will change.

4 A CALL TO ACTION
We need to make more computing educators, of all kinds, at all
educational levels. Some of these teachers will be in science, math-
ematics, or other non-CS disciplines. Some of them will not know
enough to pass our current CS1’s. That’s okay. Expressive power
does not require everything we currently teach in our CS1.

We have to find our allies. I draw on research and practice from
physics education research, educational psychology, and learning
sciences. Creating a literacy for the 21st century is a large multi-
disciplinary endeavor.

We need to invent, to mutate, to evolve. We should not just
replicate our existing computing education tools, curricula, and
classes. We have to make new kinds of computing education to
meet the goals of computing literacy at all educational levels. Be on
the lookout for the QWERTY keyboards, which may seem awkward
at first (and may even be sub-optimal), but will allow us to expand
our reach and to grow our field to meet the needs of all students
and teachers.

REFERENCES
[1] Tracy Camp, W Richards Adrion, Betsy Bizot, Susan Davidson, Mary Hall, Su-

sanne Hambrusch, Ellen Walker, and Stuart Zweben. 2017. Generation CS: the
growth of computer science. ACM Inroads 8, 2 (2017), 44–50.

[2] Andrea diSessa. 2001. Changing Minds. MIT Press.
[3] Deborah A. Fields, Yasmin B. Kafai, and Michael T. Giang. 2017. Youth Computa-

tional Participation in the Wild: Understanding Experience and Equity in Partici-
pating and Programming in the Online Scratch Community. ACM Trans. Comput.
Educ. 17, 3, Article 15 (Aug. 2017), 22 pages. https://doi.org/10.1145/3123815

[4] George Forsythe. 1961. Engineering students must learn both computing and
mathematics. Journal of Engineering Education 52 (1961), 177–188.

[5] George Forsythe. 1968. What to do till the computer scientist comes. Amer. Math.
Monthly 75 (1968), 454–462.

[6] Mark Guzdial. 2018. What We Care About Now, What We’ll Care About in the
Future. ACM Inroads 9, 4 (Nov. 2018), 63–64. https://doi.org/10.1145/3276304

[7] Alan Kay. 1984. Computer Software. Scientific American 251, 3 (1984), 52–59.
[8] Seymour Papert. 2000. What’s the big idea? Toward a pedagogy of idea power.

IBM systems journal 39, 3.4 (2000), 720–729.
[9] Alan J. Perlis. 1962. The Computer in the University. In Computers and the World

of the Future, Martin Greenberger (Ed.). MIT Press.
[10] Kathryn M. Rich, Carla Strickland, T. Andrew Binkowski, Cheryl Moran, and

Diana Franklin. 2017. K-8 Learning Trajectories Derived from Research Literature:

https://doi.org/10.1145/3123815
https://doi.org/10.1145/3276304


Computing Education as a Foundation for 21st Century Literacy SIGCSE ’19, February 27-March 2, 2019, Minneapolis, MN, USA

Sequence, Repetition, Conditionals. In Proceedings of the 2017 ACM Conference
on International Computing Education Research (ICER ’17). ACM, New York, NY,
USA, 182–190. https://doi.org/10.1145/3105726.3106166

https://doi.org/10.1145/3105726.3106166

	Abstract
	1 Our Mission: ``At all education levels''
	2 When Computing is like Mathematics and Science
	3 Changing Computing Education
	4 A Call to Action
	References

