
Task-Specific Programming Languages for Promoting
Computing Integration: A Precalculus Example

Mark Guzdial
mjguz@umich.edu

University of Michigan, Computer Science & Engineering
Ann Arbor, Michigan

Bahare Naimipour
baharen@umich.edu

University of Michigan, Engineering Education Research
Ann Arbor, Michigan

ABSTRACT
A task-specific programming language (TSPL) is a domain-specific
programming language (in programming languages terms) designed
for a particular user task (in human-computer interaction terms).
Users of task-specific programming are able to use the tool to com-
plete useful tasks, without prior training, in a short enough period
that one can imagine fitting it into a normal class (e.g., around 10
minutes). We are designing a set of task-specific programming lan-
guages for use in social studies and precalculus courses. Our goal
is offer an alternative to more general purpose programming lan-
guages (such as Scratch or Python) for integrating computing into
other disciplines. An example task-specific programming language
for precalculus offers a concrete context: An image filter builder for
learning basic matrix arithmetic (addition and subtraction) and ma-
trix multiplication by a scalar. TSPLs allow us to imagine a research
question which we couldn’t ask previously: How much computing
might students learn if they used a multiple TSPLs in each subject
in each primary and secondary school grade?

CCS CONCEPTS
• Social and professional topics → K-12 education; Adult ed-
ucation;

KEYWORDS
human-computer interfaces, programming languages, precalculus,
participatory design
ACM Reference Format:
Mark Guzdial and Bahare Naimipour. 2019. Task-Specific Programming
Languages for Promoting Computing Integration: A Precalculus Example. In
19th Koli Calling International Conference on Computing Education Research
(Koli Calling ’19), November 21–24, 2019, Koli, Finland. ACM, New York, NY,
USA, 6 pages. https://doi.org/10.1145/3364510.3364532

1 INTRODUCTION
Computing is a transformational technology that influences stu-
dents’ daily lives. Yet, few students learn about this technology.
In the few US states for which we have data, less than 1% of high
school students take any computer science class, despite 30–50%

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Koli Calling ’19, November 21–24, 2019, Koli, Finland
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7715-7/19/11. . . $15.00
https://doi.org/10.1145/3364510.3364532

of high schools in those states offering computer science [25]. The
US national framework for K-12 CS Education [47] recommends
that students should be able to use computing as a true literacy,
for both reading (consuming or using computation) and writing
(creating). How do we engage more students in gaining computa-
tional literacy?We have shown that learning computing in a context
(such as manipulating digital media in Media Computation) can
dramatically improve student engagement and retention within
the discipline [14], in part because students have a greater sense of
relevance and utility [15, 32].

Computing education research has supported the hypothesis
that context can make computer science learning more successful.
We see a historical argument for using other STEM subjects as
that context [19, 26]. The goal for integration is to make a positive
feedback loop. Consider physics, as an example. Learning computer
science in the context of physics can lead to better learning of
physics (e.g., as seen in [13, 38]) and can also make the computer
science more relevant and useful [15].

We are exploring the hypothesis that we can using computing
to provide a context that enhances learning in other subjects. For
example, precalculus is a course that has the potential to be taught
more effectively through the use of computing. The abstractions of
precalculus (e.g., vectors and matrices, trigonometric functions, se-
quences, and series) are powerful and applicable to many domains,
and programming can give students the opportunity to use these
concepts in concrete and motivating contexts, such as media manip-
ulation, 3-D animations, and music. Precalculus skills are critical
for success in STEM education [33]. While precalculus enrollment
is small (about 20% of US 11th graders [1]) compared to subjects like
algebra or biology, precalculus courses in the US enroll more than
double the total enrollment for computer science classes in the US
[16, 25]. Can computing provide a concrete context for precalculus,
the way that Media Computation provided a context for computer
science?

The trick is to make “programming” fit precalculus (or other
subjects), so that there is a synergy and not a competition for
student attention. Programming experiences differ, and those differ-
ences matter. The notation used for programming (the programming
language) plays a critical role in student success in programming
and what they learn from the experience. For example, there are
mistakes that students make in textual languages that they rarely
make in blocks-based languages [43]. Most importantly, there is a
difference in meta-representational power between different pro-
gramming languages. The programming language can be a scaffold
to promote the development of conceptual understanding [4, 5, 44].

https://doi.org/10.1145/3364510.3364532
https://doi.org/10.1145/3364510.3364532

Koli Calling ’19, November 21–24, 2019, Koli, Finland Guzdial & Naimipour

In the end, it’s the classroom teacher who makes computer sci-
ence integration in the classroom work. The “teacher effect” ex-
plains more variance in student learning than any other factor [9].
Their “will and skill” and comfort with the “tool” determine the
success of any technology integration effort [27]. It’s surprising,
then, that the teacher is the stakeholder who typically has no voice in
choosing the programming language used in integration efforts. Tools
are typically provided to teachers pre-defined. The reason in the
past was the complexity of the design space. Designing and imple-
menting programming languages has been a challenging problem.
Teaching teachers and curriculum designers a new programming
language takes time and effort.

Making new languages has been hard, but modern research in
programming languages has reduced the complexity of creating
new languages considerably. We have significant new tools for gen-
erating new domain-specific programming programming languages,
such as the Racket language-oriented programming supports [7, 41],
and Pharo meta-programming tools [6, 28]. Empirical studies show
that domain-specific programming languages are faster to learn
and lead to fewer errors than programming in general purpose
programming languages [20].

The term task-specific programming languages [17] describes a
new set of domain-specific programming languages in which users
can be successful and complete tasks in literally minutes. Task-
specific programming languages are domain-specific languages (in
the programming language design sense) that have been designed
around supporting specific user tasks (in the human-computer
interface design sense). Probably the best example currently in
the research literature is Rousillon is a task-specific programming
language for web scraping, i.e. gathering data from Web pages,
which is a common data science task [2]. Rousillon combines a
programming-by-demonstration interface and a blocks-based pro-
gramming language (Helena). Empirical studies comparing Rousil-
lon with a popular web scraping language (Selenium) find that
users of Selenium finish tasks in 25 minutes that complete novices
can solve in Rousillon in 10 minutes.

1.1 Task-specific programming languages as
microworlds

A powerful way to think about task-specific programming lan-
guages is as amicroworld. Seymour Papert first defined microworlds
[24] as a “subset of reality or a constructed reality whose structure
matches that of a given cognitive mechanism so as to provide an
environment where the latter can operate effectively. The concept
leads to the project of inventing microworlds so structured as to
allow a human learner to exercise particular powerful ideas or in-
tellectual skills.” Andrea diSessa built on this idea in Boxer, and
said in his book Changing Minds [3]: “A microworld is a type of
computational document aimed at embedding important ideas in
a form that students can readily explore. The best microworlds
have an easy-to-understand set of operations that students can use
to engage tasks of value to them, and in doing so, they come to
understanding powerful underlying principles. You might come
to understand ecology, for example, by building your own little
creatures that compete with and are dependent on each other.”

Typically, a microworld is built on top of a general-purpose
language, e.g., Logo for Papert and Boxer for diSessa. Thus, the de-
signer of the microworld could assume familiarity with the syntax
and semantics of the programming language, and perhaps some
general programming concepts like mutable variables and con-
trol structures. The problem here is that Logo and Boxer, like any
general-purpose programming language, take time to develop pro-
ficiency.

A task-specific programming language (TSPL) aims to provide
the same easy-to-understand operations for a microworld, but with
a language designed for a particular purpose. While that limits the
abstractions and concepts that can be used, it makes it possible to
think about different microworlds, i.e., different task-specific pro-
gramming languages, in the same course. Perhaps an elementary or
secondary school student might encounter several different TSPLs
in a single year.

2 EXPLORATION OF TASK-SPECIFIC
PROGRAMMING

We are currently exploring task-specific programming in two do-
mains: social studies (specifically, history) and precalculus.

• For history, we are supporting the work of Tamara Shreiner
who is developing a data literacy curriculum for social stud-
ies. Social studies curricula are increasingly relying on data
visualizations [39], but teachers are uncomfortable with exist-
ing visualization tools [23]. We are testing new task-specific
programming languages with history teachers.

• For precalculus, we are creating prototype task-specific pro-
gramming languages to use as starting places for teacher
commentary.

In both examples, we use a participatory design framing. We ask
teachers in history and precalculus to be informants in a design
process. In neither domain is there an existing practice of using com-
putation. We provide examples that we expect will be insufficient,
in order to prompt our informants to explore what might really
help them. By starting with teachers, we believe that we dramati-
cally increase the odds that the products we produce will be usable
and adopted by teachers. We are explicitly designing task-specific
programming languages as a strategy to integrate computing into
other clases.

2.1 Pilot Study with Social Studies Educators
using a TSPL

In a pilot study we ran in March 2019, we asked social studies edu-
cators to use a task-specific programming language, Vega-Lite [34],
that they had never seen before to build visualizations in less than
20 minutes. Vega-Lite is only a language for information visual-
ization – not for calculation or any other task. But that specificity
makes for ease of use.

Our participants were pre-service social studies teachers taking
a course on data literacy. We offered the teachers the opportunity
to build their own visualizations using two languages with high
domain authenticity [37]. Both languages accessed the same data
source (UN data on life expectancies in different countries and on
different continents) and generated the same initial visualization.

Task-specific programming: Precalculus Koli Calling ’19, November 21–24, 2019, Koli, Finland

Figure 1: Vega-Lite Code and Editor as Used in the Pilot
Study

• Activity 1 used JavaScript with the Google Charts [12], an
industry-standard language and visualization package. The
JavaScript code was 45 lines long and included an SQL query
to access the data, andHTML for formatting the visualization.
We used JSFiddle to provide a browser-based programming
environment where the code and visualization would both
be visible.

• Activity 2 used Vega-Lite [34], a research product that is
being used by data scientists and computational journal-
ists. The comparable Vega-Lite program was 25 lines code
in a JSON format. Vega-Lite provides its own editor with
specialized features, e.g., hovering over a keyword provides
documentation and suggests for alternatives. (See Figure 1.)

We asked the teachers to pair up, and then randomly gave them
one of two activity templates, following the process of Wilkerson
[45]. Each introduced the data set, and then linked to the program in
an in-browser editor. We guided them to make some small changes
to the program (e.g., visualizing a different variable) then gave
them options to explore. We gave the groups 20 minutes to explore,
then led a discussion about their experience with prompts asking
them about their design preferences of a programming language
for social studies education.

All groups were able to generate a visualization, which was itself
an interesting finding. Our teachers had very little prior experience
with programming, with several participant commenting that the
most similar activity they had ever had was changing the back-
ground of their MySpace page in middle school. Most groups who
started with Vega-Lite were also able to try JavaScript, but not all
the groups who started with JavaScript were to also complete the
Vega-Lite visualization. The JavaScript groups complained that the
program was “overwhelming” (repeated several times in both the
discussion and post-survey), that the complexity “distracted from
the data,” and that they could not find good documentation. They
told us that when they were making changes, “the intuitive way
didn’t work. We hunted all over to figure it out. But we couldn’t.”
Working in pairs was a critical part of their social support, and
several teachers told us how they made more bold changes to their
visualization because they had a partner to help them back out if
they failed.

When we asked teachers what tool they preferred if they were
going to make their own visualizations, Vega-Lite was the favorite,

but mostly because of the environment. Teachers preferred the
documentation, and how the editor helped with syntax (with the
hover-over tips). They also liked how the new visualization came
up immediately when they made an edit, without hitting the Run
button. The environment reduced the complexity of the task. They
also suggested applications of the visualization languages in both
History and Economics.

Several teachers compared the use of the programming language
to Excel. They preferred the use of code for generating visualizations
because of the ease of exploration. One teacher said that she’d never
figured out “all the mouse clicks. . . I haven’t watched the YouTube
videos” to build sophisticated visualizations in Excel. “Here, it’s a
single word. It can be learned.”

This pilot study gives us confidence that participatory design ses-
sions can give us important feedback on task-specific programming.
Teachers were able to complete the activities, evaluate the options
in terms of the variables of interest, and give us new insights that
we had not had previously. We are planning a second participatory
design session for Fall 2019 where we will compare Vega-Lite to
CODAP, a data analysis and visualization platform explicitly de-
signed for high school students [8]. We are also designing a new
visualization tool explicitly for Shreiner’s curriculum, informed by
our teacher-informants.

2.2 Prototype: Building Image Filters as a
Precalculus Activity

In history, we have collaborators and teachers to work with. In
precalculus, we have not yet found collaborators, so we build pro-
totype task-specific programming environments as prompts, foils,
and provocations – an artifact to respond to. We are using our initial
prototypes in participatory design sessions with precalculus teach-
ers, as in our session with social studies educators using Vega-Lite.
Evidence on the use of prototypes in participatory design suggests
that too “finished” a product squashes criticism and discussion [42].
Few design informants will question a beautiful design. We are
aiming for tools that provoke teachers to tell us what they really
need and want.

Our goal is to develop a tool that teachers would actually adopt.
By inviting precalculus teachers to help design the language, we
dramatically increase the odds that the tool might be adopted by
real teachers, according to implementation science ([18]) and from
research on moving research-based interventions into practice [10,
40].

Our first prototype allows students to define image filters (Fig-
ure 2) through matrix manipulations in the precalculus curriculum.
The front page of the application shows an initial picture (lower
left hand corner), a list of matrix operations (upper left corner), and
a transformed picture (upper right hand corner). In some versions,
we have developed a pixel-by-pixel inspector to compare the two
pictures (lower right corner). In text and using standard mathemat-
ical matrix notation, we describe how the picture is composed of a
red, green, and blue channel matrix.

On subsequent cards or pages, students describe matrix manipu-
lations in English, via radio buttons and pull-down menus (Figure 3
and Figure 4). Students might choose to change the matrix of colors
in a picture (top of Figure 3) by adding or subtracting matrices

Koli Calling ’19, November 21–24, 2019, Koli, Finland Guzdial & Naimipour

Figure 2: Two examples of a complete filter which is a program composed of multiple matrix manipulations.

which are selected via pull-down menus. The available matrices
are red, green, blue, or all-255, a matrix of the same size where all
cells contain 255 (the maximum value of a channel). Students might
alternatively choose (via a radio button) to multiply a matrix by
a scalar (e.g., to reduce or increase red in a picture) as in Figure 4.
Once a student defines a matrix manipulation, the manipulation is
explained to the student using the mathematics language and nota-
tion as it might appear in a precalculus textbook. In this way, the
student’s understanding of the matrix manipulations is rehearsed
and connected to the classroom context.

The collection of operations, in sequence, is then a program
which implements an image filter which can be applied to an ar-
bitrary picture (Figure 2). Our goal is to make more concrete and
relevant the precalculus matrix manipulations.

2.3 Response from precalculus teachers
We have had a few one-on-one participatory design sessions with
precalculus teachers. We begin the session by asking the teacher
what students find difficult about precalculus. What is hard to teach,
and what is hard for students to learn? Then we ask about the
purpose of matrix manipulations and wave functions (the context
for our second prototype) in precalculus, to prime them to think
about the concepts on which we are focusing. Then we show them
the prototypes. The key questions are whether the tools are usable
and meet a need – and if not (which is what we expect), what might
be useful.

In general, most mathematics teachers are not excited about this
prototype. While the image filters are “cool,” the matrix manipula-
tions we are practicing are the “easy” ones. Few students struggle
with matrix addition and subtraction or with scalar multiplication.
Teachers all agreed that this was simple and usable enough to fit
into a single class session. Teachers appreciate our attention to
disciplinary literacy [11, 22], in that we use the communications
standards of mathematics, e.g., the matrix notations, operations,
and language as they appear in precalculus textbooks, not as they
appear in most programming languages. They have made several
suggestions about what students find challenging in precalculus.
With the teachers, we made sketches of new task-specific program-
ming languages for precalculus, in order to get their in-the-moment

feedback on our next generation of prototypes. Low-fidelity proto-
types, like sketches, are common in HCI design [21, 46]).

3 CONCLUSION: IMAGINE AWORLDWITH
MANY TASK-SPECIFIC PROGRAMMING
LANGUAGES

TSPLs raise a tantalizing possibility for integrating computing into
other disciplines, one that we could not think about with only our
existing general purpose programming languages. If a TSPL can
be learned and used within a single class session, then we might
imagine several of them being used in a single course. We might
have several in each course We might imagine a student studying
algebrawith Boostrap [35, 36], using Vega-Lite for data visualization
in history class, and later using matrices to define image filters, as
with our prototype.

How much computing might a student learn if they used multiple
TSPLs before entering their first course specifically on computer sci-
ence? Might they generalize some ideas about computing across
different languages, and enter their CS course with a strong intu-
itive sense of “program,” “programming,” and “computation”? We
are not arguing for transfer. Rather, we suggest that students might
learn the first concepts in learning trajectories [29–31], where the
focus is on the causal and repeatable nature of programs. Students
might learn what a program is.

We are just starting to explore the research questions about
task-specific programming. TSPLs may be even easier to use than
block-based programming languages, allowing us to explore ques-
tions about how usable we can make programming. Our current
TSPLs completely avoid concepts such as abstraction, decomposi-
tion, and programmer-defined data. That will unlikely to be true
for all tasks, but it raises a great set of research questions. How do
we characterize the learning tasks with which one can engage at a
given level of computational complexity? How far can we go with
using programming across the curriculum before we deal with the
hard stuff? Rather than assume that we need to teach a Turing-
complete language for integrating across the curriculum, we can
instead explore just how much computing we really need to help
students to learn with and about computing.

Task-specific programming: Precalculus Koli Calling ’19, November 21–24, 2019, Koli, Finland

Figure 3: Describing manipulation a channel as an arithmetic over other channel matrices.

Figure 4: Describing manipulating a channel of a picture as matrix manipulation of a scalar.

REFERENCES
[1] J. Brown, B. Dalton, J. Laird, and N. Ifill. 2018. Paths Through Mathematics and

Science: Patterns and Relationships in High School Coursetaking. National Center
for Educational Statistics.

[2] Sarah E. Chasins, Maria Mueller, and Rastislav Bodik. 2018. Rousillon: Scraping
Distributed Hierarchical Web Data. In Proceedings of the 31st Annual ACM Sym-
posium on User Interface Software and Technology (UIST ’18). ACM, New York,
NY, USA, 963–975. https://doi.org/10.1145/3242587.3242661

[3] Andrea diSessa. 2001. Changing Minds. MIT Press.
[4] Andrea A diSessa. 2004. Metarepresentation: Native competence and targets for

instruction. Cognition and instruction 22, 3 (2004), 293–331.
[5] Andrea ADisessa and Bruce L Sherin. 2000. Meta-representation: An introduction.

The Journal of Mathematical Behavior (2000).
[6] Stéphane Ducasse and Tudor Gîrba. 2006. Using Smalltalk as a reflective exe-

cutable meta-language. In International Conference on Model Driven Engineering

Languages and Systems. Springer, 604–618.
[7] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi,

Eli Barzilay, Jay McCarthy, and Sam Tobin-Hochstadt. 2018. A Programmable
Programming Language. Commun. ACM 61, 3 (Feb. 2018), 62–71. https://doi.
org/10.1145/3127323

[8] W. Finzer and D. Damelin. 2016. Design perspective on the Common Online Data
Analysis Platform (CODAP). In Paper presented at American Educational Research
Association (AERA) conference. Washington DC.

[9] Barry J Fishman and Elizabeth A Davis. 2006. Teacher learning research and the
learning sciences. In The Cambridge Handbook of the Learning Sciences, R. Keith
Sawyer (Ed.). Cambridge University Press.

[10] J.E. Froyd, Charles Henderson, R.S. Cole, D. Friedrichsen, R. Khatri, and C. Stan-
ford. 2017. From Dissemination to Propagation: A New Paradigm for Education
Developers. Change: The Magazine of Higher Learning 49, 4 (2017), 35–42.

[11] Victoria Gillis. 2014. Disciplinary literacy: Adapt not adopt. Journal of Adolescent
& Adult Literacy 57, 8 (2014), 614–623.

https://doi.org/10.1145/3242587.3242661
https://doi.org/10.1145/3127323
https://doi.org/10.1145/3127323

Koli Calling ’19, November 21–24, 2019, Koli, Finland Guzdial & Naimipour

[12] Google. 2018. Google Charts: Interactive charts for browsers and mobile devices.
https://developers.google.com/chart/.

[13] Mark Guzdial. 1995. Software-realized scaffolding to facilitate programming for
science learning. Interactive Learning Environments 4, 1 (1995), 1–44.

[14] Mark Guzdial. 2010. Does contextualized computing education help? ACM
Inroads 1, 4 (2010), 4–6.

[15] Mark Guzdial. 2013. Exploring Hypotheses About Media Computation. In Pro-
ceedings of the Ninth Annual International ACM Conference on International
Computing Education Research (ICER ’13). ACM, New York, NY, USA, 19–26.
https://doi.org/10.1145/2493394.2493397

[16] Mark Guzdial. 2019. Computing Education As a Foundation for 21st Century
Literacy. In Proceedings of the 50th ACM Technical Symposium on Computer
Science Education (SIGCSE ’19). ACM, New York, NY, USA, 502–503. https:
//doi.org/10.1145/3287324.3290953

[17] M. Guzdial, W.M. McCracken, and A. Elliott. 1997. Task specific programming
languages as a first programming language. In Proc. 27th Annual Conference
Frontiers in Education Conference ’Teaching and Learning in an Era of Change’,
Vol. 3. 1359–1360 vol.3. https://doi.org/10.1109/FIE.1997.632675

[18] Barbara Kelly and Daniel F Perkins. 2012. Handbook of implementation science
for psychology in education. Cambridge University Press.

[19] Donald E. Knuth. 1972. George Forsythe and the Development of Computer
Science. Commun. ACM 15, 8 (Aug. 1972), 721–726. https://doi.org/10.1145/
361532.361538

[20] Tomaz Kosar, Nuno Oliveira, MarjanMernik, Maria João Pereira, Matej Crepinsek,
Daniela Cruz, and Pedro Henriques. 2010. Comparing general-purpose and
domain-specific languages: An empirical study. ComSIS–Computer Science an
Information Systems Journal (2010), 247–264.

[21] Youn-Kyung Lim, Erik Stolterman, and Josh Tenenberg. 2008. The anatomy of
prototypes: Prototypes as filters, prototypes as manifestations of design ideas.
ACM Transactions on Computer-Human Interaction (TOCHI) 15, 2 (2008), 7.

[22] Elizabeth Birr Moje. 2015. Doing and teaching disciplinary literacy with adoles-
cent learners: A social and cultural enterprise. Harvard Educational Review 85, 2
(2015), 254–278.

[23] Bahare Naimipour, Mark Guzdial, and Tamara Shreiner. 2019. Helping Social
Studies Teachers to Design Learning Experiences Around Data: Participatory
Design for New Teacher-Centric Programming Languages. In Proceedings of the
2019 ACM Conference on International Computing Education Research (ICER ’19).
ACM, New York, NY, USA, 313–313. https://doi.org/10.1145/3291279.3341211

[24] Seymour Papert. 1980. Mindstorms: Children, computers, and powerful ideas. Basic
Books.

[25] Miranda Parker and Mark Guzdial. 2019. A statewide quantitative analysis of
computer science: What predicts CS in High School?. In Proceedings of 2019
International Computing Education Research Conference (SUBMITTED).

[26] Alan J. Perlis. 1962. The Computer in the University. In Comptuers and the World
of the Future, Martin Greenberger (Ed.). MIT Press.

[27] Dominik Petko. 2012. Teachers’ pedagogical beliefs and their use of digital media
in classrooms: Sharpening the focus of the ‘will, skill, tool’ model and integrating
teachers’ constructivist orientations. Computers & Education 58, 4 (2012), 1351 –
1359. https://doi.org/10.1016/j.compedu.2011.12.013

[28] Lukas Renggli, Stéphane Ducasse, Tudor Gîrba, and Oscar Nierstrasz. 2010. Prac-
tical dynamic grammars for dynamic languages. In 4th Workshop on Dynamic
Languages and Applications (DYLA 2010).

[29] Kathryn M. Rich, Carla Strickland, T. Andrew Binkowski, and Diana Franklin.
2019. A K-8 Debugging Learning Trajectory Derived from Research Litera-
ture. In Proceedings of the 50th ACM Technical Symposium on Computer Sci-
ence Education (SIGCSE ’19). ACM, New York, NY, USA, 745–751. https:
//doi.org/10.1145/3287324.3287396

[30] Kathryn M. Rich, Carla Strickland, T. Andrew Binkowski, Cheryl Moran, and
Diana Franklin. 2017. K-8 Learning Trajectories Derived from Research Literature:
Sequence, Repetition, Conditionals. In Proceedings of the 2017 ACM Conference
on International Computing Education Research (ICER ’17). ACM, New York, NY,
USA, 182–190. https://doi.org/10.1145/3105726.3106166

[31] Kathryn M. Rich, Carla Strickland, T. Andrew Binkowski, Cheryl Moran, and
Diana Franklin. 2018. K–8 Learning Trajectories Derived from Research Liter-
ature: Sequence, Repetition, Conditionals. ACM Inroads 9, 1 (Jan. 2018), 46–55.
https://doi.org/10.1145/3183508

[32] Lauren Rich, Heather Perry, and Mark Guzdial. 2004. A CS1 Course Designed
to Address Interests of Women. In Proceedings of the ACM SIGCSE Conference.
190–194.

[33] Philip Sadler and Gerhard Sonnert. 2018. The path to college calculus: The impact
of high school mathematics coursework. Journal for Research in Mathematics
Education 49, 3 (2018), 292–329.

[34] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey Heer.
2017. Vega-Lite: A Grammar of Interactive Graphics. IEEE Transactions on
Visualization and Computer Graphics 23, 1 (Jan. 2017), 341–350. https://doi.org/
10.1109/TVCG.2016.2599030

[35] Emmanuel Schanzer, Kathi Fisler, and Shriram Krishnamurthi. 2018. Assessing
Bootstrap: Algebra students on scaffolded and unscaffolded word problems. In

Proceedings of the 2018 ACM SIGCSE Technical Symposium.
[36] Emmanuel Schanzer, Kathi Fisler, Shriram Krishnamurthi, and Matthias Felleisen.

2015. Transferring skills at solving word problems from computing to alge-
bra through Bootstrap. In Proceedings of the 46th ACM Technical symposium on
computer science education. ACM, 616–621.

[37] David Williamson Shaffer and Mitchel Resnick. 1999. “Thick” Authenticity: New
Media and Authentic Learning. Journal of interactive learning research 10, 2
(1999), 195.

[38] Bruce L. Sherin. 2001. A comparison of programming languages and algebraic
notation as expressive langauges for physics. International Journal of Computers
for Mathematical Learning 6 (2001), 1–61.

[39] Tamara L Shreiner. 2018. Data literacy for social studies: Examining the role of
data visualizations in K–12 textbooks. Theory & Research in Social Education 46,
2 (2018), 194–231.

[40] C. Stanford, R. Cole, J.E. Froyd, Charles Henderson, D. Friedrichsen, and R. Khatri.
2017. Analysis of Propagation Plans in NSF-Funded Education Development
Projects. Journal of Science Education and Technology 26, 4 (2017), 418–437.

[41] Sam Tobin-Hochstadt, Vincent St-Amour, Ryan Culpepper, Matthew Flatt, and
Matthias Felleisen. 2011. Languages as libraries. In ACM SIGPLAN Notices, Vol. 46.
ACM, 132–141.

[42] Vimal Viswanathan and Julie Linsey. 2011. Design fixation in physical modeling:
an investigation on the role of sunk cost. In ASME 2011 International Design
Engineering Technical Conferences and Computers and Information in Engineering
Conference. American Society of Mechanical Engineers, 119–130.

[43] David Weintrop and Uri Wilensky. 2015. Using Commutative Assessments to
Compare Conceptual Understanding in Blocks-based and Text-based Programs..
In ICER, Vol. 15. 101–110.

[44] Uri Wilensky and Seymour Papert. 2010. Restructurations: Reformulations of
Knowledge Disciplines through new representational forms. In Proceedings of the
Constructionism 2010 Conference, J. Clayson and I. Kalas (Eds.). Paris, France, 97.

[45] Michelle Hoda Wilkerson. 2017. Teachers, students, and after-school profession-
als as designers of digital tools for learning. In Participatory Design for Learning:
Perspectives from Research and Practice, Betsy DiSalvo, Jason Yip, Elizabeth Bon-
signore, and Carl DiSalvo (Eds.). Routledge.

[46] Tracee Vetting Wolf, Jennifer A Rode, Jeremy Sussman, and Wendy A Kellogg.
2006. Dispelling design as the black art of CHI. In Proceedings of the SIGCHI
conference on Human Factors in computing systems. ACM, 521–530.

[47] Pat Yongpradit. 2016. K-12 CS Framework. https://k12cs.org/. https://k12cs.org/

https://developers.google.com/chart/
https://doi.org/10.1145/2493394.2493397
https://doi.org/10.1145/3287324.3290953
https://doi.org/10.1145/3287324.3290953
https://doi.org/10.1109/FIE.1997.632675
https://doi.org/10.1145/361532.361538
https://doi.org/10.1145/361532.361538
https://doi.org/10.1145/3291279.3341211
https://doi.org/10.1016/j.compedu.2011.12.013
https://doi.org/10.1145/3287324.3287396
https://doi.org/10.1145/3287324.3287396
https://doi.org/10.1145/3105726.3106166
https://doi.org/10.1145/3183508
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://k12cs.org/
https://k12cs.org/

	Abstract
	1 Introduction
	1.1 Task-specific programming languages as microworlds

	2 Exploration of Task-Specific Programming
	2.1 Pilot Study with Social Studies Educators using a TSPL
	2.2 Prototype: Building Image Filters as a Precalculus Activity
	2.3 Response from precalculus teachers

	3 Conclusion: Imagine a world with many task-specific programming languages
	References

