
Answering Questions with Internet Data:

Computational Tools for Social Studies Analysis

Richard Catrambone and Mark Guzdial

School of Psychology and School of Interactive Computing

Georgia Institute of Technology

July 18, 2012

i

Copyright held by Richard Catrambone and Mark Guzdial, 2012.

Contents

Contents ii

List of Figures iv

1 Answering Questions: What is Science? 3

1.1 What is Science? . 3

1.2 Methods of Science . 6

1.3 The Experimental Method . 8

2 Getting Data from the Internet for Computational Analysis 19

2.1 Starting with Python and SciPy 19

2.2 Where can I find data? . 21

2.3 Reading CSV Files . 24

3 Plotting 35

3.1 Your Basic Plot: Slicing Up The World’s Population 35

3.2 Options on the Plot . 39

3.3 The Plot Thickens: Combining Plots to Determine US and

UK Growth Rates . 41

4 Descriptive Statistics 47

4.1 Average or mean: Petroleum Tax Prices 47

4.2 Understanding Measures of Variability 49

4.3 Computing Standard Deviation 50

4.4 Viewing Histogram . 52

5 Correlation 55

5.1 Correlation: A Measure of Association 55

5.2 Computing correlation: Is it the company, or war in the Mid-

dle East? . 56

5.3 But do we believe it? . 62

6 Text Analysis 67

6.1 Visualizing textual differences: Bacon v. Shakespeare 67

6.2 Counting Text Patterns . 76

ii

CONTENTS iii

7 Inferential Statistics and Hypothesis Testing 81

7.1 Inferential Statistics . 81

7.2 Hypothesis Testing . 90

7.3 Computing a Context: Elections and Unemployment Rates . 94

7.4 Computing a t test . 95

7.5 ANOVA: Analysis of Variance 100

7.6 Computing ANOVA: Analysis of Variance 102

7.7 Calculation of Significance of a Correlation 107

8 Multiple Linear Regression and Advanced Experimental

Designs 109

8.1 The Multiple Regression Equation 110

8.2 Computing a multiple regression 114

8.3 Final Note on Alternative Experimental Designs 116

A A Brief Introduction to Key Parts of Python 119

A.1 Variables and Assignment . 119

A.2 Lists . 120

A.3 Dictionaries . 121

A.4 Blocks . 121

A.5 Functions . 122

A.6 FOR loops . 122

A.7 Conditionals . 124

B Reading from Live Data 125

C Program Listings 131

C.1 CVSfile . 131

C.2 fancierplot.py – a run-able plot 132

C.3 US-UK Population Plot for years 1999–2000 132

C.4 Exploring British and American Petroleum Company Stock

Prices . 134

C.5 Text Analysis: Shakespeare or Bacon? 138

C.6 Hypothesis Testing: Does the unemployment rate make the

President? . 139

Bibliography 143

Index 145

List of Figures

2.1 IDLE running on Windows . 20

2.2 IDLE running on MacOS X . 21

2.3 Running the first plot . 22

2.4 Visualization of price of wine in England from 1259–1400 . . . 23

2.5 Grabbing the Crown Revenue as text 24

2.6 Viewing the Crown Revenue as text 25

2.7 Plot of Crown Revenue in England by Year 26

2.8 Front page of The Guardian’s data journalism page 26

2.9 Excel data from The Guardian on perception of crime in the UK 27

2.10 Example CSV data from World Economics Dataset 27

2.11 Text CSV file from UK Perception of Crime data 33

2.12 Plot of perception of overall crime by income level 34

3.1 Our first plot . 36

3.2 Our first graph–countries’ populations, unsorted 37

3.3 Sorted countries’ populations . 38

3.4 A graph generated with X and Y values 40

3.5 Making a fancier plot . 42

3.6 US and UK Populations, as two subplots 46

4.1 BP and Exxon-Mobil stock prices in 1990, as histograms 54

5.1 Example scatterplot . 56

5.2 Data for scatterplot . 57

5.3 Uniform distribution . 64

5.4 Normal distribution . 65

6.1 Francis Bacon’s essays with white background, ’the’ highlighted 69

6.2 Francis Bacon’s essays with black background, ’the’ highlighted 71

6.3 Comparing ’the’ patterns in Bacon’s Essays and Shakespeare’s

Macbeth . 72

6.4 Visualization of all capitalized letters in the Essays of Francis

Bacon . 76

iv

List of Figures v

7.1 Probability of each outcome for flipping 10 coins (computed by

Wolfram-Alpha) . 83

7.2 Probabilities for flipping 10 coins (computed by Wolfram-Alpha) 83

7.3 Graph of 1000 trials of flipping 10 coins 85

7.4 t table from Wikipedia . 93

8.1 Scatterplot of high school and college GPA’s 109

8.2 Scatterplot of SAT score and GPA 110

Preface

The Internet makes enormous amounts of data available to everyone, world-

wide. What can you do with it all? How do you figure it out, come to un-

derstand those data, answer questions about it? The short answer is: Not

by hand. There are too much data, and it’s complicated.

The longer answer is: This book. We developed this book as the course

notes for a class Computational Freakonomics which we first taught to-

gether at the Georgia Tech Study Abroad program at Oxford University in

the Summer 2006.The book Freakonomics: A rogue economist explores the

hidden side of everything[Levitt and Dubner, 2005] (http://www.freakonomics.
com/) by Steven D. Levitt and Stephen J. Dubner is a NY Times Bestseller

that uses economic methods for studying social questions. In the six weeks

of this class, we:

• Read and discussed each of the six chapters

• Learned social science methods used in each chapter (led by psychol-

ogist Richard Catrambone)

• Learned computer science tools for implementing those methods on

data downloaded from the Internet (led by computer scientist Mark

Guzdial)

In particular, these course notes provide the details on the computa-

tional side of the course so that students have examples of syntax and

semantics to work from. All students who take this course are expected to

have had some introductory programming.

Why Computational Freakonomics? Because it’s the computational

side that makes it interesting. Using computation, we can access real and

authentic data–like the data used in Freakonomics. Using computation,

we can work with many more data points than we could manipulate by

hand–just like in Freakonomics.

We use computation in two ways in this book:

• The obvious way is to process data, to perform mathematical pro-

cesses mechanically so that we can analyze large, Internet-based

datasets more easily than we could by hand.

1

2 List of Figures

• The less obvious way is to provide insight into where the statisti-

cal methods are coming from. There are typically binomial distri-

bution functions built into any statistical software package. But in

this book, we create a function to flip 10 coins, then another to call

the flip function 1000 times, and then graph the resulting histogram.

We create a normal distribution concretely, using small pieces that

we already understand. In this way, we use computation to help us

understand the statistical and mathematical concepts.

Other Ways of Using This Book

For teachers not lucky enough to teach a course named “Computational

Freakonomics,” there are other ways of using this book.

The book can make for an interesting supplement to an introductory

computing course. Rich and interesting application domains can improve

student motivation and retention[Guzdial, 2010]. The activities and con-

tent in this book provide (a) a rich set of examples for applying introductory

Python computing knowledge and (b) an interesting context for motivating

learning.

There is considerable interest in computational science. This book cre-

ates a bridge between introductory computing and use of computation in

science. Only using introductory computing knowledge, this book explores

how to explore datasets to answer questions empirically.

1 Answering Questions: What is

Science?

Humans always have questions. Why is the sky blue? Where did life come

from? What makes species different? Is this candidate better than that

candidate? Why did that company go under? It’s part of what makes hu-

mans special and different from other primates. We construct stories to ex-

plain our world[Mateas and Sengers, 2003]. Those stories are our claims

about the world.

Science was developed as a way to answer questions. More specifically,

science is a way to develop some assurance of the quality of the claims, the

answers to those questions. How do you know if you got it right?

1.1 What is Science?

A key aspect to science is doubt. Given an answer to a question, the first

reaction of a scientist is, “Is that right?”

One way in which we doubt is to question the common wisdom. Com-

mon wisdom might hold that the world is flat, or that all our behavior is

learned (e.g., if that’s true, why does a newborn have behavior?). Scien-

tists seek different models of the world that might explore more or explain

better than the common wisdom.

Scientists also doubt themselves and each other. In science we use

doubt to question our research and ask whether factors other than the

ones that we originally considered might have influenced our results. By

doing this we come to see that science is a combination of interaction with

the world and logic.

Science is more than just watching. Answers don’t just fall out of ob-

servations. It is rare that data actually speak for themselves.

Science as a way of knowing

Science is not the only way to look at the world or, specifically, human be-

havior. Humans have always had questions about themselves. Art, litera-

ture, religion are all potentially fruitful ways through which we can gain

new ideas about human behavior and experience. However, in contrast to

3

4 CHAPTER 1. ANSWERING QUESTIONS: WHAT IS SCIENCE?

these other ways of knowing, science offers not only a great source of new

ideas but also a powerful method for evaluating the ideas we have about

reality.

That is to say, science helps us to know if our ideas about the world are

wrong. Scientific methods cannot prove an idea is right, just that, so far, it

is not wrong.

Alternative ways of making claims

Science isn’t the only way that humans make claims about the world and

answer questions. Natural science was used in Persia around the year

1000, and Galileo was a prominent scientist in the early 1600’s. Humans

existed, answering questions with claims, for thousands of years before

science.

Tenacity

Tenacity refers to the acceptance of a belief based on the idea that “we

have always known it to be this way.” People at various times in human

history have said “Women make bad soldiers” or “you can’t teach an old

dog new tricks.” These statements are presented over and over again and

accepted as true, but they are rarely examined and evaluated.

This is an all-too-often method of propagating claims, stories about how

the world works. For example, television advertising and political cam-

paigns use this technique when they present a single phrase or slogan re-

peatedly. Put it to a tune in a jingle, and people will walk around repeating

it for you.

Authority

A second way we might accept a new idea is when an authority figure tells

us it is so. Acceptance based on authority is simple because we only have

to repeat and live by what we are told. It’s easy.

Authority is useful in situations where we need a quick answer and

don’t have the time or opportunity to develop an answer another way.

Television news shows will often bring on an expert authority to provide

insight on a situation. Referring to an authority, especially in areas about

which we know nothing, can be useful and beneficial.

Although authority brings with it a stability that allows for consistency,

it has drawbacks. The major problem of accepting authority as having sole

access to truth is that authority can be incorrect and thus send people in

the wrong directions. For example, as long as everyone accepted the view

that the earth was the center of the universe, no one though to study the

orbit of the earth.

1.1. WHAT IS SCIENCE? 5

Reason

Reason and logic are the basic methods of philosophy. Reason is “thinking

things through,” connecting ideas, and making inferences based on the

available information.

Reason often takes the form of a logical syllogism.

Men can’t count. Fred is a man. Therefore, Fred can’t count.

We all use reason everyday as we try to solve problems and understand

relationships. As useful as it is to be reasonable, however, reason alone will

not always produce the appropriate answer. Why? One potential problem

in the reasoned approach is that our original assumptions must be correct.

You might make reasonable inferences based on available data – but then

discover that the original data were flawed.

Common Sense

Common sense offers an improvement over acceptance based on tenacity,

authority, or reason because it appeals to direct experience. Common sense

is based on our own past experiences and our perceptions of the world. We

can confirm and refute a claim based on what we know or can experience.

Common sense can be flawed. Our experiences and perceptions of the

world might be quite limited. Just as there are optical illusions, there are

cognitive illusions that lead us to be certain but wrong in our answers. The

world is not flat, despite the common sense appeal of the claim, supported

by thousands over centuries.

Furthermore, research in social psychology has shown that we make

different psychological attributions depending on whether we observe or

participate in a given situation. If we are asked to explain why someone

made a bad grade, we tend to make internal attributions such as “She’s

not a good student” or “He is not smart.” However, if we received a bad

grade on a test, we would tend to make external attributions such as “I

had three tests that day” or “The test was unfair.”

Whereas common sense might help us deal with the routine aspects of

daily life, it might also form a wall and prevent us from understanding new

areas. This can be a problem, particularly when we enter areas outside our

everyday experience.

• For example, people considered Albert Einstein’s suggestions that

time was relative and could be different for different people to be

contrary to common sense.

• Likewise, it was considered contrary to common sense when Freud

suggested that we did not always know or our motivations or when

Skinner suggested that the concept of free will was not applicable to

the behavior of most individuals.

6 CHAPTER 1. ANSWERING QUESTIONS: WHAT IS SCIENCE?

• You might assume that a stable process, such as a regular heart-

beat, is the healthier one. However, research using nonlinear anal-

ysis (chaos theory) has suggested, for example, that the patterns of

a healthy heart are erratic and those of a pathological heart can be

regular.

1.2 Methods of Science

In science a claim or an idea is evaluated or corrected through

1. Dispassionately observing by means of our bodily senses, and

2. Using reason to compare various theoretical conceptualizations based

on experience.

The first method is a direct extension of the common sense approach we

just talked about. Unlike a given person’s common sense however, science

is open to anyone’s direct experience. Presumably, any person with normal

sensory capacities could verify any observation made by a scientist.

The second method is a direct application of the principles of logic. In

this case however, logic is combined with experience to rule out any as-

sumptions that do not accurately reflect the scientific experiment. This

blend of direct sensory experience and reason gives science a self-corrective

nature that is not found in other ways of accepting ideas about the world.

One important technique is replication in which a procedure is repeated

under similar conditions. For example, if an experiment is found to give

similar results in different labs and even in different parts of the world,

this lends support to the conclusions.

Scientific conclusions are never taken as final but are always open to

reinterpretation as new evidence becomes available. If an experiment can’t

be replicated somewhere, then that’s an important observation to add to

our understanding. New ways of measurement might lead us to replicate

experiments, but observe them with our new measurement device to go

beyond the capabilities of our raw senses.

In the rest of this section, we do a quick overview of key methods of

science.

Naturalistic Observation

If little is known about a particular phenomenon, it is often useful simply

to watch the phenomenon occur naturally and get a general idea of what

is involved in the process. Initially this is accomplished by observing and

describing what occurs.

This scientific technique is called naturalistic observation. A classic

example of this approach is Charles Darwin’s observation of animals in

the Galapagos Islands which formed the basic of his theory of evolution.

Naturalistic observation occurs in the setting of the phenomenon because

1.2. METHODS OF SCIENCE 7

the phenomenon might behave differently in a laboratory or in another

location. An animal might be moved from its original home to a zoo, but

behave differently because some key aspect of the original ecology wasn’t

present in the zoo.

Naturalistic observation is often systematic. A scientist might observe

a behavior that is rare and unusual, or only occurs at certain times a day.

A single observation can constitute an existence proof – something occurs

or exists that might not have been known previously. But to describe some

phenomenon well, it should be observed regularly, or at least, more than

once.

A key aspect to naturalistic observation is that the observer attempts

not to disturb the phenomenon. If the scientist changes the phenomenon

in some way, it’s no longer naturalistic. If the scientist tries to change the

phenomenon in some way, the method is more experimental.

Correlational Approach

At other times we might want to understand certain aspects of a complex

system with the goal of better describing how one aspect of the system

might be associated with another aspect. For example, we might want to

know whether people who have friends have fewer health-related problems

than people who do not or whether eating certain foods is associated with

not having cancer.

How would you go about answering such questions? One way is to ex-

amine and note the relationship between a person’s health and the num-

ber of friends that person has. But how are you to understand these data?

How do you interpret the results?

Consider an important historical example of a similar question. For

years, people wondered about the relationship between smoking tobacco

and having lung cancer. Tobacco companies insisted that there was no

“smoking gun,” i.e., no conclusive evidence that smoking tobacco led to

lung cancer.

The first step is to ask whether the two events go together. In this ex-

ample, researchers sought to determine whether, when one event occurred

(a person smoked tobacco), the other event also occurred (the person had

cancer). Such a scientific approach is called by various names, including a

correlational approach.

Just finding that a relationship exists between two events does not al-

low us to determine exactly what that relationship is, much less to deter-

mine that one event actually caused the other event to happen. That is,

perhaps some other variable controls the other two variables. For exam-

ple, being a member of some particular cultural group might lead you to

drink too much beer, smoke too much, and eat too much fat, and it is the

combination of those things that leads to cancer.

8 CHAPTER 1. ANSWERING QUESTIONS: WHAT IS SCIENCE?

Experimental Approach

As our knowledge about an area grows, we might get to the point of for-

mulating specific predictions. A prediction is a strong form of a claim –

that you understand something so well, that knowing the current state of

the world, you can predict what will happen next. In this case, our ques-

tions are structured in the form “If I do this, then I expect this other thing

will happen.” For example, we might predict that more people are likely

to help a stranger if they perceive the environment to be safe than if they

think it is dangerous. This approach in which we interact directly with the

phenomenon we are studying is the experimental method.

Let’s consider the relationship between the scientist and the research

participant in each method.

• With the naturalistic method, the scientist is passive and observes

carefully the phenomenon of interest. In the case of psychology or

other science of human beings, the phenomenon might be the activ-

ity of the research participant. In this method the scientist does not

try to change the environment of the research participant. The re-

search participant simply goes about normal activity and the scien-

tist watches, preferably without influencing the participant’s behav-

ior. In this way, the scientist can make a detailed description of some

aspect of the research participant’s natural behavior.

• In contrast, when using the experimental method, the scientist is

more active and the research participant’s activities are restricted.

The scientist intentionally structures the situation so that he or she

can study the effect of a particular factor on the research participant’s

behavior.

• In-between these two approaches are correlational methods which

might range from simple observation and correlation of factors to a

more active manipulation of one of the factors although without the

same degree of manipulation of control that is typical of the experi-

mental method.

Consider many of the “”scientific” claims that you hear on television

or read in magazines and look for alternative explanations to the claims

being made. Why would eating those foods result in weight loss? Could

it be that that car’s phenomenal gas mileage only occurs under certain

conditions? Thinking scientifically is not something you do only when you

design experiments; rather, it is a way of approaching all information.

1.3 The Experimental Method

To give you a more accurate understanding of how scientists learn from

interacting with the environment, let’s consider the following line of ficti-

tious research:

1.3. THE EXPERIMENTAL METHOD 9

Assume that the makers of a brand of children’s cereal, Roasty-Toasties,

claim that their breakfast cereal helps children to grow. In their enthusi-

asm to demonstrate the claim and add “scientific evidence” to their televi-

sion commercials, the company designed the following experiment.

• A group of children were given daily a bowl of Roasty-Toasties with

cream, bananas, and sugar

• After several months, each child was weighed.

• It was found that they gained an average of 8 pounds each.

The company concluded that the weight increase was due to the nourishing

breakfast, and consequently the company recommended this breakfast for

all children.

What are some problems here? One problem was that the children also

ate lunch and dinner. Consequently, the weight gain might be due to the

food eaten at these other meals.

So, how do we run a new experiment to fix this?

• This time we use two groups of children.We will make sure that the

average age and average weight are the same for each group.

• For breakfast, one group received the recommended cereal with cream,

bananas, and sugar; toe other was given scrambled eggs.

• The two groups ate approximately the same foods for lunch and din-

ner.

• After several months each child was weighted.

Let’s say that it is found that there was an average gain of 5 lbs in the

group that received the recommended breakfast cereal and an average

gain of only 1 pound in the group that was given eggs for breakfast.

What’s wrong here? Might the weight gain be caused by the cream,

sugar, and bananas and not by the cereal? Third experiment!

• In a new study one group received the cereal with cream, sugar,

and bananas for breakfast, but now another group received equal

amounts of cream, sugar, and bananas (but no cereal) each morning.

• Once again lunch and dinner were approximately the same for both

groups and the children’s weights at the onset of the study were

about the same.

After several months they weighted each child and found that children in

both groups gained an average of 5 lbs. The group that received cereal did

not gain more weight than the other group.

We call the group that is receiving the treatment that one predicts will

cause some change the experimental group in an experiment. The group

10 CHAPTER 1. ANSWERING QUESTIONS: WHAT IS SCIENCE?

that gets roughly the ordinary or the traditional, but comparable to the

treatment, is called the control group.

In any experiment, we have to define our terms, and in particular, we

have to develop operational definitions of our terms. The makers of Roasty-

Toasties wanted to claim that their cereal led children “to grow.” In the

above experiments, we have operationally defined “to grow” as “to gain

weight.” We could imagine other definitions, such as “to gain height” or

even “to gain muscle mass.”

There are many different ways to organize an experiment to test a

claim. In the rest of this section, we explain several of these.

Quasi-Experimental Design

In the Roasty-Toastie experiment we had a fairly high degree of control

over the participants and what they ate. However, one cannot always con-

struct an experimental situation with a great deal of control. For exam-

ple, when researchers study the psychological reaction to natural disas-

ters such as earthquakes or planes flying into buildings, they can’t control

when it happens, or who is in the experimental or control groups1. Edu-

cation research in real classrooms cannot always control who is in what

class.

In addition, we usually want to know if the results we find in a carefully

controlled lab experiment will generalize beyond the lab to real life situa-

tions. One approach for increasing the generality and relevance of our

research is to move the research from the lab to the setting in which the

phenomenon that we are studying occurs naturally. For example, in the

lab you could not study the psychological effect of experiencing some un-

planned event such as the destruction of the World Trade Center in NYC.

Neither can you study in the lab the impact of some large-scale interven-

tion policy such as the Head Start Program2. If we were studying the effect

of anxiety on final examination performance, a possible natural setting

would be the actual final examination session of a college course. If our

theoretical issue deals with interpersonal relationships between strangers

in a large city, then the natural setting is the streets of that city.

Although moving research into the field does not preclude rigorous ex-

perimental designs, it is often the case that as we move outside the lab and

its highly controlled environment, we find ourselves able to control fewer

of the factors that influence the behavior or our participants and thus less

able to rule out alternative hypotheses. We consider the lab a closed sys-

tem and the outside world an open system in which the participants are

influenced by a number of factors over which experimenters have little

control.

1And it would be unethical to try!
2http://en.wikipedia.org/wiki/Head_Start_Program

1.3. THE EXPERIMENTAL METHOD 11

It is possible to perform useful research in the field even with low-

ered control. For example, one applied study asked whether rear-end

collisions could be reduced by adding a warning device to the backs of

cars[Voevodsky, 1974]3. The independent variable was an amber light that

indicated the rate of deceleration and was affixed to the rear ends of cabs.

A group of cabs that did not have the device served as a control group. At

the end of the experimental period, the group of cabs with the device had

a rear-end collision rate lower than that of the control group. Thus, one

might claim that the warning device reduced rear-end collisions.

We told you that scientists consider any claims and wonder first if that’s

right. What are the alternative explanations? What types of questions

might you ask in evaluating this study? One alternative explanation is a

Hawthorne effect, where the fact that the experimental group is observed

might change the group’s behavior. Might the drivers in the experimen-

tal group have seen themselves as part of an experiment and been more

careful in their driving? The author of the research suggested that if there

were such an effect, then we would expect to see an overall reduction in

accident rates for the cabs. That is, one might expect that both the control

and experimental groups would have had lower accident rates during the

experimental period than during similar periods in previous years. The

rate for front-end accidents, in which the taxi runs into another car was

the same for both the experimental taxis and the control taxis. Also, there

was no reduction in front-end accidents. The only reduction in accidents

was for those causes by other cars running into the cabs from behind, and

that reduction occurred only in the experimental group.Thus, it could be

assumed that driving a cab with the device did not influence how carefully

the driver of the cab drove, but that it did influence the driving of those

who were following the cabs.

Suppose you wanted to examine how people’s speech patterns change

under situations of stress. A team of researchers used the Internet to ex-

plore this issue. They wondered if people would feel a greater sense of

connection to their fellow humans during times of stress. Now it’s one

thing to predict a “sense of connection,” and another to measure it. How

would you operationalize this “connection”?

The researchers looked at sites that allow individuals to share online

diaries (e.g., blogs). They focused on the period before and after 9/11.

Specifically, these researchers downloaded the diaries of 1084 U.S. individ-

uals for a 4-month period including the 2 months before and the 2 months

following 9/11. With the average individual updating their diary every

2 days, this resulted in around 72,000 entries overall. The researchers

found that in the short term following 9/11, individuals used more plural

pronouns such as “we” in their diaries and fewer uses of “I.”

Whenever we attempt to study real-life events or to increase the exter-

nal validity of our inquiries by studying phenomena in real-life situations,

3http://www.apa.org/research/action/brake.aspx

12 CHAPTER 1. ANSWERING QUESTIONS: WHAT IS SCIENCE?

we run a strong risk of decreasing the internal validity of our experiments.

In most cases the internal validity of our research is decreased as we move

from the lab to more natural settings. Yet the overall applicability and

relevance of our research might be increased greatly and this might en-

hance the value of the work. Thus, we are always faced with a tradeoff

between (1) precision and direct control over the experimental design and

(2) generalizability and relevance to real-life situations.

There are various types of quasi-experimental designs, and here we

want to talk about a few of them

Time series design

A time series design is a within-subjects design. In a within-subjects de-

sign, the performance of a single group of participants is measured both

before and after the experimental treatment. Instead of comparing an

experimental group to a control group (a between-subjects design), we com-

pare participants to themselves.

For example, suppose you have a background in relaxation training and

you are talking to the gymnastics coach at the college at which you teach.

The coach tells you her team practices well but falls apart at meets; when

she hears about your background she asks you to try relaxation therapy

with her team for the week prior to the next meet. So, you now decide to

compare the team’s performance at the next meet to their performance at

the prior meet. During the next meet the gymnasts’ total score is better

than in the previous meet.

Before concluding that the exercises caused these changes however, we

should keep in mind that we have used only a single pretest-posttest mea-

sure (performance in the two meets). We have no idea how much fluctua-

tion would normally occur between any two meets. Perhaps the sharp in-

crease in the score is independent of the relaxation exercises. Not knowing

the normal amount of fluctuation between any two measures is a serious

weakness of this type of simple time series design.

Interrupted time series design

One way to fix the design is to use multiple pretest and posttest scores

in order to give us a better estimate of the normal fluctuations from test

to test. Once we know the amount of normal fluctuations we can better

interpret the impact of the phenomenon that we are studying.

We might try to fix the gymnast experiment by doing a time series de-

sign where we incorporate the scores for several meets before and after

the introduction of the relaxation exercises. If the scores rose for several

meets after the treatment, it would be reasonable to assume that the ap-

parent change in performance reflected a real shift. But if there was lots of

variance among the scores, we might decide that the sharp increase in per-

formance after introducing the relaxation procedures was simply chance

1.3. THE EXPERIMENTAL METHOD 13

fluctuation that would have occurred anyway. If the scores rise reliably

after the treatment, but then drop, the results would be consistent with

the idea that the gymnast’s performance was improved only temporarily.

Although the interrupted time series design is a big improvement over the

plain time series design, it still leaves us far short of a clear statement of

how one variable influenced the other.

However, any number of other events might be contributing to this usu-

ally abrupt shift in team performance. Perhaps the increased care and

attention given to each athlete was responsible, not the exercises them-

selves. Maybe some campus event that occurred about that time caused

the shift. In an ideal situation we could control for many of these alter-

native interpretations by including a control group of some sort. However,

because all members of the sample under study have been exposed to the

relaxation procedure, it is impossible to select a control group. This is an

important limitation of the interrupted time series design and it must be

kept in mind when we are interpreting the outcome.

As it turns out, it is sometimes possible to create a control group.

Multiple Time Series Design

A multiple time series design attempts to rule out some alternative inter-

pretations by including a control group that does not receive the exper-

imental treatment. Because it uses a second group of participants, the

multiple time series design is not a within-subjects design like the inter-

rupted time series design. Rather, it is a between-subjects design.

In our study of the effectiveness of relaxation procedures on the perfor-

mance of gymnasts, it might be helpful to use a control group of gymnasts

from a neighboring college. We could use their total weekly team scores as

control data. To the extent that these participants are similar to our orig-

inal participants on any relevant individual difference variable and are

living under similar social and environmental influences, we can assume

that the two groups are equal for factors other than the experience of the

relaxation training itself.

The difference between the scores of the two teams in the two meets

following the special training might give us confidence with the idea that

the relaxation procedures had a definite but transient influence on perfor-

mance. Before accepting this conclusion though, keep in mind that we

might have overlooked some social or environmental influence that af-

fected our experimental group and not our control group. For example,

some local campus event influenced team spirit and consequently their

performance. This later interpretation is always a real possibility when

using multiple time series design to study complex phenomena in their

natural settings.

On September 12, 1983, New York state put into effect a bill that re-

quired a 5 cent deposit on bottles and cans in hopes this would decrease

littering. Researchers tested this by counting the number of bottles and

14 CHAPTER 1. ANSWERING QUESTIONS: WHAT IS SCIENCE?

cans found along a highway exit in New York and in a similar site in New

Jersey which did not have a returnable law. The researchers made seven

observations two weeks apart before the enactment of the law and seven

times after the enactment of the law. These researchers reported a de-

crease from 260 items of liter in NY before the enactment of the law to

145 after. The litter in NJ showed virtually no change; 221 to 214. The

researchers made their multiple time series design stronger by measuring

nonreturnable littler at both sites which showed no changes and by doing

a follow-up at both sites one year later that showed a continuing decrease

in litter for the NY site but not for the NJ site.

Now, think like a scientist. Are there alternative explanations? For

example, how might the homeless and where they are distributed play a

role here?

Nonequivalent Before-After Design

This type of design is used when we want to make comparisons between

two groups that we strongly suspect might differ in important ways even

before the experiment begins. Because the two groups in this design are

initially different, there is an unusually high risk of ultimately confus-

ing the initial differences with the effects of any treatment, which we re-

fer to as the independent variable. In any experimental design, you are

trying to figure out if the things you can measure and care about (depen-

dent variables) are influenced by the independent variable (the one that

you can change). Consequently, in this design we avoid simply comparing

both groups on a single dependent measure. Instead, each group is given

a pretest and a posttest and we compare the amount of change for each

group. By comparing the change in scores rather than a set of single de-

pendent measures, we attempt to control more directly for the fact that we

are dealing with groups that are different to start with.

This design is widely used in educational research in which we often

are interested in comparing different schools, classes, or programs. As

an example, suppose you are teaching two sections of an intro philosophy

course, one at 8am and one at 3pm. Further, suppose you have two dif-

ferent teaching techniques you want to try out: (a) one in which you just

lecture and (b) the other in which you try to get a lot of interaction with

your students. You decide to do the discussion version with the 8am class

and the lecture with the 3pm class.

What are the dangers to validity here? What are the alternative expla-

nations from the predicted relationship between your independent and de-

pendent variables? One is non-random assignment. Students who choose

an 8 am class are different in attitude from students who choose a 3 pm

class. That difference in attitude might interact with engaging in interac-

tion – and whether that interaction leads to learning. So, we would need

an attitude questionnaire both before and after the treatment, to try to

measure that difference.

1.3. THE EXPERIMENTAL METHOD 15

Retrospective Design

In most of the experiments we have talked about so far, the experimenter

planned a study that would take place in the future. In a retrospective

design researchers attempt to examine relationships based on events that

have already occurred. The most common use of retrospective designs is

in studies of educational techniques, studies of disease, and studies of psy-

chopathology.

For example, in one study researchers looked at the number of listed ac-

tivities of students in a high school yearbook to determine whether there

were differential rates of high school activity between people identified

later in life as schizophrenic and non-schizophrenic. The researchers’ as-

sumption was that more activities would be indicative of someone who

might become schizophrenic. Because the study took place after the fact,

these researchers has to determine a control group after the fact.

What control group might we use? The researchers would need a group

that was like the schizophrenic group as much as possible. For their control

group, they chose the students who pictures appeared next to those of the

schizophrenic students in the yearbooks.

In one sense you are working backward in the retrospective procedure.

You know the outcome (schizophrenia or not) and want to determine the

antecedents (things that came before) of this outcome. Thus, one of the

important questions is whether you selected a good measure (for example,

high school activities) on which to compare the two groups. Of course, this

question is unanswerable and for this reason the retrospective design is

only a weak form of inference.

Still, testing alternatives this way can lead to a greater understanding

of the phenomenon under study. Many retrospective designs are essen-

tially a type of correlational study, so let’s turn to this type of design now.

Correlational Design

A typical approach in a correlational design it to identify a situation in

which the variables of interest occur, and then passively observe their oc-

currence. For example if someone were interested in the relationship be-

tween how often a baby was held and how often it cried, a first step might

be to collect data about these variables for a number of babies. Once data

were collected for the two variables–amount of time crying and amount of

holding–the correlational statistic could be calculated and this would be

one means of defining the degree of relationship between those variables.

We will talk about calculating correlations in a couple chapters. Re-

search studies developed with the goal of describing a relationship between

two variables but not attempting to show how one variable influences the

other are called correlational studies. Correlational procedures are an im-

portant initial step in the process of determining a relationship between

variables.

16 CHAPTER 1. ANSWERING QUESTIONS: WHAT IS SCIENCE?

For example, Bremner and Narayan[Bremmer and Narayan, 1998] were

interested in the manner in which stress influences brain development and

memory. The particular area of interest in the brain was the hippocampus

which is related to memory processes. As an initial step, they reviewed

the literature and found that veterans with combat-related posttraumatic

stress disorder (PTSD) showed a significant correlation between levels

of combat exposure and hippocampal volume as shown by brain-imaging

techniques and lower recall scores on a memory task. Although you might

want to conclude that combat stress reduces the size of the hippocampus,

these researchers point out that it could be the opposite situation. Peo-

ple who from birth have smaller hippocampus might experience stressful

situation as more traumatic and be at greater risk for PTSD.

Consider a bizarre relationship: the correlation between stock market

prices and the length of women’s skirts. It has been found that when

the length of skirts rises, the stock market tends to do better; when skirt

length increases, the stock market tends to do worse. This example demon-

strates the importance of considering the possibility of unknown factors

influencing both variables under study that might produce the relation-

ship. Can you think of a 3rd variable that might influence the other two

variables?

As you consider these for yourself, the meaning of the often-quoted

statement “correlation does not imply causality” becomes clearer. With

correlational designs no variables are manipulated, and thus there are no

independent and dependent variables. However, some researchers have

attempted to portray a correlational design as if it were of an experimen-

tal nature. To illustrate, assume that a researcher was interested in the

question of how depression and study habits are related. Some people

might try to answer this question by dividing participants at the median

into high and low-depression groups based on some measure of depres-

sion such as the Beck Depression Inventory4 and then treating depression

as an independent variable and the amount of study time as the depen-

dent variable. This could lead one to interpret the results, which should

be interpreted in correlational terms, as if one variable (depression) had

caused the changes in the other variable (study habits). But remember,

no variable was manipulated; it is therefore not possible to infer that de-

pression affected the amount of study time. In fact, one might just as well

draw the opposite inference: The amount of time spent studying influences

how depressed a person feels. Tere is also another alternative, called the

third-variable problem in which a third, unmeasured variable influences

the other two. For example, in the skirt-length and stock market price

issue, maybe there’s a sense of optimism or security in the society that is

that actual causal variable.

4http://en.wikipedia.org/wiki/Beck_Depression_Invent ory

1.3. THE EXPERIMENTAL METHOD 17

Naturalistic Observations

In many ways the method of naturalistic observation derives form what

might be our most primitive way of learning about the world: simply pay-

ing attention and observing what happens.

One elegant example of this approach sought to determine how men

and women carry objects, which was part of a larger theoretical question

about gender differences. These researchers simply observed male and

female college students as they carried books around campus. In this study

it was found that 92% of the women carried books in front of their bodies,

with one or both arms wrapped around the books, whereas 95% of the men

carried the books at their sides using one hand.

In addition to offering a method to study a focused question such as gen-

der and posture, the method of naturalistic observation can also be useful

in extremely complex situations such as studying animals in the wild or

the early stages of investigating a phenomenon. If little is known about

the phenomenon, we can benefit tremendously from a detailed description

of it.

So, there are two key functions of naturalistic observations:

• First, it allows us to amass descriptive knowledge about a phenomenon.

• Second, as we become more familiar with it, we might gain insight

about general patterns or lawful relationships in the phenomenon

which we can then test using an experimental method in which we

manipulate a variable and look at the effects on another variable.

There are concerns with using naturalistic observations.

Data Collection: If participants realize they are being observed, they

might behave differently. What a participant’s behavior is influenced by

the mere presence of the observer, it is called reactive behavior. Reactive

behaviors tells us what people are like when they know they are being

observed; they tell us potentially very little about behavior under normal

circumstances.

To keep observations free from reactive behaviors, researchers try to be

unobtrusive. A good book on this topic is Unobtrusive Measures: Nonreac-

tive research in the social sciences[Webb et al., 2000].

Researchers at the Museum of Science and Industry in Chicago wanted

to know how popular was the new hatching-check exhibit, and when it

became popular. They noticed that they had to replace the tiles in front

of the exhibit every 6 weeks. The erosion of the tiles was a measure of

the exhibit’s popularity and might be more sensitive than asking people

what they liked best and less obtrusive than watching them or installing

a camera.

Another data collection challenge is that it is difficult to observe ac-

curately because we are influenced by selective perception, that is, the

observations of untrained observers are markedly influenced by what they

18 CHAPTER 1. ANSWERING QUESTIONS: WHAT IS SCIENCE?

expect to see. The extent to which our observations are restricted by our se-

lective perceptions has a great impact on the accuracy of our observations.

Fortunately, it is possible to teach observers to observe more accurately.

Participation of Observer with the Observed: Every observer must

face two issues.

• The first is whether to conceal one’s identify as a researcher.

• The second is whether to participate in the social process one is ob-

serving.

The risk in both cases is, again, affecting the behavior of the observed.

We are going to re-visit these concerns when we read the gang study dis-

cussed in Chapter 3 of Freakonomics.

2 Getting Data from the Internet

for Computational Analysis

Before we can do any analysis of data, we need to go get it, and get it in a

form that we can do some computation on it. In this chapter, we get started

with that: Installing Python, and describing how to use it to get data from

the Internet.

2.1 Starting with Python and SciPy

Python is a great programming language for exploring data and analyz-

ing it. We are going to be using a particular branch of Python, SciPy1 or

Scientific Python. SciPy includes NumPy for numeric processing and Mat-

plotlib2 for graphical visualization. This combination allows us to work

with Freakonomics-sized data and Freakonomics-style analyses.

This book is not meant to teach you Python. We will assume that:

• Either you had a course using Python3, and thus met Python already,

or

• You know enough about programming from some other course4 that

you can pick up Python from these coursenotes and using other doc-

umentation linked to http://www.python.org . Matplotlib, in par-

ticular, was designed to make it easy to pick up if you know Matlab.

We do provide the first appendix as a refresher on Python.

We are going to use the wonderful implementation of Python available

from Enthought (http://enthought.com/products/epd.php). Enthought

Python is a “batteries-included” implementation of Python, with all the

SciPy goodies already implemented, with a powerful development envi-

ronment included called IDLE.

Enthought Python works pretty similar on both Windows and MacOS X

implementations. Simply start IDLE on your platform, and you should see

1http://www.scipy.org
2http://matplotlib.sourceforge.net/
3CS1315 or CS1301 at Georgia Tech
4CS1371 at Georgia Tech

19

20

CHAPTER 2. GETTING DATA FROM THE INTERNET FOR

COMPUTATIONAL ANALYSIS

a similar interface with similar capabilities on either Windows (Figure 2.1)

or MacOS X (Figure 2.2).

Figure 2.1: IDLE running on Windows

Testing the Installation

Here’s how you test your installation. Start up IDLE. Load in Matplotlib

by typing from pylab import ∗ and hitting return. Then do plot ([1,2,3,4])

(or some other numbers. IDLE will respond with a line showing you that

a Matplotlib graph had been created. You type show(), and you will see the

plot (Figure 2.3).

The interaction might look something like the below:

Python 2.3.5 - Enthought Edition 0.9.6 (#62, May 11 2005, 20: 02:58)
[MSC v.1200 32 bit (Intel)] on win32 Type "help", "copyright ",
"credits" or "license" for more information.
>>> from pylab import *
>>> plot([1,2.5,3.5,6])

2.2. WHERE CAN I FIND DATA? 21

Figure 2.2: IDLE running on MacOS X

[<matplotlib.lines.Line2D instance at 0x01B26418>]
>>> show()

2.2 Where can I find data?

Today, the Internet is rich with great sources of data. One reason for this

is the rise of Data-Driven Journalism5. Journalists seek out data to inform

their stories, and then make those data available for others.

In the appendix are three longish Python examples. Aibek Musaev

wrote for us three examples of how to read various “live” data sets from

Python. These are data sets that are continuously updated, like radiation

levels from the Fukushima prefecture every 10 minutes. The code is a bit

more complicated than the rest in this chapter, so we move them off into

an appendix. These data sets are available in different formats. Aibek

provided us with three examples for reading three different kinds of data

sets. Thanks, Aibek!

Sources of data

Here are two sources of data for this book, for answering interesting ques-

tions on the Internet.

5http://en.wikipedia.org/wiki/Data_driven_journalism

22

CHAPTER 2. GETTING DATA FROM THE INTERNET FOR

COMPUTATIONAL ANALYSIS

Figure 2.3: Running the first plot

Many Eyes

IBM has created the website Many Eyes6 as a way to engage a wide com-

munity in analyzing and visualizing interest data sets. Anyone can upload

data, or create a visualization on data that others have uploaded. Com-

menters can point out interesting aspects of any visualization, generating

inferences for others to explore through the available visualization tools.

For example, Figure 2.4 is a visualization of the price of wine in pence in

England from 1259–1400. Looks like a huge spike in 1307, then a depres-

sion in price after 1377. Is that a significant change in price? We’ll talk

later about how we might know.

We can download the data sets from Many Eyes to process in Python.

6http://www-958.ibm.com/software/data/cognos/manyeye s/

2.2. WHERE CAN I FIND DATA? 23

Figure 2.4: Visualization of price of wine in England from 1259–1400

By clicking the View as Text button (in Figure 2.5), you can see the data

(Figure 2.6) which can then be selected, copied, and pasted into a text file.

From there, we can write a small Python program to read in and pro-

cess the data, then plot the result (Figure 2.7).

import string , sys , pylab

Make 3 empty l i s t s f or the 3 columns

years = []

crownrev = []

revtot = []

Open the f i l e , and read in a l l l in es

al lLines = open (” . . / data / crown−revenue−england . txt ” , ’ r ’) . readl ines ()

Skip 0 , because those are the headers

for index in range (1 , len (a l lLines)) :

Get the index−th row/l ine

l i ne = al lLines [index]

Spl i t the row into a l i s t of columns

co l s = str ing . s p l i t (l i ne)

Add the p i eces into the l i s t s

years . append (co l s [0])

We ’ l l use eval to convert s t r ings to numbers

crownrev . append (eval (co l s [1]))

revtot . append (eval (co l s [2]))

Now, p lo t years by crownrev

pylab . p lot (years , crownrev)

pylab . show ()

24

CHAPTER 2. GETTING DATA FROM THE INTERNET FOR

COMPUTATIONAL ANALYSIS

Figure 2.5: Grabbing the Crown Revenue as text

Guardian’s Data Journalism

The Guardian makes their data available for others to download and ana-

lyze7 (Figure 2.8).

There is a lot of data available there. You can download it as Excel

files, which is great for viewing, but harder for manipulation (Figure 2.9).

Sometimes, it’s easier to copy-paste the data from The Guardian into a

new spreadsheet, then save it out as a CSV or text file. We’ll use some of

the data from Figure 2.9 later this chapter.

2.3 Reading CSV Files

It’s pretty easy to read and write files in Python. Python uses backslash

notation for invisible characters, e.g., ’ n’ is a newline character.

Python 2.3.5 - Enthought Edition 0.9.6 (#62, May 11 2005, 20: 02:58)
[MSC v.1200 32 bit (Intel)] on win32 Type "help", "copyright ",

7http://www.guardian.co.uk/data

2.3. READING CSV FILES 25

Figure 2.6: Viewing the Crown Revenue as text

"credits" or "license" for more information.
>>> #Writing a file
>>> file = open("SampleFile.txt","wt")
>>> file.write("Here is some text!\n")
>>> #Reading a File
>>> file.close()
>>> newfile = open("SampleFile.txt","rt")
>>> newfile.read()
’Here is some text!\n’
>>> newfile.close()

Typically, Mark keeps all his data files and Python files in one direc-

tory. In some forms of Python, he uses cd (change directory) into the given

directory, and then starts python. Then, all his files can be accessed without

using long paths to special places on the disk. Modern Python implemen-

tations (like EPD) are more sophisticated about finding files.

We’re mostly going to deal with CSV (Comma Separated Values) files

in this class. Many of the data sources that one might find on the Inter-

net can produce files of this sort. In this example, we generated a data

set from the World Economic Dataset at http://pwt.econ.upenn.edu/

26

CHAPTER 2. GETTING DATA FROM THE INTERNET FOR

COMPUTATIONAL ANALYSIS

Figure 2.7: Plot of Crown Revenue in England by Year

Figure 2.8: Front page of The Guardian’s data journalism page

php_site/pwt_index.php (Figure 2.10). We copied the text, opened

Notepad , pasted the text into a file, then saved it as somefile.csv .

There are tools built in to Python for handling CSV data. You simply

type import csv and the package is available. You might be wondering

“import csv? Didn’t we do from pylab import ∗ a few minutes ago? What’s

the difference?”. When you use import csv, you then have to access all

the parts of the module csv with a dot operator, e.g., csv.reader. When you

do from pylab import ∗, you can access the parts of module pylab just as

if they were global (accessible from anywhere, any object) functions, e.g.,

plot ([1,2,3]) . Sounds like from...import is the best way of doing it, right?

That depends on whether you’re fixing the code yet. If you have to fix the

code, you can update the module in Python by executing reload(csv). If you

use from...import, you can’t. When you’re developing your own code, it’s

2.3. READING CSV FILES 27

Figure 2.9: Excel data from The Guardian on perception of crime in the

UK

Figure 2.10: Example CSV data from World Economics Dataset

often better to import so that you can later reload.

Here is the start of a dataset we created of 168 nations’ population in

the year 2000.

"country","country isocode","year","POP" "Angola","AG O","2000","na"
"Albania","ALB","2000","3411" "Argentina","ARG","200 0","37032"
"Armenia","ARM","2000","3803" "Antigua","ATG","2000" ,"68"
"Australia","AUS","2000","19157" "Austria","AUT","20 00","8110.2"

28

CHAPTER 2. GETTING DATA FROM THE INTERNET FOR

COMPUTATIONAL ANALYSIS

"Azerbaijan","AZE","2000","8049"

The CSV package knows about how to read individual lines of a CSV

file. You open the file, but use that file to create a reader that knows about

how to figure out the lines in the file and return the individual pieces in a

way that’s easily indexable.

>>> headerFile = csv.reader(open("pops-2000.csv","rb"))
>>> headerFile.next()
[’country’, ’country isocode’, ’year’, ’POP’]
>>> headerFile.next()
[’Angola’, ’AGO’, ’2000’, ’na’]
>>> headerFile.next()
[’Albania’, ’ALB’, ’2000’, ’3411’]
>>> line = headerFile.next()
>>> line[0]
’Argentina’
>>> line[1]
’ARG’
>>> line[2]
’2000’
>>> float(line[2]) #converts it to be a number
2000.0

But even that’s not the easiest way to deal with a CSV file. If you

assume that the top line is a list of fieldnames (as is common in well-

formed CSV files), then you can use a special csv.DictReader to return lines

that know what’s inside them.

>>> headerFile = csv.reader(open("pops-2000.csv","rb"))
>>> headers = headerFile.next()
>>> headers
[’country’, ’country isocode’, ’year’, ’POP’]
>>> data = csv.DictReader(open("pops-2000.csv","rb"),f ieldnames=headers)
>>> data.next()
{’country’: ’country’, ’country isocode’: ’country isoco de’, ’POP’:
’POP’, ’year ’: ’year’}
>>> data.next()
{’country’: ’Angola’, ’country isocode’: ’AGO’, ’POP’: ’n a’, ’year’:
’2000’}
>>> nextline=data.next()
>>> nextline[’country’]
’Albania’
>>> nextline[’POP’]
’3411’
>>> nextline[’year’]

2.3. READING CSV FILES 29

’2000’
>>> nextline.get(’country’)
’Albania’

What next() is returning is a dictionary. You can access the dictionary

by fieldname, as you can see. You can treat the filenames as indices with

square brackets, or using the method get.

Using CSVfile

That’s actually enough for you to be able to start downloading and playing

with data, but I’ve tried to make it a little easier. I’ve created a package

called csvfile (Program Program Example #1) that knows about headers

and such and provides arrays of data for analysis.

>>> import csvfile
>>> popdata = csvfile.CSVfile("pops-2000.csv")
>>> popdata.headers
[’country’, ’country isocode’, ’year’, ’POP’]
>>> popdata = csvfile.CSVfile("pops-2000.csv")
>>> usa = popdata.getRows(’country isocode’,’USA’)
>>> usa
[{’country’: ’United States’, ’country isocode’: ’USA’, ’ POP’:
’275423’, ’year’:

’2000’}]
>>> usa[0] #just returns the dictionary
{’country’: ’United States’, ’country isocode’: ’USA’, ’P OP’:
’275423’, ’year’: ’2000’}
>>> usa[0]["POP"]
’275423’

How do we re-execute lines like popdata = csvfile.CSVfile(”pops−2000.csv”)

so easily? Just press up-arrow. That will allow you to see all the lines

you’ve entered. Hit return on the one you want to execute again. You can

also use left and right arrow keys to edit the line before re-executing it.

Where getRows returns all rows (dictionaries) where the field has that

value, there is also a method to return a column of all values of a given

field.

>>> popdata = csvfile.CSVfile("pops-2000.csv")
>>> pops = popdata.getColumn("POP")
>>> pops[0]
-1
>>> pops[1]
3411.0
>>> pops[2]
37032.0

30

CHAPTER 2. GETTING DATA FROM THE INTERNET FOR

COMPUTATIONAL ANALYSIS

getColumn always returns a bunch of numbers. If there is something

that isn’t a number in the list (say, the field name “POP”), then a default

value of -1 is provided. getColumn is a great tool for getting lists of numbers

that we might want to plot–see next chapter.

After doing any of these analyses, the CSVfile needs to be rewound. To

do the analysis, the file gets read. If you want to do a new search through

the data file, you need to rewind to the beginning of the file to do a new

search8.

>>> popdata = csvfile.CSVfile("pops-2000.csv")
>>> usaPop = popdata.getRows(’country isocode,’USA’)[0] ["POP"]

File "<stdin>", line 1
usaPop = popdata.getRows(’country isocode,’USA’)[0]["P OP"]

ˆ
SyntaxError: invalid syntax
>>> #Forgot the ending quote!
>>> usaPop = popdata.getRows(’country isocode’,’USA’)[0]["POP"]
>>> usaPop
’275423’
>>> csvfile.number(usaPop) #We can use the number converte r here
275423.0
>>> popdata.rewind() #Here’s the rewind
>>> ausPop = popdata.getRows(’country’,’Australia’)[0] ["POP"]
>>> ausPop
’19157’

How CSVfile Works

CSVfile will get you started, but at some point, you will have to deal with

more complex analyses and data manipulation than it will allow. At that

point, you will be writing code like CSVfile. It’s worthwhile understanding

how it works.

CSVfile is written as a class from which you create objects that un-

derstand various methods and have various fields or instance variables

associated iwth them.

CSVfile −− a front end to CVS

import csv

def number(input , defaul t=−1):

try :

return f l o a t (input)

except :

return defaul t

8You’re probably realizing from these examples that # is the commenting character in
Python. Everything from the # on is ignored on the same line.

2.3. READING CSV FILES 31

The file starts out importing csv since that’s necessary for CSVfile to

work. A general function is defined number that knows how to convert

strings to numbers. Since some values are “na” (not applicable or not

available) and others are field names, a default value is created that gets

returned whenever a non-number is found.

class CSVfile :

def i n i t (s e l f , filename) :

s e l f . filename = filename

s e l f . rewind () ;

def rewind (s e l f) :

s e l f . fp = open (s e l f . filename , ” rb ”)

headerReader = csv . reader (s e l f . fp)

s e l f . headers = headerReader . next ()

s e l f . dataReader = csv . DictReader (s e l f . fp ,

fieldnames= s e l f . headers)

The next part of CSVfile is definition of the class CSVfile and the initial-

ization method, init . This is the method that gets called when we first

create a CSVfile, like popdata = csvfile.CSVfile(”pops−2000.csv”). You’ll notice

that all methods in Python start out with the argument of self. That’s

how Python methods get access to the instance of the class that is being

accessed with this method call. Even if your method takes no arguments

when you use it, you must still include self as an argument when you de-

fine it.

The init method simply saves the input filename as a field (instance

variable) within the instance, self .filename. Then the rewind method is

called. In that method, we open the file (as “rb” which means that it’s

readable and binary–the csv module likes to be able to get at the binary

representation, not just the text), read out the field/header names, then

create the DictReader. Notice that we save the headers in an instance vari-

able so that we can access them later.

def next (s e l f) :

return s e l f . dataReader . next ()

This method allows us to get at individual dictionary rows, if we want,

through the next method.

def getRows (s e l f , fieldname , value) :

ret = []

for row in s e l f . dataReader :

i f row [fieldname]== value :

ret . append (row)

return ret

Here’s how the getRows method works. It takes a fieldname (like ‘ country’)

and a value (like ’Australia’) as inputs (and self, as always), then returns

a list of all the dictionaries where that fieldname matches that value. In

the simple population dataset we’re using now, that’s simple, but one could

32

CHAPTER 2. GETTING DATA FROM THE INTERNET FOR

COMPUTATIONAL ANALYSIS

also (for example) have more data and pull out all rows for a given year

with this method. We create the list that we will be returning with the line

ret = [] . The square brackets ([]) define a list, and here, an empty list (one

with nothing in it to start).

The for loop in Python is very powerful. You can iterate through all the

rows in the dataset with for row in self.dataReader–the variable row will

take on the value of each row in the data. You can use a for loop to iterate

through just about anything in Python. Here’s an example that iterates

through a list to print each value in the list.

>>> for letter in [’a’,’b’,’c’]:
... print letter
...
a
b
c

In getRows, we iterate through the list, and everywhere that the row

dictionary has the fieldname hold the specified value, we append that row to

our return value list, ret. After iterating through everything, we return

the return list.

How might you use this elsewhere? You can use for loops to iterate all

kinds of data, including data that you gathered from different analyses.

You could do a search for all the rows with the year 1990, then all the rows

with the year 2000, and then iterate through each returned list to get the

difference in populations.

def getColumn (s e l f , fieldname) :

ret = []

for row in s e l f . dataReader :

ret . append (row . get (fieldname))

return map(number , ret)

The getColumn method is very similar to getRows. Here, we gather every

value of the specified filename (like ‘POP’) and put it in the list. But before

we return the list, we map the function number (from the top of csvfile) on

to all the values. That’s what turns the list of strings (which is what is

stored in the CSVfile) to a list of numbers.

Alternative way to read CSV files

Since we started this book, a default way of reading CSV files has been

creating in Python. The CSV module is a nice way of managing these

files, and is available in every implementation of Python. The CSV module

handles things like quoted strings and splitting the line of data into a list.

We’re going to start with a slice of the UK Perception of Crime data

from The Guardian. We copied into a new spreadsheet just the data on

perception of crime by income (Figure 2.11).

2.3. READING CSV FILES 33

Figure 2.11: Text CSV file from UK Perception of Crime data

We read this data file using a program like this. This program only

processes some of the data in the file. It generates the graph in Figure 2.12.

import csv , string , pylab

Make 3 empty l i s t s f or the 3 columns

incomelevels = []

overal lcrime = []

bankfraud = []

Access the f i l e as a CSV reader

f = open (” . . / data / perceptionOfUKCrime. csv ” , ” rb ”)

reader = csv . reader (f)

Eat the headers by ca l l ing next on the reader

headers = reader . next ()

print headers # Not necessary −− j u s t to see what ’ s there

for row in reader : # Now read the r e s t of the rows

Row i s already a l i s t of columns

Add the p i eces into the l i s t s

incomelevels . append (row [0])

We ’ l l use eval to convert s t r ings to numbers

overal lcrime . append (eval (row [1]))

bankfraud . append (eval (row [2]))

Now, p lo t overal lcr ime

pylab . p lot (overal lcrime)

pylab . show ()

34

CHAPTER 2. GETTING DATA FROM THE INTERNET FOR

COMPUTATIONAL ANALYSIS

Figure 2.12: Plot of perception of overall crime by income level

3 Plotting

An important part of data analysis is visualizing your data. This chapter

describes how to do that.

3.1 Your Basic Plot: Slicing Up The World’s

Population

To do any plotting, we need to access Matplotlib with from pylab import ∗.

The basic command to plot is, not surprisingly plot. The function plot

can take a variety of different kinds of inputs. The most basic is just a

sequence–an array or list of all numeric values.

We saw in the previous chapter how to create an array of populations

in the year 2000 for 168 countries. We knew that the first element in the

list was from the field name ”POP”, so we can skip that. It turns out that

Python has some powerful tools for grabbing parts of a sequence. It’s called

slicing.

For any sequence, you can provide indices for the sequence as square

brackets with a colon within them. The first value indicates where to

start from and the second value indicates the index to stop before. That’s

important–the second value is not included in the result. The first index in

Python is zero–the first value in any Python sequence is numbered zero.

If the first value is missing, it’s considered to be 0. If the second value is

missing, it’s considered to be the length of the list.

>>> a=[1,2,3,4,5]
>>> a[0]
1
>>> a[1:] # From index 1 (second element) to the end
[2, 3, 4, 5]
>>> a[:3] # From 0 to 2 (not including index 3)
[1, 2, 3]
>>> a[1:3]
[2, 3]
>>> len(a)
5

35

36 CHAPTER 3. PLOTTING

Slicing will work for any sequence, including strings.

>>> alpha="abcdefghijklmnopqrstuvwxyz"
>>> alpha[0]
’a’
>>> alpha[2:]
’cdefghijklmnopqrstuvwxyz’
>>> alpha[14:18]
’opqr’
>>> len(alpha)
26

All of this is to explain that the list of populations skipping the first

value is pops[1:]. So, simply put, plotting the populations is plot(pops[1:]).

Once you make a plot, you don’t see it. You have a choice what to do.

• You can show() the plot (Figure 3.1). The plot window is really nice

and allows you to save it, pan around it, zoom into it.

Figure 3.1: Our first plot

• You can savefig.

The function savefig is really pretty amazing. You simply give it a

filename as input, and it tries to save the file in the format specified

by the filename. If your filename ends in .eps , it will try to save the

plot as Encapsulated Postscript (EPS) (Figure 3.2). If your filename

ends in .png , it will try to save the plot in the portable graphics

3.1. YOUR BASIC PLOT: SLICING UP THE WORLD’S POPULATION37

format PNG. If your filename ends in .jpg , it will try to save the

plot in JPEG format. (Both PNG and JPEG can be inserted into

Microsoft Word documents.)

>>> plot(pops[1:])
[<matplotlib.lines.Line2D instance at 0x01ABFE90>]
>>> savefig("populations-unsorted.eps")
>>> savefig("populations-unsorted.png")
>>> show()

0 20 40 60 80 100 120 140 160 180
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
x1e6

Figure 3.2: Our first graph–countries’ populations, unsorted

This is a particularly unimpressive graph. The y-axis is obvious–that’s

populations in thousands. But what’s the x-axis? It’s countries, in alpha-

betical order by first name. If you don’t provide an x-axis (which you can

do, and we’ll do it in just a few minutes), the x-axis is assumed to be just

the index values of the sequence: 0, 1, 2, and so on.

So let’s make the chart a little more interesting. Python knows how

to sort any sequence. Let’s put the population into sorted order. Our new

sequence will start at −1 (see below) – we know that unavailable or label

data maps to -1, so we can expect to see at least one of those. The max

value is pretty big, 1258821.0314. We then generate the plot, save it, and

show it.

>>> spops = sort(pops)
>>> spops[0]
-1.0
>>> spops[len(spops)-1]
1258821.0314
>>> plot(spops)
[<matplotlib.lines.Line2D instance at 0x01AE5788>]

38 CHAPTER 3. PLOTTING

>>> savefig("populations-sorted.eps")
>>> show()

Before you look at the plot, think about it. What do you expect to see?

How do you think that populations distribute around the world? Consider

these three possibilities.

Option (a) says that all populations are equally likely in the world, so

if you plot them from smallest to largest, it’s a gradual slope from left

to right. Option (b) says that all populations are roughly the same, so the

slope of the line is essentially flat. Option (c) says that all population levels

occur, but they grow faster than the gradual slope in (a) would suggest–the

biggest countries are much bigger than the smaller countries.

Now take a look at the graph, Figure 3.3. None of the three, is it? What

this graph seems to be saying is that most of the populations are roughly

the same and the curve doesn’t really start going up until the very end,

where it shoots up really fast. A few countries are just enormous, while

most are (comparatively speaking) about the same size.

0 20 40 60 80 100 120 140 160 180
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
x1e6

Figure 3.3: Sorted countries’ populations

Is that really true? Is that really what’s going on in this data? One of

the nice things about Python’s slicing is that you can literally take slices

through the data with it. What do the first ten value look like? All −1.

“Aha!” you may think. “That ‘flatness’ is just an artifact of populations

that we didn’t have – NA or Not Available!” Let’s take another slice about

3.2. OPTIONS ON THE PLOT 39

half way through (there are 168 values here) – by index 50, the values are

not −1. And by the end, they are huge.

>>> spops[0:10]
[-1.,-1.,-1.,-1.,-1.,-1.,-1.,-1.,-1.,-1.,]
>>> spops[50:80]
[1199. , 1230. , 1301. , 1303. , 1369. , 1988. , 2031. ,
2035. ,

2372. , 2633. , 2856. , 3018. , 3337. , 3411. , 3695. , 3786.9 ,
3803. , 3811. , 3831. , 4018. , 4282. , 4328. , 4380. , 4491. ,
4527. , 4886.81, 4915. , 5024. , 5031. , 5071. ,]

>>> len(spops)
168
>>> spops[160:168]
[131050. , 138080. , 145555.008 , 170406. ,
210420.992 ,

275423. , 1015923.008 , 1258821.0314,]

Graphs are obviously darn useful here, but plots alone don’t tell us

everything. We need to look at some of the numbers. Do we need to look at

all the numbers we did above? And did we look at the right values above

– what if the values all the way from 0 to 49 are −1? Would that change

your opinion about the graph? In this class, we’re going to learn about a

variety of techniques for describing values, to get a sense of what the data

are doing in a set and how they relate to other data. Graphing is really

useful, but it’s only one way to look at the data.

3.2 Options on the Plot

The plot method has lots of ways that it can be used. One is that you can

pass in two sequences as arguments–one containing the Y values, and the

other X axis values (Figure 3.4). Here, we use arange to generate a bunch

of floating point numbers (not integers but numbers with a decimal place)

between 0 and 3, spaced out 0.05 apart. We then generate another array, s,

by using a special version of sin that iterates over the array t and generates

a new array element for s. There’s a loop there, but it’s hidden inside of

sin. It’s called a universal function (or ufunc), and they’re documented in

the Numeric Python documentation.

>>> t = arange(0.0, 3.0, 0.05)
>>> t[0:5]
[0. , 0.05, 0.1 , 0.15, 0.2 ,]
>>> s = sin(2 * pi * t)
>>> s[0:5]
[0. , 0.30901699, 0.58778525, 0.80901699, 0.95105652,]
>>> plot(t,s)

40 CHAPTER 3. PLOTTING

[<matplotlib.lines.Line2D instance at 0x00C1BE18>]
>>> savefig("C:/temp/sinplot.eps")
>>> show()

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-1.0

-0.5

0.0

0.5

1.0

Figure 3.4: A graph generated with X and Y values

Generating plots from files

You don’t really want to type in all those commands at the command

prompt each time you want a plot. Instead, it’s easier to put these com-

mands in a file like this (see also Program Program Example #2):

from pylab import ∗
import c s v f i l e

popdata = c s v f i l e . CSVfile (” pops−2000.csv ”)

pops = popdata . getColumn (”POP”)

spops=sort (pops)

p lot (spops [1 :] , marker=” o ” , co l or=” r ”)

t i t l e (’ Populations of countries in the year 2000 ’)

x label (’ Countries in increasing order of population ’)

y label (’ Population in mi l l i ons ’)

grid (True)

show ()

This “file” (“program”?) is doing the necessary import commands, set-

ting up the data, then generating the plot (Figure 3.5). You can use just

about any text editor for creating this file–Word might work, but Notepad

would be better. WinEdt is a really nice editor for text on Windows. There

are also editors like emacs and vi that you can use. Just make sure that

the filename always ends in ‘. py’ to stand for Python.

You’ll notice that we’re also doing a lot more tweaking to this graph.

3.3. THE PLOT THICKENS: COMBINING PLOTS TO DETERMINE

US AND UK GROWTH RATES 41

• We can label the X-axis and Y-axis with xlabel and ylabel.

• We can title the whole graph with title .

• We can define a marker for the line. Markers can be ’+’,’,’,’o’,’.’,’s’,’v’,’x’,’<’,

or ’>’.

• We can define a color for the line. Here we’re using ’r’ for red. Colors

can be:

b blue

g green

r red

c cyan

m magenta

y yellow

k black (go figure)

w white

(0.25,0.35,0.5) An RGB triplet (tuple) where the scale is 0..1
red Any HTML color name

• Not used here, we can also specify a linestyle: ’-’, ’:’, ’-.’, or ’–’.

• We can use the same color parameters to specify a markeredgecoor and

markerfacecolor and even markersize (in points) if we wanted.

Now, how to run this code. In IPython, it’s easy. There are commands

to cd to the right directory (where you put the file) and then run the file.

In [2]: cd C:/Documents\ and\ Settings/Mark\ Guzdial/My\
Documents/Work/CompFreak

In [3]: run fancierplot.py

In other forms of Python, you need to import the file. If you change the

file (to fix a bug, to generate a slightly different plot), you can reload the

file to re-execute it.

Python 2.3.5 - Enthought Edition 0.9.6 (#62, May 11 2005, 20: 02:58)
[MSC v.1200 32 bit (Intel)] on win32 Type "help", "copyright ",
"credits" or "license" for more information.
>>> import fancierplot

3.3 The Plot Thickens: Combining Plots to Determine

US and UK Growth Rates

In work in Freakonomics, you will often want to compare multiple plots

at once. The easiest way to do this is by putting both lines that you care

about on the same plot.

42 CHAPTER 3. PLOTTING

Populations of countries in the year 2000

0 20 40 60 80 100 120 140 160 180

Countries in increasing order of population

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

P
o
p
u
la

ti
o
n
 i
n
 m

il
li
o
n
s

x1e6

Figure 3.5: Making a fancier plot

I generated a dataset with all the populations (and savings rates, and
other fields) for the US and the UK from 1990 to 2000. Here’s a segment
of what the file looks like:

"country","country isocode","year","POP","XRAT","csa ve","rgdptt"
"United Kingdom","GBR","1999","59501","0.6181","17.4 09775303","22175.425041"
"United Kingdom","GBR","2000","59756","0.6609","17.7 66614978","22848.837615"
"United States","USA","1990","249981","1","18.785790 541","26365.46609"
"United States","USA","1991","252677","1","18.424899 6","25893.640342"

We can write code to withdraw the relevant data from this file, and

then plot it.

from pylab import ∗
import c s v f i l e

natdata = c s v f i l e . CSVfile (”us−uk−1990−2000.csv ”)

usdata = natdata . getRows (’ country ’ , ’ United States ’)

natdata . rewind ()

ukdata = natdata . getRows (’ country ’ , ’ United Kingdom ’)

#Get the populations

uspops = []

for row in usdata :

uspops . append (c s v f i l e . number(row [’POP ’]))

ukpops = []

for row in ukdata :

ukpops . append (c s v f i l e . number(row [’POP ’]))

years=range (1990 ,2001)

print ”US” , uspops , len (uspops)

print ”UK” ,ukpops , len (ukpops)

3.3. THE PLOT THICKENS: COMBINING PLOTS TO DETERMINE

US AND UK GROWTH RATES 43

print ” Years ” , years , len (years)

p lot (years , uspops , ’ r−−o ’ , years , ukpops , ’ b−x ’)

legend ((’US Population ’ , ’UK Population ’) , l o c = ’ center r ight ’)

t i t l e (’ Populations of US and UK 1990−2000 ’)

x label (’ Years ’)

y label (’ Population in mi l l i ons ’)

grid (True)

savef ig (” us uk pop plot . eps ”)

show ()

How it works: We open the datafile, grab the US data, rewind it, then

grab the UK data. We make an assumption that the data is still in year

order – that could have been a bad assumption, and there are other ways to

grab the data so that we don’t have to assume that. The data in usdata and

ukdata are now in row/dictionary form. To get just the population (’POP’)

data, we create lists with those values, converted to numbers.

Notice that we can check results with print statements. It’s okay to

have them in your file, mixed in with all the def statements. They’ll work,

and they’ll help you figure out what’s going on.

We then plot with X (year), and Y (population) data, in the same plot

command (Figure ??). You’ll note that we can specify the line color, line

style, and marker in a string next to the relevant plot.

From this plot, it looks like the US population has been rising steeply,

while the UK population has been essentially flat. That’s what it looks

like, but we’ll see later that there are other ways to look at it.

Populations of US and UK 1990-2000

1990 1992 1994 1996 1998 2000
Years

0.5

1.0

1.5

2.0

2.5

3.0

P
o
p
u
la

ti
o
n
 i
n
 m

il
li
o
n
s

x1e5

US Population

UK Population

Obviously, the legend function generates a legend. The legend function

doesn’t have to have a loc (location) parameter. We found that the default

44 CHAPTER 3. PLOTTING

(so-called ’ best’) location is the upper-right, which covered over the US

population curve. So I changed the location. How did we figure out how

to change the legend location? It’s not in the Matplotlib documentation

(that I could find). Turns out that there’s even more documentation within

Python using the help function.

>>> help(legend)
Help on function legend in module matplotlib.pylab:

legend(* args, ** kwargs)
LEGEND(* args, ** kwargs)
Place a legend on the current axes at location loc. Labels are a
sequence of strings and loc can be a string or an integer speci fying
the legend location
USAGE:

Make a legend with existing lines
>>> legend()
legend by itself will try and build a legend using the label
property of the lines/patches/collections. You can set the label of
a line by doing plot(x, y, label=’my data’) or line.set_labe l(’my
data’). If label is set to ’_nolegend_’, the item will not be s hown
in legend.

automatically generate the legend from labels
legend((’label1’, ’label2’, ’label3’))
Make a legend for a list of lines and labels
legend((line1, line2, line3), (’label1’, ’label2’, ’labe l3’))
Make a legend at a given location, using a location argument
legend(LABELS, LOC) or
legend(LINES, LABELS, LOC)
legend((’label1’, ’label2’, ’label3’), loc=’upper left’)
legend((line1, line2, line3), (’label1’, ’label2’, ’labe l3’), loc=2)

The location codes are
’best’ : 0,
’upper right’ : 1, (default)
’upper left’ : 2,
’lower left’ : 3,
’lower right’ : 4,
’right’ : 5,
’center left’ : 6,
’center right’ : 7,
’lower center’ : 8,
’upper center’ : 9,
’center’ : 10,

If none of these are suitable, loc can be a 2-tuple giving x,y
in axes coords, ie,

loc = 0, 1 is left top
loc = 0.5, 0.5 is center, center

3.3. THE PLOT THICKENS: COMBINING PLOTS TO DETERMINE

US AND UK GROWTH RATES 45

As Two Separate Plots

The problem with the legend points out that, sometimes, it doesn’t work

out well to have the two (or more) lines in the same graph. If the X axes

are the same, you can do vertical plots for the same effect. The graphs can

be compared, but without having to stick to the same Y axis.

The below program does that using the subplot function (Figure ??).

The subplot specifies how many rows and columns of plots you want (first

two arguments) and then which one you’re specifying now1 You’ll also see

in this program that we add an additional loop to make sure that we’re

calling up the right year in the right order. This will be important when

we try to join data later.

from pylab import ∗
import c s v f i l e

natdata = c s v f i l e . CSVfile (”us−uk−1990−2000.csv ”)

usdata = natdata . getRows (’ country ’ , ’ United States ’)

natdata . rewind ()

ukdata = natdata . getRows (’ country ’ , ’ United Kingdom ’)

#Get the populations

This time , making SURE that they ’ re in year−order

years=range (1990 ,2001)

uspops = []

for y in years :

for row in usdata :

i f row [’ year ’]== str (y) : #Items in rows are s t r ings

uspops . append (c s v f i l e . number(row [’POP ’]))

break #Leave the row loop

ukpops = []

for y in years :

for row in ukdata :

i f row [’ year ’]== str (y) :

ukpops . append (c s v f i l e . number(row [’POP ’]))

break

Top subplot : 2 rows , 1 column , subplot #1

subplot (2 ,1 ,1)

p lot (years , uspops , ’ r−−o ’)

t i t l e (’ Population of US 1990−2000 ’)

x label (’ Years ’)

y label (’ Population in mi l l i ons ’)

grid (True)

subplot (2 ,1 ,2)

p lot (years , ukpops , ’ b−x ’)

t i t l e (’ Population UK 1990−2000 ’)

1What would happen if you changed the rows and columns between subplot calls?
Dunno.

46 CHAPTER 3. PLOTTING

xlabel (’ Years ’)

y label (’ Population in mi l l i ons ’)

grid (True)

savef ig (” us uk pop plot2 . eps ”)

show ()

Population of US 1990-2000

1990 1992 1994 1996 1998 2000
Years

2.45

2.50

2.55

2.60

2.65

2.70

2.75

2.80

P
o
p
u
la

ti
o
n
 i
n
 m

il
li
o
n
s

x1e5

Population UK 1990-2000

1990 1992 1994 1996 1998 2000
Years

5.75

5.80

5.85

5.90

5.95

6.00

P
o
p
u
la

ti
o
n
 i
n
 m

il
li
o
n
s

x1e4

Figure 3.6: US and UK Populations, as two subplots

Notice something important about this double plot. Sure looks like

the slope of each line is about the same!. There are ways to check that

assumption later, but it looks like both the US and UK plot have been

increasing at very similar rates, but we only see that if we shift the scales

appropriately to see how each is increasing.

4 Descriptive Statistics

The way in which we usually describe sets of numbers is with descriptive

statistics–numbers that reflect the overall picture, range, or distribution of

the set.

4.1 Average or mean: Petroleum Tax Prices

The average or mean is simply the sum of the values divided by the num-

ber of values.

Let’s compute the value of a stock over a given year. From Yahoo Stocks,

we can get the monthly value of a stock over some period of time. The below

is some of the values for British Petroleum (BP).

Date,Open,High,Low,Close,Volume,Adj. Close *
1-Jun-06,69.61,72.38,66.20,67.48,4938385,67.48
1-May-06,74.25,76.67,68.50,70.70,3859318,70.70
3-Apr-06,69.50,76.85,69.49,73.72,3520315,73.18
1-Mar-06,66.92,70.68,65.35,68.94,2938130,68.43
1-Feb-06,71.99,72.58,66.01,66.42,3647978,65.93
3-Jan-06,65.50,72.88,65.47,72.31,4301770,71.19
1-Dec-05,67.06,69.25,63.26,64.22,2983219,63.23

We can access this data just as we have any other CSV data.

In [11]: import csvfile

In [12]: bpdata=csvfile.CSVfile("BritishPetroleum-BP- table.csv")

In [13]: bpdata.next() Out[13]: {’Adj. Close * ’: ’67.48’,
’Close’: ’67.48’,
’Date’: ’1-Jun-06’,
’High’: ’72.38’,
’Low’: ’66.20’,
’Open’: ’69.61’,
’Volume’: ’4938385’}

In [14]: bpdata.next()[’Date’] Out[14]: ’1-May-06’

There are builtin functions to sum across a sequence, and to get the

length of a sequence (the number of values there). We can use these to

47

48 CHAPTER 4. DESCRIPTIVE STATISTICS

define an average function. Notice that we multiple by 1.0 to force Python

to do floating point arithmetic, rather than simple integer arithmetic.

In [15]: a=[1,2,3,4]

In [16]: sum(a)
Out[16]: 10

In [17]: len(a)
Out[17]: 4

In [18]: sum(a)/len(a)
Out[18]: 2

In [19]: (sum(a) * 1.0)/len(a)
Out[19]: 2.5

from pylab import ∗
import c s v f i l e

def average (sequence) :

return (1 .0∗sum(sequence)) / len (sequence)

bpdata = c s v f i l e . CSVfile (” BritishPetroleum−BP−tab le . csv ”)

#Let ’ s get the 1990 year .

c l os es = []

for row in bpdata . dataReader :

i f row [’ Date ’] . endswith (’ 90 ’) :

c l os es . append (c s v f i l e . number(row [’ Close ’]))

#Return the average

print ” Closing values ” , c l os es

print ” Average : ” , average (c l os es)

How it works: We import pylab and csvfile, as we have in the past. We
define a function average which is fine to do in-line. We then open up the
file and do a search for all those dates that end in ’90’ (in order to get the
average of the 1990 monthly closing dates). Notice that our loop executes
over the dataReader. That’s how we did it in csvfile .py.

In [26]: run bpAvg1990.py
Closing values [76.870000000000005, 80.25, 77.5, 77.25, 8 2.120000000000005, 74.5
, 66.5, 66.620000000000005, 60.130000000000003, 64.75, 6 8.5, 68.75]
Average: 71.9783333333

4.2. UNDERSTANDING MEASURES OF VARIABILITY 49

4.2 Understanding Measures of Variability

A measure of central tendency (mean, median, mode) gives us some in-

formation about a set of scores; however, it does not give any information

about the scores are distributed. To obtain a more complete description

of a set of data, we use a second measure in addition to the measure of

central tendency. This is a measure of variability.

Measures of variability are merely attempts to indicate how spread out

the scores are. One common measure of variability is the range which

reflects the difference between the largest and smallest scores in a set of

data. Although computing the range is easy, the range tells us only about

the two extreme scores; it provides no information about the dispersion of

the remaining scores if we know nothing about the underlying distribu-

tion.

Consider Group A and Group B:
Group A Group B

2 2

3 5

4 5

5 6

6 6

7 6

8 7

9 7

10 10

In these two distributions of scores, the ranges are the same (8) and the

means are the same (6), yet the actual shapes of the distributions are very

different. The scores in Group B appear more concentrated in the center

of the distribution yet our estimate of range does not reflect this.

To provide a more sensitive distribution of all the scores, we use a sec-

ond measure of variability of data: the variance. The variance is a de-

scription of how much each score varies from the mean. Think about the

problem we have: How do you come up with a measure of how much the

data varies from the mean?

One way to describe the dispersion of all the scores would be to subtract

each score from the mean and then add these deviations. What is the prob-

lem with this solution? The sum would add to 0 because some deviations

will be positive and some negative. So, instead we square each deviation

and add the squares; we now have all positive numbers. This gives us a

description of how much the scores vary from the mean.

We call this a sum of squares:

SS =
∑

(X̄ −X)2

Then, if we divide the sum by the total number of scores, we get an idea

about the average deviation for each score which is the variance:

50 CHAPTER 4. DESCRIPTIVE STATISTICS

variance = SS/N =

∑

(X̄ −X)2

N

If you calculate the variance for Groups A and B you will find that

Group B has a lower variance (4) than Group A (6.67).

One problem with variance is that, because it uses squared scores, it

does not describe the amount of variability in the same units of measure-

ment as the original data (e.g., seconds versus seconds-squared). There-

fore, researchers prefer to use the square root of the variance as their

primary estimate of variability. This measure is called the standard de-

viation.

SD =
√
variance =

√

∑

(X̄ −X)2

N

Now, one last nicety here. Notice I said the SD was an estimate of

variability. That is, we are interested in the variability of the data for the

population, not just the sample of data we collected. Because of this, the

estimate of the population variability, based on the data in the sample, is:

SD =
√
variance =

√

∑

(X̄ −X)2

N − 1

4.3 Computing Standard Deviation

Standard deviation is the amount of spread in the values in the data set.

If all the values in the data set are exactly the same, then they’re all equal

to the mean value, and the standard deviation is zero. The higher the

standard deviation, the further values differ from the mean.

The standard deviation is the square root of the variance. It’s the aver-

age of the squared differences from the mean. Here’s the basic process for

figuring out the standard deviation.

1. First, compute the mean.

2. Figure out the difference between each value and the mean, e.g.,

xi −mean for all positions i in the data sequence. Then square that

distance. The square removes the possibility of a negative value,

since you don’t know which is bigger, xi or the mean.

3. Sum up all these squared differences, then divide by the number of

numbers in the sequence. This is called the average of the squared

differences, or the variance.

4. Finally, take the square root of the whole thing. The idea is to get

close to the average of the differences, with the squared-differences

and square root in there to deal with positive and negative values.

4.3. COMPUTING STANDARD DEVIATION 51

Let’s see a program that implements the standard deviation algorithm.

In this program, we gather data from both British Petroleum (BP), but

also Exxon-Mobil (XOM on Yahoo).

from pylab import ∗
import c s v f i l e

def average (sequence) :

return (1 .0∗sum(sequence)) / len (sequence)

def std dev (sequence) :

ave = average (sequence)

Compute the mean squared d i f f e r e n c e

d i f f s = 1.0

for num in sequence :

d i f f s = d i f f s + pow ((ave−num) , 2)

Compute the variance

variance = d i f f s / len (sequence)

Return the square root of the variance

return pow(variance , 0 . 5)

bpdata = c s v f i l e . CSVfile (” BritishPetroleum−BP−tab le . csv ”)

#Let ’ s get the 1990 year .

c l os es = []

for row in bpdata . dataReader :

i f row [’ Date ’] . endswith (’ 90 ’) :

c l os es . append (c s v f i l e . number(row [’ Close ’]))

#Return the average

print ” ∗∗∗ BP ∗∗∗ ”

print ” Closing values ” , c l os es

print ” Average : ” , average (c l os es)

print ” Standard Deviation : ” , std dev (c l os es)

amdata = c s v f i l e . CSVfile (”Exxon−Mobile−XOM−tab le . csv ”)

#Let ’ s get the 1990 year .

c l os es = []

for row in amdata . dataReader :

i f row [’ Date ’] . endswith (’ 90 ’) :

c l os es . append (c s v f i l e . number(row [’ Close ’]))

#Return the average

print ” ∗∗∗ Exxon / Mobil ∗∗∗ ”

print ” Closing values ” , c l os es

print ” Average : ” , average (c l os es)

print ” Standard Deviation : ” , std dev (c l os es)

52 CHAPTER 4. DESCRIPTIVE STATISTICS

The function pow takes the power of one number to another number. It

works for squaring (pow(something,2)) and for getting square roots (pow(something,0.5)).

And here’s the run of it.

In [30]: run bpStdDev1990.py

*** BP ***
Closing values [76.870000000000005, 80.25, 77.5, 77.25, 8 2.120000000000005,
, 66.5, 66.620000000000005, 60.130000000000003, 64.75, 6 8.5, 68.75]
Average: 71.9783333333
Standard Deviation: 6.67530877355

*** Exxon/Mobil ***
Closing values [51.75, 50.630000000000003, 49.0, 49.0, 50 .0, 51.880000000000003,

47.880000000000003, 48.0, 45.25, 46.25, 47.0, 47.0]
Average: 48.6366666667
Standard Deviation: 2.05769018292

Okay, so on average, BP stock had a higher close in 1990 than Exxon-

Mobil, but BP also had a higher standard deviation. It varied more over

that year than Exxon did. Does that matter? Is it really different? And

what does “really different” mean, anyway?

4.4 Viewing Histogram

Another way of getting a picture of what’s happening with a data set is to

use a histogram. A histogram tells you the number of occurrences of values

in a certain range. “Hold on!” you say. “I don’t see that in the Matplotlib

documentation!” Yet again, you need to use help.

In [9]: from pylab import *

In [10]: help(hist)
Help on function hist in module matplotlib.pylab:

hist(* args, ** kwargs)
HIST(x, bins=10, normed=0, bottom=0, orientiation=’vert ical’, ** kwargs)
Compute the histogram of x. bins is either an integer number o f
bins or a sequence giving the bins. x are the data to be binned.
The return values is (n, bins, patches)
If normed is true, the first element of the return tuple will
be the counts normalized to form a probability density, ie,
n/(len(x) * dbin)
orientation = ’horizontal’ | ’vertical’. If horizontal, ba rh
will be used and the "bottom" kwarg will be the left.
width: the width of the bars. If None, automatically compute
the width.
kwargs are used to update the properties of the
hist bars

4.4. VIEWING HISTOGRAM 53

Addition kwargs: hold = [True|False] overrides default hol d state

Here’s an example that generates a histogram for each of the BP and

Amoco-Mobil stock.

from pylab import ∗
import c s v f i l e

def average (sequence) :

return (1 .0∗sum(sequence)) / len (sequence)

def std dev (sequence) :

ave = average (sequence)

Compute the mean squared d i f f e r e n c e

d i f f s = 1.0

for num in sequence :

d i f f s = d i f f s + pow ((ave−num) , 2)

Compute the variance

variance = d i f f s / len (sequence)

Return the square root of the variance

return pow(variance , 0 . 5)

bpdata = c s v f i l e . CSVfile (” BritishPetroleum−BP−tab le . csv ”)

#Let ’ s get the 1990 year .

c l os es = []

for row in bpdata . dataReader :

i f row [’ Date ’] . endswith (’ 90 ’) :

c l os es . append (c s v f i l e . number(row [’ Close ’]))

subplot (2 ,1 ,1)

t i t l e (”BP stock in 1990−−Histogram”)

his t (c l os es)

amdata = c s v f i l e . CSVfile (”Exxon−Mobile−XOM−tab le . csv ”)

#Let ’ s get the 1990 year .

c l os es = []

for row in amdata . dataReader :

i f row [’ Date ’] . endswith (’ 90 ’) :

c l os es . append (c s v f i l e . number(row [’ Close ’]))

subplot (2 ,1 ,2)

t i t l e (”Amoco / Mobil stock in 1990−Histogram”)

his t (c l os es)

54 CHAPTER 4. DESCRIPTIVE STATISTICS

savef ig (” BP AM hist . eps ”)

show ()

The result is Figure 4.1. This helps some, like showing that BP basi-

cally had two common prices during this time, while Exxon-Mobil is more

disperse. We call that the shape of the distribution.

So, do you think BP and Exxon-Mobil roughly track one another? That

is, do they move up or down in the same ways? If they do, one would

presume that the impacts on their prices have more to do with external

factors (e.g., peace in the Middle East) than with anything in the compa-

nies themselves or in the UK or US, respectively. How would we find out?

See next chapter. . .

BP stock in 1990--Histogram

60 65 70 75 80 85
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Amoco/Mobil stock in 1990-Histogram

45 46 47 48 49 50 51 52
0.0

0.5

1.0

1.5

2.0

Figure 4.1: BP and Exxon-Mobil stock prices in 1990, as histograms

5 Correlation

How do we compare two sequences of values? How do we figure out if BP

and Exxon-Mobile change in roughly the same ways at roughly the same

times (suggesting that factors external to either company are acting upon

both at the same time)? How do we figure out if the UK and US populations

grow and shrink at about the same rate (suggesting that whatever factors

influence the size of populations are impacting both countries at the same

time in the same way)? One way of doing that is with a correlation. A

correlation is a number that describes how related two data sets are.

5.1 Correlation: A Measure of Association

Suppose we want to look at the relationship between a person’s self-professed

helpfulness to others (based on a questionnaire score) and the number of

times the person was observed helping others over the course of some time

period. One way of looking at this relationship is with a scatterplot or scat-

ter diagram showing these two variables (Figure 5.1). Each point would

represent one person and two scores: a score on helpfulness questionnaire

and the number of times the person helped someone in the experiment

(Figure 5.2). If we noticed that someone who scores low on one measure

also scores low on the other, and vice versa, then we’d figure that these

variables are related.

A useful statistic to calculate to quantify this relationship is a corre-

lation. When we perform a correlation, we derive a correlation coefficient

which ranges between +1 and -1. A positive correlation represents a linear

relationship between two factors such that large values of one measure

are associated with large values of the other. There are several types of

correlation coefficients that have been developed; one of the most common

ones is the Pearson product moment correlation coefficient, or r.

r =

∑

(zscorex) ∗ (zscorey)
N

where

zscore =
X̄ −X

SD

55

56 CHAPTER 5. CORRELATION

Figure 5.1: Example scatterplot

5.2 Computing correlation: Is it the company, or war

in the Middle East?

Let’s call one data set x and the other data set y. Each data set should

have the same number of elements, call it n. The correlation number is

called r. Above, you see a definition for r.
Here’s a Python file that computes correlations in two different ways,

then processes the data in Figure 5.2.

from pylab import ∗

def r1 (x , y) :

” ” ” Original corre lat ion , based on s ta ts t e x t s . ” ” ”

i f len (x) != len (y) :

print ” Sorry ! the values must be paired . ”

return

xbar = f l o a t (sum(x)) / len (x)

ybar = f l o a t (sum(y)) / len (y)

print ” averages f or x and y ” , xbar , ybar

xsumdiffs = 0

for num in x :

xsumdiffs = xsumdiffs + pow(xbar−num, 2)

xsd = pow(xsumdiffs / len (x) , 0 . 5)

5.2. COMPUTING CORRELATION: IS IT THE COMPANY, OR WAR IN

THE MIDDLE EAST? 57

Figure 5.2: Data for scatterplot

ysumdiffs = 0

for num in y :

ysumdiffs = ysumdiffs + pow(ybar−num, 2)

ysd = pow(ysumdiffs / len (y) , 0 . 5)

print ” sds for x and y ” , xsd , ysd

zscoresx = []

for num in x :

zscoresx . append ((num−xbar) / xsd)

print ” zscores f or x : ” , zscoresx

zscoresy = []

for num in y :

zscoresy . append ((num−ybar) / ysd)

print ” zscores f or y : ” , zscoresy

sumzs = 0

for i in range (0 , len (zscoresx)) :

sumzs = sumzs + (zscoresx [i] ∗ zscoresy [i])

return sumzs / len (x)

def stdev (x , xbar) :

sums = 0

for num in x :

sums = sums + pow(xbar−num, 2)

return sqrt (sums / len (x))

def zscore (xnum, xbar , sd) :

return (xbar − xnum) / sd

def r2 (x , y) :

” ” ” Better corre lat ion , in that i t ’ s eas i e r to understand . ” ” ”

i f len (x) != len (y) :

58 CHAPTER 5. CORRELATION

print ” Sorry ! Values must be paired . ”

return

xbar = f l o a t (sum(x)) / len (x)

ybar = f l o a t (sum(y)) / len (y)

print ” Averages : ” , xbar , ybar

xsd = stdev (x , xbar)

ysd = stdev (y , ybar)

print ” Standard Deviations : ” , xsd , ysd

Now, compute the sums

sumzs = 0

for index in range (len (x)) :

sumzs = sumzs + (zscore (x [index] , xbar , xsd) ∗ zscore (y [index] , ybar , ysd))

return sumzs / len (x)

scorex = [2 ,10 ,9 ,4 ,7 ,10 ,1 ,5 ,2 ,5]

scorey = [3 ,12 ,7 ,4 ,5 ,8 ,2 ,6 ,1 ,5]

print ” Stats r = ” , r1 (scorex , scorey)

print ”New r = ” , r2 (scorex , scorey)

How it works: r2 is probably easier to read and map to the equation in

the previous section. First, we make sure that the lengths of the two ar-

rays (or vectors, in MATLAB-speak) are the same. Then, we compute the

averages, and the standard deviations, using a function that does what

we saw in the previous chapter. We then write a loop that computes the

sum in the numerator, using a zscore for each value in x and y. Finally, we

divide by N , which is the same for both arrays.

The r1 version does the same thing, but does all the statistics in-line,

without external functions. It’s slightly more efficient. But both versions

give us the same results:

Stats r = 0.900567573182
New r = 0.900567573182

Alternative way of computing correlation

If you look in a statistics book, you may see a different definition for r.
Both versions do the same thing! The traditional statistics book version is

easier to compute by hand, but the one above is easier to understand and

easier to compute by computer. For the sake of explaining what you might

find in books, let’s do it here.

r =
(n

∑n
i=0 xiyi)− (

∑n
i=0 xi)(

∑n
i=0 yi)

√

(n
∑n

i=0 x
2
i − (

∑n
i=0 xi)2)(n

∑n
i=0 y

2
i − (

∑n
i=0 yi)

2)
(5.1)

Let’s talk our way through that mess.

• In the numerator, (n
∑n

i=0 xiyi) is the sum of each pair of xi and yi
multiplied together. We subtract from that the product of the sum of

all the x values (
∑n

i=0 xi) and the sum of all the y values (
∑n

i=0 yi).

5.2. COMPUTING CORRELATION: IS IT THE COMPANY, OR WAR IN

THE MIDDLE EAST? 59

So, the numerator is this sing-song term: the sum of the products of

the scores less the product of the sums of the scores.

• In the denominator, it’s the square root of a product. The first term

in the product is n times the sum of all x values squared minus the

square of the sum of all x values (n
∑n

i=0 x
2
i − (

∑n
i=0 xi)

2). The second

term in the product is the y version of that (n
∑n

i=0 y
2
i − (

∑n
i=0 yi)

2).

We can do this in Python.

def corre l a t i on (x , y) :

n = len (x)

i f n != len (y) :

print ”Uh−oh ! x and y must be paired values ! ”

return 0.0

Compute the numerator

prod pairs = 0

for i in range (0 ,n) :

prod pairs = prod pairs + (x [i]∗y [i])

numerator = n∗prod pairs − (sum(x)∗sum(y))

Compute the denominator

x square = 0

for i in range (0 ,n) :

x square = x square + pow(x [i] , 2)

y square = 0

for i in range (0 ,n) :

y square = y square + pow(y [i] , 2)

denom term1 = ((n∗x square)−pow(sum(x) , 2))

denom term2 = ((n∗y square)−pow(sum(y) , 2))

denominator = pow ((denom term1∗denom term2) , 0 . 5)

return numerator / denominator

How it works: Computing n is easy–it’s the length. We want to make

sure that the two lengths are equal, else the values couldn’t possibly be

paired. The sum of the product of the pairs is just what it sounds like: for

all index values i, prod pairs = prod pairs + (x[i]∗y[i]) . The numerator is then

numerator = n∗prod pairs − (sum(x)∗sum(y)). The sum of the x’s squared is for

all index values i, x square = x square + pow(x[i],2). The y square is computed

in the same way. The denominator
√

(n
∑n

i=0 x
2
i − (

∑n
i=0 xi)2)(n

∑n
i=0 y

2
i − (

∑n
i=0 yi)

2)
is then computed with the code:

denom term1 = ((n∗x square)−pow(sum(x) , 2))

denom term2 = ((n∗y square)−pow(sum(y) , 2))

denominator = pow ((denom term1∗denom term2) , 0 . 5)

The correlation is then numerator/denominator.

60 CHAPTER 5. CORRELATION

Example: Correlating British vs. American Petroleum Stock

Prices

Let’s look again at our BP vs. Exxon-Mobil petroleum stock prices in 1990.

Are these two data sets highly correlated?

from pylab import ∗
import c s v f i l e

def average (sequence) :

return (1 .0∗sum(sequence)) / len (sequence)

def std dev (sequence) :

ave = average (sequence)

Compute the mean squared d i f f e r e n c e

d i f f s = 1.0

for num in sequence :

d i f f s = d i f f s + pow ((ave−num) , 2)

Compute the variance

variance = d i f f s / len (sequence)

Return the square root of the variance

return pow(variance , 0 . 5)

def corre l a t i on (x , y) :

n = len (x)

i f n != len (y) :

print ”Uh−oh ! x and y must be paired values ! ”

return 0.0

Compute the numerator

prod pairs = 0

for i in range (0 ,n) :

prod pairs = prod pairs + (x [i]∗y [i])

numerator = n∗prod pairs − (sum(x)∗sum(y))

Compute the denominator

x square = 0

for i in range (0 ,n) :

x square = x square + pow(x [i] , 2)

y square = 0

for i in range (0 ,n) :

y square = y square + pow(y [i] , 2)

denom term1 = ((n∗x square)−pow(sum(x) , 2))

denom term2 = ((n∗y square)−pow(sum(y) , 2))

denominator = pow ((denom term1∗denom term2) , 0 . 5)

return numerator / denominator

bpdata = c s v f i l e . CSVfile (” BritishPetroleum−BP−tab le . csv ”)

#Let ’ s get the 1990 year .

5.2. COMPUTING CORRELATION: IS IT THE COMPANY, OR WAR IN

THE MIDDLE EAST? 61

bpcloses = []

for row in bpdata . dataReader :

i f row [’ Date ’] . endswith (’ 90 ’) :

bpcloses . append (c s v f i l e . number(row [’ Close ’]))

amdata = c s v f i l e . CSVfile (”Exxon−Mobile−XOM−tab le . csv ”)

#Let ’ s get the 1990 year .

amcloses = []

for row in amdata . dataReader :

i f row [’ Date ’] . endswith (’ 90 ’) :

amcloses . append (c s v f i l e . number(row [’ Close ’]))

print ”BP clos ing values : ” , bpcloses

print ” average ” , average (bpcloses)

print ”number” , len (bpcloses)

print ” standard deviation ” , std dev (bpcloses)

print ”Exxon−Mobil (American) c los ing values : ” , amcloses

print ” average ” , average (amcloses)

print ”number” , len (amcloses)

print ” standard deviation ” , std dev (amcloses)

print ” Correlation i s ” , corre l a t i on (bpcloses , amcloses)

And here’s what the run looks like:

In [9]: run bpAmCorrel1990.py
BP closing values: [76.870000000000005, 80.25, 77.5, 77.2 5, 82.120000000000005,
74.5, 66.5, 66.620000000000005, 60.130000000000003, 64. 75, 68.5, 68.75]
average 71.9783333333
number 12
standard deviation 6.67530877355
Exxon-Mobil (American) closing values: [51.75, 50.630000 000000003, 49.0, 49.0, 5
0.0, 51.880000000000003, 47.880000000000003, 48.0, 45.2 5, 46.25, 47.0, 47.0]
average 48.6366666667
number 12
standard deviation 2.05769018292
Correlation is 0.819128769403

This correlation r is called the Pearson Product Moment Correlation.

It has values between −1.0 and 1.0. A negative value suggests a negative

correlation–when x goes up, y goes down. A positive value suggests a pos-

itive correlation–both values go up at about the same time. A value of 0.82
is pretty darn close to 1.0, so that suggests a strong positive relation.

Is our BP vs. Amoco Result Significant?

But maybe 1990 was a bad year. Maybe if we had looked at 1991 or 1989,

we wouldn’t have seen any correlation at all, or at least, a much weaker

one. What we want to do is consider the probability that what we observed

62 CHAPTER 5. CORRELATION

was just luck. We call this a significance chance. Basically, the more values

that you have and the stronger the correlation, the more confidence that

you can have that the result is significant.

The correlation r and the number of pairs are only two of the three

variables that you need to determine significance. The last value is the

significance level, also called the alpha value. How sure do you want to

be? A common alpha value is 0.05. That means that only 5 of 100 exper-

iments with data samples from these variables would be wrong. If this

were medical research, we might want an alpha value of 0.01 or even 0.10.

(In Education research, we can sometimes get away with 0.10.)

There is another factor that we’re not going to talk about much here,

and that’s whether you’re doing a one-tailed or two-tailed test. The first

means “Are we only testing for one value being greater than the other?”

where the second one means “Are we testing for any difference between

the two?” We’ll go with two-tailed for now.

The number of pairs is called the degrees of freedom1. The degrees of

freedom for a correlation is n− 2.

So, for our data set, we have 10 degrees of freedom (because we have

12 pairs and 12 − 2 is 10), and we’ll use an alpha value of 0.05. Now we

need an ever-present correlation table. There are a bunch linked to the

class Swiki. The one I’m using is at http://www.gifted.uconn.edu/
siegle/research/Correlation/corrchrt.htm . The value at df 10
and alpha value 0.05 is 0.576. That means that if our r is less than −0.576
it’s a significant negative correlation, and if it’s greater than 0.576, it’s a

significant positive correlation.

Since our r value is 0.82, we have a significant relationship. Our in-

ference, then, is that whatever factors influenced the stock price of BP

and Exxon-Mobil in 1990, they were mostly the same factors, since the

stock prices are highly correlated. This doesn’t mean that there is a causal

relationship–just because BP went down, Exxon went down, nor vice-versa.

This doesn’t say anything about causation at all. But it does say that there

is a relationship. How would you find out what factors are leading to that

relationship? Hmm, good question–one for a future chapter.

5.3 But do we believe it?

The correlation computation can feel like a bit of mumbo-jumbo – statisti-

cal voodoo. How do we know that it’s really telling us anything? Let’s do

some experiments to find out.

We want to get access to our correlation function, so we can put it in a

file correlation.py .

from pylab import ∗

1These statisticians have names for everything!

5.3. BUT DO WE BELIEVE IT? 63

def corre l a t i on (x , y) :

n = len (x)

i f n != len (y) :

print ”Uh−oh ! x and y must be paired values ! ”

return 0.0

Compute the numerator

prod pairs = 0

for i in range (0 ,n) :

prod pairs = prod pairs + (x [i]∗y [i])

numerator = n∗prod pairs − (sum(x)∗sum(y))

Compute the denominator

x square = 0

for i in range (0 ,n) :

x square = x square + pow(x [i] , 2)

y square = 0

for i in range (0 ,n) :

y square = y square + pow(y [i] , 2)

denom term1 = ((n∗x square)−pow(sum(x) , 2))

denom term2 = ((n∗y square)−pow(sum(y) , 2))

denominator = pow ((denom term1∗denom term2) , 0 . 5)

return numerator / denominator

That way, we can just import it and use it. First test: Are two identical

sets of numbers “correlated”?

In [10]: from correlation import *

In [11]: correlation([1,2,3,4,5,6,7,8,9,10],[1,2,3,4, 5,6,7,8,9,10])
Out[11]: 1.0

That’s good. We would expect two identical sets of numbers to be corre-

lated as strongly as they possibly could be.

But maybe it’s easier with small sets of integers. Let’s do something

more complicated. There is a library in NumPy that can create random

arrays. Here’s how we create an array of 20 random numbers.

In [13]: from RandomArray import *

In [14]: x = random((20,))

In [15]: x[0]
Out[15]: 0.0037765550990622415

In [16]: x[1]
Out[16]: 0.55916408054947242

In [17]: x[19]
Out[17]: 0.36556442411289364

64 CHAPTER 5. CORRELATION

Let’s make it larger – 1000. With 1000 values, we can start to see

the shape of the distribution from the histogram (Figure 5.3). All values

between 0.0 and 1.0 are equally likely. The distribution has a few bumps,

but overall, it’s flat.

In [12]: x=random((1000,))

In [13]: hist(x)
Out[13]:
([90, 96,126,107, 94, 95, 77,114,111, 90,],

[2.08577149e-004, 1.00040727e-001, 1.99872877e-001, 2. 99705027e-001,
3.99537176e-001, 4.99369326e-001, 5.99201476e-001, 6.9 9033626e-001,
7.98865776e-001, 8.98697926e-001,],

<a list of 10 Patch objects>)

In [14]: savefig("uniform_hist.eps")

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

120

140

Figure 5.3: Uniform distribution

Okay – now x is 1000 random values. Let’s make y two times each

value of x. Can correlation still tell that these are similar values?

In [16]: y = x * 2

In [17]: correlation(x,y)
Out[17]: 1.0

5.3. BUT DO WE BELIEVE IT? 65

Yes, a correlation statistic can still note a strong relationship.

But those are uniform values. Most values in the real world are nor-

mal–they have a mean value that is really common, and other values are

much less common. We can generate that from RandomArray , too, using

the standard normal function which assumes a mean of 0.0 and a standard

deviation of 1.0.

In [19]: x = standard_normal((1000,))

In [20]: hist(x)
Out[20]:
([7, 24, 56,143,210,255,180, 98, 22, 5,],

[-3.13742447,-2.52991383,-1.92240319,-1.31489255,-0 .70738192,-0.09987128,
0.50763936, 1.11515 , 1.72266064, 2.33017128,],

<a list of 10 Patch objects>)

In [21]: savefig("normal_hist.eps")

Now, if we look at the distribution of these 1000 values, we see a very

different shape. There’s clearly a bump in the middle at the average, and

other values are less common (Figure 5.4).

-4 -3 -2 -1 0 1 2 3
0

50

100

150

200

250

300

Figure 5.4: Normal distribution

Cool – so now let’s see if correlation can help us identify a relationship

with normal values.

In [23]: y = 2 * x

In [24]: correlation(x,y)
Out[24]: 1.0

66 CHAPTER 5. CORRELATION

Yup – it still saw the strong positive correlation.

Let’s try one last trick. Basically, what we have been exploring is where

the y values are a simple factor (multiplication by two) from x. What if

there is some other factor at play? What if the y values remembered the

last value of y? y0 is just 2x0. But y1 is 2x1 + y1, and y2 is 2x2 + y1. If

there’s any other factor at play, even a very simple model of memory, can

correlation detect that?

In [25]: memory = 0

In [26]: for i in range(0,1000):
....: y[i] = (2 * x[i]) + memory
....: memory = y[i]
....:

In [27]: correlation(x,y)
Out[27]: 0.035369277425458617

The answer seems to be no. Correlation no longer returns a strong

r value, even when the y values are completely defined by the x values.

This points out the weakness of correlation–which is also a strength. Cor-

relation can’t pick out complex relationships. It has to be a simple linear

relationship or correlation won’t see the relationship. On the other hand, if

you do find a significant r, you can be pretty darn sure that you do have two

related data sets. If you don’t find a significant r, it doesn’t mean that the

values aren’t somehow related–it just means that any relationship that’s

there is more complex than simply linear.

6 Text Analysis

One of the techniques used in Freakonomics [Levitt and Dubner, 2005] that

is unusual for economists (and other social scientists, for that matter) is

textual analysis. Levitt and Dubner analyze text strings of answers from

students’ standardized exams to find cheating teachers in one chapter, and

they analyze baby names much later in the book. Computers are abso-

lutely fantastic at textual analysis. We’ll only use a couple of techniques

in this chapter (enough to do some of what’s in Freakonomics), but as you’ll

see, it’s amazingly easy to do some really interesting textual analysis.

6.1 Visualizing textual differences: Bacon v.

Shakespeare

As you may know, scholars for years have questioned whether Shake-

speare really did write the works that he is said to have authored. (See

http://www.urbana.k12.oh.us/699/oh/authorship\%20co ntroversy.
html for a nice summary of the controversy.) Here he was, the son of two

illiterate parents with little formal education. Who would believe him to

be the greatest English playwright?

One of the earliest authors thought to have penned Shakespeare’s works

was Francis Bacon. Bacon was a much more likely candidate–well-educated,

well-spoken, a well-known writer.

We’re not going to come up with anything novel that others haven’t

tried, but it’s a fun context for trying out some interesting techniques. Our

strategy will be to find something that correlates highly between two Ba-

con texts and between two Shakespeare texts, and then correlates highly

between the Bacon and Shakespeare texts but not other authors’ texts.

Fortunately, Project Gutenberg1 has tons of free books on-line. I grabbed

The Advancement of Learning by Francis Bacon and The Essays of Francis

Bacon, and then I grabbed Macbeth and Romeo and Juliet.

1http://www.gutenberg.org

67

68 CHAPTER 6. TEXT ANALYSIS

Visualizing the ‘the’

Here’s a stupid but fun hypothesis: Authors use a similar number of the

instances of the word ’the’ in a similar way. It’s silly, but easy to check.

We’re going to start checking by simply visualizing the ‘the’s.

Reading the file is easy–we use open, read, close. The find method will

find a given string. Even more powerful is replace that will replace all

instances of one string with another one.

In [31]: file=open("essays-bacon.txt","rt")

In [32]: text=file.read()

In [33]: file.close()

In [34]: pat=" the "

In [35]: text.find(pat)
Out[35]: 137

In [36]: text[125:145]
Out[36]: ’ing all over the wor’

In [37]: text.replace(pat," * "+pat+" * ")
Out[37]:

In [38]: text[125:150] #NO CHANGE!
Out[38]: ’ing all over the world, b’

In [42]: "ababab".replace("a","z") #RETURNS the change
Out[42]: ’zbzbzb’

In [43]: newtext=text.replace(pat," * "+pat+" * ")

In [44]: newtext[125:150] #There’s the change!
Out[44]: ’ing all over * the * world,’

So here’s what we’re going to do. We’re going to create a file viztext.py
and give it a highlight method that copies the text file to HTML. The HTML

will reduce the font to its lowest possible size, and make the background

black. Then we’ll make the pattern (the word ‘the’) red to make it stand

out. Visually, we’ll be able to scan to see patterns of the word pattern we

care about.

def highl ight (basename , pattern) :

f i l e = open (basename+” . txt ” , ” rt ”)

text= f i l e . read ()

6.1. VISUALIZING TEXTUAL DIFFERENCES: BACON V.

SHAKESPEARE 69

f i l e . c l os e ()

Now make the new one

newpat = ’ ’+pattern+ ’ </ font> ’

html = open (basename+” . html ” , ”wt”)

html . write (”<html><t i t l e>”+basename+”</ t i t l e >\n”)

html . write (’<body bgcolor =” white”> ’)

html . write (””)

newtext=text . replace (pattern , newpat)

html . write (newtext)

html . write (”</body>”)

html . c l os e ()

At first I tried it against a white background (Figure 6.1), but found

that it wasn’t very powerful. The red text pattern didn’t stand out as much

as against a black background (Figure 6.2).

Figure 6.1: Francis Bacon’s essays with white background, ’the’ high-

lighted

70 CHAPTER 6. TEXT ANALYSIS

In [53]: reload(viztext)
Out[53]: <module ’viztext’ from ’viztext.py’>

In [54]: viztext.highlight("essays-bacon"," the ")

def highl ight (basename , pattern) :

f i l e = open (basename+” . txt ” , ” rt ”)

text= f i l e . read ()

f i l e . c l os e ()

Now make the new one

newpat = ’ ’ +pattern+ ’ </ font> ’

html = open (basename+” . html ” , ”wt”)

html . write (”<html><t i t l e>”+basename+”</ t i t l e >\n”)

html . write (’<body bgcolor =” black”> ’)

html . write (””)

newtext=text . replace (pattern , newpat)

html . write (newtext)

html . write (”</body>”)

html . c l os e ()

The obvious next thing to do is to process both the Essays and Macbeth

to compare the visualizations (Figure 6.3). As one might anticipate for a

fairly simple and stupid hypothesis – I don’t see anything there, do you?

In [54]: viztext.highlight("essays-bacon"," the ")

In [55]: viztext.highlight("macbeth-shakespeare"," the ")

Visualizing the Proper Nouns: Using Regular Expressions

So let’s consider a different hypothesis: That a unique characteristic of an

author is the number of capitalized words that they use. That indicates

the number of sentences, but also indicates the number of proper nouns

(e.g., names of things) that are used. Perhaps that’s a determining factor?

To locate capitalized words, we need something a bit stronger than a

text pattern to search for. Computer scientists use regular expressions to

describe patterns of words, not just specific words. This allows for signifi-

cant flexibility in exploring text. Think of regular expressions as being like

mathematical expressions, in that there are constants and operators, but

we’re describing patterns of letters, not patterns of numbers.

The name of the package that knows about regular expressions in Python

is re. You import it to use it.

In [3]: import re

In [4]: string = "This is my name: Mark Guzdial. I live in Decat ur."

6.1. VISUALIZING TEXTUAL DIFFERENCES: BACON V.

SHAKESPEARE 71

Figure 6.2: Francis Bacon’s essays with black background, ’the’ high-

lighted

The match method takes a regular expression and a string as input,

then returns a match object that describes the match, or literally None if

no match is found. The most common uses of the match object is to get the

start position and the end position of the match.

Rules for matches

Here are how regular expressions are constructed.

• Any regular character matches only the same regular character. ’M’

matches only to ’M’, and ’ a’ matches only to the letter ’a’.

In [5]: matchobject=re.search("Mark",string)

In [6]: print matchobject.start()

72 CHAPTER 6. TEXT ANALYSIS

Figure 6.3: Comparing ’the’ patterns in Bacon’s Essays and Shakespeare’s

Macbeth

17

In [7]: print matchobject.end()
21

In [8]: string[17:21]
Out[8]: ’Mark’

• A period matches anything.

• A ∗ says ”repeat zero or more times whatever came before me.” The

below example looks for a match that starts with a lowercase ‘m’

6.1. VISUALIZING TEXTUAL DIFFERENCES: BACON V.

SHAKESPEARE 73

and then is followed by any number of characters–which, of course,

matches everything else in the string.

In [9]: matchobject=re.search("m. * ",string)

In [10]: print string[matchobject.start():matchobject. end()]
my name: Mark Guzdial. I live in Decatur.

Again, if the match doesn’t work, you get a None that doesn’t under-

stand start nor end

In [11]: matchobject=re.search("m. * \b",string)

In [12]: print string[matchobject.start():matchobject. end()]
--- ------------------------
exceptions.AttributeError Traceback (most recent call

last)

C:\Documents and Settings\Mark Guzdial\My Documents\Wor k\CompFreak\<console>

AttributeError: ’NoneType’ object has no attribute ’start ’

• Putting an ”r” before a string treats it as raw mode and backslashes

don’t get interpreted by Python. A b is supposed to find word bound-

aries.

In [13]: matchobject=re.search(r"m. * \b",string)

In [14]: print matchobject
<_sre.SRE_Match object at 0x00CC7218>

In [15]: print string[matchobject.start():matchobject. end()]
my name: Mark Guzdial. I live in Decatur

• The code S means “anything that isn’t whitespace (tab, return, space.”

The s means whitespace. So the below code looks for a word that

starts with “m” and has any number of characters before a whites-

pace character.

In [18]: matchobject=re.search(r"m\S * \s",string)

In [19]: print string[matchobject.start():matchobject. end()]
my

74 CHAPTER 6. TEXT ANALYSIS

• Character classes are in square brackets. [A−Z] only matches a single

uppercase character. [a−zA−Z] matches any character of any case.

The below test looks for an uppercase character at the beginning of a

word, followed by any number of any kinds of letters, but only letters.

In [3]: match = re.search(r"\b[A-Z][a-zA-Z] * ",string)

In [4]: print match.start()
0

In [5]: print match.end()
4

In [6]: print string[match.start():match.end()]
This

• The character + is like ∗, but + insists that there must be at least one

of what it matches.

There are many other parts of regular expressions, but that’s enough

to get started.

Finding Capitalized Words

There are a couple more methods besides search that can be useful in regu-

lar expression processing. The first is called split. Given a regular expres-

sion and a string, it returns a sequence of substrings of everything that

does not match the pattern.

In [13]: chopped = re.split(r"\b[A-Z][a-zA-Z] * ",string)

In [14]: chopped[0]
Out[14]: ’’

In [15]: chopped[1]
Out[15]: ’ is my name: ’

In [16]: chopped[2]
Out[16]: ’ ’

In [17]: chopped[3]
Out[17]: ’. ’

Any regular expression in parentheses is grouped. We can later refer

to those groupings as 1, 2, and so on here. We can use that with sub which

substitutes one pattern with another in a given string.

6.1. VISUALIZING TEXTUAL DIFFERENCES: BACON V.

SHAKESPEARE 75

Here, we use our capitalization pattern to wrap red font coloring around

capitalized words.

In [24]: newtext = re.sub(r"(\b[A-Z][a-zA-Z] *)",r’\1’,str
ing)
In [25]: newtext
Out[25]: ’This is my name: Mark <f
ont color=red>Guzdial. I live in D
ecatur.’

Using our newfound capability to replace patterns, we can expand our

viztext.py tool to highlight capitals. (Note the import re at the top.)

import re

def highl ight (basename , pattern) :

f i l e = open (basename+” . txt ” , ” rt ”)

text= f i l e . read ()

f i l e . c l os e ()

Now make the new one

newpat = ’ ’+pattern+ ’ </ font> ’

html = open (basename+” . html ” , ”wt”)

html . write (”<html><t i t l e>”+basename+”</ t i t l e >\n”)

html . write (’<body bgcolor =” black”> ’)

html . write (””)

newtext=text . replace (pattern , newpat)

html . write (newtext)

html . write (”</body>”)

html . c l os e ()

def highl ightCapi tals (basename) :

f i l e = open (basename+” . txt ” , ” rt ”)

text= f i l e . read ()

f i l e . c l os e ()

Now make the new one

html = open (basename+” . html ” , ”wt”)

html . write (”<html><t i t l e>”+basename+”</ t i t l e >\n”)

html . write (’<body bgcolor =” black”> ’)

html . write (””)

newtext=re . sub (r ” (\b [A−Z] [a−zA−Z] ∗) ” , r ’\1</ font> ’ , text)

html . write (newtext)

html . write (”</body>”)

html . c l os e ()

It’s pretty easy to use, and the result is more interesting than all the

‘the’s (Figure 6.4).

In [26]: import viztext

In [27]: viztext.highlightCapitals("essays-bacon")

76 CHAPTER 6. TEXT ANALYSIS

Figure 6.4: Visualization of all capitalized letters in the Essays of Francis

Bacon

6.2 Counting Text Patterns

While the visualizations are fun, I doubt that we’re going to see any partic-

ularly interesting patterns that way. We’re going to need to leverage some

numeric capability.

Counting our ’the’s

The split method that we saw earlier for regular expressions also exists

for normal strings, and is pretty darn useful. It breaks up a string into a

sequence of substrings, using the provided character as the separator. The

below example looks for spaces to break up words.

In [31]: string Out[31]: ’This is my name: Mark Guzdial. I liv e in
Decatur.’

In [32]: string.split(r’ ’)
Out[32]: [’This’,

’is’,
’my’,
’name:’,
’Mark’,
’Guzdial.’,
’I’,
’live’,
’in’,
’Decatur.’]

6.2. COUNTING TEXT PATTERNS 77

There are 10 strings in the output sequence. That means that there

were 9 spaces in the original string.

Let’s use this to split the text into paragraphs, by looking for two re-

turns (string ’n’) in a row. Then, let’s count the “the”s in each paragraph.

Fortunately, there’s a great string method count that does just that.

def countText (basename , pattern) :

f i l e = open (basename+” . txt ” , ” rt ”)

text= f i l e . read ()

f i l e . c l os e ()

Break i t up by paragraphs

newtext=text . s p l i t (’ \n\n ’) #Two returns = paragraph

Now, count the number of ’ the ’ s in the paragraph

ret = []

for s in newtext :

ret . append (s . count (pattern))

return ret

Now, let’s try it.

In [44]: import counttext

In [45]: essaysThe = counttext.countText("essays-bacon" ," the ")

In [46]: len(essaysThe)
Out[46]: 508

In [47]: essaysThe[0:10] #What do the answers look like?
Out[47]: [0, 1, 2, 0, 0, 0, 0, 0, 0, 0]

In [48]: advThe = counttext.countText
("advancement-learning-bacon"," the ")

In [50]: romeoThe = counttext.countText
("romeo-juliet-shakespeare"," the ")

In [51]: macbethThe = counttext.countText
("macbeth-shakespeare"," the ")

In [52]: len(romeoThe)
Out[52]: 287

In [53]: len(macbethThe)
Out[53]: 271

In [54]: len(advThe)
Out[54]: 597

78 CHAPTER 6. TEXT ANALYSIS

In [55]: len(essaysThe)
Out[55]: 508

Unfortunately, there are different number of paragraphs in each sam-

ple text. So, we’ll do a correlation just the first 200 paragraphs. The an-

swer is pretty abysmal. Counting the “the”s doesn’t seem to be a useful

metric.

In [56]: from correlation import *

In [57]: correlation(romeoThe[0:200],macbethThe[0:200])
Out[57]: 0.039670370779755854

In [58]: correlation(advThe[0:200],essaysThe[0:200])
Out[58]: -0.0085796837192241779

Counting Capitals

Let’s try our second hypothesis, counting the number of capitalized let-

ters. To get the number of capital words in each paragraph, we’ll generate

the re. split of each paragraph, then count the number of match objects

returned. One less than that will be the number of capitals.

def countCapitals (basename) :

f i l e = open (basename+” . txt ” , ” rt ”)

text= f i l e . read ()

f i l e . c l os e ()

Break i t up by paragraphs

newtext=text . s p l i t (’ \n\n ’)

Count the cap i ta l s

ret = []

for para in newtext :

match = re . s p l i t (r ”\b [A−Z] [a−zA−z]∗ ” , para)

ret . append (len (match)−1)

return ret

Now let’s try it.

In [61]: advCap = counttext.countCapitals("essays-bacon ")

In [62]: len(advCap)
Out[62]: 508

In [63]: advCap[0:10]
Out[63]: [9, 1, 3, 9, 8, 7, 5, 1, 2, 4]

In [64]: essaysCap = counttext.countCapitals("advanceme nt-learning-bacon")

6.2. COUNTING TEXT PATTERNS 79

In [65]: romeoCap = counttext.countCapitals("romeo-juli et-shakespeare")

In [66]: macbethCap = counttext.countCapitals("macbeth- shakespeare")

In [67]: correlation(advCap[0:200],essaysCap[0:200])
Out[67]: -0.10076023917690945

In [68]: correlation(romeoCap[0:200],macbethCap[0:200])
Out[68]: 0.016919364776092155

Eww – that correlation isn’t very good either. Good thing we’re not

Shakespearean scholars. . .

7 Inferential Statistics and

Hypothesis Testing

In our text analysis, we ran against the problem of having to compare

sequences of numbers that weren’t paired. Correlations were really the

wrong things to use there. We had no reason to believe that paragraph-

by-paragraph, our metrics (counting “the”s and capitalized words) would

change in-step.

What we really wanted to ask was if the sets were different, not in lock-

step. What do we mean by different? Well, are there means different? Are

the averages of each set significantly different? That’s what we’re going to

test in this chapter.

7.1 Inferential Statistics

The important thing to remember is that inferential statistics constitutes

a set of tools for inferring something from a particular sample to larger

populations. Basically we are asking how the statistics of a sample (that

is, the mean and standard deviation) match the parameters (the actual

mean and standard deviation) of the entire population. The purpose of

inferential statistics is to estimate these population parameters. To un-

derstand the logic of inferential statistics, we need to consider the topic of

probability.

Probability

When we do an experiment, we know that there is a possibility that the

results of the experiment could have come out differently if we had per-

formed the same experiment several times. Maybe when we took a sample,

we happened to get just the weird ones. Maybe when we ran the experi-

ment, there was a cold front coming in which screwed up the experiment.

How would we know?

How do we assess the possibility that we simply grabbed an oddball

sample? In empirical research, we usually do this by assuming that the

study was run many times and try to guess how the results would have

81

82

CHAPTER 7. INFERENTIAL STATISTICS AND HYPOTHESIS

TESTING

come out each time. This helps us to understand the results of a particular

study.

In a study looking at children’s facial expressions, the researcher[Cole, 1986],

found that preschool girls aged 3 to 4 displayed more negative facial ex-

pressions when the experimenter was no present than when the experi-

menter was present. Included in Cole’s report were the means and stan-

dard deviations for the frequencies of various types of facial expressions as

well as statistic statements that compared one type of expression with an-

other (e.g., positive versus negative emotions) in various conditions (e.g.,

with and without the experimenter present). Included in these statistical

statements were probability estimates of the form p < .001.

The statement p < .001 means that if a large number of similar ex-

periments were conducted, we would expect to replicate these results by

chance alone less than 1 time in 1000. That is, we would expect, without

using the experimental manipulation, to get these results 1 time in 1000.

In making such a statement we create a degree of certainty on which to

rest our conclusions concerning particular experimental results.

Because an understanding of probability is at the heart of all of this,

it is important to have some understanding of its origins and theoretical

basis. Questions of probability date back thousands of years. As you might

guess, much of what we know about probability came about because some

people wanted to make games of chance less chancy for themselves. Roman

author Cicero (106–43 BC) tried to understand how one should interpret

the event in which four dice were thrown and all came up the same. Was

this an act of the gods or a rare event of chance?

It might also interest you to know that making better beer was one

of the practical problems that led to the development of one popular sta-

tistical technique, the calculation of Student’s t. Actually it was William

Gosset who wrote under the name “Student.” He worked for the Guin-

ness Brewery in Dublin and asked what could be inferred about an entire

batch of beer from sampling a small portion of it. In other words, what is

the probability that this particular sample is similar to the entire batch?

To answer that question, you need to have some idea about what is an

expected distribution of statistics of the population overall.

Normal Distribution

Suppose we flip 10 coins all at once. Each coin could land in one of two

possible states, heads or tails1. There are 1024 (210) possible outcomes

if we consider each coin unique, but we can collapse the outcomes into

11 outcome categories (by ignoring which particular coins are heads and

which particular coins are tails). We can see this graphed (Figure 7.1) and

see the probabilities for some of the outcomes (Figure 7.2), generated by

1We’ll ignore the very rare probability of a coin falling on its edge

7.1. INFERENTIAL STATISTICS 83

asking WolframAlpha2 about “flip 10 coins”.

Figure 7.1: Probability of each outcome for flipping 10 coins (computed by

Wolfram-Alpha)

Figure 7.2: Probabilities for flipping 10 coins (computed by Wolfram-

Alpha)

Now, suppose we did this 1000 times. No, let’s simulate doing this 1000

times.

2http://www.wolframalpha.com

84

CHAPTER 7. INFERENTIAL STATISTICS AND HYPOTHESIS

TESTING

There is a pylab function named random which returns a random value

between 0 and 1, all values equally likely.

>>> from pylab import ∗
>>> random ()

0.1337721937015831

>>> random ()

0.46023620061907944

>>> random ()

0.1762070339523374

So we can call random(), and if we get less than 0.5, call that a ’head.’

Otherwise, it’s a ’tail.’ We can do 10 of those, and count the number of

heads. And we can do 1000 flips of 10 coins, and count how often that

many heads comes up. Then generate a graph of all those values. Here’s

what we get (Figure 7.3):

from pylab import ∗

def f l i p () :

coin = random ()

i f coin < 0 . 5 :

return ’ heads ’

else :

return ’ t a i l s ’

def f l i p1 0 () :

heads = 0

for times in range (1 0) :

i f f l i p () == ’ heads ’ :

heads = heads + 1

return heads

def times1000 () :

Create a dict ionary to s tore our d i s t r ib u t i on

d i s t r = {}

1000 times , f l i p 10 coins

Store the number of times THAT many heads comes up

for times in range (1 0 0 0) :

numheads = f l i p1 0 ()

i f numheads in d i s t r :

I f we ’ ve seen th i s count before , add 1

d i s t r [numheads] = d i s t r [numheads] + 1

else :

I f not , i t ’ s our f i r s t one

d i s t r [numheads] = 1

return d i s t r

7.1. INFERENTIAL STATISTICS 85

t r i a l s = times1000 ()

p lot (t r i a l s . keys () , t r i a l s . values ())

x label (”Number of heads”)

y label (”How many times that many heads was seen ”)

show ()

0 2 4 6 8 10
Number of heads

0

50

100

150

200

250

H
o
w

 m
a
n
y
 t

im
e
s

th
a
t

m
a
n
y
 h

e
a
d
s

w
a
s

se
e
n

Figure 7.3: Graph of 1000 trials of flipping 10 coins

The curve that we see in Figure 7.3 approximates a normal curve. It’s

the bell-shaped curve that you so often see when looking at statistics like

curves, grades, and SAT scores. It’s the curve that results from a normal

distribution.

Let’s assume that SAT scores constitute a normal curve. You would

know that about 68% of all students taking the SAT get a score that falls

within 1 standard deviation (SD) in each direction from the mean. That is

part of the definition of a normal curve. We could also say for any person

randomly chosen that there is a 68% chance that he or she would have an

SAT score within 1 SD of the mean. More than 95% of all students fall

within 2 SDs of the mean (considering both directions).

Let’s move now from talking about a distribution of individual scores

to a distribution of means. Suppose we had available to us all the SAT

scores for a given year (i.e., we had the population of scores). Keep in mind

it is virtually never the case that we have the population of scores for the

variables we wish to measure. Suppose we took a random sample of scores

from that population and got the mean from that sample. Suppose we did

this over and over again.

Now suppose we graph each sample mean that we have obtained. What

do you think the resulting curve would look like? Most likely, it would be

a normal curve. This finding is based on what is technically called the

central limit theorem and it lies at the heart of inferential statistics. The

86

CHAPTER 7. INFERENTIAL STATISTICS AND HYPOTHESIS

TESTING

central limit theorem states that if a number of samples are drawn from a

population at random, then the means of the samples tend to be normally

distributed.

What do you think would happen if the size of each sample was large

vs. very large? The larger the number of people in each sample, the less

variability there will be in the means. If this were represented graphically,

the bell-shaped curve would be skinny if the sample sizes were large but

broad at the bottom if the sample sizes were small. This is because if you

had only a few people in each of your many, many samples, an extreme

score from any person would have more influence on the mean. Thus,

when you plot your means, you would expect more variability in the scores

than if you had many people in each of your many, many samples.

This is an important idea that lies at the heart of determining the prob-

ability levels of such statistics as the t test and analysis of variance. Since

the central limit theorem tells us that the population’s statistic tend to be

normally distributed, our sample is drawn from a normal distribution.

Standard Error of the Mean

We can find the mean of all our sample means and the standard deviation

(SD) of all our sample means. The SD of all our sample means has a special

name: the standard error of the mean. The term error here means the

difference between our estimate and the true value. We can’t know the

true value, but we can estimate how far off our sample is.

If we had just one sample of students who took the SAT, what would be

the best guess regarding the mean of all students who took the SAT test?

We would want to guess the most common value. Our best guess would be

the mean of our sample. So if you ran the experiment several times (took

several samples of SAT students), you would get different means from each

sample, but all of those means would likely be near the actual population

mean.

We can also estimate how far off we might be with this sample mean

from where the population mean would be. To do this we estimate the

standard error of the sample mean using the data from our sample. First,

we compute the SD of our sample.

Standard Error of the Mean =

SE =
SD√

numberofvalues

As the number of values increases (so the size of the sample gets closer

to the size of the population), the standard error gets smaller. Notice that

the standard error of the mean is smaller than the standard deviation.

This means that if you took a sample several times, and took the mean of

each sample, the distribution of those means would be smaller than the

standard deviation of the sample or the population.

7.1. INFERENTIAL STATISTICS 87

For instance, if our sample of scores had a mean of 505 and a SD of 100,

and we had data from 900 people, then:

SE =
100√
900

=
100

30
= 3.33

Because the central limit theorem says that the sampling distribution

is normally distributed, we can now make the following claims:

• If we repeated our experiment multiple times (which for pragmatic

reasons we usually can not do), about 68% of the means obtained

would be within 1 SE of our obtained mean (505 3.33) and that about

95% of all sample means would be within 2 SEs (505 6.66)

• Or, to put it another way, in probability terms, that we are more than

95% confident that the population mean is between 498.34 (505-6.66)

and 511.66 (505+6.66).

Figuring out Standard Error

Where did that SE formula come from? Let’s say that we had a sam-

ple of numbers (x1...xn) from a population, a total of all those numbers

(Totalsample). Imagine that we really could figure out the population’s

mean (meanpop) and the population’s standard deviation (SDpop). We

would expect that the variance in our sample total Totalsample would be n
times the population standard deviation squared ((SDpop)

2). The expected

variance of Totalsample/n (meansample) is
(SDpop)

2

n , and the standard de-

viation of Totalsample/n is SDpop/
√
n.

Let’s try to figure this out concretely. There is a random module as part

of standard Python that knows how to take a sample. In the below example,

I made up a set of integers as a “population” then took a set of three values

as a sample. The values 2 and 3 showed up often, since they were doubled

up in the population, but these are random selections of three values.

>>> from random import ∗
>>> population = [1 ,2 ,2 ,3 ,6 , −1 ,3 ,4]

>>> sample (population , 3)

[3 , 2 , 3]

>>> sample (population , 3)

[3 , 2 , 2]

>>> sample (population , 3)

[3 , 2 , 3]

>>> sample (population , 3)

[2 , 4 , −1]

>>> sample (population , 3)

[2 , 2 , 6]

Here is some code that:

• Defines mean,stdev, and stderr.

88

CHAPTER 7. INFERENTIAL STATISTICS AND HYPOTHESIS

TESTING

• Creates a population of 100 random numbers between 0 and 1000.

• Figures out the “unknowable” true population means and standard

deviation.

• Then takes four samples, two of size 10 and two of size 20. We com-

pute the mean, standard deviation, and standard error for each sam-

ple.

• We also predict the distribution of sample means.

import random

from pylab import sqrt

def mean(sequence) :

return (1 .0∗sum(sequence)) / len (sequence)

def stdev (x , xbar) :

sums = 0

for num in x :

sums = sums + pow(xbar−num, 2)

return sqrt (sums / len (x))

def stderr (x) :

return stdev (x ,mean(x)) / sqrt (len (x))

#Our population wil l be a random 100 values from 0. .1000

population = random . sample (range (1000) ,100)

print ”Our unknowable actual population values : ”

print ”Mean of population ” ,mean(population)

print ” Standard deviation of population ” , stdev (population ,mean(population))

print ” ∗∗∗ Now, some samples : ”

print ”= Samples of 10 =”

for t r i a l in range (2) :

somesample = random . sample (population ,1 0)

print ” Small Tria l #” , t r i a l +1

print ”Sample : ” , somesample

trialmean = mean(somesample)

trialSE = stderr (somesample)

print ”Mean: ” , trialmean

print ” Standard deviation ” , stdev (somesample ,mean(somesample))

print ” Standard error ” , trialSE

print ”68% of means should be between : ” , trialmean−trialSE , ” and ” , trialmean+trial

print

print ”= Samples of 20 =”

for t r i a l in range (2) :

somesample = random . sample (population ,2 0)

print ” Larger Tria l #” , t r i a l +1

7.1. INFERENTIAL STATISTICS 89

print ”Sample : ” , somesample

trialmean = mean(somesample)

trialSE = stderr (somesample)

print ”Mean: ” , trialmean

print ” Standard deviation ” , stdev (somesample ,mean(somesample))

print ” Standard error ” , trialSE

print ”68% of means should be between : ” , trialmean−trialSE , ” and ” , trialmean+trialSE

print

It’s as if we ran four experiments. You see in the execution below that

the standard error decreases with the larger sample size. The means and

standard deviations are closer to the population mean with the larger sam-

ple size.

Our unknowable actual population values:
Mean of population 482.5
Standard deviation of population 274.486338458

*** Now, some samples:
= Samples of 10 =
Small Trial # 1
Sample: [806, 483, 772, 895, 369, 687, 472, 187, 229, 830]
Mean: 573.0
Standard deviation 245.737258062
Standard error 77.7089441442
68% of means should be between: 495.291055856 and 650.70894 4144

Small Trial # 2
Sample: [142, 651, 883, 129, 165, 494, 466, 340, 439, 748]
Mean: 445.7
Standard deviation 246.992327816
Standard error 78.1058320486
68% of means should be between: 367.594167951 and 523.80583 2049

= Samples of 20 =
Larger Trial # 1
Sample: [91, 502, 806, 427, 687, 209, 722, 703, 466, 519, 682, 547, 472, 369, 593, 115, 147, 439,
Mean: 512.1
Standard deviation 233.740219047
Standard error 52.2659018864
68% of means should be between: 459.834098114 and 564.36590 1886

Larger Trial # 2
Sample: [330, 602, 494, 382, 472, 707, 806, 883, 583, 370, 658 , 659, 176, 333, 924, 136, 428,
Mean: 524.0
Standard deviation 241.536539679
Standard error 54.0092121772
68% of means should be between: 469.990787823 and 578.00921 2177

90

CHAPTER 7. INFERENTIAL STATISTICS AND HYPOTHESIS

TESTING

7.2 Hypothesis Testing

Just to remind you, when we are referring to the statistical term popula-

tion, we mean we are talking about all possible individuals (or all possible

samples). Suppose you claim that the students in your class scored higher

on the SAT than students around the country. You are essentially claiming

that the students in your class are a sample from a population (the popu-

lation of high-scoring students) that is different from the population of all

students taking the SAT.

First we form the null hypothesis. The null hypothesis states that there

is just a single population and therefore the mean of your sample is the

mean of the population. If the null hypothesis can not be rejected then we

can not claim that your class comes from a different population (e.g., the

population of high scoring students).

On the other hand, what if we can reject the null hypothesis? That

is, we support the alternative hypothesis. If the null hypothesis can be

rejected, then we make a statistical statement concerning the null hypoth-

esis, namely that if both means come from the same population, then the

probability of chance explaining the difference between the sample and the

population means is quite low.

Assume the mean of your class was 750 on the math SAT while the

mean of all people taking the math SAT is 500. The probability of find-

ing a mean of 750 in a random sample drawn from the population of all

people taking the test would be low, but it would be possible. We might

say that the sample mean of 750 cold have been drawn from a population

with a mean of 500 less than 1 time in 1000. Thus, if we found a sample

mean of 750 we would reject the null hypothesis in favor of the alternative

hypothesis.

Typically we do not have a population mean to compare to a sample

mean. What we usually have are two (or more) sample means to com-

pare to each other. Each sample mean is used to estimate the mean of a

population. The question is whether the two means represent the same

population or different populations. So, when we use inferential statistics,

we are not asking whether Group 1 is different from Group 2 but whether

the two groups come from the same population.

T Test

If we have two samples (think x1...xn and y1...yn), that may or may not

come from the same population, how can you tell? You can never know for

sure, but you can run a statistical test called a Student t test that will tell

you the probability that these two samples are from the same population,

but you got a bad set of samples. Maybe you happened to get samples

from two different ends of the distribution, so the means and standard

deviations look very different, but they’re not really. You can’t know that

for sure, but you can figure out the probability that you got bad data. If

7.2. HYPOTHESIS TESTING 91

that probability is small enough, we believe that they probably are from

different populations.

Let’s do an example of a t test. A car manufacturer that makes a car

called the Jupiter just came out with a new model, the Jupiter XL. Some of

the modifications made to the car are expected to improve the mpg (miles

per gallon) rating of the car while other modifications are not. The man-

ufacturer has hired your firm, an independent consumer research firm, to

test the new model. To determine if there is any difference between the

mpg rating of the old and new models, you collect a random sample of 5

cars of the old model and 6 cars of the new model. You drive the cars along

the same city route and record the average mpg rating of each car. Here

are the data:

Old Model New Model

Car MPG Car MPG

1 30 1 37

2 34 2 36

3 34 3 40

4 29 4 36

5 33 5 34

6 33

Step 1: Formulate the hypotheses

When you run a t test, you are comparing two hypotheses. The symbol µ
represents the true mean of the population.

• H0 : µ1 = µ2 This hypothesis states that the true mean MPG rating

of the old model is equal to the true mean MPG rating of the new

model.

• H1 : µ1 6= µ2 This hypothesis states that the true mean MPG rating

of the old model is not equal to the true mean MPG rating of the

new model.

The point of the t test is to choose between these.

Calculate the test statistic

Before you can calculate the t test, you have to calculate the following

values from the sample data.

Compute the Sample Mean for Group 1 (old model)

Compute the Sample Mean for Group 2 (new model)

92

CHAPTER 7. INFERENTIAL STATISTICS AND HYPOTHESIS

TESTING

Compute the Sample Variance for Group 1 (old model)

Notice that the divisor is n− 1 because we are estimating a population

statistic rather than calculating something about the sample.

Compute the Sample Variance for Group 2 (new model)

Compute the Pooled Sample Variance

Compute the t statistic

Now that we have a value of −2.74, how do we figure out whether it

represents a significant difference between the groups (by which we really

mean, are the groups drawn from different populations)? In order to do

this, we have to consider the issue of degrees of freedom. Degrees of free-

dom refers to the number of scores that are free to vary when you calculate

something.

As a example, imagine that you and two friends are eating out and you

are waiting for your order. One of you had ordered chicken salad on rye,

another has ordered a yogurt and fruit cup, and the third has ordered pas-

trami on white bread. The waiter comes with the food but he has forgotten

who ordered what. From his standpoint he has a number of degrees of

freedom in that he can place the dishes in any of several different com-

binations. However, if you were to remind him that you ordered chicken

salad and the friend of your right the yogurt and fruit cup, this would limit

7.2. HYPOTHESIS TESTING 93

his degrees of freedom. Once you had fixed in place the order for two of the

three selections, the third was determined and not free to vary.

The same is true with numbers. What is someone asked you to pick

three numbers that added up to 20 and each number had to be 9 or less.

You could pick any number you wanted for the first number; say you pick

7. You could also pick any number you wished for the second; say you pick

8. However, once you picked the first two numbers, the third number could

be only one number; in this example it must be 5. Thus, the general idea

in degrees of freedom reflects how many scores are free to vary.

So, getting back to the t test, once we have calculated the t statistic, the

next step is to look up this value of t in a t table. The degrees of freedom

in our experiment is the (n of Group 1) plus (the n of Group 2) - 1. So,

5 + 6− 1 = 9.

Figure 7.4: t table from Wikipedia

Now we use a t table – see Figure 7.43.The degrees of freedom are listed

down the side of this table; across the top are listed the various probability

(p) levels for one- and two-tailed tests.

• A one-tailed test refers to a directional prediction, e.g., the MPG of

Group 2 (the new model cars) is greater than the MPG of Group 2

(the old model cars).

3Copied from http://en.wikipedia.org/wiki/Student’s_t-distributi on .

94

CHAPTER 7. INFERENTIAL STATISTICS AND HYPOTHESIS

TESTING

• A two-tailed test refers to a non-directional prediction, e.g., the MPG

of Groups 1 and 2 are different. The requirement for a two-tailed test

is roughly half the requirement for a one-tailed test.

We are making a non-directional prediction, so we look for 2.74 (ignore

the sign) next to 9 degrees of freedom. We see that the largest value for

which our t statistic is larger than is 2.262. Then we look up to the prob-

ability level. So, we can say that our result is significant at the .05 level.

By convention, a probability of .05 or less is considered statistically sig-

nificant. In formal notation we would write t(9) = −2.74, p < .05. This

means that if the car experiment were conducted a large number of times,

we would expect this result to occur by chance fewer than 5 in 100 times.

We say that we “reject the null (H0) hypothesis.”

7.3 Computing a Context: Elections and

Unemployment Rates

One of the claims of political pundits is that what the US people are voting

on in a presidential election is whether they’re doing better or worse than

they were four years previously. Let’s test that.

• In 1996, Clinton was re-elected over Dole – the American people

chose to stick with their party.

• In 2000, Bush won over Gore (even though Gore won the popular

vote). The American people switched parties. Were they better off

than they were 4 years previously?

• In 2004, Bush won over Kerry. The American people stuck with the

Republican party. Were they about the same as they were four years

previously?

I downloaded a data set from the US Bureau of Labor Statistics of US

Unemployment Data (one measure of “doing better”) over many years.

In [70]: import csvfile

In [71]: file = csvfile.CSVfile("USUnemploymentRate.csv "

In [72]: file.next()
Out[72]:
{’Annual’: ’’,

’Apr’: ’3.9’,
’Aug’: ’3.9’,
’Dec’: ’4’,
’Feb’: ’3.8’,
’Jan’: ’3.4’,
’Jul’: ’3.6’,

7.4. COMPUTING A T TEST 95

’Jun’: ’3.6’,
’Mar’: ’4’,
’May’: ’3.5’,
’Nov’: ’3.8’,
’Oct’: ’3.7’,
’Sep’: ’3.8’,
’Year’: ’1948’}

In [73]: file.next()
Out[73]:
{’Annual’: ’’,

’Apr’: ’5.3’,
’Aug’: ’6.8’,
’Dec’: ’6.6’,
’Feb’: ’4.7’,
’Jan’: ’4.3’,
’Jul’: ’6.7’,
’Jun’: ’6.2’,
’Mar’: ’5’,
’May’: ’6.1’,
’Nov’: ’6.4’,
’Oct’: ’7.9’,
’Sep’: ’6.6’,
’Year’: ’1949’}

Let’s use these data to compare 1996, 2000, and 2004. Were they really

different? Does the direction of difference match the election results?

7.4 Computing a t test

A t test tells us whether the averages of two sets are significantly different

or not. The hypothesis we’re testing is whether they’re the same (H0), or

different (H1).

Here’s the process for a t test computation.

• We need the averages (x̄1 and x̄2) of each group. We know how to do

that already.

• We need the variance (s21 and s22)of each group. We can chop that out

of our standard deviation function that we created earlier.

• We need the pooled sample variance. This is:

s2p =
(Ngroup1 − 1)s21 + (Ngroup2 − 1)s22

(N1 +N2)− 2
(7.1)

The overall t statistic is then:

96

CHAPTER 7. INFERENTIAL STATISTICS AND HYPOTHESIS

TESTING

x̄1 − x̄2
√

s2p(
1
N1

+ 1
N2

)
(7.2)

The degrees of freedom are N1 +N2 − 1.

How to do a t Test in Python

Here’s an implementation of all of that in Python.

def average (sequence) :

return (1 .0∗sum(sequence)) / len (sequence)

def variance (sequence) :

ave = average (sequence)

Compute the mean squared d i f f e r e n c e

d i f f s = 1.0

for num in sequence :

d i f f s = d i f f s + pow ((ave−num) , 2)

Compute the variance

variance = d i f f s / (len (sequence)−1)

return variance

def t t e s t (seq1 , seq2) :

x1 = average (seq1)

x2 = average (seq2)

s1 = variance (seq1)

s2 = variance (seq2)

n1 = len (seq1)

n2 = len (seq2)

pooleds = (((n1−1)∗s1) + ((n2−1)∗s2)) / ((n1+n2)−2)

t =(x1−x2) / pow(pooleds ∗ ((1 / n1) + (1 / n2)) , 0 . 5)

return t

And putting it all together, with reading our unemployment rates, we

get:

from pylab import ∗
import c s v f i l e

def average (sequence) :

return (1 .0∗sum(sequence)) / len (sequence)

def variance (sequence) :

ave = average (sequence)

Compute the mean squared d i f f e r e n c e

d i f f s = 1.0

for num in sequence :

d i f f s = d i f f s + pow ((ave−num) , 2)

Compute the variance

variance = d i f f s / (len (sequence)−1)

7.4. COMPUTING A T TEST 97

return variance

def t t e s t (seq1 , seq2) :

x1 = average (seq1)

x2 = average (seq2)

s1 = variance (seq1)

s2 = variance (seq2)

n1 = len (seq1)

n2 = len (seq2)

pooleds = (((n1−1)∗s1) + ((n2−1)∗s2)) / ((n1+n2)−2)

t =(x1−x2) / pow(pooleds ∗ ((1 . 0 / n1) + (1 . 0 /n2)) , 0 . 5)

return t

unemdata = c s v f i l e . CSVfile (”USUnemploymentRate . csv ”)

months =[’ Jan ’ , ’ Feb ’ , ’Mar ’ , ’ Apr ’ , ’May ’ , ’ Jun ’ , ’ Jul ’ , ’Aug ’ , ’ Sep ’ , ’ Oct ’ , ’Nov ’ , ’ Dec ’]

#Let ’ s get 1996 year .

rates1996 = []

getRows returns a se t . We want j us t one , the 0th

row1996 = unemdata . getRows (’ Year ’ , ’ 1996 ’) [0]

for item in months :

rates1996 . append (c s v f i l e . number(row1996 [item]))

unemdata . rewind ()

#Let ’ s get 2000 year .

rates2000 = []

row2000 = unemdata . getRows (’ Year ’ , ’ 2000 ’) [0]

for item in months :

rates2000 . append (c s v f i l e . number(row2000 [item]))

unemdata . rewind ()

#Let ’ s get 2004 year .

rates2004 = []

row2004 = unemdata . getRows (’ Year ’ , ’ 2004 ’) [0]

for item in months :

rates2004 . append (c s v f i l e . number(row2004 [item]))

print ” 1996 resul ts ”

print ” average ” , average (rates1996)

print ” variance ” , variance (rates1996)

print ”number” , len (rates1996)

print ” 2000 resul ts ”

print ” average ” , average (rates2000)

print ” variance ” , variance (rates2000)

print ”number” , len (rates2000)

print ” 2004 resul ts ”

print ” average ” , average (rates2004)

print ” variance ” , variance (rates2004)

98

CHAPTER 7. INFERENTIAL STATISTICS AND HYPOTHESIS

TESTING

print ”number” , len (rates2004)

print ”1996−2000 t t e s t ” , t t e s t (rates1996 , rates2000)

print ”2000−2004 t t e s t ” , t t e s t (rates2000 , rates2004)

And here’s the run:

In [107]: run ttest-electoral.py
1996 results
average 5.40833333333
variance 0.120833333333
number 12
2000 results
average 3.96666666667
variance 0.0987878787879
number 12
2004 results
average 5.51666666667
variance 0.105151515152
number 12
1996-2000 ttest 10.6565919854
2000-2004 ttest -11.8897236086

This suggests that 2000 was much better (lower unemployment on av-

erage) than 1996, and 2004 was worse off than 2000. But was it signifi-

cant? We can check a t-test table4, assuming an alpha value (willingness

to be wrong) of 0.05 and (12 + 12 − 1 = 23) 23 degrees of freedom, we get

a tcritical value of 1.714. We reject H0 if our t-value is greater than tcritical.
Since our t-value is way larger, we say that the difference is significant at

the 0.05 level. So, in 2000, people were better off, and in 2004, people were

worse off.

Let’s revisit our hypotheses:

• In 2000, Bush won over Gore (even though Gore won the popular

vote). The American people switched parties.

• In 2004, Bush won over Kerry. The American people stuck with the

Republican party.

That means that neither election matched the pundit’s prediction – peo-

ple were better off, but they changed parties (ignoring the popular vs. elec-

toral vote complexity). In 2004, they were markedly worse off than they

were in 2000, but they stuck with the same party.

Maybe the problem is that four years are too long? Maybe we would be

better off looking only two years off? Let’s change our analysis:

4We’re using http://www.socr.ucla.edu/Applets.dir/T-table.html .

7.4. COMPUTING A T TEST 99

unemdata = c s v f i l e . CSVfile (” . . / data / USUnemploymentRate . csv ”)

months =[’ Jan ’ , ’ Feb ’ , ’Mar ’ , ’ Apr ’ , ’May ’ , ’ Jun ’ , ’ Jul ’ , ’Aug ’ , ’ Sep ’ , ’ Oct ’ , ’Nov ’ , ’ Dec ’]

#Let ’ s get 1998 year .

rates1998 = []

getRows returns a se t . We want j us t one , the 0th

row1998 = unemdata . getRows (’ Year ’ , ’ 1998 ’) [0]

for item in months :

rates1998 . append (c s v f i l e . number(row1998 [item]))

unemdata . rewind ()

#Let ’ s get 2000 year .

rates2000 = []

row2000 = unemdata . getRows (’ Year ’ , ’ 2000 ’) [0]

for item in months :

rates2000 . append (c s v f i l e . number(row2000 [item]))

unemdata . rewind ()

#Let ’ s get 2002 year .

rates2002 = []

row2002 = unemdata . getRows (’ Year ’ , ’ 2002 ’) [0]

for item in months :

rates2002 . append (c s v f i l e . number(row2002 [item]))

unemdata . rewind ()

#Let ’ s get 2004 year .

rates2004 = []

row2004 = unemdata . getRows (’ Year ’ , ’ 2004 ’) [0]

for item in months :

rates2004 . append (c s v f i l e . number(row2004 [item]))

print ” 1998 resul ts ”

print ” average ” , average (rates1998)

print ” variance ” , variance (rates1998)

print ”number” , len (rates1998)

print ” 2000 resul ts ”

print ” average ” , average (rates2000)

print ” variance ” , variance (rates2000)

print ”number” , len (rates2000)

print ” 2002 resul ts ”

print ” average ” , average (rates2002)

print ” variance ” , variance (rates2002)

print ”number” , len (rates2002)

print ” 2004 resul ts ”

print ” average ” , average (rates2004)

print ” variance ” , variance (rates2004)

print ”number” , len (rates2004)

100

CHAPTER 7. INFERENTIAL STATISTICS AND HYPOTHESIS

TESTING

print ”1998−2000 t t e s t ” , t t e s t (rates1998 , rates2000)

print ”2002−2004 t t e s t ” , t t e s t (rates2002 , rates2004)

Here were our results:

1998 results
average 4.5
variance 0.0127272727273
number 12
2000 results
average 3.96666666667
variance 0.00787878787879
number 12
2002 results
average 5.78333333333
variance 0.0106060606061
number 12
2004 results
average 5.51666666667
variance 0.0142424242424
number 12
1998-2000 ttest 12.8703946646
2002-2004 ttest 5.86015899227

2004 is a bit better off than 2002 (but still significant), and 2000 is

better off than 1998. The pundits would suggest that 2000 and 2004 should

both be “stick with” years. That describes 2004, but not 2000. Not clear

if two years is a better comparison point than four. Maybe people don’t

accurately remember four years back, and are better at comparing two

years back.

7.5 ANOVA: Analysis of Variance

The t test works well when we have two groups to be compared. What if

we had more than two groups? The procedure for this is an analysis of

variance (ANOVA).

An ANOVA can also be used with two groups. An ANOVA uses an F
ratio rather than a t ratio. It is called an F ratio because it is named after

its developer Sir Ronald Fisher.

Preliminary Calculations

7.5. ANOVA: ANALYSIS OF VARIANCE 101

Old Model New Model

Car MPG Car MPG

1 30 1 37

2 34 2 36

3 34 3 40

4 29 4 36

5 33 5 34

6 33

Totals: 160 216

Sample

sizes: 5 6

Means: 32 36

We also compute the grand total of scores = 160 + 216 = 376. We com-

pute the total sample size = 5 + 6 = 11. We compute the grand mean

= 376/11 = 34.18.

Calculation of sum of squares

Calculation of mean squares

102

CHAPTER 7. INFERENTIAL STATISTICS AND HYPOTHESIS

TESTING

Calculation of the F Statistic

F =
MSB

MSW
=

43.64

5.78
= 7.55

Recall that the general idea in degrees of freedom reflects how many

scores are free to vary. In an F test we need to be concerned about the

degrees of freedom of the MSB and the MSB. The degrees of freedom for

MSB is the numberofgroupsminus1; so in our case it is 2−1 = 1. Given the

grand mean in the experiment, if we know the mean of one group then the

mean of the other group has to be a certain value. The degrees of freedom

for MSW is numberofscores−numberofgroups; so in our case it is 11−2 = 9.

The logic here is more or less the same.

Now we can look up our F statistic in a F table – see Figure ??5. There

are different tables for different probability levels. Let’s look at the one for

p < .05. The degrees of freedom for MSB are listed across the top, and the

degrees of freedom for MSW are listed down the side of this table. So we

look for 7.55 at the intersection of 1 and 9 degrees of freedom. We see that

the F statistic is larger than the 5.117 listed there. So, we can say that

our result is significant at the .05 level. In formal notation we would write

F (1, 9) = 7.55, p < .05. Again, this means that if the car experiment were

conducted a large number of times, we would expect this result to occur by

chance fewer than 5 in 100 times. Again, we say that we “reject the null

(H0) hypothesis.”

7.6 Computing ANOVA: Analysis of Variance

Another way of testing the difference between groups is with an ANOVA

or Analysis of Variance. Here, we look at variance more, and we use an

f statistic rather than the t statistic (that is, the lookup table). One thing

that’s cool about ANOVA is that we can use it for more than two groups, to

see if there is any difference anywhere. But we’ll use it just for two groups

here.

In ANOVA, we need the totals of the groups, the sample sizes, and the

means, but also the grand total (of all the groups), the total sample size (of

all groups), and the grand mean which is the grand total divided by the

total sample size. Strangely enough, we don’t actually use the variance in

the Analysis of Variance (ANOVA) process.

Here’s the process, in computational terms:

• We compute the SSB, the sum of squares between groups.

SSB = (N1(x1 −GrandMean))2 + (N2(x2 −GrandMean))2 (7.3)

5From http://www.itl.nist.gov/div898/handbook/eda/section 3/eda3673.
htm .

7.6. COMPUTING ANOVA: ANALYSIS OF VARIANCE 103

(You can easily see how this would extend to more groups.)

• We compute the SSW, the sum of squares within groups. For all

items in all groups,

SSW = (item1−(meanofitem1′sgroup))2+(item2−(meanofitem2′sgroup)) . . .
(7.4)

• We then compute the MSB, mean square between groups. That’s

simpler to compute:

MSB =
SSB

numberofgroups− 1
(7.5)

• We then compute the MSW, mean square within groups.

MSW =
SSW

(totalsamplesize)− (numberofgroups)
(7.6)

• The F-statistic is:

F =
MSB

MSW
(7.7)

• The degrees of freedom between groups is the number of groups - 1.

The degrees of freedom for the total is the total sample size - 1. The

degrees of freedom within groups is the degrees of freedom for the

total minus the degrees of freedom between groups. I find on some

F-statistic tables6, the between groups is called df1 and the within

groups is called df2.

How to do an ANOVA in Python

Here’s how we map that process to Python.

from pylab import ∗
import c s v f i l e

def average (sequence) :

return (1 .0∗sum(sequence)) / len (sequence)

def variance (sequence) :

ave = average (sequence)

Compute the mean squared d i f f e r e n c e

d i f f s = 1.0

for num in sequence :

6As at http://www.statsoft.com/textbook/sttable.html#f05

104

CHAPTER 7. INFERENTIAL STATISTICS AND HYPOTHESIS

TESTING

d i f f s = d i f f s + pow ((ave−num) , 2)

Compute the variance

variance = d i f f s / (len (sequence)−1)

return variance

def t t e s t (seq1 , seq2) :

x1 = average (seq1)

x2 = average (seq2)

s1 = variance (seq1)

s2 = variance (seq2)

n1 = len (seq1)

n2 = len (seq2)

pooleds = (((n1−1)∗s1) + ((n2−1)∗s2)) / ((n1+n2)−2)

t =(x1−x2) / pow(pooleds ∗ ((1 . 0 / n1) + (1 . 0 /n2)) , 0 . 5)

return t

def anova (seq1 , seq2) :

sum1 = sum(seq1)

sum2 = sum(seq2)

grandtotal = sum1 + sum2

n1 = len (seq1)

n2 = len (seq2)

t o t a l s i z e = n1+n2

x1 = average (seq1)

x2 = average (seq2)

grandmean = f l o a t (grandtotal) / t o t a l s i z e

SSB = (n1∗pow(x1−grandmean , 2)) + (n2∗pow(x2−grandmean , 2))

SSW = 0

for i in seq1 :

SSW=SSW+pow(i−x1 , 2)

for i in seq2 :

SSW=SSW+pow(i−x2 , 2)

MSB=SSB/1

MSW= f l o a t (SSW) / (t o ta l s i ze −2)

return MSB/MSW

Then, here’s the whole thing, including the reading of the data again.

from pylab import ∗
import c s v f i l e

def average (sequence) :

return (1 .0∗sum(sequence)) / len (sequence)

def variance (sequence) :

ave = average (sequence)

Compute the mean squared d i f f e r e n c e

d i f f s = 1.0

for num in sequence :

d i f f s = d i f f s + pow ((ave−num) , 2)

Compute the variance

7.6. COMPUTING ANOVA: ANALYSIS OF VARIANCE 105

variance = d i f f s / (len (sequence)−1)

return variance

def t t e s t (seq1 , seq2) :

x1 = average (seq1)

x2 = average (seq2)

s1 = variance (seq1)

s2 = variance (seq2)

n1 = len (seq1)

n2 = len (seq2)

pooleds = (((n1−1)∗s1) + ((n2−1)∗s2)) / ((n1+n2)−2)

t =(x1−x2) / pow(pooleds ∗ ((1 . 0 / n1) + (1 . 0 /n2)) , 0 . 5)

return t

def anova (seq1 , seq2) :

sum1 = sum(seq1)

sum2 = sum(seq2)

grandtotal = sum1 + sum2

n1 = len (seq1)

n2 = len (seq2)

t o t a l s i z e = n1+n2

x1 = average (seq1)

x2 = average (seq2)

grandmean = f l o a t (grandtotal) / t o t a l s i z e

SSB = (n1∗pow(x1−grandmean , 2)) + (n2∗pow(x2−grandmean , 2))

SSW = 0

for i in seq1 :

SSW=SSW+pow(i−x1 , 2)

for i in seq2 :

SSW=SSW+pow(i−x2 , 2)

MSB=SSB/1

MSW= f l o a t (SSW) / (t o ta l s i ze −2)

return MSB/MSW

unemdata = c s v f i l e . CSVfile (”USUnemploymentRate . csv ”)

months =[’ Jan ’ , ’ Feb ’ , ’Mar ’ , ’ Apr ’ , ’May ’ , ’ Jun ’ , ’ Jul ’ , ’Aug ’ , ’ Sep ’ , ’ Oct ’ , ’Nov ’ , ’ Dec ’]

#Let ’ s get 1996 year .

rates1996 = []

getRows returns a se t . We want j us t one , the 0th

row1996 = unemdata . getRows (’ Year ’ , ’ 1996 ’) [0]

for item in months :

rates1996 . append (c s v f i l e . number(row1996 [item]))

unemdata . rewind ()

#Let ’ s get 2000 year .

rates2000 = []

row2000 = unemdata . getRows (’ Year ’ , ’ 2000 ’) [0]

for item in months :

rates2000 . append (c s v f i l e . number(row2000 [item]))

106

CHAPTER 7. INFERENTIAL STATISTICS AND HYPOTHESIS

TESTING

unemdata . rewind ()

#Let ’ s get 2004 year .

rates2004 = []

row2004 = unemdata . getRows (’ Year ’ , ’ 2004 ’) [0]

for item in months :

rates2004 . append (c s v f i l e . number(row2004 [item]))

print ” 1996 resul ts ”

print ” average ” , average (rates1996)

print ” variance ” , variance (rates1996)

print ”number” , len (rates1996)

print ” 2000 resul ts ”

print ” average ” , average (rates2000)

print ” variance ” , variance (rates2000)

print ”number” , len (rates2000)

print ” 2004 resul ts ”

print ” average ” , average (rates2004)

print ” variance ” , variance (rates2004)

print ”number” , len (rates2004)

print ”1996−2000 anova ” ,anova (rates1996 , rates2000)

print ”2000−2004 anova ” ,anova (rates2000 , rates2004)

And here are the results:

1996 results
average 5.40833333333
variance 0.120833333333
number 12
2000 results
average 3.96666666667
variance 0.0987878787879
number 12
2004 results
average 5.51666666667
variance 0.105151515152
number 12
1996-2000 anova 659.75751503
2000-2004 anova 1303.2739726

The degrees of freedom between groups is 1 (2groups− 1). The degrees

of freedom total is 23 (24− 1). The degrees of freedom within groups is 22

(23 − 1). The F-statistic there is 4.3009. These values (659 and 1303) are,

ahem, a tad bit larger. So, we come up with the same result as with the

t-test.

7.7. CALCULATION OF SIGNIFICANCE OF A CORRELATION 107

So, for the 2000 and 2004 elections, the pundit’s prediction held true.

As goes the unemployment rate, so goes the presidential vote.

7.7 Calculation of Significance of a Correlation

Let’s go back to correlations for a minute. Think back to our data about

self-reported helpfulness being correlated with the number of helpful acts

a person was observed doing. When we calculated the correlation between

those two variables, we found r = 0.90. While that looks like a large num-

ber (given that the maximum for a positive correlation is 1.0), we still need

to ask whether it is a significant correlation. That is, is the correlation

meaningfully different from 0.

So, the null hypothesis is that the true correlation between two vari-

ables, X and Y , in the population is 0 and that we found this .9 correlation

by chance. If the size of the sample, N , on which an observed value of r
is based is equal to or greater than 6, then we can calculate a t statistic

using the correlation and then use the t table to look up the value to see

what probability is associated with it The degrees of freedom are N2, so

10− 2 = 8.

The formula for calculating tin this case is:

t =
r

√

(1−r2)
(N−2)

- So, in our example, r = .90 and N = 10. - So,

t =
.90

√

(1−.92)
(10−2)

=
.9

√

.19
.8

= .9/
√
.024 = .9/.154 = 5.84

We look up 5.48 with 8 degrees of freedom and find that it is significant

beyond the .001 level.

8 Multiple Linear Regression and

Advanced Experimental

Designs

Consider these two graphs. Each dot in Figure 8.1 represents a single

student. The horizontal axis represents the high school GPA of that stu-

dent, and the vertical axis represents the college GPA of the same student.

Each dot in Figure 8.2 represents the same students. But now, the horizon-

tal axis represents SAT score, and the vertical axis represents the college

GPA of the student.

Figure 8.1: Scatterplot of high school and college GPA’s

In each of these graphs, draw a line that best represents the relation-

ship between the variables. We’re serious – go get a pencil and pen and

draw in the book. Right now. We’ll wait.

109

110

CHAPTER 8. MULTIPLE LINEAR REGRESSION AND ADVANCED

EXPERIMENTAL DESIGNS

Figure 8.2: Scatterplot of SAT score and GPA

Hmm. Hmm. Hmm.

Back? Okay – what makes that a good line? One that crosses lots of

dots would be good. One that’s “representative” of the dots.

Here’s a concrete example: The best line is one that minimizes the sum

of the distances from each dot to that line. If you cross a dot, then the

distance to the line for that dot is zero. If you draw a line far away from

all the other dots, the sum of all the distances is huge. You may remember

your formula for distance d from a point (x0, y0) to a line ax+ by+ c = 0 as:

d =
√

(x0 − x)2 + (y0 − y)2 = |ax0 + by0 + c|/
√

a2 + b2

We want to minimize all those distances.

Now, what if you move into three dimensions. Instead of fitting a line

to 2-D data, we are now fitting a plane for two independent variables (or

a space for three independent variables). In the case of our two figures,

we would want to predict college GPA as a function of several possible

predictors: high school GPA, SAT scores, and maybe quality of letters of

recommendation.

8.1 The Multiple Regression Equation

The multiple regression equation takes the form:

y = b1x1 + b2x2 + ...+ bnxn + c

8.1. THE MULTIPLE REGRESSION EQUATION 111

• The xi are the independent variables, the variables that you expect

will predict the outcome or dependent variable y.

• The c is the constant (also called the intercept), where the regression

line intercepts the y axis, representing the amount the dependent y
will be when all the independent variables are 0. Sometimes this has

real meaning and sometimes it doesn’t. In other words, sometimes

the regression line cannot be extended beyond the range of observa-

tions, either back toward the y axis or forward toward infinity.

• The bi’s are the regression coefficients, representing the amount the

dependent variable y changes when the corresponding independent

changes 1 unit. The standardized version of the b coefficients are

called the beta weights, and these are what are typically shown in

regression equations. The beta weight is the average amount the de-

pendent variable increases when the independent variable increases

one unit and all other independent variables are held constant.

For instance, if an independent variable has a beta weight of .6, this

means that when other independent variables are held constant, if

the independent variable increases by 1 unit, the dependent vari-

able will increase by .6 units. The independent variable with largest

beta weight is that which, controlling for all the other independent

variables, has the largest unique explanatory effect on the dependent

variable.

Associated with multiple regression is R2, multiple correlation, which

is the percent of variance in the dependent variable explained collectively

by all of the independent variables.

Mathematically, R2 = 1− (SSE/SST).

SSE = errorsumofsquares =
∑

(Yi − Ŷi)
2

where Yi is the actual value of Y for the i-th case., and Ŷi is the regression

prediction for the i-th case.

SST = totalsumofsquares =
∑

(Yi − Ȳ)2

Thus R2 will be 0 when regression is as large as it would be if you

simply guessed the mean for all cases of Y .

Ultimately our goal in constructing the regression equation is to create

an equation that minimizes the differences between the actual values of

the dependent variable and the predicted values from the regression equa-

tion. This is why computers are so important for doing regressions because

many combinations of the variables have to be considered in order to find

the best equation.

112

CHAPTER 8. MULTIPLE LINEAR REGRESSION AND ADVANCED

EXPERIMENTAL DESIGNS

Note that the beta weights reflect the unique contribution of each in-

dependent variable. Joint contributions contribute to R2 but are not at-

tributed to any particular independent variable. The result is that the beta

weights might underestimate the importance of an independent variable

that makes strong joint contributions to explaining the dependent variable

but which does not make a strong unique contribution.

Multiple regression can establish:

• a set of independent variables that explains a proportion of the vari-

ance in a dependent variable at a significant level – through a signif-

icance test of R2; and

• the relative predictive importance of the independent variables – by

comparing beta weights.

One can test the significance of difference of two R2’s to determine if

adding an independent variable to the model helps significantly. Regres-

sion analysis is a linear procedure. To the extent nonlinear relationships

are present, conventional regression analysis will underestimate the re-

lationship of particular independent variables to the dependent variable.

That is, R2 will underestimate the variance explained overall and the be-

tas will underestimate the importance of the variables involved in the non-

linear relationship.

There is a clear relationship between multiple regression and correla-

tion. In a correlation, R2 is the percent of variance in the dependent ex-

plained by the given independent when (unlike the beta weights) all other

independent variables are allowed to vary (because we are not considering

them).

Testing Significance of Beta Weights

We can use t tests to assess the significance of individual beta weights.

specifically testing the null hypothesis that a given beta weight is zero.

The t statistic for a beta weight is:

t(N − k − 1) =
b

sb

where b is the regression coefficient or beta weight, sb is the standard

error of the regression coefficient or beta weight, N is the number of sub-

jects, and k is the number of predictor variables. The degrees of freedom

on which to evaluate the t statistic is N − k − 1.

Returning to the problem of predicting college GPA, we ran the sam-

ple described by the figures at the start of this chapter through multiple

regression. The regression coefficients / beta weights and associated sig-

nificance tests are shown below:

8.1. THE MULTIPLE REGRESSION EQUATION 113

b sb t p
HS GPA .3764 .1143 3.29 .0010

SAT .0012 .0003 4.10 .0001

Letters .0227 .0510 0.44 0

The regression coefficients / beta weights for High School GPA and SAT

are both highly significant. The coefficient / beta weight for Letters of

recommendation is not significant. This means that there is no evidence

that the quality of the letters adds to the predictability of college GPA once

High School GPA and SAT are known. A common rule of thumb is to drop

from the equation all variables not significant at the .05 level or better.

Assessing Importance of a Beta Weight

Assessing a variable’s importance using R2 increments is very different

from assessing its importance using beta weights.

• The magnitude of a variable’s beta weight reflects its relative ex-

planatory importance controlling for other independents in the equa-

tion.

• The magnitude of a variable’s R2 increment reflects its additional

explanatory importance given that common variance it shares with

other independent variables entered in earlier steps has been ab-

sorbed by these variables.

We use each for different purposes. For causal assessments, beta weights

are better. For purposes of sheer prediction, R2 increments are better.

Testing Significance of R2

The F test is used to test the significance of R2, which is the same as

testing the significance of the regression model as a whole. If prob(F) < .05,

then the model is considered significantly better than would be expected

by chance, so we reject the null hypothesis of no linear relationship of y to

the independent variables.

The F is a function of R2, the number of independent variables, and the

number of cases. F is computed with k and (n− k − 1) degrees of freedom,

where k = the number of terms in the equation not counting the constant.

F =

R2/k
(1−R2)

n− k − 1

Regression Fallacy

Imagine that you are testing some educational intervention. You give stu-

dents a pre-test, to see what they know already. You then do something

to the students to help them learn, like forcing them to watch 10 hours of

114

CHAPTER 8. MULTIPLE LINEAR REGRESSION AND ADVANCED

EXPERIMENTAL DESIGNS

Teletubbies. You then give students a post-test. By subtracting the pre-test

score from the post-test score, you can measure the change in knowledge

which you might attribute to learning from your intervention.

In virtually all test-retest situations, the bottom group on the first test

will on average show some improvement on the second test and the top

group will on average fall back. The regression fallacy consists in thinking

that a regression effect must be due to something important. In reality,

the effect might just be due to the spread around the regression line due to

random factors. We say that the observed test score = true score + chance

error.

Imagine an IQ test. If someone scores above average on the first test,

we are forced to estimate that his true score is a bit lower than the ob-

served score. If he takes the test again, we have to predict that his second

score will be a bit lower than his first score. On the other hand, if he

scores below average on the first test, we estimate that his true score is a

bit higher than the observed score. Our prediction for the second score is

a bit higher than the first score. It is not the true score that changes from

test to test, but our estimate of it.

8.2 Computing a multiple regression

There are several multiple regression packages for Python. We are going

to use one that is particularly good for use with SciPy. Download OLS (for

“ordinary least squares”) from http://www.scipy.org/Cookbook/OLS
and put it in your source code folder.

To use this program, we need to create a matrix with the independent

variable data and an array with the dependent variable data. We give each

of them to the OLS function, with the name of the dependent variable, and

a list of the names of the dependent variables. The data set we’re using

has 100 students in it, with the same variables as we described earlier in

the chapter, but not the same 100 students.

from pylab import ∗
import c s v f i l e

import o l s

#There are a hundred data elements

We need an X and y array , each of type ” Float ”

There are 100 values in each

And three variables , plus one constant

y = zeros (100)

X = zeros ((1 0 0 , 4))

X[: , 3] = ones ((1 0 0 ,))

#Read the data

gpa f i l e = c s v f i l e . CSVfile (” . . / data / CollegeGPA . csv ”)

ydata = gpa f i l e . getColumn (” Col lege GPA”)

8.2. COMPUTING A MULTIPLE REGRESSION 115

rownum = 0

for row in ydata :

y [rownum]=row

rownum=rownum+1

gpa f i l e . rewind ()

skiprow=gpa f i l e . next () #Skip the headers

rownum = 1

for row in gpa f i l e . dataReader :

hsgpa = c s v f i l e . number(row [”HS GPA”])

sat = c s v f i l e . number(row [”SAT”])

l e t t e r = c s v f i l e . number(row [” LetterQual ”])

X[rownum,0]= hsgpa

X[rownum,1]= sat

X[rownum,2]= l e t t e r

rownum = rownum + 1

Call OLS

resul ts = o l s . o l s (y ,X, ” Col lege GPA” , [”HS GPA” , ”SAT” , ” LettterQual ”])

resul ts . summary ()

The results summary from OLS is terrific – it has more statistics in it

than we actually know the meanings for! We can see the the model is over-

all highly significant (the probability on the F statistic is 0.00000). While

the values are different, the model from this data set matches the one

described above, in that high school GPA and SAT scores are significant

predictors of the college GPA, but not the recommendation letters.

=== ===========================
Dependent Variable: College GPA
Method: Least Squares
Date: Thu, 31 May 2012
Time: 12:18:51
obs: 100
variables: 5
=== ===========================
variable coefficient std. Error t-statistic prob.
=== ===========================
const 0.000000 8933311.925715 0.000000 1.000000
HS GPA 0.401808 0.139627 2.877722 0.004947
SAT 0.000878 0.000348 2.525769 0.013199
LettterQual -0.013541 0.060947 -0.222171 0.824658
=== ===========================
Models stats Residual stats
=== ===========================
R-squared 0.333158 Durbin-Watson stat 1.385116
Adjusted R-squared 0.305080 Omnibus stat 3.112009
F-statistic 11.865618 Prob(Omnibus stat) 0.210977
Prob (F-statistic) 0.000000 JB stat 2.580873

116

CHAPTER 8. MULTIPLE LINEAR REGRESSION AND ADVANCED

EXPERIMENTAL DESIGNS

Log likelihood -106.755270 Prob(JB) 0.275151
AIC criterion 2.235105 Skew 0.381562
BIC criterion 2.365364 Kurtosis 3.192490
=== ===========================

8.3 Final Note on Alternative Experimental Designs

Now that we have seen correlations, hypothesis testing, and multiple lin-

ear regression, we can return to some themes in experimental design that

we first addressed in Chapter 1. But now, we can talk more about issues

of statistics that we had not yet discussed when we first described experi-

mental design.

We have tried to stress two themes in experimental design and data

analysis.

• With respect to design, there is the necessity of beginning an experi-

ment with groups that can be assumed to be equal.

• With respect to analysis, there is the statistical importance of reduc-

ing variation due to error (which, for instance, goes into the denomi-

nator of the F ratio).

In relation to the need for beginning an experiment with equal groups,

we suggested that the random assignment of participants is one of the best

techniques for ensuring that no systematic differences are present at the

beginning of an experiment. However, there are times when random as-

signment alone might not be the most appropriate approach to a particular

research question. We discuss two approaches to experimental design that

do not use random assignment alone.

• The first is a within-subjects design in which each participant is ex-

posed to different experimental conditions.

• The second is a matched-subjects design.

Again, we want to stress the need for beginning an experiment with equal

groups and the importance of reducing the error groups variance (within-

subjects variance) of the F ratio.

Within-Subjects Designs

In most cases we’ve discussed so far, we’ve compared the performance of

one group of participants with the performance of a different group of par-

ticipants. These designs are called between-subjects designs. In within-

subjects designs the participant’s own performance is the basis of com-

parison; that is, every participant receives all levels of the independent

variable. In these designs we compare the performances of the same set of

participants on the dependent variable following different treatments.

8.3. FINAL NOTE ON ALTERNATIVE EXPERIMENTAL DESIGNS 117

Let’s look at an experiment performed first as a between-subjects ex-

periment and then as a within-subjects experiment. In a simple between-

subjects experiment, the experimenter wants to determine the role of im-

mediate feedback in say, shooting basketballs. One group is instructed to

shoot baskets while wearing a blindfold (zero level of feedback) and an-

other group is told to shoot without a blindfold (high level of feedback). We

can perform this same study as a within-subjects design in which each par-

ticipant is exposed to both levels of the independent variable, that is, every

participant in the study shoots baskets both with and without a blindfold.

The within-subject design accomplishes both of the goals we mentioned

earlier: equating groups before the presentation of the independent vari-

able and reducing error variance. Because the same participants are used

in each group, we can be certain that before any treatment has begun, the

groups are exactly the same.

A within-subjects design also increased the sensitivity of a study by

decreasing the error variance because it removes the variance that results

from individual variability. The error variance term of the F ratio for a

within-subjects design is statistically smaller than that of a comparable

between-subjects design. This means that smaller treatment differences

are adequate for rejecting the null hypothesis.

A potential problem in the basketball study is that the results from

the no-feedback condition might have a possible carryover effect on the

feedback condition. The act of shooting a basketball, even without visual

feedback, might lead one to perform better in the next condition. That is,

practice could confound this design.

One way to control for this potential problem would be to use a coun-

terbalancing procedure. For example, we could have all participants first

shoot the basketball in the no-feedback condition, then in the feedback con-

dition, then in the feedback condition again, followed by the no-feedback

condition. This would generate an ABBA order and thus help to control for

the effects that are carried over from one trial set to another.

Matched-Subjects Designs

Within-subjects experiments equate groups by using the same participant

in every treatment condition. By using the same participants in each

group, the within-groups variance is reduced because a participant will

perform more consistently in different situations than different partici-

pants will perform in difference situations. What if, rather than using the

same participants in different groups, we use participants who are very

similar?

This would be a matched-subjects design. A matched-subjects design

would allow us to reap some of the advantages of within-subjects designs

and simultaneously take advantage of the random assignment of partici-

pants that is possible with a between-subjects design. We might need to

use a matched-subjects design if we think our treatment might have long-

118

CHAPTER 8. MULTIPLE LINEAR REGRESSION AND ADVANCED

EXPERIMENTAL DESIGNS

lasting effects and we can’t move participants from condition to condition

cleanly.

In a matched-subjects design, we pair participants along some fac-

tor and then randomly assign the members of each pair to two separate

groups. In this way we can assume that our groups are equal at the begin-

ning of the experiment and we can reduce within-groups variance (error

variance). By this method we create a type of design that is a hybrid of

within-subjects designs and between-subjects designs. We could not have

an much error variance as in a between-subjects design or at little error

variance as in a within-subjects design.

The characteristics we use to match our groups of participants obvi-

ously are of central importance to this design. In the broadest sense, any

physical or mental characteristic of a participant that can be measured

may be used for matching. Characteristics such as height, weight, intel-

ligence, anxiety level, achievement motivation, hair color, and emotional

sensitivity are all individual characteristics that can be measured. Conse-

quently, they are all potential individual variables on which matching can

be based.

For a matching procedure to work, there must be a high correlation

between the variable used for matching and the dependent variable. If

the participants are matched on a factor that does not correlate with the

dependent variable, then the within-groups variance will be no smaller

than the variance obtained by random selection alone. In this case the

amount of effort required for matching will have been wasted.

A A Brief Introduction to Key

Parts of Python

A.1 Variables and Assignment

Variables are names that we use as references for values. They can have

pretty much any number of characters you want, but start with a letter,

and can include numbers and underscore (“ ”). Uppercase and lowercase

letters are different in Python.

Strings can be delimited with single or double-quotes in Python. We

can inspect the values of variables with print. You can also just type the

variable name and hit return/enter to see the value. There is a slight

difference in what each prints.

>>> a = ” fred ”

>>> a

’ fred ’

>>> print a

fred

>>> a = ’mark ’

>>> a

’mark ’

>>> print a

mark

>>> print A

Traceback (most recent c a l l l a s t) :

F i le ”<pyshel l#6>” , l i ne 1 , in <module>

print A

NameError : name ’A ’ is not defined

>>> A = 12

>>> print A

12

>>> print a

mark

>>> print a ,A

mark 12

119

120

APPENDIX A. A BRIEF INTRODUCTION TO KEY PARTS OF

PYTHON

We can make Python do some conversions for us using eval. The float

function can do that well, too.

>>> eval (”123 ”)

123

A.2 Lists

Python is particularly good at manipulating lists. Lists are delimited with

square brackets (“[]”), with commas separating the elements of the list.

The first item of the list has an index of zero.

>>> mylist = [12 ,25 .4 , ” test ing ” , ’ another str ing ’ , [6 , −7]]

>>> print mylist

[12 , 25.4 , ’ tes t ing ’ , ’ another str ing ’ , [6 , −7]]

>>> mylist [0]

12

>>> mylist [1]

25.4

>>> len (mylist) #len () i s a function that measures length

5

>>> mylist [5] # 5 elements , but las t index i s 4

Traceback (most recent c a l l l a s t) :

F i le ”<pyshel l#20>” , l i ne 1 , in <module>

mylist [5]

IndexError : l i s t index out of range

>>> mylist [4] # Yes , that ’ s a l i s t inside the l i s t

[6 , −7]

>>> mylist [4] [1]

−7

>>> mylist [4] [0] #Last element of mylist , f i r s t element of that

6

We can add to the end of the list with append.

>>> a = [1 ,2 ,3]

>>> a . append ([4])

>>> a

[1 , 2 , 3 , [4]]

>>> a . append (5)

>>> a

[1 , 2 , 3 , [4] , 5]

One of the particular powers of Python is its list manipulations. You

can slice lists by giving two indices, separated by a colon. They describe a

starting point for a slice and an ending point.

>>> mylist [0 : 3]

[12 , 25.4 , ’ tes t ing ’]

>>> mylist [1 : 3]

[2 5 .4 , ’ tes t ing ’]

A.3. DICTIONARIES 121

What’s particularly cool is that the slice values can be missing or neg-

ative. If you skip the first index, the assumption is “the start.” If you skip

the last index, the assumption is “the end.” If you use a negative index, it

counts from the start (first) or the last (second).

>>> mylist [:] # Skip both , get the whole thing

[12 , 25.4 , ’ tes t ing ’ , ’ another str ing ’ , [6 , −7]]

>>> mylist [1 :] #From 1 to end

[2 5 .4 , ’ tes t ing ’ , ’ another str ing ’ , [6 , −7]]

>>> mylist [: 3] #From star t to 3

[12 , 25.4 , ’ tes t ing ’]

>>> mylist [: −1] #From start , one before end

[12 , 25.4 , ’ tes t ing ’ , ’ another str ing ’]

>>> mylist [−1:] # Only the las t (−1 from start , to end)

[[6 , −7]]

A.3 Dictionaries

Dictionaries are sometimes called named arrays or associative arrays. Think

of them as lists or arrays, where the indices aren’t numbers but strings.

Those strings are called the keys.

>>> mydict = {} #Creates an empty dict ionary

>>> mydict [”Mark”] = ’ Guzdial ’

>>> mydict [’ Richard ’] = ”Catrambone”

>>> mydict [”Mark”]

’ Guzdial ’

>>> mydict [” Richard ”]

’ Catrambone ’

>>> mydict . keys () #Call the method keys () on the o b j e c t mydict

[’ Richard ’ , ’Mark ’]

Notice that dictionaries are objects. We access methods on objects using

dot notation.

A.4 Blocks

The most unusual feature of Python is that indentation defines blocks. A

collection of statements (e.g., after IF, WHILE, or FOR, or as part of the

definition of the function) are defined as statements at the same level of

indentation. Spaces or tabs will work, as long as all the lines match up.

This makes the code quite readable. It can be a pain to debug if you get it

wrong.

A block follows a statement that ends with a colon. We’ll see that in the

next section with functions.

122

APPENDIX A. A BRIEF INTRODUCTION TO KEY PARTS OF

PYTHON

A.5 Functions

We define functions using def. We call them by using the name of the

function with parameters in parentheses.

>>> def myfunction (input) :

print input ∗ 5

>>> myfunction # This prints the value of the function , not ca l l ing i t

<function myfunction at 0x7b9bc70>

>>> myfunction (5)

25

>>> myfunction (” fred ”) # Mult ip l i cat ion works on s tr ings

f red f red f red f red f red

>>> myfunction () #Must provide one input

Traceback (most recent c a l l l a s t) :

F i le ”<pyshel l#47>” , l i ne 1 , in <module>

myfunction ()

TypeError : myfunction () takes exact ly 1 argument (0 given)

One of the unusual aspects of functions in Python is that a function can

return multiple values, and you can set multiple variables at once to the

return.

>>> def return3 () :

return 1 ,2 ,3

>>> a , b , c=return3 ()

>>> a

1

>>> b

2

>>> c

3

A.6 FOR loops

The for loop in Python actually is a for-each loop. It processes each element

in a collection, with the index variable bound to each item once.

>>> for l e t t e r in ’ th isStr ing ’ :

print l e t t e r

t

h

i

s

A.6. FOR LOOPS 123

S

t

r

i

n

g

>>> for item in [1 , 2 , [3 , 4] , ’ alpha ’ , ’ bet ’] :

print item

1

2

[3 , 4]

alpha

bet

The range function lets us create lists of values so that we can use them

as indices.

>>> range (0 ,3)

[0 , 1 , 2]

>>> range (1 ,3)

[1 , 2]

>>> range (3)

[0 , 1 , 2]

>>> somelist = [1 ,2 ,3 ,5 ,6]

>>> print len (somelist)

5

>>> for index in range (0 , len (somelist)) :

print somelist [index]

1

2

3

5

6

>>> sum = 0

>>> for index in range (len (somelist)) :

value = somelist [index]

sum = sum + value

>>> print sum

17

124

APPENDIX A. A BRIEF INTRODUCTION TO KEY PARTS OF

PYTHON

A.7 Conditionals

You can test with an if statement. After the test (in parentheses), you

have a colon, to indicate the “then” block. You can optionally have an else

clause, also with a colon.

i f ”a ” < ”b ” :

print ” True ! ”

else :

print ” False ! ”

Prints “True!” of course.

B Reading from Live Data

Aibek Musaev wrote for us three examples of how to read various “live”

data sets from Python. These are data sets that are continuously updated,

like radiation levels from the Fukushima prefecture every 10 minutes. The

code is a bit more complicated than the rest in the book, so we moved them

here into an appendix. For example, they each define a class for making

it easier to manipulate the data. You don’t have to understand the class

to use the code. See the Python code at the bottom of each example as a

demonstration for how to use the class.

Live data sets are available in different formats. Aibek provided us

with three examples for reading three different kinds of data sets. Thanks,

Aibek!

Reading from XML Sources

#

This i s an example of reading a data source published

in XML format and archived to ZIP format from the web .

I t reads international passenger survey time s e r i e s

dataset from the Of f i c e f or National S t a t i s t i c s in UK

(http ://www. ons . gov . uk/ons/index . html) .

#

from ur l l i b 2 import urlopen

from xml .dom. minidom import parseString

from z i p f i l e import ZipFile

from StringIO import StringIO

Class f or handling passenger survey time s e r i e s dataset

class PassengerSurveyUK:

i n i t i a l i z e data in the defaul t constructor

def i n i t (s e l f) :

internal data structure f or passenger survey data

s e l f . pdata = {}

load dataset into internal data structure from url

published in xml format and archived to zip format

def loadFromUrl (s e l f , url) :

125

126 APPENDIX B. READING FROM LIVE DATA

#open connection to the url

f = urlopen (url)

#download the zip f i l e

z = ZipFile (StringIO (f . read ()))

#read the f i r s t and only f i l e from the archive

x = z . read (z . namelist () [0])

get document parsed into a DOM

dom = parseString (x)

ex trac t values to an internal data container

for node in dom. getElementsByTagName (’wdp: Section ’) :

date = node . getAttribute (’ Date ’)

for e in node . childNodes :

i f (e . nodeType == e .ELEMENTNODE) :

value = e . getAttribute (’ value ’)

s e l f . add (e . localName , date , int (value))

c lose handles

z . c l os e ()

f . c l os e ()

#Add read data into a loca l data container

def add (s e l f , code , date , value) :

i f (code not in s e l f . pdata . keys ()) :

s e l f . pdata [code] = {}
c o l l = s e l f . pdata [code]

c o l l [date] = value

#Demo function : f ind the year when the passed code had

#the maximum value

def maxValueByCode(s e l f , code) :

topDate = ’ ’

topValue = 0

c o l l = s e l f . pdata [code]

for date in c o l l . keys () :

i f (c o l l [date] > topValue) :

topDate = date

topValue = c o l l [date]

return topDate , topValue

ins tan t ia t e data class

pdata = PassengerSurveyUK()

#load data from url

pdata . loadFromUrl (’ http : / /www. ons . gov . uk / ons / datasets−and−tab les / downloads / data . zip ?

#run a demo function

print pdata . maxValueByCode(’GMAT ’)

Reading from HTML data

#

This i s an example of reading a data source published

as HTML. I t reads real−time radiation sensor data

127

in Fukushima pre f e c ture from the SPEEDI p r o j e c t .

This data gets updated every 10 minutes .

#

from ur l l i b 2 import urlopen

Class f or handling real−time radiation data in Fukushima

pre f e c ture from SPEEDI p r o j e c t

class RadiationData :

i n i t i a l i z e data in the defaul t constructor

def i n i t (s e l f) :

internal data structure f or radiation data

s e l f . rdata = {}

load radiation data into internal data structure

from url published as html

def loadFromUrl (s e l f , url) :

#open connection to the url

f = urlopen (url)

#read the url to an array of l ines

l i nes = f . readl ines ()

c lose connection

f . c l os e ()

ex trac t values to a dict ionary

s e l f . add (’ Shigeoka ’ , l i nes [1 8])

s e l f . add (’ Shigeoka ’ , l i nes [1 8])

s e l f . add (’Namikura ’ , l i nes [2 1])

s e l f . add (’ Kamikooriyama ’ , l i nes [2 4])

s e l f . add (’ Hotokehama ’ , l i nes [2 7])

s e l f . add (’ Tomioka ’ , l i nes [3 0])

s e l f . add (’ Mukaihata ’ , l i nes [3 3])

s e l f . add (’Ono ’ , l i nes [3 6])

s e l f . add (’ Ottozawa ’ , l i nes [3 9])

s e l f . add (’Yamada ’ , l i nes [4 2])

s e l f . add (’ Kooriyama ’ , l i nes [4 5])

s e l f . add (’ Tanashio ’ , l i nes [4 8])

s e l f . add (’Namie ’ , l i nes [5 1])

s e l f . add (’ Kiyohashi ’ , l i nes [5 4])

s e l f . add (’Yamadaoka ’ , l i nes [5 7])

s e l f . add (’ Yonomori ’ , l i nes [6 0])

s e l f . add (’ Shinzan ’ , l i nes [6 3])

s e l f . add (’ Futatsunuma ’ , l i nes [6 6])

s e l f . add (’ Matsudate ’ , l i nes [6 9])

s e l f . add (’ Shimokooriyama ’ , l i nes [7 2])

s e l f . add (’Kumagawa ’ , l i nes [7 5])

s e l f . add (’ Minamidai ’ , l i nes [7 8])

s e l f . add (’Kami−Hatori ’ , l i nes [8 1])

s e l f . add (’Ukedo ’ , l i nes [8 4])

128 APPENDIX B. READING FROM LIVE DATA

#Add read data into a loca l data container

def add (s e l f , area , value) :

s e l f . rdata [area] = s e l f . get va lue (value) ;

helper function : return in teger value from html l ine

def get va lue (s e l f , value) :

s t r i p the ending html code

br = ’
\n ’

s tr = value . rs t r i p (br)

i f (s tr == ’ Under survey ’) :

return 0 instead of ’ Under survey ’

return 0

else :

convert s tr ing to in teger

return int (s tr)

#Demo function : f ind the area with the highest radiation value

def maxRadiationValue (s e l f) :

maxArea = ’ ’

maxValue = −1

for area in s e l f . rdata . keys () :

i f (s e l f . rdata [area] > maxValue) :

maxArea = area

maxValue = s e l f . rdata [area]

return maxArea , maxValue

ins tan t ia t e data class

rdata = RadiationData ()

#load data from url

rdata . loadFromUrl (’ http : / /www. bousai . ne . jp /mob / rsd . php? lang=en&id=07 ’)

#run a demo function

print rdata . maxRadiationValue ()

Reading from Excel Workbooks

#

This i s an example of reading a data source published

in Excel format on the web . I t reads some h i s t o r i c a l data

on eCommerce published on census . gov web s i t e , which

has loads of data there .

The l ibrary for reading Excel f i l e s i s cal led xlrd , which

can be found here : http :// pypi . python . org/pypi/xlrd/

#

from os import remove

from ur l l i b 2 import urlopen

from xlrd import open workbook

Class f or handling h i s t o r i c a l eCommerce data from census . gov

class eCommerceData :

129

i n i t i a l i z e data in the defaul t constructor

def i n i t (s e l f) :

internal data structure f or eCommerce data

s e l f . edata = {}

Helper function : download f i l e from URL

We have to download the Excel f i l e , because

xlrd l ibrary works only with loca l f i l e s

def download f i le (s e l f , url , o u t f i l e) :

try :

#open url

webFile = urlopen (url)

crea te a new loca l f i l e

l o c a l F i l e = open (out f i l e , ’wb ’)

#write the contents of the url to the loca l f i l e

l o c a l F i l e . write (webFile . read ())

webFile . c l os e ()

l o c a l F i l e . c l os e ()

except IOError , e :

print ”Download error ”

load eCommerce data into internal data structure

from url published in Excel format

def loadFromUrl (s e l f , url) :

f i l e name for l oca l Excel f i l e name

fname = ’ temp . xls ’

s e l f . download f i le (url , fname)

#open the workbook

wb = open workbook (fname)

#wrk with each worksheet

for sh in wb. sheets () :

#data i s located on rows 9 through 29 − on both worksheets

for row in range (8 , 2 9) :

industry = sh . c e l l (row , 1) . value

for i in range (0 , 5) :

co l = 2+ i ∗2

year = sh . c e l l (4 , co l) . value

totalValue = sh . c e l l (row , co l) . value

eCommerceValue = sh . c e l l (row , co l +1) . value

s e l f . add (industry , year , totalValue , eCommerceValue)

de l e t e l oca l f i l e a f t e r use

remove (fname)

#Add read data into a loca l data container

def add(s e l f , industry , year , totalValue , eCommerceValue) :

i f (industry not in s e l f . edata . keys ()) :

s e l f . edata [industry] = {}
c o l l = s e l f . edata [industry]

c o l l [year] = [totalValue , eCommerceValue]

130 APPENDIX B. READING FROM LIVE DATA

#Demo function : f ind the industry with the highest eCommerce value

#in a given year

def maxEcommerceByYear (s e l f , year) :

topIndustry = ’ ’

topValue = −1

for industry in s e l f . edata . keys () :

c o l l = s e l f . edata [industry]

i f (c o l l [year] [1] > topValue) :

topIndustry = industry

topValue = c o l l [year] [1]

return topIndustry , topValue

ins tan t ia t e data class

edata = eCommerceData ()

#load exce l f i l e

#url i s hardcoded , because th i s c lass i s f or a part icular Excel f i l e

edata . loadFromUrl (’ http : / /www. census . gov / econ / estats /2009 / h i s t o r i c a l /2009 ht1 . x ls ’)

#run a demo function

print edata . maxEcommerceByYear (’ 1999\nRevised ’)

C Program Listings

C.1 CVSfile

Program Example #0

CVSfile

CSVfile −− a front end to CVS

import csv

def number(input , defaul t=−1):

try :

return f l o a t (input)

except :

return defaul t

class CSVfile :

def i n i t (s e l f , filename) :

s e l f . filename = filename

s e l f . rewind () ;

def rewind (s e l f) :

s e l f . fp = open (s e l f . filename , ” rb ”)

headerReader = csv . reader (s e l f . fp)

s e l f . headers = headerReader . next ()

s e l f . dataReader = csv . DictReader (s e l f . fp , fieldnames= s e l f . headers)

def next (s e l f) :

return s e l f . dataReader . next ()

def getRows (s e l f , fieldname , value) :

ret = []

for row in s e l f . dataReader :

i f row [fieldname]== value :

ret . append (row)

return ret

131

132 APPENDIX C. PROGRAM LISTINGS

def getColumn (s e l f , fieldname) :

ret = []

for row in s e l f . dataReader :

ret . append (row . get (fieldname))

return map(number , ret)

C.2 fancierplot.py – a run-able plot

Program Example #1

fancierplot.py

from pylab import ∗
import c s v f i l e

popdata = c s v f i l e . CSVfile (” pops−2000.csv ”)

pops = popdata . getColumn (”POP”)

spops=sort (pops)

p lot (spops [1 :] , marker=” o ” , co l or=” r ”)

t i t l e (’ Populations of countries in the year 2000 ’)

x label (’ Countries in increasing order of population ’)

y label (’ Population in mi l l i ons ’)

grid (True)

show ()

C.3 US-UK Population Plot for years 1999–2000

Program Example #2

us uk pop plot.py

from pylab import ∗
import c s v f i l e

import corre l

natdata = c s v f i l e . CSVfile (” . . / data / us−uk−1990−2000.csv ”)

usdata = natdata . getRows (’ country ’ , ’ United States ’)

natdata . rewind ()

ukdata = natdata . getRows (’ country ’ , ’ United Kingdom ’)

#Get the populations

uspops = []

C.3. US-UK POPULATION PLOT FOR YEARS 1999–2000 133

for row in usdata :

uspops . append (c s v f i l e . number(row [’POP ’]))

ukpops = []

for row in ukdata :

ukpops . append (c s v f i l e . number(row [’POP ’]))

years=range (1990 ,2001)

print ”US” , uspops , len (uspops)

print ”UK” ,ukpops , len (ukpops)

print ” Years ” , years , len (years)

print ” Correlation : ” , c o r r e l . r (uspops , ukpops)

plot (years , uspops , ’ r−−o ’ , years , ukpops , ’ b−x ’)

legend ((’US Population ’ , ’UK Population ’) , l o c = ’ center r ight ’)

t i t l e (’ Populations of US and UK 1990−2000 ’)

x label (’ Years ’)

y label (’ Population in mi l l i ons ’)

grid (True)

savef ig (” us uk pop plot . eps ”)

show ()

Program Example #3

us uk pop plot2.py

from pylab import ∗
import c s v f i l e

natdata = c s v f i l e . CSVfile (” . . / data / us−uk−1990−2000.csv ”)

usdata = natdata . getRows (’ country ’ , ’ United States ’)

natdata . rewind ()

ukdata = natdata . getRows (’ country ’ , ’ United Kingdom ’)

#Get the populations

This time , making SURE that they ’ re in year−order

years=range (1990 ,2001)

uspops = []

for y in years :

for row in usdata :

i f row [’ year ’]== str (y) : #Items in rows are s t r ings

uspops . append (c s v f i l e . number(row [’POP ’]))

break #Leave the row loop

ukpops = []

for y in years :

for row in ukdata :

i f row [’ year ’]== str (y) :

ukpops . append (c s v f i l e . number(row [’POP ’]))

134 APPENDIX C. PROGRAM LISTINGS

break

Top subplot : 2 rows , 1 column , subplot #1

subplot (2 ,1 ,1)

p lot (years , uspops , ’ r−−o ’)

t i t l e (’ Population of US 1990−2000 ’)

x label (’ Years ’)

y label (’ Population in mi l l i ons ’)

grid (True)

subplot (2 ,1 ,2)

p lot (years , ukpops , ’ b−x ’)

t i t l e (’ Population UK 1990−2000 ’)

x label (’ Years ’)

y label (’ Population in mi l l i ons ’)

grid (True)

savef ig (” us uk pop plot2 . eps ”)

show ()

C.4 Exploring British and American Petroleum

Company Stock Prices

Program Example #4

bpStdDev1990.py–computing descriptive statistics of BP and XOM

from pylab import ∗
import c s v f i l e

def average (sequence) :

return (1 .0∗sum(sequence)) / len (sequence)

def std dev (sequence) :

ave = average (sequence)

Compute the mean squared d i f f e r e n c e

d i f f s = 0.0

for num in sequence :

d i f f s = d i f f s + pow ((ave−num) , 2)

Compute the variance

variance = d i f f s / len (sequence)

Return the square root of the variance

return pow(variance , 0 . 5)

C.4. EXPLORING BRITISH AND AMERICAN PETROLEUM

COMPANY STOCK PRICES 135

bpdata = c s v f i l e . CSVfile (” . . / data / BritishPetroleum−BP−tab le . csv ”)

#Let ’ s get the 1990 year .

c l os es = []

for row in bpdata . dataReader :

i f row [’ Date ’] . endswith (’ 90 ’) :

c l os es . append (c s v f i l e . number(row [’ Close ’]))

#Return the average

print ” ∗∗∗ BP ∗∗∗ ”

print ” Closing values ” , c l os es

print ” Average : ” , average (c l os es)

print ” Standard Deviation : ” , std dev (c l os es)

amdata = c s v f i l e . CSVfile (” . . / data / Exxon−Mobile−XOM−tab le . csv ”)

#Let ’ s get the 1990 year .

c l os es = []

for row in amdata . dataReader :

i f row [’ Date ’] . endswith (’ 90 ’) :

c l os es . append (c s v f i l e . number(row [’ Close ’]))

#Return the average

print ” ∗∗∗ Exxon / Mobil ∗∗∗ ”

print ” Closing values ” , c l os es

print ” Average : ” , average (c l os es)

print ” Standard Deviation : ” , std dev (c l os es)

Program Example #5

bpHist1990.py–computing a histogram of each

from pylab import ∗
import c s v f i l e

bpdata = c s v f i l e . CSVfile (” . . / data / BritishPetroleum−BP−tab le . csv ”)

#Let ’ s get the 1990 year .

c l os es = []

for row in bpdata . dataReader :

i f row [’ Date ’] . endswith (’ 90 ’) :

c l os es . append (c s v f i l e . number(row [’ Close ’]))

subplot (2 ,1 ,1)

t i t l e (”BP stock in 1990−−Histogram”)

136 APPENDIX C. PROGRAM LISTINGS

hist (c l os es)

amdata = c s v f i l e . CSVfile (” . . / data / Exxon−Mobile−XOM−tab le . csv ”)

#Let ’ s get the 1990 year .

c l os es = []

for row in amdata . dataReader :

i f row [’ Date ’] . endswith (’ 90 ’) :

c l os es . append (c s v f i l e . number(row [’ Close ’]))

subplot (2 ,1 ,2)

t i t l e (”Amoco / Mobil stock in 1990−Histogram”)

his t (c l os es)

savef ig (” BP AM hist . png”)

show ()

Program Example #6

bpAmCorrel1990.py–computing a correlation between them

from pylab import ∗
import c s v f i l e

def average (sequence) :

return (1 .0∗sum(sequence)) / len (sequence)

def std dev (sequence) :

ave = average (sequence)

Compute the mean squared d i f f e r e n c e

d i f f s = 1.0

for num in sequence :

d i f f s = d i f f s + pow ((ave−num) , 2)

Compute the variance

variance = d i f f s / len (sequence)

Return the square root of the variance

return pow(variance , 0 . 5)

def corre l a t i on (x , y) :

n = len (x)

i f n != len (y) :

print ”Uh−oh ! x and y must be paired values ! ”

return 0.0

Compute the numerator

prod pairs = 0

for i in range (0 ,n) :

C.4. EXPLORING BRITISH AND AMERICAN PETROLEUM

COMPANY STOCK PRICES 137

prod pairs = prod pairs + (x [i]∗y [i])

numerator = n∗prod pairs − (sum(x)∗sum(y))

Compute the denominator

x square = 0

for i in range (0 ,n) :

x square = x square + pow(x [i] , 2)

y square = 0

for i in range (0 ,n) :

y square = y square + pow(y [i] , 2)

denom term1 = ((n∗x square)−pow(sum(x) , 2))

denom term2 = ((n∗y square)−pow(sum(y) , 2))

denominator = pow ((denom term1∗denom term2) , 0 . 5)

return numerator / denominator

bpdata = c s v f i l e . CSVfile (” . . / data / BritishPetroleum−BP−tab le . csv ”)

#Let ’ s get the 1990 year .

bpcloses = []

for row in bpdata . dataReader :

i f row [’ Date ’] . endswith (’ 90 ’) :

bpcloses . append (c s v f i l e . number(row [’ Close ’]))

amdata = c s v f i l e . CSVfile (” . . / data / Exxon−Mobile−XOM−tab le . csv ”)

#Let ’ s get the 1990 year .

amcloses = []

for row in amdata . dataReader :

i f row [’ Date ’] . endswith (’ 90 ’) :

amcloses . append (c s v f i l e . number(row [’ Close ’]))

print ”BP clos ing values : ” , bpcloses

print ” average ” , average (bpcloses)

print ”number” , len (bpcloses)

print ” standard deviation ” , std dev (bpcloses)

print ”Exxon−Mobil (American) c los ing values : ” , amcloses

print ” average ” , average (amcloses)

print ”number” , len (amcloses)

print ” standard deviation ” , std dev (amcloses)

print ” Correlation i s ” , corre l a t i on (bpcloses , amcloses)

* * *

138 APPENDIX C. PROGRAM LISTINGS

C.5 Text Analysis: Shakespeare or Bacon?

Program Example #7

viztext.py

import re

def highl ight (basename , pattern) :

f i l e = open (basename+” . txt ” , ” rt ”)

text= f i l e . read ()

f i l e . c l os e ()

Now make the new one

newpat = ’ ’ +pattern+ ’ </ font> ’

html = open (basename+” . html ” , ”wt”)

html . write (”<html><t i t l e>”+basename+”</ t i t l e >\n”)

html . write (’<body bgcolor =” black”> ’)

html . write (””)

newtext=text . replace (pattern , newpat)

html . write (newtext)

html . write (”</body>”)

html . c l os e ()

def highl ightCapitals (basename) :

f i l e = open (basename+” . txt ” , ” rt ”)

text= f i l e . read ()

f i l e . c l os e ()

Now make the new one

html = open (basename+” . html ” , ”wt”)

html . write (”<html><t i t l e>”+basename+”</ t i t l e >\n”)

html . write (’<body bgcolor =” black”> ’)

html . write (””)

newtext=re . sub (r ” (\b [A−Z] [a−zA−Z] ∗) ” , r ’\1</ font> ’ , text)

html . write (newtext)

html . write (”</body>”)

html . c l os e ()

Program Example #8

counttext.py

import re

def countText (basename , pattern) :

f i l e = open (basename+” . txt ” , ” rt ”)

C.6. HYPOTHESIS TESTING: DOES THE UNEMPLOYMENT RATE

MAKE THE PRESIDENT? 139

text= f i l e . read ()

f i l e . c l os e ()

Break i t up by paragraphs

newtext=text . s p l i t (’ \n\n ’) #Two returns = paragraph

Now, count the number of ’ the ’ s in the paragraph

ret = []

for s in newtext :

ret . append (s . count (pattern))

return ret

def countCapitals (basename) :

f i l e = open (basename+” . txt ” , ” rt ”)

text= f i l e . read ()

f i l e . c l os e ()

Break i t up by paragraphs

newtext=text . s p l i t (’ \n\n ’)

Count the cap i ta l s

ret = []

for para in newtext :

match = re . s p l i t (r ”\b [A−Z] [a−zA−z]∗ ” , para)

ret . append (len (match)−1)

return ret

C.6 Hypothesis Testing: Does the unemployment rate

make the President?

Program Example #9

electoral.py – t-test and ANOVA predicting electoral results

from pylab import ∗
import c s v f i l e

def average (sequence) :

return (1 .0∗sum(sequence)) / len (sequence)

def variance (sequence) :

ave = average (sequence)

Compute the mean squared d i f f e r e n c e

d i f f s = 1.0

for num in sequence :

d i f f s = d i f f s + pow ((ave−num) , 2)

Compute the variance

variance = d i f f s / (len (sequence)−1)

return variance

140 APPENDIX C. PROGRAM LISTINGS

def t t e s t (seq1 , seq2) :

x1 = average (seq1)

x2 = average (seq2)

s1 = variance (seq1)

s2 = variance (seq2)

n1 = len (seq1)

n2 = len (seq2)

pooleds = (((n1−1)∗s1) + ((n2−1)∗s2)) / ((n1+n2)−2)

t =(x1−x2) / pow(pooleds ∗ ((1 . 0 / n1) + (1 . 0 /n2)) , 0 . 5)

return t

def anova (seq1 , seq2) :

sum1 = sum(seq1)

sum2 = sum(seq2)

grandtotal = sum1 + sum2

n1 = len (seq1)

n2 = len (seq2)

t o t a l s i z e = n1+n2

x1 = average (seq1)

x2 = average (seq2)

grandmean = f l o a t (grandtotal) / t o t a l s i z e

SSB = (n1∗pow(x1−grandmean , 2)) + (n2∗pow(x2−grandmean , 2))

SSW = 0

for i in seq1 :

SSW=SSW+pow(i−x1 , 2)

for i in seq2 :

SSW=SSW+pow(i−x2 , 2)

MSB=SSB/1

MSW= f l o a t (SSW) / (t o ta l s i ze −2)

return MSB/MSW

unemdata = c s v f i l e . CSVfile (” . . / data / USUnemploymentRate . csv ”)

months =[’ Jan ’ , ’ Feb ’ , ’Mar ’ , ’ Apr ’ , ’May ’ , ’ Jun ’ , ’ Jul ’ , ’Aug ’ , ’ Sep ’ , ’ Oct ’ , ’Nov ’ , ’ Dec ’]

#Let ’ s get 1996 year .

rates1996 = []

getRows returns a se t . We want j us t one , the 0th

row1996 = unemdata . getRows (’ Year ’ , ’ 1996 ’) [0]

for item in months :

rates1996 . append (c s v f i l e . number(row1996 [item]))

unemdata . rewind ()

#Let ’ s get 2000 year .

rates2000 = []

row2000 = unemdata . getRows (’ Year ’ , ’ 2000 ’) [0]

for item in months :

rates2000 . append (c s v f i l e . number(row2000 [item]))

unemdata . rewind ()

#Let ’ s get 2004 year .

C.6. HYPOTHESIS TESTING: DOES THE UNEMPLOYMENT RATE

MAKE THE PRESIDENT? 141

rates2004 = []

row2004 = unemdata . getRows (’ Year ’ , ’ 2004 ’) [0]

for item in months :

rates2004 . append (c s v f i l e . number(row2004 [item]))

print ” 1996 resul ts ”

print ” average ” , average (rates1996)

print ” variance ” , variance (rates1996)

print ”number” , len (rates1996)

print ” 2000 resul ts ”

print ” average ” , average (rates2000)

print ” variance ” , variance (rates2000)

print ”number” , len (rates2000)

print ” 2004 resul ts ”

print ” average ” , average (rates2004)

print ” variance ” , variance (rates2004)

print ”number” , len (rates2004)

print ”1996−2000 anova ” , anova (rates1996 , rates2000)

print ”2000−2004 anova ” , anova (rates2000 , rates2004)

Bibliography

[Bremmer and Narayan, 1998] Bremmer, J. and Narayan, M. (1998). The

effects of stress on memory and the hippocampus throughout the life

cycle: implications for childhood development and aging. Developmental

Psychopathology, 10:871–886.

[Cole, 1986] Cole, P. M. (1986). Children’s spontaneous control of facial

expression. Child Development, 57(6):1309–1321.

[Guzdial, 2010] Guzdial, M. (2010). Does contextualized computing edu-

cation help? ACM Inroads, 1(4):4–6.

[Levitt and Dubner, 2005] Levitt, S. D. and Dubner, S. J. (2005). Freako-

nomics: A rogue economist explroes the hidden stide of everything.

HarperCollins, New York, NY.

[Mateas and Sengers, 2003] Mateas, M. and Sengers, P. (2003). Narrative

Intelligence. John Benjamins Pub Co, Amsterdam.

[Voevodsky, 1974] Voevodsky, J. (1974). Evaluation of a deceleration warn-

ing light for reducing rear-end automobile collisions. Journal of Applied

Psychology, 59:270–273.

[Webb et al., 2000] Webb, E., Campbell, D., Schwartz, R., and Sechrest, L.

(2000). Unobtrusive Measures, Revised Edition. Sage Publications, Inc.,

Thousand Oaks, CA.

143

Index

alpha, 98

alpha value, 62

alternative hypothesis, 90

Analysis of Variance, 100

analysis of variance, 86, 98

ANOVA, 98, 100

append, 32, 118

arange, 39

array, 112

associative arrays, 119

authority, 4

average, 47, 48

average of the squared differences,

50

background, 68

backslash notation, 24

Bacon, Francis, 67

The Advancedment of Learn-

ing, 67

The Essays Of, 67

beta weights, 109

between-subjects design, 12

between-subjects designs, 114

binomial distribution, 2

BP, 47

British Petroleum, 51

causal, 62

cd, 25, 41

central limit theorem, 85

change directory, 25

chaos theory, 6

Cicero, 82

claims, 3

class, 30, 123

close, 68

closed system, 10

color, 41

Comma Separated Values, 25

common sense, 5

control group, 10

correlation, 55, 62

correlational approach, 7

correlational design, 15

count, 77

counterbalancing procedure, 115

CSV, 25

csv.DictReader, 28

csv.reader, 26

Darwin, Charles, 6

data journalism, 21, 24

dataReader, 48

def, 120

degrees of freedom, 62, 92

t-test, 96

dependent variable, 14

descriptive statistics, 47

df, 62

df1, 101

df2, 101

dictionary, 29

directory, 25

changing, 25

distribute, 38

distribution, 82

dot operator, 26

Einstein, Albert, 5

145

146 INDEX

else, 122

Encapsulated Postscript, 36

end, 71

Enthought Python, 19

EPS, 36

error, 86

eval, 118

existence proof, 7

experimental group, 9

experimental method, 8

Exxon, 51

f statistic, 100

F table, 100

fields, 30

files

reading, 24, 68

writing, 24

find, 68

float, 118

floating point numbers, 39

folder, 25

font size, 68

for, 32, 120

Freud, Sigmund, 5

from-import, 26

Galapagos Islands, 6

generalization, 10

get, 29

getColumn, 30, 32

defined, 32

getRows, 29, 31

defined, 31

usage, 29

global, 26

Gosset, William, 82

grand mean, 99, 100

grand total, 100

grand total of scores, 99

grouped, 74

Guardian, 24

Hawthorne effect, 11

Head Start program, 10

help, 44, 52

highlight, 68

hippocampal volume, 16

hippocampus, 16

histogram, 52

HTML background, 68

IDLE, 19, 20

if, 122

import, 26, 41

for running files, 41

from, 26

independent variable, 14

inferential statistics, 81

init method, 31

instance variable, 31

instance variables, 30

integers, 39

intercept, 109

internal validity, 12

interrupted time series design, 12

IPython, 41

JPEG, 37

keys, 119

legend, 43

location, 43

linestyle, 41

list, 31

loc, 43

Macbeth, 67

Many Eyes, 22

map, 32

marker, 41

markeredgecoor, 41

markerfacecolor, 41

markersize, 41

match, 71

match object, 71

matched-subjects design, 114

MATLAB, 58

Matplotlib, 35

usage, 35

matrix, 112

mean, 47, 87

INDEX 147

differences, 81

means, 81

memory, 66

methods, 30, 119

correlational approach, 7

naturalistic observation, 6

Mobil, 51

module, 26

MSB, 101

MSW, 101

multiple correlation, 109

multiple time series design, 13

named arrays, 119

narrative intelligence, 3

naturalistic observation, 6

naturalistic observations, 17

next, 31

non-random assignment, 14

None, 71

nonequivalent before-after design,

14

normal, 65

normal curve, 85

normal distribution, 85

null hypothesis, 90

number, 31

NumPy, 19, 63

objects, 30, 119

one-tailed, 62

one-tailed test, 93

open, 68

open(), 24

operational definition, 10

p levels, 93

p-value, 82

paired, 59

Pearson Product Moment Corre-

lation, 61

Pearson product moment correla-

tion coefficient, 55

plot, 35, 39

saving, 36

showing, 36

usage, 35

PNG, 37

pooled sample variance, 95

population, 90

population variability, 50

posttest, 12

pow, 52

pretest, 12

print, 32

for debugging, 43

probability, 82

distribution, 82

probability levels, 93

pylab, 84

python, 25

r1, 58

r2, 58

random, 84, 87

range, 49, 121

raw mode, 73

re, 70

reactive behavior, 17

read, 68

read(), 24

reader, 28

reading text files, 68

reason, 5

Regression analysis, 110

regular expressions, 70

grouping, 74

match, 71

related, 55

reload, 27, 41

replace, 68

replication, 6

retrospective design, 15

return, 120

rewind, 30

Roasty-Toasties, 9

Romeo and Juliet, 67

run, 41

via import, 41

sample, 87

savefig, 36

148 INDEX

scatter diagram, 55

scatterplot, 55

science

claims, 3

definition, 3

SciPy, 19, 112

self, 31

Shakespeare, William, 67

shape, 54

show(), 36

significance chance, 62

significance level, 62

significant, 62

sin, 39

Skinner, B.F., 5

slice, 118

slicing, 35

usage, 38

slope, 46

social psychology, 5

sort, 37

split, 74

spread, 50

SSB, 100

SSW, 101

standard deviation, 50

standard error

mean, 86

standard error of the mean, 86

standard normal, 65

start, 71

stderr, 87

stdev, 87

string to number conversion, 118

Student t test, 90

Student’s t, 82

Student’s t test, 95

sub, 74

subplot, 45

sum, 47

sum of squares, 49

syllogism, 5

t statistic, 100

t table, 93

t test, 95

t-test, 82

computation, 91

degrees of freedom, 96

tenacity, 4

textual analysis, 67

The Advancement of Learning, 67

The Essays of Francis Bacon, 67

third-variable problem, 16

time series design, 12

title, 41

total sample size, 99, 100

tuple, 41

two-tailed, 62

two-tailed test, 93

ufunc, 39

universal function, 39

variance, 12, 49, 50

defined, 49

WinEdt, 40

within-subjects design, 12, 114

World Trade Center, 10

xlabel, 41

XOM, 51

ylabel, 41

zscore, 58

