
Investigating the Affect and Effect of Adaptive Parsons Problems
Barbara Ericson

University of Michigan
Ann Arbor, Michigan, USA

barbarer@umich.edu

Austin McCall
University of Michigan

Ann Arbor, Michigan, USA
austin.mccall32@gmail.com

Kathryn Cunningham
University of Michigan

Ann Arbor, Michigan, USA
kicunn@umich.edu

ABSTRACT
In a Parsons problem the learner places mixed-up code blocks in
the correct order to solve a problem. Parsons problems can be used
for both practice and assessment in programming courses. While
most students correctly solve Parsons problems, some do not. Un-
successful practice is not conducive to learning, leads to frustration,
and lowers self-efficacy. Ericson invented two types of adaptation
for Parsons problems, intra-problem and inter-problem, in order to
decrease frustration and maximize learning gains. In intra-problem
adaptation, if the learner is struggling, the problem can dynamically
be made easier. In inter-problem adaptation, the next problem’s dif-
ficulty is modified based on the learner’s performance on the last
problem. This paper reports on the first observational studies of five
undergraduate students and 11 secondary teachers solving both
intra-problem adaptive and non-adaptive Parsons problems. It also
reports on a log file analysis with data from over 8,000 users solving
non-adaptive and adaptive Parsons problems. The paper reports on
teachers’ understanding of the intra-problem adaptation process,
their preference for adaptive or non-adaptive Parsons problems,
their perception of the usefulness of solving Parsons problems in
helping them learn to fix and write similar code, and the effect
of adaptation (both intra-problem and inter-problem) on problem
correctness. Teachers understood most of the intra-problem adapta-
tion process, but not all. Most teachers preferred adaptive Parsons
problems and felt that solving Parsons problems helped them learn
to fix and write similar code. Analysis of the log file data provided
evidence that learners are nearly twice as likely to correctly solve
adaptive Parsons problems than non-adaptive ones.

CCS CONCEPTS
• Social and professional topics → Informal education; Stu-
dent assessment; K-12 education; Adult education.

KEYWORDS
Parsons problems, Parson’s problems, adaptation, self-efficacy

ACM Reference Format:
Barbara Ericson, Austin McCall, and Kathryn Cunningham. 2019. Investigat-
ing the Affect and Effect of Adaptive Parsons Problems. In 19th Koli Calling
International Conference on Computing Education Research (Koli Calling ’19),

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Koli Calling ’19, November 21–24, 2019, Koli, Finland
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7715-7/19/11. . . $15.00
https://doi.org/10.1145/3364510.3364524

November 21–24, 2019, Koli, Finland. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3364510.3364524

1 INTRODUCTION
Learning to program can be difficult. Drop out and failure rates in
many introductory computing classes at the college level are high
with an average pass rate worldwide of only 67% [7, 40]. Novices
have spent many frustrating hours trying to figure out why their
program does not compile [6]. College students that encounter
errors while programming experience negative emotions that can
impact their self-efficacy [28]. Negative experiences in courses tend
to affect women more than men, which may be one reason that
women are underrepresented in computing [16, 30].

Parsons problems may help novices learn to recognize and fix
common errors as well as learn common algorithms. In a Parsons
problem the correct code to solve a problem is provided, but is
divided into blocks of statements, and the blocks are mixed up [31].
The blocks must be placed in the correct order as shown in Figure 1.
Problems can also contain additional blocks called distractors, which
are not needed in a correct solution. These distractors may contain
common syntactic or semantic errors. Two-dimensional Parsons
problems also require the learner to indent the blocks correctly [26].
Some languages, like Python, use indentation to indicate the body
of a block for control structures.

Figure 1: A two-dimensional Parsons problemwith the solu-
tion on the right and a distractor on the left

.

Prior research on Parsons problems embedded in a free ebook
showed that while most students successfully solved the Parsons
problems (80 - 90%), some students gave up and never solved them
[20]. Unsuccessful practice is not conducive to learning [9]. It can
lead to frustration [28] and lower self-efficacy [5]. The goal is to
keep the learner in Vygotsky’s zone of proximal development (ZPD)

https://doi.org/10.1145/3364510.3364524
https://doi.org/10.1145/3364510.3364524

Koli Calling ’19, November 21–24, 2019, Koli, Finland Barbara Ericson, Austin McCall, and Kathryn Cunningham

[39]. The zone of proximal development is defined as the difference
between what a learner can accomplish with help versus without
help. Learning is optimized in the ZPD because the problem is
challenging for the learner, but not frustrating.

Intelligent tutoring systems (ITS) also attempt to keep the learner
in the zone of proximal development [1], but these systems take a
long time to develop [12] and are not widely used [2]. Conversely,
a Parsons problem can be created in minutes and thousands of stu-
dents are already solving them in free interactive ebooks. Ericson
invented two types of adaptation for Parsons problems to optimize
learning. In intra-problem adaptation if the learner is struggling to
solve the current problem, it can dynamically be made easier. In
inter-problem adaptation the difficulty of the next problem is modi-
fied based on the learner’s performance on the previous problem.

This study attempted to answer the following research questions:
• RQ1: Do learners understand the intra-problem adaptation
process?

• RQ2: Do learners prefer adaptive or non-adaptive Parsons
problems?

• RQ3: Do learners perceive that solving Parsons problems
with distractors helped them learn to fix code with similar
errors and write similar code?

• RQ4: What is the effect of adaptation (both intra-problem
and inter-problem) on learners’ ability to correctly complete
Parsons problems?

This paper uses both qualitative and quantitative methods to
study the affect and effect of non-adaptive Parsons problems and
adaptive Parsons problems. It used an observational study to answer
RQ1 - RQ3 and a log file analysis to answer RQ4. It reports on 1) the
first observational studies of undergraduate students and secondary
teachers solving intra-problem adaptive Parsons problems. It also
reports on 2) a log file analysis of over 8,000 users who solved
adaptive (both intra-problem and inter-problem) and non-adaptive
Parsons problems in two free interactive ebooks. The observational
studies were part of a series of studies for a dissertation on the
effectiveness and efficiency of solving adaptive and non-adaptive
Parsons problems [18, 19, 21].

2 RELATEDWORK
Practice is crucial in developing expertise [33, 36]. However, it needs
to be the right kind of practice. It is possible to spend many hours
practicing without any improvement in ability. It is important to
help learners succeed during practice because unsuccessful prac-
tice is not conducive to learning [13]. Novice programmers have
reported spending hours trying to find a simple syntax error in a
program [6].

During learning new information must be processed in work-
ing memory and then added to the knowledge representations
(schemas) that exist in long-term memory [35]. However, cognitive
load theory posits that working memory has a limited capacity, and
if that capacity is needed entirely to process new information, it
cannot be used to build schemas [34]. Instructional material can be
designed to reduce cognitive load. Parsons problems, as a type of
code completion problem, should have a lower cognitive load than
a problem that requires the learner to write the code from scratch,
because the problem space is more constrained [37].

2.1 Adaptive Practice
Dynamically adaptive practice, where the practice problems are
adapted based on the learners prior performance, improves learn-
ing, takes less time, and increases engagement compared to non-
adaptive practice problems [11]. Successful adaptive practice should
keep the learner in Vygotsky’s zone of proximal development,
which is optimal for learning [8].

Intelligent tutoring systems (ITS) also try to keep the learner
challenged, but not frustrated [1]. They include both an inner loop
and outer loop [38]. The inner loop executes once per step taken
by a student when solving a problem and provides feedback and
hints. This is similar to intra-problem adaptation, except that the
hints in adaptive Parsons problems are implicit rather than explicit.
The inner loop can also be used to assess the student’s mastery of
concepts and update the student model, which is used by the outer
loop to select the next problem based on the student’s performance.
This is different than inter-problem adaptation, which does not
select the next problem based on the student’s past performance,
but instead modifies the difficulty of the next problem.

2.2 Research on Parsons Problems
Knowing the features that make Parsons problems more or less
difficult is essential for successful adaptation. Several researchers
have studied the impact of distractors in Parsons problems. These
studies provided evidence that Parsons problems with distractors
are harder to solve than those without distractors [23, 24], that vi-
sually pairing a distractor block and its corresponding correct block
makes the problem easier [15], and that adding more distractors
makes a problem harder [15]. Several studies have indicated that
providing the indentation or structure of the problem makes the
problem easier, while requiring the learner to provide the indenta-
tion makes the problem harder [15, 26]. Increasing the number of
blocks in a Parsons problem increases the difficulty of the problem,
since it increases the number of possible combinations.

3 OBSERVATIONAL STUDY MATERIALS
The observational study used the first five chapters of a free online
teacher ebook for the Advanced Placement (AP) Computer Science
Principles (CSP) course [17]. The AP CSP course is offered in sec-
ondary schools and is intended to be equivalent to a college level
course in computer science for non-majors. This course includes
basic programming concepts such as variables, loops, conditionals,
and functions. The teacher ebook was created to provide secondary
teachers with free professional development in order to increase
their knowledge of programming and confidence in their ability
to teach programming [17]. To create sufficient material for this
study, Ericson added material to chapter five from the later ebook
chapters on loops and nested loops and also created new Parsons
problems.

Two versions of chapter five of the ebook were created, each with
10 intra-problem adaptive Parsons problems and 10 non-adaptive
Parsons. The only difference between the two versions was which
Parsons problems were adaptive. In one version the sequence was
"ANNAANNAANNAANNAANNA" where "A" means adaptive and
"N" means non-adaptive. In the other version the sequence was
"NAANNAANNAANNAANNAAN". Notice that if a problem is

Investigating the Affect and Effect of Adaptive Parsons Problems Koli Calling ’19, November 21–24, 2019, Koli, Finland

adaptive in one version, it is non-adaptive in the other version.
Within the ebook content, problems were grouped into pairs of
adaptive and non-adaptive (after the first problem), for future tests
of inter-problem adaptation, since inter-problem adaptation only
affects the next adaptive Parsons problem. Participants were ran-
domly assigned to one of the two versions of the ebook.

Chapter five included Parsons problems, fix code problems, and
write code problems. In a fix code problem the learner must fix
errors in the code as shown in Figure 2. One of the write code prob-
lems is shown in Figure 3. There were several Parsons problems
with distractors, before two fix code problems, which were followed
by a write code problem. The distractors included common errors
such as the wrong case, unmatched parentheses, missing paren-
theses, and missing colons. The goal was to use distractors in the
Parsons problems to help novices learn to recognize and fix the
types of syntax errors that experts easily fix, but that can cause
novices hours of frustration [6].

Figure 2: One of the fix code problems with four errors.

Figure 3: One of the write code problem

4 ADAPTIVE PARSONS PROBLEMS
The observational study only used intra-problem adaptation since
it is visible to the learner and initiated by the learner. Inter-problem
adaptation happens automatically before the next problem is pre-
sented to the learner, which means that it is invisible to the learner.
Both types, intra-problem and inter-problem adaptation were used
in the adaptive Parsons problems in the log file analysis.

4.1 Intra-Problem Adaptation
In intra-problem adaptation, if the learner is struggling to solve
the current Parsons problem it can dynamically be made easier
by disabling distractors, providing indentation, and/or combining
blocks. Adaptation was only available after the learner had checked
three full solutions. A full solution has at least the required number
of blocks. When the learner clicked the Check Me button to check
an incorrect solution for the third time an alert notified the user that
help was available. The learner had to click on the Help Me button

to initiate the adaptation. If the learner clicked on the Help Me
button before completing three full attempts, an alert was shown
that said that, "You must make at least three distinct full attempts at
a solution before you can get help".

When the learner initiated an adaptation, an alert notified the
user which type of change it was about to perform: disable a distrac-
tor, provide indentation, or combine two blocks. The change did not
occur until the learner clicked the Close button on the alert window.
This was intended to help the learner understand and track the
change. Only one change was made each time the user clicked on
the Help Me button. The system would disable a distractor, provide
indentation, or combine two blocks into one.

Figure 4 shows a Parsons problem when it is first displayed. This
problem has four distractor blocks shown paired with the correct
code blocks. Notice the purple edges that pair the correct code
block and the incorrect (distractor) code block. The correct code is
randomly shown above or below the distractor block. This problem
asks the learner to stamp three turtle shapes in a line. The learner
constructs the solution on the right side.

Figure 4: Problem 13 in the experiment with four distractor
blocks shown paired with the correct code blocks.

If the learner had made at least three full attempts at a solution
when trying to solve this problem, the learner could ask for help. If
help (adaptation) was requested and any distractor was still enabled
it would disable a distractor, meaning that it grayed out over time
and would not respond to further attempts to move it as shown in
Figure 7. If the distractor was in the solution area, it would first
move slowly from the solution area on the right to the source area
on the left as shown in Figure 5 before being disabled. Animation
is useful for grabbing attending and conveying a change over time
[4, 10].

Koli Calling ’19, November 21–24, 2019, Koli, Finland Barbara Ericson, Austin McCall, and Kathryn Cunningham

Figure 5: A distractor (missing colon) moving back to the
source area on the left from the solution area on the right

If the distractor was originally shown paired with the correct
code, and that correct code block was still in the source area on the
left, then the distractor was again paired with the correct code as
shown in Figure 6. This was an implicit hint that the learners should
use the paired correct block rather than the disabled distractor. If
no distractors were used in the solution, it would disable (gray out)
a distractor in the source area on the left.

Figure 6: A distractor (missing colon) after it has been paired
with the correct code block on the left and disabled (grayed
out)

If the user asked for help and there were no active distractors,
indentation was provided as shown in Figure 7. Space was slowly
added to the left before the code. After indentation was provided
the blocks could no longer be indented by the learner.

If the user asked for help when there were no active distractors
and indentation was not needed or had already been provided, then
two blocks were combined into one. The block that was about to
be added below another block slowly moved into place. The blocks
were then redrawn as one block as shown in Figure 8. This type of
adaptation would only happen if there were more than three blocks
left. In a problem with three blocks, there are only six possible
combinations. Since the first block of the solution is usually in the
correct position, this means that there are really only two possible
combinations to try.

4.2 Inter-problem Adaptation
Inter-problem adaptation was added to the adaptive Parsons prob-
lem software after the observational study. In inter-problem adap-
tation the user’s performance on the previous problem is used to

Figure 7: User provided indentation on the left and after in-
dentation has been provide on the right.

Figure 8: After the shape and penup blocks have been com-
bined into one block.

modify the difficulty of the next problem. If the learner solved
the last Parsons problem in only one attempt, then the next Par-
sons problem was made more difficult by un-pairing distractors
(randomly mixing them in with the correct code) and by using all
available distractors as shown in Figure 9.

If it took the learner four or five attempts to solve the last Parsons
problem, then on the next problem the distractors would be shown
paired with the correct code blocks as shown in Figure 4. If it took
the learner six to seven attempts to solve the last problem, then
50% of the available distractors were removed and the remaining
distractors were shown paired with the correct code blocks on the
next problem. If it took the learner eight or more attempts to solve
the last problem, then all distractors were removed from the next
problem as shown in Figure 10. Inter-problem adaptation is similar
to the outer loop of intelligent tutoring systems, which chooses
the next problem from a set of possible problems based on the
user’s prior performance. However, in inter-problem adaptation
the difficulty of the next problem is modified rather than which
problem is next.

Investigating the Affect and Effect of Adaptive Parsons Problems Koli Calling ’19, November 21–24, 2019, Koli, Finland

Figure 9: Parsons problem with all distractor blocks ran-
domly mixed in with the correct code blocks.

Figure 10: Parsons problem without any distractor blocks.

5 PILOT STUDY
To test that the study materials were the right level of difficulty,
three undergraduate students were observed as they individually
worked through the materials. The undergraduates received five
points of extra credit for taking part in the study. They had all pre-
viously taken an undergraduate CS1 course in Python, so they were
more experienced than the intended audience. None of the three
students used the adaptation, which indicated that the problems
might be too easy. Four of the Parsons problems were dropped
since the students solved those problems easily. More distractors
were added to the remaining problems and half of the problems
were changed to randomly mix in the distractor blocks with the
correct code blocks, in order to make the problems harder. Ericson
observed two more undergraduate students and found that these

students used the adaptation. This indicated that the problems were
at a level of difficulty that would make it likely that the teachers,
who had less textual programming experience than the students,
would also need to use intra-problem adaptation to solve at least
some of the problems.

6 OBSERVATIONAL STUDY
Observations provide rich details on individual learners’ under-
standing and perceptions. The goals for this study were to 1) check
if the learners understood the intra-problem adaptation process
and could make use of the implicit hints provided by the adapta-
tion, 2) determine learners’ preference for adaptive or non-adaptive
Parsons problems, and 3) understand learners’ perception of the
usefulness of solving Parsons problems with distractors for helping
them learn to fix and write similar code.

This was a within-subjects observational study of 11 teachers
with less than three months of textual programming experience.
They were randomly assigned to one of two versions of chapter
five of an ebook for teachers. The only difference between the two
versions was which Parsons problems were adaptive.

6.1 Recruitment
Ericson sent email to a list of over 500 secondary teachers and
also sent email to other instructors who lead teacher professional
development to ask them to forward the email to their participants.
The email stated that the study was for teachers with less than
three months of textual programming experience over the last two
years. Teachers who completed the study earned a $75 gift card.
Teachers had to complete the first four chapters of the ebook on
their own and then were observed as they worked through the fifth
chapter. They were asked to complete the first four chapters by the
end of August 2017.

6.2 Procedure
Interested teachers first gave consent online. Next they filled out a
survey, which asked for demographic information including gender,
age, race, certification/license, number of years teaching and the
number of years teaching computing courses. This information is
shown in Table 1. The survey also asked if they had less than three
months of textual programming experience, and their familiarity
with computing concepts such as variables, loops, conditionals, and
lists. Qualified teachers were randomly assigned to one of the two
versions of the study ebook and were sent an email welcoming them
to the study. The email contained the URL for the study ebook, their
login, and their password. Theywere instructed towork through the
first four chapters on their own and then contact Ericson to arrange
for a two-hour observation using the Zoom videoconferencing
software. Teachers were sent an email every week, which reminded
them that they could quit the study at any time. They were also
asked to contact Ericson to arrange an observation when they had
completed chapter four.

Twenty-six teachers applied to be in the study. Some of these
had more than three months experience in a textual programming
language and were disqualified. Some teachers had years of experi-
ence teaching computing courses, but did not have at least three
months of experience in a textual programming language. This

Koli Calling ’19, November 21–24, 2019, Koli, Finland Barbara Ericson, Austin McCall, and Kathryn Cunningham

experience could have been in other courses like web design or in
block-based languages. Eighteen teachers enrolled in the study, but
five withdrew from the study because they did not think that they
had time to finish before the deadline. Another two teachers did
not complete the first four chapters in time. This paper is reporting
on the 11 teachers (five in one group and six in the other) that were
observed working through two versions of the fifth chapter. The
two-hour observations were recorded with the teachers’ consent.
The videos from the recordings were transcribed.

Table 1: Teacher id, gender, race, age, certification/license,
and years teaching computing/IT courses

Id M/F Race Age Certification/License Years
T1 F White 40 Business 10
T2 F White 26 Biology 0
T3 F White 30 English, Math and Science 1
T6 F Hispanic 55 Math 1
T8 M Arab 37 Biology and Chemistry 2
T9 M White 33 History, English, and Tech. 2
T10 M White 42 Instructional Tech. 15
T11 M White 42 Language Arts and CS 0
T13 M White 43 No Answer 1
T14 F Asian 26 Math 1
T18 F White 59 Math - Alt. 1

As you can see in Table 1 the majority of the teachers identified
as white (63%), female (55%), and had been teaching computing
courses for two years or less (82%). The teachers came from seven
different states in the United States. Eight of the teachers (73%)
had prior experience in Scratch [29]. The rest had experience in
App Inventor [41], Java [3], Alice [14], JavaScript [22], Squeak [27],
Snap [25], and Python [32]. Eight teachers (73%) had less than one
year of experience programming in a drag and drop environment.
Nine of the teachers (82%) had used variables and conditionals in a
program. Seven of the teachers (64%) had used a loop in a program.

6.3 Use of Intra-Problem Adaptation
Of the 11 teachers, seven (63%) used the intra-problem adaptation
by clicking the Help Me button at least once during the two-hour
observation as shown in Table 2 (T1, T6, T9, T10, T11, T14, and
T18). Three teachers (T1, T6, and T9), used the adaptation on four
problems. Four teachers used the adaptation on problem 13 (T18,
T1, T9, and T14). Table 2 shows the problem id with a short descrip-
tor, the number of blocks followed by the number of distractors in
parentheses, and then the teacher id followed by dash and then a
code for the last type of adaptation that was used (D is distractor
disabled, I is indentation provided, and C is combined blocks). The
number after the code is the number of times that type of adapta-
tion was used before the teacher correctly solved the problem. For
example, T1 and T9 were both able to solve P1 (draw an L) after
just one distractor was removed. T9 was able to solve P4 (draw an
A) after one block was combined with another. Teacher T1 was able
to solve P9 (draw a rectangle) after four distractors were disabled.
T6 was able to solve P11 (draw a spirograph type pattern) after the
indentation was provided. As you can see from this table, some

teachers used the adaptation more than others and teachers were
able to solve a problem after each type of adaptation.

Two teachers did not solve one of the non-adaptive problems.
Teacher T9 gave up on problem 11 after 11 attempts saying, "I don’t
know what I am doing on this one." He had the block that starts with
setting the color to blue in the outer loop and the block that starts
with setting the color to red in the inner loop as shown on the right
side in Figure 11 and they should be swapped. Teacher T6 gave up
on P16 after 15 attempts to solve it and asked, "Why isn’t it letting
me do the help?" She was missing one of the for loops in a nested for
loop problem and had added an extra left turn instead. See Problem
16 in Figure 12.

Figure 11: Problem 11 (P11) in the teacher observations.

Table 2: The problems that teachers successfully solved after
using adaptation.

Id Descriptor # Blocks (# Dis.) Teachers & Last Adaptation
P1 L 7(4) T1-D1, T9-D1
P4 A 7(4) T9-C1
P6 N 7(4) T6-D1
P7 F 7(4) T6-C1
P9 Rectangle 6(4) T1-D4
P11 Spiro 6(3) T6-I, T10-C3, T11-C3
P13 Line 7(4) T18-D1, T1-I, T9-C1, T14-C1
P15 X 9(4) T6-C2
P16 Squares 9(4) T1-C3, T9-C4

6.4 An In-Depth Look at Problem 13
To examine understanding of the adaptation process, it is helpful
to take an in-depth look at one problem. Four teachers used the
adaptation on P13 shown in Figure 4, which was the largest number
of teachers who used the adaptation on any problem. Problem
13 was also the only problem that was solved after each type of

Investigating the Affect and Effect of Adaptive Parsons Problems Koli Calling ’19, November 21–24, 2019, Koli, Finland

Figure 12: Problem 16 (P16) in the teacher observations.

adaptation. Problem 13 asked the learner to stamp three turtle
shapes in a line. The distractor blocks had common syntax errors
like the wrong case, missing parentheses, missing quotes for the
string "turtle", and a missing colon at the end of the for statement.

6.4.1 Solving the problem after a distractor was disabled. Teacher
T18 solved this problem after one distractor was removed. Her first
solution was missing the block to set the turtle shape. She said, "I
don’t have my other program to look at to see if I have to put a shape
turtle in there. I am just going to run this and see what happens." This
is interesting because it indicates that she did not realize that the
correct and incorrect blocks were shown paired with purple edges
outlining the pair as shown in Figure 4, since that should have been
a clue that she needed to use at least one of the two shape blocks.
The solution check told her the solution was too short and that she
needed to add more blocks. She said, "I think I must need the shape
in there somewhere." She added the correct shape block.

When she checked her solution the software highlighted the
distractor stamp block (the one that was missing the parentheses)
as needing to be moved or replaced. She tried moving the stamp
block before the forward block, but that was still wrong. The alert
then said that help was available. She clicked on the Help Me button
and an alert said that it would remove (disable) an incorrect block.

She clicked on Close and the distractor stamp block moved slowly
back to the source area on the left and was paired again with the
correct stamp block and then grayed out. She said, "Ah, okay I
need the one with the thing [parentheses]. Oh gosh, I should have
noticed that." As mentioned earlier, experts pick up on details like
missing parentheses that novices do not [13]. This example shows
that this teacher understood the implicit hint provided by moving
the distractor back to the source and pairing it with the correct
code block before graying it out. In fact, all of the teachers in the
observation study immediately moved the correct code block to the
solution after the system disabled a distractor block that had been
used in the solution.

6.4.2 Solving the problem after the indentation was provided. Teacher
T1 solved this problem after all the distractors were disabled and
the indentation was provided. She clicked on the Help Me button
four times to disable the four distractors, but she had not used any
of them in her solution. Then she clicked on the Help Me button
again and the alert said that indentation would be provided. She
clicked on the Close button and space was slowly added before the
text in the blocks to provide the indentation as shown in Figure
7. Notice that the penup block should not be in the loop since it is
not indented. This should have been an implicit hint to move that
block outside the loop. However, this teacher did not understand
this implicit hint.

After the indentation had been provided, she picked up the stamp
block and tried to indent it, but could not. She then asked Ericson,
"So these last three [blocks] aren’t supposed to be indented?" Ericson
answered, "Not the penup." She then said, "But, these two are?" and
moved her cursor over the stamp and forward blocks. Ericson an-
swered, "So, what it did was provide the indentation." She then moved
the penup block before the loop and checked her solution. The last
block was highlighted as needing to be moved. She then moved the
forward before the stamp and that solution was correct. She had
not realized that she should pick up the pen using the penup block
before the turtle moved forward or it would draw a line when the
turtle moved, even though the example before this problem showed
the penup block before the loop.

Other teachers also put the penup block in the loop and were not
able to solve the problem until after code blocks had been combined.
This indicates that novice users may not be able to use the implicit
hint given by providing the indentation.

6.4.3 Solving the problem after combining blocks. Teacher T9 origi-
nally dragged the penUp (wrong case) distractor into his solution,
but then immediately moved it back to the source and dragged out
the correct penup block instead. This distractor was shown paired
with the correct code as shown in Figure 4 and this implies that
the pairing helped him focus on what was different between the
two blocks. He then checked a solution that did not include the
block to set the turtle shape, and was told that the solution was too
short. He, like teacher T18, did not seem to realize that because the
distractor and correct blocks were shown in pairs, he should use at
least one of the two blocks in the pair to set the shape.

After being told that the solution was too short, he dragged in
the distractor block for setting the shape (the one that was missing
the double quotes around the string). When he checked the solution,
it highlighted the distractor and two blocks in the loop that had

Koli Calling ’19, November 21–24, 2019, Koli, Finland Barbara Ericson, Austin McCall, and Kathryn Cunningham

to be moved for a correct solution. Like teacher T1, he also had
included the penup block in the loop, even though the previous
example had shown it before the loop.

He used the Help Me button to disable all of the distractor blocks
and provide the indentation. After the indentation had been pro-
vided, he started to move the penup block, but stopped and clicked
the Help Me button again, which moved the penup block below the
shape block and then combined them as shown in Figure 8. The
problem was now correct. This example shows that this teacher
found the combining of two blocks into one block useful for helping
him solve the problem.

6.5 Preference and Perception of Usefulness
If the teacher never used the adaptation during the observation,
Ericson demonstrated it after the teacher had finished working
through the fifth chapter. The teacher was asked 1) What type of
Parsons problem did the teacher prefer (adaptive or non-adaptive)
and 2) Did the teacher feel that solving Parsons problems helped
them learn to fix or write similar code?

Nine (81.8%) of the eleven teachers said that they preferred adap-
tive to non-adaptive Parsons problems. One of the teachers still
wanted help, but she suggested providing an example or providing
audio feedback instead. She was worried that the intra-problem
adaptation could become a "crutch" and that some students might
abuse it. Another teacher said that the adaptation messed him up.
He was confused when the distractors that he had not used in his
solution were disabled. His attention was on his solution on the
right, not the source area on the left. After this study, the adaptation
process was changed to only disable distractors that had been used
in the solution.

All of the teachers said that they felt that solving Parsons prob-
lems with distractors helped them when they had to fix code with
the same type of errors as the distractors. One teacher said, "Yes, it
kept reminding me. Hey, that requires a colon, that requires paren-
theses, that requires lower case or upper case. That is what I was
struggling with in the beginning." All of the teachers said that they
felt that solving Parsons problems with distractors also helped them
when they had to write code from scratch. One teacher said, "I had
made a mistake with one [problem] and then went back to switch it
[the distractor block for the correct block]. I realized that okay, the
only difference there is that it is capitalized, or I left a parenthesis off
or something."

During the observations several teachers used a distractor that
was missing the colon at the end of a for loop. One teacher even
asked why there were two of the exact same block in the source area.
That teacher didn’t notice that one block was missing the colon.
The first fix code problem also was missing a colon at the end of
a for loop and all of the teachers quickly found that error. This
provides evidence that solving Parsons problems with distractors
with common syntax errors can help novice programmers learn to
spot and fix common syntax errors.

7 TESTING ADAPTATION AT SCALE
While observations can provide an in-depth look at learners’ under-
standing of the adaptation process, they do not provide sufficient

evidence of the effect of intra-problem and inter-problem adap-
tation on learners’ ability to successfully solve Parsons problems.
Quantitative data derived from logs of user interactions can provide
this evidence.

The log file was an anonymous log file with all the user and
institution information replaced with numbers. The log file con-
tained data from two free ebooks from 8/13/2017 to 10/31/2018.
Users of these ebooks are notified that their usage data will be
used for educational research. One ebook was for AP CSP and the
other for AP CSA. The AP CSP course is intended to be equivalent
to a first computer science course for non-majors. It covers pro-
gramming basics in Python including variables, conditionals, loops,
and functions. The AP CSA course is intended to be equivalent to
a first course for computer science majors at the college level. It
covers object-oriented programming in Java and includes program-
ming fundamentals, arrays (1D and 2D), lists, recursion, searching,
sorting, inheritance, interfaces, and polymorphism.

The Parsons problems used in the observation study were added
to the public version of the Advanced Placement (AP) CS Principles
(CSP) ebook. It is interesting to examine the log file data for just the
Parsons problems that were used in the observational study. These
Parsons problems were in pairs of problems of similar difficulty
where one of the pair was adaptive and the other was not. Table 3
shows the problem id, a short descriptor, whether the problem was
adaptive, the number of users who attempted the problem, and the
percentage of users who got the problem correct.

Table 3: Problem Id, descriptor, whether the problem was
adaptive, the number of users who attempted the problem,
the percentage of users who got the problem correct

Id Description Adaptive? Num. attempted % correct
P1 L N 839 83.75%
P2 Check Y 708 93.27%
P3 T Y 668 92.76%
P4 A N 592 79.11%
P5 Z N 548 93.17%
P6 N Y 501 94.46%
P7 F Y 488 93.05%
P8 A2 N 425 93.51%
P9 Rectangle N 297 82.86%
P10 Triangle Y 238 96.60%
P11 Spiro Y 247 93.72%
P12 Spiro2 N 196 91.75%
P13 Line N 212 89.22%
P14 Circle Y 191 91.49%
P15 X Y 194 90.96%
P16 Squares N 165 77.22%

The average percentage of users who got the non-adaptive Par-
sons problems correct was 86.32% with a standard deviation of 6.44.
The average for the adaptive Parsons problems was 93.29% with
a standard deviation of 1.75. This provides evidence that a higher
average percentage of users correctly solved adaptive Parsons prob-
lems than non-adaptive Parsons problems.

Investigating the Affect and Effect of Adaptive Parsons Problems Koli Calling ’19, November 21–24, 2019, Koli, Finland

Table 4 shows the percentage of users who used adaptation
on these problems varied from 9.7% for problem P2 to 44.7% for
problem P15. It also shows that the percentage who used adaptation,
but never got the problem correct ranged from 10% to 16.4%. This
indicates that the adaptation process could be improved.

Table 4: Problem Id, descriptor, the number of users who
used adaptation (the percentage of users), number of users
who used adaptation, but never solved the problem (the per-
centage of users who used the adaptation, but did not solve
the problem)

Id Descriptor # Used Adaptation (%) Never Solved (%)
P2 Check 66 (9.7%) 10 (15.2%)
P3 T 149 (23.0%) 16 (10.7%)
P6 N 61 (12.5%) 10 (16.4%)
P7 F 84 (17.7%) 12 (14.3%)
P10 Triangle 26 (11.1%) 4 (15.4%)
P11 Spiro 79 (33.1%) 8 (10.1%)
P14 Circle 70 (37.2%) 7 (10.0%)
P15 X 84 (44.7%) 11 (13.1%)

7.1 Adaptation Increases the Odds that Users
will Correctly Solve the Problem

To test if ebook users were more likely to correctly solve adaptive
Parsons problems than non-adaptive Parsons problems, an analysis
was performed with all 154 Parsons problems in both the AP CSP
ebook (97 adaptive problems, 9 non-adaptive problems) and the
AP CS A ebook (14 adaptive problems, 34 non-adaptive problems).
This analysis included 8,675 unique users who attempted to solve
one or more Parsons problems.

Other factors besides the adaptation could contribute to students’
ability to get these problems correct. The analysis controlled for
the effect of the problem, the user, and the ebook they were using.
The problem and the user were modeled as random effects, while
the book was modeled as a fixed effect.

In order to accommodate both fixed and random effects, as well
as categorical data, a generalized linear mixed model was used. The
dependent variable was whether the user got the problem correct or
not, and the predictors were whether the problem was adaptive or
non-adaptive, the problem id, the user id, and the ebook being used.
The glmer function in R was used to fit the model using maximum
likelihood (Laplace Approximation).

The coefficient for adaptiveness was 0.69, whichwas significantly
different from 0 (p = 0.005). Since adaptiveness is a binary variable
(the problem was either adaptive or non-adaptive), 0.69 is the log
odds ratio of correctness for adaptive problems compared to non-
adaptive problems. Transforming this coefficient from the log odds
ratio to the odds ratio gives the result that ebook users were 1.99
times as likely to get a problem right when the Parsons problem
was adaptive than when it was not.

8 DISCUSSION
RQ1: Did the learners understand the intra-problem adapta-
tion process? The observational study provided evidence that the

teachers understood part of the adaptation process, but not all of it.
Teachers understood when a distractor that they had used in their
solution was disabled (animated moving back to the source area on
the left and then grayed out), but not when a distractor that they
had not used was disabled (just grayed out). After this study the
adaptation process was modified to no longer disable distractors
that were not used in the solution. Most teachers did not seem to
understand the implicit hint given by providing the indentation.
Perhaps this type of adaptation could be removed. Teachers did
understand when two blocks were combined into one (one block
was moved slowly under the other and then the two blocks were
redrawn as one block).

RQ2: What type of Parsons problem did learners prefer?
Nine (82%) of the 11 teachers preferred adaptive Parsons problems to
non-adaptive Parsons problems. One teacher still wanted help, but
wanted a different type of help. The other teacher did not like the
adaptation because he was confused by the disabling of distractors
that he had not used in his solution.

RQ3: Did the learners perceive that solving Parsons prob-
lems helped them learn to fix and write similar code? All of
the teachers reported that solving Parsons problems helped them
when they had to fix code with similar errors to the distractors or
write similar code. They felt that the distractors helped them learn
to recognize common syntax errors. They also said that the Parsons
problems helped them learn common sequences.

RQ4: What was the effect of the type of Parsons problem
on the learners ability to correctly complete the problem?
The log file analysis of over 8,000 users shows that users are almost
twice as likely to get an adaptive Parsons problem correct than a
non-adaptive one.

9 THREATS TO VALIDITY
The observed participants’ actions and perceptions may have been
influenced by knowing that they were being observed. Other stud-
ies should be done to test the reported perceptions. This study only
reports on observations of secondary teachers from the United
States. The results may differ for teachers from other countries. The
log file analysis does not break out the effect of intra-problem adap-
tation versus inter-problem adaptation. More studies are needed to
determine the effect of each type of adaptation on learners’ ability
to correctly complete problems. Learners may have used the adap-
tation to correctly complete a problem, but may not have learned
much in the process. However, in another study, learners had equiv-
alent learning gains from pretest to posttest after solving adaptive
Parsons problems versus non-adaptive Parsons problems versus
writing the equivalent code [19]. The learners who solved adap-
tive Parsons problems had significantly higher learning gains than
learners in an off-task control group [19].

10 CONCLUSION
This paper is the first to report on an observational study of intra-
problem adaptive Parsons problems in which the difficulty of the
problem was dynamically reduced by disabling distractors, provid-
ing indentation, and combining blocks. It provides evidence that the
secondary teachers understood what was happening when distrac-
tors were disabled that they had used in a solution, but not when

Koli Calling ’19, November 21–24, 2019, Koli, Finland Barbara Ericson, Austin McCall, and Kathryn Cunningham

distractors were disabled that they had not used. In addition, not all
teachers were able to use the implicit hints given by providing the
indentation. These findings resulted in changes to the adaptation
process. Distractors that have not been used in the solution are no
longer disabled.

Teachers perceived that solving Parsons problems with distrac-
tors helped them learn to recognize and fix common syntax errors.
All of the teachers reported that solving Parsons problems with
distractors helped them learn to fix and write code. Perception is im-
portant since a positive perception is likely to increase motivation.
However, more research should be done to test these perceptions.

Finally, a log file analysis of data from over 8,000 users showed
that learners are nearly twice as likely to correctly complete an
adaptive Parsons problem than a non-adaptive one. This indicate
that adaptation is successfully helping learners correctly solve Par-
sons problems.

These results suggest that using adaptive Parsons problems could
reduce the frustration that many novices feel when learning pro-
gramming, and perhaps improve retention rates in college-level
introductory programming courses. We encourage researchers to
test these hypotheses.

11 ACKNOWLEDGMENTS
Thanks to Jochen (Jeff) Rick for his work on the Parsons problem
adaptation process. Thank you to the undergraduate students and
secondary teachers who volunteered for observations. Thank you
to the reviewers for their suggestions. This study was supported by
the National Science Foundation under grants 1138378 and 1432300.

REFERENCES
[1] John R Anderson, C Franklin Boyle, and Brian J Reiser. 1985. Intelligent tutoring

systems. Science 228, 4698 (1985), 456–462.
[2] John R Anderson, Albert T Corbett, Kenneth R Koedinger, and Ray Pelletier. 1995.

Cognitive tutors: Lessons learned. The journal of the learning sciences 4, 2 (1995),
167–207.

[3] Ken Arnold, James Gosling, and David Holmes. 2005. The Java programming
language. Addison Wesley Professional.

[4] Ronald Baecker and Ian Small. 1990. Animation at the interface. The art of
human-computer interface design (1990), 251–267.

[5] Albert Bandura, WH Freeman, and Richard Lightsey. 1999. Self-efficacy: The
exercise of control.

[6] Klara Benda, Amy Bruckman, and Mark Guzdial. 2012. When life and learning
do not fit: Challenges of workload and communication in introductory computer
science online. ACM Transactions on Computing Education (TOCE) 12, 4 (2012),
15.

[7] Jens Bennedsen and Michael E Caspersen. 2007. Failure rates in introductory
programming. ACM SIGcSE Bulletin 39, 2 (2007), 32–36.

[8] Laura E. Berk and Adam Winsler. 1995. Scaffolding Children’s Learning: Vygotsky
and Early Childhood Education. National Association for the Education of Young
Children.

[9] John D Bransford, Ann L Brown, Rodney R Cocking, et al. 2000. How people learn.
Vol. 11. Washington, DC: National academy press.

[10] Fanny Chevalier, Nathalie Henry Riche, Catherine Plaisant, Amira Chalbi, and
Christophe Hurter. 2016. Animations 25 Years Later: New Roles and Opportuni-
ties. In Proceedings of the International Working Conference on Advanced Visual
Interfaces. ACM, 2909255, 280–287. https://doi.org/10.1145/2909132.2909255

[11] GemmaCorbalan, Liesbeth Kester, and Jeroen JGVanMerriënboer. 2008. Selecting
learning tasks: Effects of adaptation and shared control on learning efficiency and
task involvement. Contemporary Educational Psychology 33, 4 (2008), 733–756.

[12] Albert T Corbett, Kenneth R Koedinger, and John R Anderson. 1997. Intelligent
tutoring systems. In Handbook of human-computer interaction. Elsevier, 849–874.

[13] National Research Council et al. 2000. How people learn: Brain, mind, experience,
and school: Expanded edition. National Academies Press.

[14] Wanda P Dann, Stephen Cooper, and Randy Pausch. 2008. Learning to program
with Alice. Prentice Hall Press.

[15] Paul Denny, Andrew Luxton-Reilly, and Beth Simon. 2008. Evaluating a new exam
question: Parsons problems. In Proceedings of the fourth international workshop
on computing education research. ACM, 113–124.

[16] Carol S Dweck. 1986. Motivational processes affecting learning. American
psychologist 41, 10 (1986), 1040.

[17] Barbara Ericson, Mark Guzdial, Briana Morrison, Miranda Parker, Matthew Mol-
davan, and Lekha Surasani. 2015. An eBook for teachers learning CS principles.
ACM Inroads 6, 4 (2015), 84–86.

[18] Barbara Jane Ericson. 2018. Evaluating the Effectiveness and Efficiency of Parsons
Problems and Dynamically Adaptive Parsons Problems as a Type of Low Cognitive
Load Practice Problem. Ph.D. Dissertation. Georgia Institute of Technology.

[19] Barbara J. Ericson, James D. Foley, and Jochen Rick. 2018. Evaluating the Efficiency
and Effectiveness of Adaptive Parsons Problems. In Proceedings of the 2018 ACM
Conference on International Computing Education Research (ICER ’18). ACM, New
York, NY, USA, 60–68. https://doi.org/10.1145/3230977.3231000

[20] Barbara J Ericson, Mark J Guzdial, and Briana B Morrison. 2015. Analysis of
interactive features designed to enhance learning in an ebook. In Proceedings of
the eleventh annual International Conference on International Computing Education
Research. ACM, 169–178.

[21] Barbara J Ericson, Lauren E Margulieux, and Jochen Rick. 2017. Solving parsons
problems versus fixing and writing code. In Proceedings of the 17th Koli Calling
Conference on Computing Education Research. ACM, 20–29.

[22] David Flanagan. 2006. JavaScript: the definitive guide. " O’Reilly Media, Inc.".
[23] Stuart Garner. 2007. An Exploration of How a Technology-Facilitated Part-

Complete Solution Method Supports the Learning of Computer Programming.
Issues in Informing Science & Information Technology 4 (2007).

[24] Kyle James Harms, Jason Chen, and Caitlin L Kelleher. 2016. Distractors in
Parsons Problems Decrease Learning Efficiency for Young Novice Programmers.
In Proceedings of the 2016 ACM Conference on International Computing Education
Research. ACM, 241–250.

[25] Brian Harvey, Daniel Garcia, Josh Paley, and Luke Segars. 2012. Snap!:(build your
own blocks). In Proceedings of the 43rd ACM technical symposium on Computer
Science Education. ACM, 662–662.

[26] Petri Ihantola and Ville Karavirta. 2011. Two-dimensional Parson’s Puzzles:
The Concept, Tools, and First Observations. Journal of Information Technology
Education 10 (2011), 119–132.

[27] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. 1997. Back
to the future: the story of Squeak, a practical Smalltalk written in itself. In ACM
SIGPLAN Notices, Vol. 32. ACM, 318–326.

[28] Paivi Kinnunen and Beth Simon. 2010. Experiencing programming assignments
in CS1: the emotional toll. In Proceedings of the Sixth international workshop on
Computing education research. ACM, 77–86.

[29] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn East-
mond. 2010. The scratch programming language and environment. ACM Trans-
actions on Computing Education (TOCE) 10, 4 (2010), 16.

[30] Jane Margolis and Allan Fisher. 2003. Unlocking the clubhouse: Women in comput-
ing. MIT press.

[31] Dale Parsons and Patricia Haden. 2006. Parson’s programming puzzles: a fun and
effective learning tool for first programming courses. In Proceedings of the 8th
Australasian Conference on Computing Education-Volume 52. Australian Computer
Society, Inc., 157–163.

[32] Michel F Sanner et al. 1999. Python: a programming language for software
integration and development. J Mol Graph Model 17, 1 (1999), 57–61.

[33] John A Sloboda, Jane W Davidson, Michael JA Howe, and Derek G Moore. 1996.
The role of practice in the development of performing musicians. British journal
of psychology 87, 2 (1996), 287–309.

[34] John Sweller. 1988. Cognitive load during problem solving: Effects on learning.
Cognitive science 12, 2 (1988), 257–285.

[35] John Sweller. 1994. Cognitive load theory, learning difficulty, and instructional
design. Learning and instruction 4, 4 (1994), 295–312.

[36] Michael Tuffiash, Roy W Roring, and K Anders Ericsson. 2007. Expert perfor-
mance in SCRABBLE: Implications for the study of the structure and acquisition
of complex skills. Journal of Experimental Psychology: Applied 13, 3 (2007), 124.

[37] Jeroen JG Van Merriënboer. 1990. Strategies for programming instruction in
high school: Program completion vs. program generation. Journal of educational
computing research 6, 3 (1990), 265–285.

[38] Kurt Vanlehn. 2006. The behavior of tutoring systems. International journal of
artificial intelligence in education 16, 3 (2006), 227–265.

[39] Lev Semenovich Vygotsky. 1980. Mind in society: The development of higher
psychological processes. Harvard university press.

[40] Christopher Watson and Frederick WB Li. 2014. Failure rates in introductory
programming revisited. In Proceedings of the 2014 conference on Innovation &
technology in computer science education. ACM, 39–44.

[41] David Wolber, Hal Abelson, Ellen Spertus, and Liz Looney. 2011. App Inventor. "
O’Reilly Media, Inc.".

https://doi.org/10.1145/2909132.2909255
https://doi.org/10.1145/3230977.3231000

	Abstract
	1 Introduction
	2 Related Work
	2.1 Adaptive Practice
	2.2 Research on Parsons Problems

	3 Observational Study Materials
	4 Adaptive Parsons Problems
	4.1 Intra-Problem Adaptation
	4.2 Inter-problem Adaptation

	5 Pilot Study
	6 Observational Study
	6.1 Recruitment
	6.2 Procedure
	6.3 Use of Intra-Problem Adaptation
	6.4 An In-Depth Look at Problem 13
	6.5 Preference and Perception of Usefulness

	7 Testing Adaptation at Scale
	7.1 Adaptation Increases the Odds that Users will Correctly Solve the Problem

	8 Discussion
	9 Threats to Validity
	10 Conclusion
	11 Acknowledgments
	References

