
Media Computation
Workshop
Day 3

Mark Guzdial
College of Computing

Georgia Institute of Technology
guzdial@cc.gatech.edu

http://www.cc.gatech.edu/~mark.guzdial
http://www.georgiacomputes.org

http://www.cc.gatech.edu/~mark.guzdial

Workshop Plan-Day 3
9-10:00 am: Introducing objects in a MediaComp way

Turtles and MIDI.
10:00-10:15: Break

10:15-11:00: Linked lists of MIDI.
11:00-12:00: Linked lists and trees of pictures
12:00-1:00: Lunch
1:00-2:30: Tackling a homework assignment in Media
Computation. Creating linked list music or Making a
movie with sound.

2:30-2:45: Break
2:45-3:30: Simulations, continuous and discrete
3:30-4:30: Creating the wildebeests and villagers:
Making movies from simulations .

Creating classes with Turtles

Overriding our basic object Turtle to make a
Confused (or Drunken) Turtl

Creating an Inherited Class

Create a class ConfusedTurtle that inherits from
the Turtle class

But when a ConfusedTurtle object is asked to turn
left, it should turn right
And when a ConfusedTurtle object is asked to turn
right, it should turn left

Inheriting from a Class

To inherit from another class
Add extends ClassName to the class declaration

public class ConfusedTurtle extends Turtle
{
}

Save in ConfusedTurtle.java
Try to compile it

Compile Error?

If you try to compile ConfusedTurtle you will get
a compiler error

Error: cannot resolve symbol
symbol: constructor Turtle()
location: class Turtle

Why do you get this error?

Inherited Constructors

When one class inherits from another all
constructors in the child class will have an
implicit call to the no-argument parent
constructor as the first line of code in the child
constructor

Unless an explicit call to a parent constructor is there
as the first line of code

Using super(paramList);

Why is an Implicit Call to Super
Added?

Fields are inherited from a parent class
But fields should be declared private

Not public, protected, or package visibility
Lose control over field at the class level then

But then subclasses can’t access fields directly
How do you initialize inherited fields?

By calling the parent constructor that initializes them
Using super(paramList);

Explanation of the Compile Error
There are no constructors in ConfusedTurtle

So a no-argument one is added for you
With a call to super();

But, the Turtle class doesn’t have a no-argument constructor
All constructors take a world to put the turtle in

So we need to add a constructor to
ConfusedTurtle

That takes a world to add the turtle to
And call super(theWorld);

Add a Constructor that takes a
World
public class ConfusedTurtle extends Turtle
{
/**
* Constructor that takes a world and
* calls the parent constructor
* @param theWorld the world to put the
* confused turtle in
*/
public ConfusedTurtle(World theWorld)
{
super (theWorld);

}

}

Try this Out

Compile ConfusedTurtle
It should compile

Try it out
It should ask just like a Turtle object

How do we get it to turn left when asked to turn
right?

And right when asked to turn left?
Use super.turnLeft() and super.turnRight()

super is a keyword that means the parent class

Resolving Methods
When a method is invoked
(called) on an object

The class that created the
object is checked

To see if it has the method
defined in it

If so it is executed
Else the parent of the class
that created the object is
checked for the method
And so on until the method
is found

Super means start checking
with the parent of the class that
created the object

Turtle: Class

drawSquare()

toString()

SimpleTurtle: Class

turnLeft()

turnRight()

forward()

toString()

ConfusedTurtle: Class

turnLeft()

turnRight()

Polymorphism

Means many forms
Allows for processing of an object based on the
object’s type
A method can be declared in a parent class

And redefined (overriden) by the subclasses
Dynamic or run-time binding will make sure the
correct method gets run

Based on the type of object it was called on at run
time

Confused Turtle turnLeft and
turnRight
/**

* Method to turn left (but confused turtles
* turn right)
*/

public void turnLeft()
{

super.turnRight();
}

/**
* Method to turn right (but confused turtles
* turn left)
*/

public void turnRight()
{

super.turnLeft();
}

Try out ConfusedTurtle
> World earth = new World();
> Turtle tommy = new Turtle(earth);
> tommy.forward();
> tommy.turnLeft();
> ConfusedTurtle bruce = new ConfusedTurtle(earth);
> bruce.backward();
> bruce.turnLeft();
> bruce.forward();
> tommy.forward();
> tommy.turnRight();
> bruce.turnRight();

Override Methods

Children classes inherit parent methods
The confused turtle knows how to go forward and
backward

Because it inherits these from Turtle

Children can override parent methods
Have a method with the same name and parameter
list as a parent method

This method will be called instead of the parent method
Like turnLeft and turnRight

What is Happening?

Each time an object is asked to execute a
method

It first checks the class that created the object to see
if the method is defined in that class

If it is it will execute that method
If it isn’t, it will next check the parent class of the class that
created it

And execute that method if one if found
If no method with that name and parameter list is found it will
check that classes parent

And keep going till it finds the method

Method Overloading

ConfusedTurtle: Class

turnLeft()

turnRight()
bruce

Turtle: Class

drawSquare()
tommy

SimpleTurtle: Class

forward()

backward()

turnLeft()

turnRight()Obj: Turtle

class

Obj: ConfusedTurtle

class

Multimedia CS2 in Java

Driving question:
“How did the
wildebeests
stampede in The
Lion King?”
Spring 2005: 31
students, 75%
female, 91%
success rate.

Connecting to the Wildebeests
It’s all about data structures

Syllabus

Introduction to Java and Media Computation
Manipulating turtles, images, MIDI, sampled sounds.
Insertion and deletion (with shifting) of sampled
sounds (arrays).

Structuring Music
Goal: A structure for flexible music composition
Put MIDI phrases into linked list nodes.

Use Weave and Repeat to create repeating motifs as found
in Western Music
At very end, create a two-branched list to start on trees.

CanonSwan

Bells Fur Elise

HW2: Create a collage, but must
use turtles

Syllabus (Continued)
Structuring Images

Using linearity in linked list to
represent ordering (e.g., left to right)
Using linearity in linked list to
represent layering (as in PowerPoint)
Mixing positioned and layered in one
structure, using abstract super
classes.
Structuring a scene in terms of
branches—introducing a scene graph
(first tree)

(We’ll see these slides as an
example later.)

Syllabus (Cont’d)

Structuring Sound
Collecting sampled
sounds into linked
lists and trees, as
with images.

But all traversals are
recursive.

Use different
traversals of same
tree to generate
different sounds.
Replace a sound in-
place

Original

Scale the children

Scale the next

Syllabus (cont’d)

Generalizing lists and
trees

Create an abstract class
“Linked List Node”
(LLNode) on top of the
sound and image class
hierarchies

Make all image and
sound examples work
the same

abstract LLNode

Knows next

Knows how to do
all basic list
operations

Syllabus (Cont’d)
JFrame

GUIs as trees
We introduce
construction of a Swing
frame as construction of
a tree.
Different layout
managers are then
different renderers of the
same tree.

Traditional (binary)
trees as a
specialization

Can we make trees that
are faster to search?

JPanel

JLabel “This is panel1!”

JPanel

JButton “Make
a sound”

JButton
“Make a
picture”

Syllabus (cont’d)

Lists that Loop
Introduce circular linked lists as a way of create
Mario-Brothers’ style cel animations.
Introduce trees that loop as a way of introducing
graphs.

gal1-
rightface.jpg gal1-

right2.jpg

gal1-
right1.jpg

gal1-
rightface.jpg

Syllabus (cont’d)
Introducing Simulations

Introduce continuous and discrete event simulations, and Normal
and uniform probability distributions
We do wolves and deer,
disease propagation,
political influence.
Create a set of classes for simulation, then re-write our
simulations for those classes.
Writing results to a file for later analysis

Finally, Making the Wildebeests and Villagers
Mapping from positions of our turtles to an animation frame.
Creating an animation from a simulation.

HW7: Simulate European emigration to
America

Students are
required to try
several different
scenarios, aiming for
historical accuracy.
Counts of
Europeans,
Americans, and in-
transit per year are
written to a file for
graphing in Excel

Syllabus (cont’d)

Introduction to Discrete Event Simulations
Create a discrete event simulation of trucks, factories,
salespeople, and markets.
Use turtles to create an animated display.
Now, the real focus is the simulation, and the
animation is just a mapping from the simulation.

Animation becomes yet another medium in which we can
review results, like data in an Excel spreadsheet, music, or
sound.

A selection of data structures

First, structuring music:
Notes, Phrases, Parts, and Scores as a nice example
of objects and modeling.

Then linked lists of images
Is it about layering (as in Photoshop) or positioning
(as in Lord of the Rings)?

Then trees of images
A Scene Graph

Telling DrJava where to find files

Parts of DrJava

Text of
your
class file
(.java)

Where you
interact
with Java

List of
class
files that
you have
open

An example with Music

> import jm.util.*;
> import jm.music.data.*;
> Note n1;
> n1 = new Note(60,0.5);
> // Create an eighth note at

C octave 4

• JMusic pieces
need to be
imported first to
use them.

An example with Music

> import jm.util.*;
> import jm.music.data.*;
> Note n1;
> n1 = new Note(60,0.5);
> // Create an eighth note at

C octave 4

• Declare a Note
variable.

An example with Music

> import jm.util.*;
> import jm.music.data.*;
> Note n1;
> n1 = new Note(60,0.5);
> // Create an eighth note at

C octave 4

• Note instances
have nothing to do
with filenames.

• To create a note,
you need to know
which note, and a
duration

Starting a line with // creates a
comment—ignored by Java

MIDI notes

Making more notes
> Note n2=new Note(64,0.5);
> View.notate(n1);
Error: No 'notate' method in

'jm.util.View' with arguments:
(jm.music.data.Note)

> Phrase phr = new Phrase();
> phr.addNote(n1);
> phr.addNote(n2);
> View.notate(phr);
-- Constructing MIDI file from'Untitled

Score'... Playing with JavaSound
... Completed MIDI playback -------
-

What’s going on here?

> Note n2=new Note(64,0.5);
> View.notate(n1);
Error: No 'notate' method in
'jm.util.View' with arguments:
(jm.music.data.Note)

• We’ll make another Note (at E4,
another eighth note)

• There is an object named View
that knows how to notate parts of
music, but not an individual note.

What’s going on here?

> Phrase phr = new Phrase();
> phr.addNote(n1);
> phr.addNote(n2);
> View.notate(phr);
-- Constructing MIDI file
from'Untitled Score'... Playing
with JavaSound ... Completed
MIDI playback --------

• We’ll create a new Phrase
instance and make a variable phr to
refer to it. (phr has to be declared
to be a Phrase.)

• Phrase instances know how to
addNote notes to them. These are
methods that take an argument—a
Note instance.

• The View object does know how
to notate an input Phrase instance.
It generates this cool window where
you see the notes and can play
them (or save them as MIDI.)

Playing a different Phrase
> Phrase nuphr = new

Phrase(0.0,JMC.FLUTE);
> nuphr.addNote(n2);
> nuphr.addNote(n1);
> View.notate(nuphr);

• We can specify when a phrase starts and with what
instrument.

• We can add notes (even the same notes!) in different
orders

Modeling Music

The JMusic package is really modeling music.
Notes have tones and durations.
Musical Phrases are collections of notes.
We can play (and View) a musical phrase.

A phrase doesn’t have to start when other phrases do, and a
phrase can have its own instrument.

Objects know things and can do
things

What instances
of this class
know

What instances
of this class can
do

Note A musical note and a
duration

<Nothing we’ve seen
yet>

Phrase The notes in the
phrase

addNote(aNote)

Amazing
Grace

import jm.music.data.*;
import jm.JMC;
import jm.util.*;
import jm.music.tools.*;

public class AmazingGraceSong {
private Score myScore = new Score("Amazing Grace");

public void fillMeUp(){
myScore.setTimeSignature(3,4);

double[] phrase1data =
{JMC.G4, JMC.QN,
JMC.C5, JMC.HN, JMC.E5,JMC.EN, JMC.C5,JMC.EN,
JMC.E5,JMC.HN,JMC.D5,JMC.QN,
JMC.C5,JMC.HN,JMC.A4,JMC.QN,
JMC.G4,JMC.HN,JMC.G4,JMC.EN,JMC.A4,JMC.EN,
JMC.C5,JMC.HN,JMC.E5,JMC.EN,JMC.C5,JMC.EN,
JMC.E5,JMC.HN,JMC.D5,JMC.EN,JMC.E5,JMC.EN,
JMC.G5,JMC.DHN};

double[] phrase2data =
{JMC.G5,JMC.HN,JMC.E5,JMC.EN,JMC.G5,JMC.EN,
JMC.G5,JMC.HN,JMC.E5,JMC.EN,JMC.C5,JMC.EN,
JMC.E5,JMC.HN,JMC.D5,JMC.QN,
JMC.C5,JMC.HN,JMC.A4,JMC.QN,
JMC.G4,JMC.HN,JMC.G4,JMC.EN,JMC.A4,JMC.EN,
JMC.C5,JMC.HN,JMC.E5,JMC.EN,JMC.C5,JMC.EN,
JMC.E5,JMC.HN,JMC.D5,JMC.QN,
JMC.C5,JMC.DHN

};
Phrase myPhrase = new Phrase();
myPhrase.addNoteList(phrase1data);
myPhrase.addNoteList(phrase2data);
// create a new part and add the phrase to it
Part aPart = new Part("Parts",

JMC.FLUTE, 1);
aPart.addPhrase(myPhrase);
// add the part to the score
myScore.addPart(aPart);

};

public void showMe(){

Vi t t (S)

> AmazingGraceSong song1 =
new AmazingGraceSong();
> song1.fillMeUp();
> song1.showMe();

Imports and some private data
import jm.music.data.*;
import jm.JMC;
import jm.util.*;
import jm.music.tools.*;

public class AmazingGraceSong {
private Score myScore = new Score("Amazing Grace");

myScore is private instance data

Filling the
Score

public void fillMeUp(){
myScore.setTimeSignature(3,4);

double[] phrase1data =
{JMC.G4, JMC.QN,

JMC.C5, JMC.HN, JMC.E5,JMC.EN, JMC.C5,JMC.EN,
JMC.E5,JMC.HN,JMC.D5,JMC.QN,
JMC.C5,JMC.HN,JMC.A4,JMC.QN,
JMC.G4,JMC.HN,JMC.G4,JMC.EN,JMC.A4,JMC.EN,
JMC.C5,JMC.HN,JMC.E5,JMC.EN,JMC.C5,JMC.EN,
JMC.E5,JMC.HN,JMC.D5,JMC.EN,JMC.E5,JMC.EN,
JMC.G5,JMC.DHN};

double[] phrase2data =
{JMC.G5,JMC.HN,JMC.E5,JMC.EN,JMC.G5,JMC.EN,

JMC.G5,JMC.HN,JMC.E5,JMC.EN,JMC.C5,JMC.EN,
JMC.E5,JMC.HN,JMC.D5,JMC.QN,
JMC.C5,JMC.HN,JMC.A4,JMC.QN,
JMC.G4,JMC.HN,JMC.G4,JMC.EN,JMC.A4,JMC.EN,
JMC.C5,JMC.HN,JMC.E5,JMC.EN,JMC.C5,JMC.EN,
JMC.E5,JMC.HN,JMC.D5,JMC.QN,
JMC.C5,JMC.DHN

};
Phrase myPhrase = new Phrase();
myPhrase.addNoteList(phrase1data);
myPhrase.addNoteList(phrase2data);
// create a new part and add the phrase to it
Part aPart = new Part("Parts",

JMC.FLUTE, 1);
aPart.addPhrase(myPhrase);
// add the part to the score
myScore.addPart(aPart);

};

Each array is note,
duration, note,
duration, note,
duration, etc.

I broke it roughly
into halves.

Showing the Score

public void showMe(){
View.notate(myScore);
};

Part: Instrument &

Phrase: startingTime &

The Organization of JMusic
Objects

Phrase: startingTime &

Note
(pitch,duration)

Note
(pitch,duration)

Note
(pitch,duration)

Note
(pitch,duration)

Note
(pitch,duration)

Part: Instrument &

Score: timeSignature, tempo, &

Thought Experiment

How are they doing that?
How can there be any number of Notes in a
Phrase, Phrases in a Part, and Parts in a Score?

(Hint: They ain’t usin’ arrays!)

How do we explore composition
here?

We want to quickly and easily throw together
notes in different groupings and see how they
sound.
The current JMusic structure models music.

Let’s try to create a structure that models thinking
about music as bunches of riffs/SongElements that
we want to combine in different ways.

Then comes notes in arrays,
linked lists of segments of AmazingGrace,
then real and flexible linked lists…

Version 3:
SongNode and SongPhrase

SongNode instances will hold pieces (phrases)
from SongPhrase.
SongNode instances will be the nodes in the
linked list

Each one will know its next.
Ordering will encode the order in the Part.

Each one will get appended after the last.

Using SongNode and SongPhrase
Welcome to DrJava.
> import jm.JMC;
> SongNode node1 = new SongNode();
> node1.setPhrase(SongPhrase.riff1());
> SongNode node2 = new SongNode();
> node2.setPhrase(SongPhrase.riff2());
> SongNode node3 = new SongNode();
> node3.setPhrase(SongPhrase.riff1());
> node1.setNext(node2);
> node2.setNext(node3);
> node1.showFromMeOn(JMC.SAX);

All three SongNodes in one Part

How to think about it

node1

myPhrase: riff1

next: node2

node2

myPhrase: riff2

next: node3

node3

myPhrase: riff1

next: null

Declarations for SongNode

import jm.music.data.*;
import jm.JMC;
import jm.util.*;
import jm.music.tools.*;

public class SongNode {
/**
* the next SongNode in the list
*/

private SongNode next;
/**
* the Phrase containing the notes and durations associated with this node
*/

private Phrase myPhrase;

SongNode’s know their
Phrase and the next
node in the list

Constructor for SongNode
/**
* When we make a new element, the next part is empty,
and ours is a blank new part

*/
public SongNode(){
this.next = null;
this.myPhrase = new Phrase();

}

Setting the phrase
/**
* setPhrase takes a Phrase and makes it the one for this

node
* @param thisPhrase the phrase for this node
*/
public void setPhrase(Phrase thisPhrase){

this.myPhrase = thisPhrase;
}

Linked list methods
/**

* Creates a link between the current node and the input node
* @param nextOne the node to link to
*/

public void setNext(SongNode nextOne){
this.next = nextOne;

}
/**

* Provides public access to the next node.
* @return a SongNode instance (or null)
*/

public SongNode next(){
return this.next;

}

insertAfter
/**
* Insert the input SongNode AFTER this node,
* and make whatever node comes NEXT become the next of the input node.
* @param nextOne SongNode to insert after this one
*/
public void insertAfter(SongNode nextOne)
{

SongNode oldNext = this.next(); // Save its next
this.setNext(nextOne); // Insert the copy
nextOne.setNext(oldNext); // Make the copy point on to the rest

}

Using and tracing insertAfter()
> SongNode nodeA = new SongNode();
> SongNode nodeB = new SongNode();
> nodeA.setNext(nodeB);
> SongNode nodeC = new SongNode()
> nodeA.insertAfter(nodeC);

public void insertAfter(SongNode nextOne)
{

SongNode oldNext = this.next(); // Save
its next

this.setNext(nextOne); // Insert the copy
nextOne.setNext(oldNext); // Make the

copy point on to the rest

}

Traversing
the list

/**
* Collect all the notes from this node on
* in an part (then a score) and open it up for viewing.
* @param instrument MIDI instrument (program) to be used in playing this list
*/

public void showFromMeOn(int instrument){
// Make the Score that we'll assemble the elements into
// We'll set it up with a default time signature and tempo we like
// (Should probably make it possible to change these -- maybe with inputs?)
Score myScore = new Score("My Song");
myScore.setTimeSignature(3,4);
myScore.setTempo(120.0);

// Make the Part that we'll assemble things into
Part myPart = new Part(instrument);

// Make a new Phrase that will contain the notes from all the phrases
Phrase collector = new Phrase();

// Start from this element (this)
SongNode current = this;
// While we're not through...
while (current != null)
{

collector.addNoteList(current.getNotes());

// Now, move on to the next element
current = current.next();

};

// Now, construct the part and the score.
myPart.addPhrase(collector);
myScore.addPart(myPart);

// At the end, let's see it!
View.notate(myScore);

}

The Core of the Traversal
// Make a new Phrase that will contain the notes from all the phrases

Phrase collector = new Phrase();

// Start from this element (this)
SongNode current = this;
// While we're not through...
while (current != null)
{

collector.addNoteList(current.getNotes());

// Now, move on to the next element
current = current.next();

};

Then return what you collected
// Now, construct the part and the score.

myPart.addPhrase(collector);
myScore.addPart(myPart);

// At the end, let's see it!
View.notate(myScore);

}

getNotes() just pulls the notes back out

/**
* Accessor for the notes inside the node's phrase
* @return array of notes and durations inside the phrase
*/
private Note [] getNotes(){
return this.myPhrase.getNoteArray();

}

SongPhrase

SongPhrase is a collection of static methods.
We don’t ever need an instance of SongPhrase.
Instead, we use it to store methods that return
phrases.

It’s not very object-oriented, but it’s useful here.

SongPhrase.riff1()
import jm.music.data.*;
import jm.JMC;
import jm.util.*;
import jm.music.tools.*;

public class SongPhrase {
//Little Riff1
static public Phrase riff1() {
double[] phrasedata =

{JMC.G3,JMC.EN,JMC.B3,JMC.EN,JMC.C4,JMC.EN,JMC.D4,JMC.EN};

Phrase myPhrase = new Phrase();
myPhrase.addNoteList(phrasedata);
return myPhrase;

SongPhrase.riff2()
//Little Riff2
static public Phrase riff2() {
double[] phrasedata =

{JMC.D4,JMC.EN,JMC.C4,JMC.EN,JMC.E4,JMC.EN,JMC.G4,JMC.
EN};

Phrase myPhrase = new Phrase();
myPhrase.addNoteList(phrasedata);
return myPhrase;

}

Computing a phrase

//Larger Riff1
static public Phrase pattern1() {

double[] riff1data =
{JMC.G3,JMC.EN,JMC.B3,JMC.EN,JMC.C4,JMC.EN,JMC.D4,JMC.EN};
double[] riff2data =
{JMC.D4,JMC.EN,JMC.C4,JMC.EN,JMC.E4,JMC.EN,JMC.G4,JMC.EN};

Phrase myPhrase = new Phrase();
// 3 of riff1, 1 of riff2, and repeat all of it 3 times
for (int counter1 = 1; counter1 <= 3; counter1++)
{for (int counter2 = 1; counter2 <= 3; counter2++)

myPhrase.addNoteList(riff1data);
myPhrase.addNoteList(riff2data);
};

return myPhrase;
}

As long as it’s a phrase…

The way that we use SongNote and
SongPhrase, any method that returns a phrase
is perfectly valid SongPhrase method.

10 Random Notes
(Could be less random…)
/*

* 10 random notes
**/
static public Phrase random() {

Phrase ranPhrase = new Phrase();
Note n = null;

for (int i=0; i < 10; i++) {
n = new Note((int) (128*Math.random()),0.1);
ranPhrase.addNote(n);

}
return ranPhrase;

}

10 Slightly Less Random Notes
/*

* 10 random notes above middle C
**/
static public Phrase randomAboveC() {

Phrase ranPhrase = new Phrase();
Note n = null;

for (int i=0; i < 10; i++) {
n = new Note((int) (60+(5*Math.random())),0.25);
ranPhrase.addNote(n);

}
return ranPhrase;

}

Going beyond connecting nodes

So far, we’ve just created nodes and connected
them up.
What else can we do?
Well, music is about repetition and interleaving
of themes.

Let’s create those abilities for SongNodes.

Repeating a Phrase

Welcome to DrJava.
> SongNode node = new SongNode();
> node.setPhrase(SongPhrase.randomAboveC());
> SongNode node1 = new SongNode();
> node1.setPhrase(SongPhrase.riff1());
> node.repeatNext(node1,10);
> import jm.JMC;
> node.showFromMeOn(JMC.PIANO);

What it looks like

node node1 node1 node1 …

Repeating
/**

* Repeat the input phrase for the number of times
specified.

* It always appends to the current node, NOT insert.
* @param nextOne node to be copied in to list
* @param count number of times to copy it in.
*/

public void repeatNext(SongNode nextOne,int count) {
SongNode current = this; // Start from here
SongNode copy; // Where we keep the current copy

for (int i=1; i <= count; i++)
{

copy = nextOne.copyNode(); // Make a copy
current.setNext(copy); // Set as next
current = copy; // Now append to copy

}
}

Note! What
happens to this’s
next? How
would you create
a looong repeat
chain of several
types of phrases
with this?

Really useful: Do this with people as
nodes!

We give people pieces of paper with “notes” on
them.
Nodes point to their “next”

Here’s making a copy
/**
* copyNode returns a copy of this node
* @return another song node with the same notes
*/
public SongNode copyNode(){
SongNode returnMe = new SongNode();
returnMe.setPhrase(this.getPhrase());
return returnMe;

}

Step 1:
public void repeatNext(SongNode nextOne,int count) {

SongNode current = this; // Start from here
SongNode copy; // Where we keep the current copy

node

phrase:
10
random
notes

next: null

current

node1

phrase:
riff1()

next: null

nextOne

Step 2:
copy = nextOne.copyNode(); // Make a copy

node

phrase:
10
random
notes

next: null

current

node1

phrase:
riff1()

next: null

phrase:
riff1()

next: null

copy nextOne

Step 3:
current.setNext(copy); // Set as next

node

phrase:
10
random
notes

next:

current

node1

phrase:
riff1()

next: null

phrase:
riff1()

next: null

copy nextOne

Step 4:
current = copy; // Now append to copy

node

phrase:
10
random
notes

next:

current

node1

phrase:
riff1()

next: null

phrase:
riff1()

next: null

copy nextOne

Step 5 & 6:
copy = nextOne.copyNode(); // Make a copy
current.setNext(copy); // Set as next

node

phrase:
10
random
notes

next:

current

node1

phrase:
riff1()

next: null

phrase:
riff1()

next:

copy

phrase:
riff1()

next: null

nextOne

Step 7 (and so on):
current = copy; // Now append to copy

node

phrase:
10
random
notes

next:

current

node1

phrase:
riff1()

next: null

phrase:
riff1()

next:

copy

phrase:
riff1()

next: null

nextOne

What happens if the node already
points to something?

Consider repeatNext and how it inserts:
It simply sets the next value.
What if the node already had a next?
repeatNext will erase whatever used to come
next.
How can we fix it?

repeatNextInserting

/**
* Repeat the input phrase for the number of times specified.
* But do an insertion, to save the rest of the list.
* @param nextOne node to be copied into the list
* @param count number of times to copy it in.
**/
public void repeatNextInserting(SongNode nextOne, int count){
SongNode current = this; // Start from here
SongNode copy; // Where we keep the current copy

for (int i=1; i <= count; i++)
{
copy = nextOne.copyNode(); // Make a copy
current.insertAfter(copy); // INSERT after current
current = copy; // Now append to copy

}
}

Weaving
/**

* Weave the input phrase count times every skipAmount nodes
* @param nextOne node to be copied into the list
* @param count how many times to copy
* @param skipAmount how many nodes to skip per weave
*/

public void weave(SongNode nextOne, int count, int skipAmount)
{

SongNode current = this; // Start from here
SongNode copy; // Where we keep the one to be weaved in
SongNode oldNext; // Need this to insert properly
int skipped; // Number skipped currently

for (int i=1; i <= count; i++)
{

copy = nextOne.copyNode(); // Make a copy

//Skip skipAmount nodes
skipped = 1;
while ((current.next() != null) && (skipped < skipAmount))
{

current = current.next();
skipped++;

};

oldNext = current.next(); // Save its next
current.insertAfter(copy); // Insert the copy after this one
current = oldNext; // Continue on with the rest
if (current.next() == null) // Did we actually get to the end early?

break; // Leave the loop

}
}

Should we
break before
the last
insert (when
we get to the
end) or
after?

Creating a node to weave
> SongNode node2 = new SongNode();
> node2.setPhrase(SongPhrase.riff2());
> node2.showFromMeOn(JMC.PIANO);

Doing a weave

> node.weave(node2,4,2);
> node.showFromMeOn(JMC.PIANO);

Weave Results

Before:

After

Walking the Weave
public void weave(SongNode nextOne, int count, int

skipAmount)
{
SongNode current = this; // Start from here
SongNode copy; // Where we keep the one to be weaved in
SongNode oldNext; // Need this to insert properly
int skipped; // Number skipped currently

Skip forward
for (int i=1; i <= count; i++)

{
copy = nextOne.copyNode(); // Make a copy

//Skip skipAmount nodes
skipped = 1;
while ((current.next() != null) && (skipped < skipAmount))
{

current = current.next();
skipped++;

};

Then do an insert

if (current.next() == null) // Did we actually get to the end early?
break; // Leave the loop

oldNext = current.next(); // Save its next
current.insertAfter(copy); // Insert the copy after this one
current = oldNext; // Continue on with the rest

}

Shifting to Images

Now that we’ve introduced linked lists with MIDI,
we shift to images.

Briefly, two kinds of linked lists.
Then scene graphs

Building a Scene

Computer graphics professionals work at two
levels:

They define individual characters and effects on
characters in terms of pixels.
But then most of their work is in terms of the scene:
Combinations of images (characters, effects on
characters).

To describe scenes, they often use linked lists
and trees in order to assemble the pieces.

> FileChooser.setMediaPath("D:/cs1316/MediaSources/");
> PositionedSceneElement tree1 = new PositionedSceneElement(new

Picture(FileChooser.getMediaPath("tree-blue.jpg")));
> PositionedSceneElement tree2 = new PositionedSceneElement(new

Picture(FileChooser.getMediaPath("tree-blue.jpg")));
> PositionedSceneElement tree3 = new PositionedSceneElement(new

Picture(FileChooser.getMediaPath("tree-blue.jpg")));
> PositionedSceneElement doggy = new PositionedSceneElement(new

Picture(FileChooser.getMediaPath("dog-blue.jpg")));
> PositionedSceneElement house = new PositionedSceneElement(new

Picture(FileChooser.getMediaPath("house-blue.jpg")));
> Picture bg = new Picture(FileChooser.getMediaPath("jungle.jpg"));
> tree1.setNext(tree2); tree2.setNext(tree3); tree3.setNext(doggy);

doggy.setNext(house);
> tree1.drawFromMeOn(bg);
> bg.show();

Version 1:
PositionedSceneElement

In this example, using
chromakey to compose..just
for the fun of it.

What this looks like:

Slightly different ordering:
Put the doggy between tree2 and tree3
> tree3.setNext(house); tree2.setNext(doggy);

doggy.setNext(tree3);
> bg = new

Picture(FileChooser.getMediaPath("jungle.jpg"));
> tree1.drawFromMeOn(bg);
> bg.show();

Yes, we can put
multiple
statements in
one line.

Slightly different picture

Removing the doggy
> tree1.setNext(tree2);

tree2.setNext(tree3);
tree3.setNext(doggy);
doggy.setNext(house);

> tree1.remove(doggy);
> tree1.drawFromMeOn(bg);

Putting the mutt back
> bg = new

Picture(FileChooser.getMediaPa
th("jungle.jpg"));

> tree1.insertAfter(doggy);
> tree1.drawFromMeOn(bg);

Animation = (Changing a structure
+ rendering) * n

We can use what we just did to create
animation.
Rather than think about animation as “a series of
frames,”
Think about it as:

Repeatedly:
Change a data structure
Render (draw while traversing) the data structure to create a
frame

AnimatedPositionedScene
public class AnimatedPositionedScene {

/**
* A FrameSequence for storing the frames
**/
FrameSequence frames;

/**
* We'll need to keep track
* of the elements of the scene
**/
PositionedSceneElement tree1, tree2, tree3, house, doggy, doggyflip;

Setting up
the animation

public void setUp(){
frames = new FrameSequence("D:/Temp/");

FileChooser.setMediaPath("D:/cs1316/mediasource
s/");

Picture p = null; // Use this to fill elements

p = new Picture(FileChooser.getMediaPath("tree-
blue.jpg"));

tree1 = new PositionedSceneElement(p);

p = new Picture(FileChooser.getMediaPath("tree-
blue.jpg"));

tree2 = new PositionedSceneElement(p);

p = new Picture(FileChooser.getMediaPath("tree-
blue.jpg"));

tree3 = new PositionedSceneElement(p);

p = new Picture(FileChooser.getMediaPath("house-
blue.jpg"));

house = new PositionedSceneElement(p);

p = new Picture(FileChooser.getMediaPath("dog-
blue.jpg"));

doggy = new PositionedSceneElement(p);
doggyflip = new PositionedSceneElement(p.flip());

}

Render the first frame
public void make(){

frames.show();

// First frame
Picture bg = new
Picture(FileChooser.getMediaPath("jungle.jpg"));
tree1.setNext(doggy); doggy.setNext(tree2);
tree2.setNext(tree3);
tree3.setNext(house);
tree1.drawFromMeOn(bg);
frames.addFrame(bg);

Render the doggy moving right
// Dog moving right

bg = new Picture(FileChooser.getMediaPath("jungle.jpg"));
tree1.remove(doggy);
tree2.insertAfter(doggy);
tree1.drawFromMeOn(bg);
frames.addFrame(bg);

bg = new Picture(FileChooser.getMediaPath("jungle.jpg"));
tree1.remove(doggy);
tree3.insertAfter(doggy);
tree1.drawFromMeOn(bg);
frames.addFrame(bg);

bg = new Picture(FileChooser.getMediaPath("jungle.jpg"));
tree1.remove(doggy);
house.insertAfter(doggy);
tree1.drawFromMeOn(bg);
frames.addFrame(bg);

Moving left
//Dog moving left

bg = new Picture(FileChooser.getMediaPath("jungle.jpg"));
tree1.remove(doggy);
house.insertAfter(doggyflip);
tree1.drawFromMeOn(bg);
frames.addFrame(bg);

bg = new Picture(FileChooser.getMediaPath("jungle.jpg"));
tree1.remove(doggyflip);
tree3.insertAfter(doggyflip);
tree1.drawFromMeOn(bg);
frames.addFrame(bg);

bg = new Picture(FileChooser.getMediaPath("jungle.jpg"));
tree1.remove(doggyflip);
tree2.insertAfter(doggyflip);
tree1.drawFromMeOn(bg);
frames.addFrame(bg);

bg = new Picture(FileChooser.getMediaPath("jungle.jpg"));
tree1.remove(doggyflip);
tree1.insertAfter(doggyflip);
tree1.drawFromMeOn(bg);
frames.addFrame(bg);

}

Results

Version 2: Layering

> Picture bg = new Picture(400,400);
> LayeredSceneElement tree1 = new LayeredSceneElement(
new Picture(FileChooser.getMediaPath("tree-blue.jpg")),10,10);
> LayeredSceneElement tree2 = new LayeredSceneElement(
new Picture(FileChooser.getMediaPath("tree-blue.jpg")),100,10);
> LayeredSceneElement tree3 = new LayeredSceneElement(
new Picture(FileChooser.getMediaPath("tree-blue.jpg")),200,100);
> LayeredSceneElement house = new LayeredSceneElement(
new Picture(FileChooser.getMediaPath("house-blue.jpg")),175,175);
> LayeredSceneElement doggy = new LayeredSceneElement(
new Picture(FileChooser.getMediaPath("dog-blue.jpg")),150,325);
> tree1.setNext(tree2); tree2.setNext(tree3); tree3.setNext(doggy);

doggy.setNext(house);
> tree1.drawFromMeOn(bg);
> bg.show();

First version of Layered Scene

Reordering the layering

> house.setNext(doggy); doggy.setNext(tree3);
tree3.setNext(tree2); tree2.setNext(tree1);

> tree1.setNext(null);
> bg = new Picture(400,400);
> house.drawFromMeOn(bg);
> bg.show();

Basically, we’re
reversing the list

Reordered (relayered) scene

Think about
what’s
involved in
creating a
method to
reverse() a
list…

What’s the difference?

If we were in PowerPoint or Visio, you’d say that
we changed the layering.

“Bring to front”
“Send to back”
“Bring forward”
“Send backward”

These commands are
actually changing the
ordering of the layers in the
list of things to be redrawn.

• Change the ordering in the
list.

• Render the scene

• Now it’s a different layering!

Version 3: A List with Both
Problem 1: Why should we have only layered scene elements
or positioned scene elements?
Can we have both?

SURE! If each element knows how to draw itself!
But they took different parameters!

Layered got their (x,y) passed in.
It works if we always pass in a turtle that’s set to the right place to draw
if it’s positioned (and let the layered ones do whatever they want!)

Problem 2: Why is there so much duplicated code?
Why do only layered elements know last() and add()?

Using Superclasses
What we really want is to define a class SceneElement

That knows most of being a picture element.
It would be an abstract class because we don’t actually mean to
ever create instances of THAT class.

Then create subclasses: SceneElementPositioned and
SceneElementLayered

We’d actually use these.

Class Structure

Abstract Class SceneElement

It knows its Picture myPic and
its next (SceneElement).

It knows how to get/set next,
to reverse() and insertAfter(),
and to drawFromMeOn().

It defines drawWith(turtle), but
leaves it for its subclasses do
complete.

An abstract
class defines
structure
and behavior
that
subclasses
will inherit.

Class Structure

Abstract Class SceneElement

It knows its Picture myPic and its
next.

It knows how to get/set next, to
reverse() and insertAfter(), and to
drawFromMeOn() and
drawWith(turtle)

Class SceneElementPositioned

It knows how to drawWith(turtle)
Class SceneElementLayered

It knows its position (x,y).

It knows how to drawWith(turtle)
by moving to (x,y) then dropping.

We say that the
subclasses
extend the
superclass.

The subclasses
inherit data and
methods from
superclass.

Using the new structure

public class MultiElementScene {

public static void main(String[] args){
FileChooser.setMediaPath("D:/cs1316/mediasources/");

// We'll use this for filling the nodes
Picture p = null;

p = new Picture(FileChooser.getMediaPath("swan.jpg"));
SceneElement node1 = new SceneElementPositioned(p.scale(0.25));
p = new Picture(FileChooser.getMediaPath("horse.jpg"));
SceneElement node2 = new SceneElementPositioned(p.scale(0.25));
p = new Picture(FileChooser.getMediaPath("dog.jpg"));
SceneElement node3 = new SceneElementLayered(p.scale(0.5),10,50);
p = new Picture(FileChooser.getMediaPath("flower1.jpg"));
SceneElement node4 = new SceneElementLayered(p.scale(0.5),10,30);
p = new Picture(FileChooser.getMediaPath("graves.jpg"));
SceneElement node5 = new SceneElementPositioned(p.scale(0.25));

Rendering the scene

node1.setNext(node2); node2.setNext(node3);
node3.setNext(node4); node4.setNext(node5);

// Now, let's see it!
Picture bg = new Picture(600,600);
node1.drawFromMeOn(bg);
bg.show();

}
}

Rendered scene

New Version: Trees for defining
scenes

Not everything in a scene is a single list.
Think about a pack of fierce doggies, er, wolves attacking the
quiet village in the forest.
Real scenes cluster.

Is it the responsibility of the elements to know about
layering and position?

Is that the right place to put that know how?
How do we structure operations to perform to sets of
nodes?

For example, moving a set of them at once?

The Attack of the Nasty Wolvies

Closer…

Then the Hero Appears!

And the Wolvies retreat

What’s underlying this

This scene is described by a tree
Each picture is a BlueScreenNode in this tree.
Groups of pictures are organized in HBranch or
VBranch (Horizontal or Vertical branches)
The root of the tree is just a Branch.
The branches are positioned using a MoveBranch.

Labeling the Pieces

VBranch with
BlueScreenNode
wolves

MoveBranch to
(10,50)

Branch (root)

HBranch with BSN
trees

HBranch with 3
BSN houses and a

VBranch with 3
BSN houses

MoveBranch to
(10,400)

MoveBranch to
(300,450)

It’s a Tree

VBranch with
BlueScreenNode
wolves

MoveBranch to
(10,50)

Branch (root)

HBranch with BSN
trees

HBranch with 3
BSN houses and a

VBranch with 3
BSN houses

MoveBranch to
(10,400)

MoveBranch to
(300,450)

The Class Structure
DrawableNode knows only next, but knows
how to do everything that our picture linked lists
do (insertAfter, remove, last, drawOn(picture)).

Everything else is a subclass of that.
PictNode knows it’s Picture myPict and knows
how to drawWith(turtle) (by dropping a picture)
BlueScreenNode doesn’t know new from
PictNode but knows how to drawWith(turtle) by
using bluescreen.

Branch Class Structure

Branch knows its children—a linked list of other
nodes to draw. It knows how to drawWith by:

(1) telling all its children to draw.
(2) then telling all its children to draw.

A HBranch draws its children by spacing them
out horizontally.
A VBranch draws its children by spacing them
out vertically.

The Class Structure Diagram

DrawableNode

Knows: next

Branch

Knows: children

HBranch

Knows how
to drawWith
horizontally

VBranch

Knows how to
drawWith
vertically

PictNode

Knows: myPict

Knows how to
drawWith

BlueScreenNode

Knows how to
drawWith as
bluescreen

Note: This is not
the same as the
scene (object)
structure!

Using these Classes:
When doggies go bad!
public class WolfAttackMovie {

/**
* The root of the scene data structure
**/

Branch sceneRoot;

/**
* FrameSequence where the animation
* is created
**/

FrameSequence frames;

/**
* The nodes we need to track between methods
**/

MoveBranch wolfentry, wolfretreat, hero;

These are the nodes
that change during the
animation, so must be
available outside the
local method context

Setting up the pieces
/**
* Set up all the pieces of the tree.
**/
public void setUp(){
Picture wolf = new Picture(FileChooser.getMediaPath("dog-
blue.jpg"));
Picture house = new Picture(FileChooser.getMediaPath("house-
blue.jpg"));
Picture tree = new Picture(FileChooser.getMediaPath("tree-
blue.jpg"));
Picture monster = new Picture(FileChooser.getMediaPath("monster-
face3.jpg"));

Making a Forest
//Make the forest

MoveBranch forest = new MoveBranch(10,400); // forest
on the bottom
HBranch trees = new HBranch(50); // Spaced out 50
pixels between
BlueScreenNode treenode;
for (int i=0; i < 8; i++) // insert 8 trees
{treenode = new BlueScreenNode(tree.scale(0.5));
trees.addChild(treenode);}

forest.addChild(trees);

Make attacking wolves
// Make the cluster of attacking "wolves"

wolfentry = new MoveBranch(10,50); // starting position
VBranch wolves = new VBranch(20); // space out by 20 pixels
between
BlueScreenNode wolf1 = new BlueScreenNode(wolf.scale(0.5));
BlueScreenNode wolf2 = new BlueScreenNode(wolf.scale(0.5));
BlueScreenNode wolf3 = new BlueScreenNode(wolf.scale(0.5));
wolves.addChild(wolf1);wolves.addChild(wolf2);
wolves.addChild(wolf3);
wolfentry.addChild(wolves);

Make retreating wolves
// Make the cluster of retreating "wolves"

wolfretreat = new MoveBranch(400,50); // starting position
wolves = new VBranch(20); // space them out by 20 pixels between
wolf1 = new BlueScreenNode(wolf.scale(0.5).flip());
wolf2 = new BlueScreenNode(wolf.scale(0.5).flip());
wolf3 = new BlueScreenNode(wolf.scale(0.5).flip());
wolves.addChild(wolf1);wolves.addChild(wolf2);
wolves.addChild(wolf3);
wolfretreat.addChild(wolves);

It takes a Village…

// Make the village
MoveBranch village = new MoveBranch(300,450); // Village on bottom
HBranch hhouses = new HBranch(40); // Houses are 40 pixels apart
across

BlueScreenNode house1 = new BlueScreenNode(house.scale(0.25));
BlueScreenNode house2 = new BlueScreenNode(house.scale(0.25));
BlueScreenNode house3 = new BlueScreenNode(house.scale(0.25));
VBranch vhouses = new VBranch(-50); // Houses move UP, 50 pixels
apart

BlueScreenNode house4 = new BlueScreenNode(house.scale(0.25));
BlueScreenNode house5 = new BlueScreenNode(house.scale(0.25));
BlueScreenNode house6 = new BlueScreenNode(house.scale(0.25));
vhouses.addChild(house4); vhouses.addChild(house5);
vhouses.addChild(house6);

hhouses.addChild(house1); hhouses.addChild(house2);
hhouses.addChild(house3);

hhouses.addChild(vhouses); // Yes, a VBranch can be a child of an
HBranch!

village.addChild(hhouses);

Making the village’s hero

// Make the monster
hero = new MoveBranch(400,300);
BlueScreenNode heronode = new
BlueScreenNode(monster.scale(0.75).flip());
hero.addChild(heronode);

Assembling the Scene

//Assemble the base scene
sceneRoot = new Branch();
sceneRoot.addChild(forest);
sceneRoot.addChild(village);
sceneRoot.addChild(wolfentry);

}

Want the forest on top
of the village? Put the
village in BEFORE the
forest! Then it will get
rendered first

Where’s the wolfretreat and monster?
They’ll get inserted into the scene in
the middle of the movie

Trying out one scene:
Very important for testing!
/**
* Render just the first scene
**/
public void renderScene() {
Picture bg = new Picture(500,500);
sceneRoot.drawOn(bg);
bg.show();

}

Okay that works

Rendering the whole movie
/**
* Render the whole animation
**/
public void renderAnimation() {
frames = new FrameSequence("D:/Temp/");
frames.show();
Picture bg;

Wolvies attack! (for 25 frames)
// First, the nasty wolvies come closer to the poor village

// Cue the scary music
for (int i=0; i<25; i++)
{

// Render the frame
bg = new Picture(500,500);
sceneRoot.drawOn(bg);
frames.addFrame(bg);

// Tweak the data structure
wolfentry.moveTo(wolfentry.getXPos()+5,wolfentry.getYPos()+10);

}

Inch-by-inch, er, 5-pixels by 10
pixels, they creep closer.

Our hero arrives! (In frame 26)

// Now, our hero arrives!
this.root().addChild(hero);
// Render the frame
bg = new Picture(500,500);
sceneRoot.drawOn(bg);
frames.addFrame(bg);

Exit the threatening wolves,
enter the retreating wolves
// Remove the wolves entering, and insert the wolves

retreating
this.root().children.remove(wolfentry);
this.root().addChild(wolfretreat);
// Make sure that they retreat from the same place that
they were at
wolfretreat.moveTo(wolfentry.getXPos(),

wolfentry.getYPos());
// Render the frame
bg = new Picture(500,500);
sceneRoot.drawOn(bg);
frames.addFrame(bg);

The wolves retreat
(more quickly)
// Now, the cowardly wolves hightail it out of there!

// Cue the triumphant music
for (int i=0; i<10; i++)
{

// Render the frame
bg = new Picture(500,500);
sceneRoot.drawOn(bg);
frames.addFrame(bg);

// Tweak the data structure
wolfretreat.moveTo(wolfretreat.getXPos()-10,

wolfretreat.getYPos()-20);
}

}

Making the Movie
Welcome to DrJava.
> WolfAttackMovie wam = new WolfAttackMovie();

wam.setUp(); wam.renderScene();

> wam.renderAnimation();

There are no frames to show yet. When you add a frame it
will be shown

> wam.replay();

The Completed Movie

Homework Assignment!
Option 1: Create linked list music

Create music with at least five calls to repeatInserting or weave
It must be at least 20 nodes long.
Make one new riff yourself and use it.
Draw the resultant sound structure

Option 2: Make a movie—with sound!
Use a scene graph for the visuals, and a linked list for the sound.

Maybe play one node per frame?

Can use play() for background sounds, blockingPlay() for foreground
sounds
Only rule: During rendering, cannot create any new sounds.

Must be in the linked list of sounds already.

Example: HW4 and HW6 at http://coweb.cc.gatech.edu/cs1316/458

http://coweb.cc.gatech.edu/cs1316/458

Simulations

We build a simulation “from scratch”: Wolves
and deer

Based on Anne Fleury’s work about students avoiding
abstraction and preferring duplicating/explicit code.
We’re trying to make it easier to understand, and then
introduce abstraction.

Then we build a simulation package that makes
it all easier.

Real programmers don’t make data
structures…often

Programmers almost never make arrays.
Most programmers don’t make linked lists or trees or
graphs, either!

Or hashtables/dictionaries, or heaps, or stacks and queues.

These core, general, abstract data structures are
typically provided in some form through libraries for the
language.

That’s true for both Python/Jython and Java.

Real programmers make
models…often

The basic processes of modeling is something
that every object-oriented programmer does all
the time.

Aggregation: connecting objects together through
references
Generalization and Specialization

Learning how data structures work is
learning about modeling.

Real programmers make data
structures…sometimes

Sometimes you do make data structures.
If you need a specialized structure.
If you want just the methods you want in the way that
you want them.

For example, Java’s LinkedList has no insertAfter()!
If you need it to work faster.

Real programmers make data
structures choices!

You choose between different data structures all the
time.
Often the choice is based on running time.

Arrays are faster than linked lists for some things (like
accessing element i),
while linked lists are faster for other things (like insertion
and deletion).

Sometimes the choice is for particular properties.
Use trees for clustering,
Use graphs for cycles,
Use hashtables for lookup by String, not index number

Building a Simulation Package
Let’s make it much easier to build simulations.

We’ll use Java’s data structures, rather than build our own.
We’ll create Simulation and Agent as a general simulation, so
that we only subclass them to create our specific simulations.

A classic “real programmer” challenge: Making code
designed to be reused (by us, but could be anyone)
later.

WDSimulation with new package

DiseaseSimulation

PoliticalSimulation

Design of the Package

How we use the package
Subclass Simulation to define your general simulation.

Override the methods that you want to change.
Feel free to call super.method() to reuse the general
functionality.

Subclass Agent to define your simulation agents/actors.
Override the methods that you want to change.
Feel free to call super.method() to reuse the general
functionality.

What Simulation provides
getAgents(), add(), remove(): Manipulate the list of all
agents
setUp(): Open a world
openFile(): Write data to a file
openFrames(): Write frames to a FrameSequence
run(): Run the simulation—for a number of timesteps, tell
each agent to act()
endStep(): Print the timestep and write to the file.
lineForFile(): Define what to print to the file.
closeFile(): End the file writing

What Agent provides

setSpeed(), getSpeed(): Change/get speed
init(): Add to simulation agents list
die(): Make body red and remove from
simulation agents list
getClosest(): Get the closest agent from a list
within a range.
countInRange(): Count the agents within a range
that are on a list.
act(): By default, wander aimlessly

Redefining WDSimulation

WDSimulation
/**
* WDSimulation -- using the Simulation class
**/

public class WDSimulation extends Simulation {

/**
* Fill the world with wolves and deer
**/

public void setUp(){
// Let the world be set up
super.setUp();

// Just for storing the new deer and wolves
DeerAgent deer;
WolfAgent wolf;

// create some deer
int numDeer = 20;
for (int i = 0; i < numDeer; i++)
{

deer = new DeerAgent(world,this);
}

// create some wolves
int numWolves = 5;
for (int i = 0; i < numWolves; i++)
{

wolf = new WolfAgent(world,this);
}

}

We need setUp() to
define the world (let
super.setUp() do
that), then fill it with
our agents.

Writing out our counts in
WDSimulation
/**
* lineForFile -- write out number of wolves and deer
**/
public String lineForFile(){

// Get the size (an int), make it an Integer,
// in order to turn it into a string. (Whew!)
return (new Integer(DeerAgent.allDeer.size())).toString()+"/t"+

(new Integer(WolfAgent.allWolves.size())).toString();
}

It’s not easy to convert an integer (size() of
the list) to a string.

Defining our Deer
import java.awt.Color; // Color for colorizing
import java.util.LinkedList;

/**
* DeerAgent -- Deer as a subclass of Agent
**/
public class DeerAgent extends Agent {

/** class constant for the color */
private static final Color brown = new Color(116,64,35);

/** class constant for how far deer can smell */
private static final double SMELL_RANGE = 50;

/** Collection of all Deer */
public static LinkedList allDeer = new LinkedList();

Notice allDeer!

It’s a LinkedList—
for free!

It’s static—there’s
one list shared by
all instances of the
class. It’s the list
of all DeerAgents,
and there’s only
one of these lists.

DeerAgent initialization
/**
* Initialize, by adding to Deer list
**/
public void init(Simulation thisSim){
// Do the normal initializations
super.init(thisSim);

// Make it brown
setColor(brown);

// Add to list of Deer
allDeer.add(this);

}

DeerAgent’s way of dying
/**

* To die, do normal stuff, but
* also remove from deer list
**/

public void die(){
super.die();
allDeer.remove(this);
System.out.println("Deer left: "+allDeer.size());

}

DeerAgent’s
actions

/**
* How a DeerAgent acts
**/

public void act()
{

// get the closest wolf within the smell range
WolfAgent closeWolf = (WolfAgent)

getClosest(SMELL_RANGE,
WolfAgent.allWolves);

if (closeWolf != null) {
// Turn to face the wolf
this.turnToFace(closeWolf);
// Now directly in the opposite direction
this.turn(180);
// How far to run? How about half of current speed??
this.forward((int) (speed/2));

}
else {

// Run the normal act() -- wander aimlessly
super.act();

}
}

This is it folks!
It’s all that we have
to write to make
DeerAgents work!

Constructors

////////////////////////////// Constructors ////////////////////////
// Copy this section AS-IS into subclasses, but rename Agent to
// Your class.

/**
* Constructor that takes the model display (the original
* position will be randomly assigned)
* @param modelDisplayer thing that displays the model
* @param thisSim my simulation
*/
public DeerAgent (ModelDisplay modelDisplayer,Simulation thisSim)
{

super(randNumGen.nextInt(modelDisplayer.getWidth()),
randNumGen.nextInt(modelDisplayer.getHeight()),
modelDisplayer, thisSim);

}

/** Constructor that takes the x and y and a model
* display to draw it on
* @param x the starting x position
* @param y the starting y position
* @param modelDisplayer the thing that displays the model
* @param thisSim my simulation
*/
public DeerAgent (int x, int y, ModelDisplay modelDisplayer,

Simulation thisSim)
{

// let the parent constructor handle it
super(x,y,modelDisplayer,thisSim);

}

DON’T care about
this!

Copy it in as-is, and
make the names
match your class.

That’s it. Period.

WolfAgent
import java.awt.Color;
import java.util.LinkedList;

/**
* WolfAgent -- Wolf as a subclass of Agent
**/
public class WolfAgent extends Agent {

/** class constant for how far wolf can smell */
private static final double SMELL_RANGE = 50;

/** class constant for how close before wolf can attack */
private static final double ATTACK_RANGE = 30;

/** Collection of all Wolves */
public static LinkedList allWolves = new LinkedList();

WolfAgent initializations
/**
* Initialize, by adding to Wolf list
**/
public void init(Simulation thisSim){

// Do the normal initializations
super.init(thisSim);

// Make it brown
setColor(Color.gray);

// Add to list of Wolves
allWolves.add(this);

}

WolfAgent
act()

/**
* Chase and eat the deer
**/
/**

* Method to act during a time step
* pick a random direction and move some random amount up to top speed
*/

public void act()
{

// get the closest deer within smelling range
DeerAgent closeDeer = (DeerAgent) getClosest(SMELL_RANGE,

DeerAgent.allDeer);
if (closeDeer != null)
{

// Turn torward deer
this.turnToFace(closeDeer);
// How much to move? How about minimum of maxSpeed
// or distance to deer?
this.forward((int) Math.min(speed,

closeDeer.getDistance(this.getXPos(),this.getYPos())));
}

// get the closest deer within the attack distance
closeDeer = (DeerAgent) getClosest(ATTACK_RANGE,

DeerAgent.allDeer);

if (closeDeer != null)
{

this.moveTo(closeDeer.getXPos(),
closeDeer.getYPos());

closeDeer.die();
}

else // Otherwise, wander aimlessly
{

super.act();
} // end else

The same
constructors are
there, but let’s
ignore those.

Running the WDSimulation
Welcome to DrJava.
> WDSimulation wd = new WDSimulation();
> wd.openFrames("D:/temp/"); // If you want an animation
> wd.openFile(“D:/cs1316/wds-data1.txt”); // If you want an output

file.
> wd.run();

If you just want to run it:
> WDSimulation wd = new WDSimulation();
> wd.run();

DiseaseSimulation

What happens in a
DiseaseSimulation

We create a bunch of PersonAgents.
One of them is sick.
While running:

They wander aimlessly.
If a Person gets close (within 10? 20?) of an infected
person, that Person gets infected, too.

DiseaseSimulation
/**
* DiseaseSimulation -- using the Simulation class
**/

public class DiseaseSimulation extends Simulation {
/**

* Fill the world with 60 persons, one sick
**/

public void setUp(){
// Let the world be set up
//super.setUp();
// Or set it up with a smaller world
world = new World(300,300);
world.setAutoRepaint(false);

PersonAgent moi;

// 60 people
for (int num = 0; num < 60; num++) {
moi = new PersonAgent(world,this);

}

// Infect the first one
moi = (PersonAgent) getAgents().get(0);
moi.infect();

}

setUp() just creates 60
people, and the first one
becomes infected.

Deciding what to store in a file
/**

* lineForFile -- write out number of infected
**/

public String lineForFile(){
PersonAgent first;
first = (PersonAgent) agents.get(0);
return (new Integer(first.infected())).toString();

}

infected() is an instance method that
returns the number of infected
persons. It doesn’t matter which
person we ask it of, so we just grab
the first one.

Defining a PersonAgent
import java.awt.Color; // Color for colorizing
import java.util.LinkedList;

/**
* PersonAgent -- Person as a subclass of Agent
**/
public class PersonAgent extends Agent {

public boolean infection;

PersonAgent
initialization

/**
* Initialize, by setting color and making move fast
**/

public void init(Simulation thisSim){
// Do the normal initializations
super.init(thisSim);

// Make it lightGray
setColor(Color.lightGray);

// Don't need to see the trail
setPenDown(false);

// Start out uninfected
infection = false;

// Make the speed large
speed = 100;

}

PersonAgent act()
/**

* How a Person acts
**/

public void act()
{

// Is there a person within infection range of me?
PersonAgent closePerson = (PersonAgent) getClosest(10,

simulation.getAgents());

if (closePerson != null) {
// If this person is infected, and I'm not infected
if (closePerson.infection && !this.infection) {
// I become infected
this.infect();

}
}

// Run the normal act() -- wander aimlessly
super.act();

}

Getting sick
/**
* Become infected
**/
public void infect(){
this.infection = true;
this.setColor(Color.red);

// Print out count of number infected
System.out.println("Number infected: "+infected());

}

Counting the infected
/**
* Count infected
**/
public int infected() {
int count = 0;
LinkedList agents = simulation.getAgents();
PersonAgent check;

for (int i = 0; i<agents.size(); i++){
check = (PersonAgent) agents.get(i);
if (check.infection) {count++;}

}

return count;
}

We could have
added them to an
infected list and just
checked the size(),
too.

There are constructors
here, too, but we’re
ignoring them now.

Running a DiseaseSimulation

DiseaseSimulation ds2 = new
DiseaseSimulation();
ds2.openFile(“D:/cs1316/disease-fullsize.txt”);
ds2.run();

Comparing Small and Large
Worlds for Disease Propagation

0

10

20

30

40

50

60

70

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

public void setUp(){
// Let the world be set up
super.setUp();
// Or set it up with a smaller world
//world = new World(300,300);
//world.setAutoRepaint(false);

A common activity in this
class: Generate data for Excel
and analyze it there.

Small world DiseaseSimulation

0

10

20

30

40

50

60

70

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

public void setUp(){
// Let the world be set up
//super.setUp();
// Or set it up with a smaller world
world = new World(300,300);
world.setAutoRepaint(false);

PoliticalSimulation

How it works
There are two sets of PoliticalAgents: Red and Blue
Both wander aimlessly, but within constraints.

Blue is only to the right, red only to the left.
Overlap for 200 pixels in the middle.

If a Blue gets surrounded (argued down?) by more Red
supporters than Blue supporters, the Blue turns Red.
And vice-versa.

But there is a problem
with getting converted
mid-timestep!

Political
Simulation

/**
* PoliticalSimulation -- using the Simulation class
**/

public class PoliticalSimulation extends Simulation {

/**
* Fill the world with 60 persons
**/

public void setUp(){
// Let the world be set up
super.setUp();

PoliticalAgent moi;

// 60 people
for (int num = 0; num < 60; num++) {
moi = new PoliticalAgent(world,this);
// First 30 are red
if (num < 30) {
moi.politics = Color.red;
moi.moveTo(100,100);
PoliticalAgent.redParty.add(moi);

}
else {
moi.politics = Color.blue;
moi.moveTo(500,100);
PoliticalAgent.blueParty.add(moi);

}
moi.setColor(moi.politics);

} // for loop

} // setUp()

Tracking the PoliticalSimulation

/**
* lineForFile -- write out number of each party
**/

public String lineForFile(){

return (new Integer(PoliticalAgent.redParty.size())).toString()+"\t"+
(new Integer(PoliticalAgent.blueParty.size())).toString();

}

/**
* EndStep, count the number of each
**/

public void endStep(int t){
super.endStep(t);

System.out.println("Red: "+PoliticalAgent.redParty.size()+" Blue: "+
PoliticalAgent.blueParty.size());

}

We’re
accessing here
the static
variables that
track the
redParty and
blueParty.

PoliticalAgent
import java.awt.Color; // Color for colorizing
import java.util.LinkedList;

/**
* PoliticalAgent -- Red or Blue Stater as a subclass of Agent
**/
public class PoliticalAgent extends Agent {

// Red or Blue
public Color politics;

public static LinkedList redParty = new LinkedList();
public static LinkedList blueParty = new LinkedList();

Initializing our PoliticalAgents
/**
* Initialize
**/
public void init(Simulation thisSim){

// Do the normal initializations
super.init(thisSim);

// Don't need to see the trail
setPenDown(false);

// Speed is 100
speed = 100;

}

Converting political preference

/**
* Set politics
**/

public void setPolitics(Color pref){
System.out.println("I am "+politics+" converting to "+pref);

if (pref == Color.red) {
blueParty.remove(this);
redParty.add(this);
this.politics = pref;}

else {
blueParty.add(this);
redParty.remove(this);
this.politics = pref;

}
this.setColor(pref);

}

PoliticalAgent act()
/**

* How a PoliticalAgent acts
**/

public void act()
{

// What are the number of blues and red near me?
int numBlue = countInRange(30,blueParty);
int numRed = countInRange(30,redParty);

if (politics==Color.red){
// If I'm red, and there are more blue than red near me, convert
if (numBlue > numRed){
setPolitics(Color.blue);}

}
if (politics==Color.blue){
// If I'm blue, and there are more red than blue near me, convert
if (numRed > numBlue) {
setPolitics(Color.red);}

}

PoliticalAgent act(), cont’d
// Run the normal act() -- wander aimlessly

super.act();

// But don't let them wander too far!
// Let them mix only in the middle
if (politics==Color.red) {

if (this.getXPos() > 400) { // Did I go too far right?
this.moveTo(200,this.getYPos());}

}
if (politics==Color.blue) {
if (this.getXPos() < 200) { // Did I go too far left?

this.moveTo(400,this.getYPos());}
}

}

How the Simulation Package works
There are lots of calls to this

this.setUp(), for example.

This will call the instance’s method.
Typically, the subclass!

If the subclass doesn’t have the method, it will inherit
the method from the superclass.
The subclass can still call the superclass version using
super.

Let’s trace the DiseaseSimulation
DiseaseSimulation ds2 = new DiseaseSimulation();

ds2.run();

public Simulation() {
// By default, don't write to a file.
output = null;
// And there is no FrameSequence
frames = null;

}

Here’s how a
Simulation class
instance gets
constructed.

ds2.run();

/**
* Run for a default of 50 steps
**/
public void run(){
this.run(50);
this.closeFile();

}

Both methods are in
Simulation

/**
* Ask all agents to run for the number of input
* steps
**/

public void run(int timeRange)
{

// A frame, if we're making an animation
Picture frame;

// For storing the current agent
Agent current = null;

// Set up the simulation
this.setUp();

Does ds2 have a setUp()
method?

this.setUp() in DiseaseSimulation

/**
* Fill the world with 60 persons, one sick
**/

public void setUp(){
// Let the world be set up
super.setUp();

PersonAgent moi;

// 60 people
for (int num = 0; num < 60; num++) {
moi = new PersonAgent(world,this);

}

// Infect the first one
moi = (PersonAgent) getAgents().get(0);
moi.infect();

}

public void setUp(){
// Set up the World
world = new World();
world.setAutoRepaint(false);

}

Back to Simulation
just for a moment, to
set up the world, then
back again.

Back to public void run(int
timeRange) in Simulation

// Set up the simulation
this.setUp();

// loop for a set number of timesteps
for (int t = 0; t < timeRange; t++)
{

// loop through all the agents, and have them
// act()
for (int index=0; index < agents.size(); index++) {

current = (Agent) agents.get(index);
current.act();

}

Do PersonAgents have act()’s?

You bet!

PersonAgent act() to Agent act()

public void act()
{

// Is there a person within infection range of me?
PersonAgent closePerson = (PersonAgent)

getClosest(20,
simulation.getAgents());

if (closePerson != null) {
// If this person is infected, and I'm not infected
if (closePerson.infection && !this.infection) {
// I become infected
this.infect();

}
}

// Run the normal act() -- wander aimlessly
super.act();

}

public void act()
{

// Default action: wander aimlessly
// if the random number is > prob of

NOT turning then turn
if (randNumGen.nextFloat() >

PROB_OF_STAY)
{

this.turn(randNumGen.nextInt(360));
}
// go forward some random amount

forward(randNumGen.nextInt(speed));
} // end act()

Finishing Simulation run()
// repaint the world to show the movement

world.repaint();
if (frames != null){

// Make a frame from the world, then
// add the frame to the sequence
frame = new Picture(world.getWidth(),world.getHeight());
world.drawOn(frame);
frames.addFrame(frame);

}

// Do the end of step processing
this.endStep(t);

// Wait for one second
//Thread.sleep(1000);

}

Hang on! Not done yet!

endStep() calls lineForFile() (in
DiseaseSimulation)
public void endStep(int t){

// Let's figure out where we stand...
System.out.println(">>> Timestep: "+t);

// If we have an open file, write the counts to it
if (output != null) {

// Try it
try{

output.write(lineForFile());
output.newLine();

} catch (Exception ex) {
System.out.println("Couldn't write the data!");
System.out.println(ex.getMessage());
// Make output null so that we don't keep trying
output = null;
}

}
} // endStep()

public String lineForFile(){
PersonAgent first;
first = (PersonAgent) agents.get(0);
return (new

Integer(first.infected())).toString();
}

How much do you have to know?

Do you have to know what Simulation run()
does? Or Agent act()?

Not in any detail!
You need to know what it roughly does, so you can
decide if you need it via super

You need to know when your code will be called,
so that you can do what you need to, at the right
point in the simulation.

Discrete Event Simulations

Here’s where we use queues (stacks earlier, for
reversing a list), inserting in order, and sorting.

Imagine the simulation…
There are three Trucks that bring product from the
Factory.

On average, they take 3 days to arrive.
Each truck brings somewhere between 10 and 20 products—all
equally likely.

We’ve got five Distributors who pick up product from the
Factory with orders.

Usually they want from 5 to 25 products, all equally likely.
It takes the Distributors an average of 2 days to get back
to the market, and an average of 5 days to deliver the
products.
Question we might wonder: How much product gets sold
like this?

Don’t use a Continuous Simulation
We don’t want to wait that number of days in real time.
We don’t even care about every day.

There will certainly be timesteps (days) when nothing happens of
interest.

We’re dealing with different probability distributions.
Some uniform, some normally distributed.

Things can get out of synch
A Truck may go back to the factory and get more product before
a Distributor gets back.
A Distributor may have to wait for multiple trucks to fulfill orders
(and other Distributors might end up waiting in line)

We use a Discrete Event
Simulation

We don’t simulate every moment continuously.
We simulate discrete events.

What’s the difference?
No time loop

In a discrete event simulation: There is no time
loop.

There are events that are scheduled.
At each run step, the next scheduled event with the
lowest time gets processed.

The current time is then that time, the time that that event is
supposed to occur.

Key: We have to keep the list of scheduled
events sorted (in order)

What’s the difference?
Agents don’t act()

In a discrete event simulations, agents don’t
act().

Instead, they wait for events to occur.
They schedule new events to correspond to the next
thing that they’re going to do.

Key: Events get scheduled according to different
probabilities.

What’s the difference?
Agents get blocked

Agents can’t do everything that they want to do.
If they want product (for example) and there isn’t any,
they get blocked.

They can’t schedule any new events until they get unblocked.
Many agents may get blocked awaiting the same
resource.

More than one Distributor may be awaiting arrival of Trucks
Key: We have to keep track of the Distributors waiting in
line (in the queue)

Key Ideas
A Queue

A Queue is a queue, no matter how implemented.

Different kinds of random
Straightening time

Inserting it into the right place
Sorting it afterwards

Key idea #1:
Introducing a Queue

First-In-First-Out List
First person in line is first person served

I got here
first!

I got here
second!

I got here
third!

This is the
front or head
of the queue

This is the tail
of the queue

Key idea #2:
Different kinds of random

We’ve been dealing with uniform random
distributions up until now, but those are the least
likely random distribution in real life.
How can we generate some other distributions,
including some that are more realistic?

Key idea #3: Straightening Time

Straightening time
Inserting it into the right place
Sorting it afterwards

We’ll actually do these in reverse order:
We’ll add a new event, then sort it.
Then we’ll insert it into the right place.

Finally: A Discrete Event Simulation

Now, we can assemble queues, different kinds
of random, and a sorted EventQueue to create a
discrete event simulation.

Running a DESimulation

Welcome to DrJava.
> FactorySimulation fs = new FactorySimulation();
> fs.openFrames("D:/temp/");
> fs.run(25.0)

What we see (not much)

The detail tells the story
Time: 1.7078547183397625 Distributor: 0 Arrived at warehouse
Time: 1.7078547183397625 Distributor: 0 is blocking
>>> Timestep: 1
Time: 1.727166341118611 Distributor: 3 Arrived at warehouse
Time: 1.727166341118611 Distributor: 3 is blocking
>>> Timestep: 1
Time: 1.8778754913001443 Distributor: 4 Arrived at warehouse
Time: 1.8778754913001443 Distributor: 4 is blocking
>>> Timestep: 1
Time: 1.889475045031698 Distributor: 2 Arrived at warehouse
Time: 1.889475045031698 Distributor: 2 is blocking
>>> Timestep: 1
Time: 3.064560375192933 Distributor: 1 Arrived at warehouse
Time: 3.064560375192933 Distributor: 1 is blocking
>>> Timestep: 3
Time: 3.444420374970288 Truck: 2 Arrived at warehouse with load 13
Time: 3.444420374970288 Distributor: 0 unblocked!
Time: 3.444420374970288 Distributor: 0 Gathered product for orders of 11
>>> Timestep: 3
Time: 3.8869697922832698 Truck: 0 Arrived at warehouse with load 18
Time: 3.8869697922832698 Distributor: 3 unblocked!
Time: 3.8869697922832698 Distributor: 3 Gathered product for orders of 12
>>> Timestep: 3
Time: 4.095930381479024 Distributor: 0 Arrived at market
>>> Timestep: 4
Time: 4.572840072576855 Truck: 1 Arrived at warehouse with load 20
Time: 4.572840072576855 Distributor: 4 unblocked!
Time: 4.572840072576855 Distributor: 4 Gathered product for orders of 19

Notice that
time 2 never
occurs!

What questions we can answer
How long do distributors wait?

Subtract the time that they unblock from the time that
they block

How much product sits in the warehouse?
At each time a distributor leaves, figure out how much
is left in the warehouse.

How long does the line get at the warehouse?
At each block, count the size of the queue.

Can we move more product by having more
distributors or more trucks?

Try it!

How DESimulation works

+getAgents()
+add()
+remove()
+openFrames()
+setUp()
+openFile()
+run()
+endStep()
+lineForFile()
+closeFile()

#output
Simulation

+show()
+replay()

FrameSequence

1

+frames

1

+init()
+die()
+getClosest()
+countInRange()
+act()

#speed
Agent

LinkedList

#agents1

*

*

1

+forward()
+turn()
+setColor()
+setPenDown()

-heading
-XPos
-YPos

Turtle

*

#simulation

1

+setPicture()

World

*

-world

1

+isBlocked()
+isReady()
+validTime()
+waitFor()
+unblocked()
+processEvent()

-blocked
DEAgent

+amountAvailable()
+consume()
+add()
+addToList()

-amount
Resource

+push()
+peek()
+pop()
+empty()
+size()

Queue

-blocked

1
*

+getTime()
+addEvent()
+log()
+run()

-now
DESimluation

+peek()
+add()
+pop()
+size()
+empty()
+insertInOrder()
+sort()

EventQueue

*

-events

1

FactorySimulation: Extend a few
classes

+getAgents()
+add()
+remove()
+openFrames()
+setUp()
+openFile()
+run()
+endStep()
+lineForFile()
+closeFile()

#output
Simulation

+show()
+replay()

FrameSequence

1

+frames

1

+init()
+die()
+getClosest()
+countInRange()
+act()

#speed
Agent

LinkedList

#agents1

*

*

1

+forward()
+turn()
+setColor()
+setPenDown()

-heading
-XPos
-YPos

Turtle

*

#simulation

1

+setPicture()

World

*

-world

1

+isBlocked()
+isReady()
+validTime()
+waitFor()
+unblocked()
+processEvent()

-blocked
DEAgent

+amountAvailable()
+consume()
+add()
+addToList()

-amount
Resource

+push()
+peek()
+pop()
+empty()
+size()

Queue

-blocked

1
*

+getTime()
+addEvent()
+log()
+run()

-now
DESimluation

+peek()
+add()
+pop()
+size()
+empty()
+insertInOrder()
+sort()

EventQueue

*

-events

1

+newLoad()
+tripTime()
+init()
+processEvents()

-load
Truck

+newOrders()
+timeToDeliver()
+tripTime()
+init()
+processEvents()
+isReady()
+unblocked()

-amountOrdered
Distributor

FactoryProduct

+setUp()
+getFactory()

FactorySimulation

-factory

1

*

Finally! Making Wildebeests

We simply copy characters to frames wherever
the turtles are.

Story: The Curious Birds

The turtle-like curious bird things wander, slowly,
toward the mysterious egg.
As they get up close to it—it opens its eyes and
shows its fangs!
They scamper away while the monster shifts
around and looks to the left and right.

The Movie

“What’s the big deal?”
“Isn’t this darn similar to the wolves attacking the village
movie?”
Yes.
But we didn’t have to build a scene graph and define
every frame here.
We simply built a simulation and said “Go.”

Each time that we run this simulation, it’ll be slightly different.
We can have as many “takes” as we want, and tweak the rules
of behavior as we want.

A Mapping

We move Agents (turtles) in a
simulation

And once a timestep, we
map these to images and
draw them.

BirdSimulation
/**
* BirdSimulation
* A flock of 10 birds investigate a mysterious egg,
* which suddenly shows itself to be a monster!
**/
public class BirdSimulation extends Simulation {

public EggAgent egg; // We'll need to get this later in BirdAgent
FrameSequence myFrames; // Need a separate one from Simulations

Setting up the Simulation

/**
* Set up the world with 10 birds and the mysterious egg
**/

public void setUp(){
// Set up the world
super.setUp();
// We'll need frames for the animation
myFrames = new FrameSequence("D:/Temp/");
myFrames.show();

BirdAgent tweetie;
// 10 of 'em
for (int num = 0; num < 10; num++) {

tweetie = new BirdAgent(world,this);}

// And the egg
egg = new EggAgent(world,this);

}

Creating the Animation
public void endStep(int t) {

// Do the normal file processing (if any)
super.endStep(t);

// But now, make a 640x480 frame, and copy
// in pictures from all the agents
Picture frame = new Picture(640,480);
Agent drawMe = null;
for (int index=0; index<this.getAgents().size(); index++) {
drawMe = (Agent) this.getAgents().get(index);
drawMe.myPict.bluescreen(frame,drawMe.getXPos(),

drawMe.getYPos());
}
myFrames.addFrame(frame);

}

Explaining the key lines
We get our Agent
(BirdAgent or
EggAgent).
Get the picture myPict
then bluescreen it onto
the frame at the current
position of the agent’s
turtle.

drawMe = (Agent)
this.getAgents().get(index);

drawMe.myPict.bluescreen(frame,
drawMe.getXPos(),
drawMe.getYPos());

Getting the timestep

Since we want something to happen at certain
timesteps, we need act() to have the timestep.

We need Simulation to pass us the timestep.
We need Agent’s act() to catch the timestep and
pass it on as no timestep, so that all the old
simulations continue to work.

Simulation change

// loop through all the agents, and have them
// act()
for (int index=0; index < agents.size(); index++) {

current = (Agent) agents.get(index);
current.act(t); // NEW -- pass in timestep

}

Addition to Agent
/**
* act() with a timestep
**/
public void act(int t){
// By default, don't act on it
this.act();

}
Think through why we
need this.

Simulation is now
calling act(timestep).
Our other simulations
don’t have act(int t)…

BirdAgent
/**
* BirdAgents use the bird character JPEGs
**/
public class BirdAgent extends Agent{

public static Picture bird1, bird2, bird3, bird4, bird5, bird6;

Why static? Would it work
without static? Yes, but
more resource intensive.

Setting up birds
/**
* Set up the birds
**/
public void init(Simulation thisSim){
if (bird1 == null) {

// Do we have the bird characters defined yet?
// CHANGE ME!
FileChooser.setMediaPath("D:/cs1316/MediaSources/");
bird1 = new Picture(FileChooser.getMediaPath("bird1.jpg"));
bird2 = new Picture(FileChooser.getMediaPath("bird2.jpg"));
bird3 = new Picture(FileChooser.getMediaPath("bird3.jpg"));
bird4 = new Picture(FileChooser.getMediaPath("bird4.jpg"));
bird5 = new Picture(FileChooser.getMediaPath("bird5.jpg"));
bird6 = new Picture(FileChooser.getMediaPath("bird6.jpg"));

}

Setting up a bunch of
static variables to hold the
bird pictures

Finishing BirdAgent init()
// Start out with myPict as bird1

myPict = bird1;

// Do the normal initializations
super.init(thisSim);

// Move all the birds to the far right corner
this.setPenDown(false);
this.moveTo(600,400);

// Set speed to relatively slow
this.setSpeed(40);

}

What Birds do

/**
* act(t) For first 20 steps, walk toward the egg,
* +/- 30 degrees.
* Then walk AWAY from the egg, and with MORE wandering (panic).
**/

public void act(int t){
// First, handle motion
if (t <= 20) {

// Tell it that this really is a BirdSimulation
BirdSimulation mySim = (BirdSimulation) simulation;
// which has an egg
this.turnToFace(mySim.egg);
this.turn(randNumGen.nextInt(60)-30);
forward(randNumGen.nextInt(speed));

} else {
// Run away!!
this.turnToFace(640,480); // Far right corner
this.turn(randNumGen.nextInt(80)-40);
forward(randNumGen.nextInt(speed));

}

What’s going on with this
math is getting +/-. 0 to
60, minus 30, gives you -
30 to 30

Birds also change character look
(cell animation)
// Next, set a new character

int cell = randNumGen.nextInt(6)+1; // 0 to 5, + 1 => 1 to 6
switch (cell) {
case 1:

myPict = bird1; // this.drop(bird1);
break;

case 2:
myPict = bird2; //this.drop(bird2);
break;

case 3:
myPict = bird3; //this.drop(bird3);
break;

case 4:
myPict = bird4; //this.drop(bird4);
break;

case 5:
myPict = bird5; //this.drop(bird5);
break;

case 6:
myPict = bird6; //this.drop(bird6);
break;

} // end switch
} // end act

What’s this?

It’s called a
switch or case
statement.

Instead of 6 if’s,
we have one big
case.

Consider drop vs. chromakey?
Think about resources and
mapping to other media

Zooming in on the switch

We compute a random integer
between 1 and 6.
We announce that we’re going
to choose between options
(switch) depending on the value
of cell.
We identify each value we’re
checking with a case statement.
Java executes the one that
matches the switch.
Execution ends and jumps to
the end of the switch on break.

int cell =
randNumGen.nextInt(6)+1;
// 0 to 5, + 1 => 1 to 6

switch (cell) {
case 1:
myPict = bird1;
break;

case 2:
myPict = bird2;
break;

EggAgent
/**
* EggAgent -- big scary egg that sits there until t=15,
* then emerges as a monster!
**/
public class EggAgent extends Agent {

public static Picture egg1, egg2, egg3, egg4;

Init() for an EggAgent
/**
* To initialize, set it up as the Egg in the upper lefthand corner
**/
public void init(Simulation thisSim){
if (egg1 == null) { //Initialize

//CHANGE ME!
FileChooser.setMediaPath("D:/cs1316/MediaSources/");
egg1 = new Picture(FileChooser.getMediaPath("egg1.jpg"));
egg2 = new Picture(FileChooser.getMediaPath("egg2.jpg"));
egg3 = new Picture(FileChooser.getMediaPath("egg3.jpg"));
egg4 = new Picture(FileChooser.getMediaPath("egg4.jpg"));

}
// Start out as egg1
myPict = egg1;

Meet the Eggs

The rest of EggAgent init()

// Normal initialization
super.init(thisSim);

// Make the turtle disappear
//this.hide(); // Not really necessary
this.setPenDown(false);

// Move the egg up to the left hand corner
this.moveTo(10,10);

}

Eggs don’t move in act(int t)
/**
* To act, just drop the Egg for 15 steps,
* then be the eyes opened for five steps,
* then be the eyes switching back-and-forth
**/
public void act(int t) {
if (t < 19) {

myPict = egg1;}
//this.drop(egg1);}

if (t>19 && t<24) {
myPict = egg2;}
//this.drop(egg2);}

Even when they’re looking scary
if (t>23) {

int choose=randNumGen.nextInt(2);
if (choose == 1) {
myPict = egg3;}

//this.drop(egg3);}
else {
myPict = egg4;}
//this.drop(egg4);}

}
} // end act()

To Explore
Start the birds out all over the screen

So that we can see them wave, etc. better.
Have the birds react to a state of the egg

For example: “egg.scary()==true”, so that we’re not tied to a
particular timestep (frame #)

Have the birds react to one another.
“I’m crowded, I’m going to move that way.”

Big idea! An animation is only one kind of representation
to make from a simulation.

How about playing certain sounds or MIDI phrases from
different characters at different times?

	Media Computation Workshop�Day 3
	Workshop Plan-Day 3
	Creating classes with Turtles
	Creating an Inherited Class
	Inheriting from a Class
	Compile Error?
	Inherited Constructors
	Why is an Implicit Call to Super Added?
	Explanation of the Compile Error
	Add a Constructor that takes a World
	Try this Out
	Resolving Methods
	Polymorphism
	Confused Turtle turnLeft and turnRight
	Try out ConfusedTurtle
	Override Methods
	What is Happening?
	Method Overloading
	Multimedia CS2 in Java
	Connecting to the Wildebeests�It’s all about data structures
	Syllabus
	HW2: Create a collage, but must use turtles
	Syllabus (Continued)
	Syllabus (Cont’d)
	Syllabus (cont’d)
	Syllabus (Cont’d)
	Syllabus (cont’d)
	Syllabus (cont’d)
	HW7: Simulate European emigration to America
	Syllabus (cont’d)
	A selection of data structures
	Telling DrJava where to find files
	Parts of DrJava
	An example with Music
	An example with Music
	An example with Music
	MIDI notes
	Making more notes
	What’s going on here?
	What’s going on here?
	Playing a different Phrase
	Modeling Music
	Objects know things and can do things
	Amazing�Grace
	Imports and some private data
	Filling the�Score
	Showing the Score
	The Organization of JMusic Objects
	Thought Experiment
	How do we explore composition here?
	Version 3: �SongNode and SongPhrase
	Using SongNode and SongPhrase
	All three SongNodes in one Part
	How to think about it
	Declarations for SongNode
	Constructor for SongNode
	Setting the phrase
	Linked list methods
	insertAfter
	Using and tracing insertAfter()
	Traversing the list
	The Core of the Traversal
	Then return what you collected
	getNotes() just pulls the notes back out
	SongPhrase
	SongPhrase.riff1()
	SongPhrase.riff2()
	Computing a phrase
	As long as it’s a phrase…
	10 Random Notes�(Could be less random…)
	10 Slightly Less Random Notes
	Going beyond connecting nodes
	Repeating a Phrase
	What it looks like
	Repeating
	Really useful: Do this with people as nodes!
	Here’s making a copy
	Step 1:�public void repeatNext(SongNode nextOne,int count) {� SongNode current = this; // Start from here� SongNode copy
	Step 2:�copy = nextOne.copyNode(); // Make a copy
	Step 3:�current.setNext(copy); // Set as next
	Step 4:� current = copy; // Now append to copy
	Step 5 & 6:� copy = nextOne.copyNode(); // Make a copy� current.setNext(copy); // Set as next
	Step 7 (and so on):� current = copy; // Now append to copy
	What happens if the node already points to something?
	repeatNextInserting
	Weaving
	Creating a node to weave
	Doing a weave
	Weave Results
	Walking the Weave
	Skip forward
	Then do an insert
	Shifting to Images
	Building a Scene
	Version 1: PositionedSceneElement
	What this looks like:
	Slightly different ordering:�Put the doggy between tree2 and tree3
	Slightly different picture
	Removing the doggy
	Putting the mutt back
	Animation = (Changing a structure + rendering) * n
	AnimatedPositionedScene
	Setting up� the animation
	Render the first frame
	Render the doggy moving right
	Moving left
	Results
	Version 2: Layering
	First version of Layered Scene
	Reordering the layering
	Reordered (relayered) scene
	What’s the difference?
	Version 3: A List with Both
	Using Superclasses
	Class Structure
	Class Structure
	Using the new structure
	Rendering the scene
	Rendered scene
	New Version: Trees for defining scenes
	The Attack of the Nasty Wolvies
	Closer…
	Then the Hero Appears!
	And the Wolvies retreat
	What’s underlying this
	Labeling the Pieces
	It’s a Tree
	The Class Structure
	Branch Class Structure
	The Class Structure Diagram
	Using these Classes:�When doggies go bad!
	Setting up the pieces
	Making a Forest
	Make attacking wolves
	Make retreating wolves
	It takes a Village…
	Making the village’s hero
	Assembling the Scene
	Trying out one scene:�Very important for testing!
	Okay that works
	Rendering the whole movie
	Wolvies attack! (for 25 frames)
	Our hero arrives! (In frame 26)
	Exit the threatening wolves,�enter the retreating wolves
	The wolves retreat �(more quickly)
	Making the Movie
	The Completed Movie
	Homework Assignment!
	Simulations
	Real programmers don’t make data structures…often
	Real programmers make models…often
	Real programmers make data structures…sometimes
	Real programmers make data structures choices!
	Building a Simulation Package
	WDSimulation with new package
	DiseaseSimulation
	PoliticalSimulation
	Design of the Package
	How we use the package
	What Simulation provides
	What Agent provides
	Redefining WDSimulation
	WDSimulation
	Writing out our counts in WDSimulation
	Defining our Deer
	DeerAgent initialization
	DeerAgent’s way of dying
	DeerAgent’s �actions
	Constructors
	WolfAgent
	WolfAgent initializations
	WolfAgent�act()
	Running the WDSimulation
	DiseaseSimulation
	What happens in a DiseaseSimulation
	DiseaseSimulation
	Deciding what to store in a file
	Defining a PersonAgent
	PersonAgent �initialization
	PersonAgent act()
	Getting sick
	Counting the infected
	Running a DiseaseSimulation
	Comparing Small and Large Worlds for Disease Propagation
	Small world DiseaseSimulation
	PoliticalSimulation
	How it works
	Political�Simulation
	Tracking the PoliticalSimulation
	PoliticalAgent
	Initializing our PoliticalAgents
	Converting political preference
	PoliticalAgent act()
	PoliticalAgent act(), cont’d
	How the Simulation Package works
	Let’s trace the DiseaseSimulation
	ds2.run();
	this.setUp() in DiseaseSimulation
	Back to public void run(int timeRange) in Simulation
	PersonAgent act() to Agent act()
	Finishing Simulation run()
	endStep() calls lineForFile() (in DiseaseSimulation)
	How much do you have to know?
	Discrete Event Simulations
	Imagine the simulation…
	Don’t use a Continuous Simulation
	We use a Discrete Event Simulation
	What’s the difference?�No time loop
	What’s the difference?�Agents don’t act()
	What’s the difference?�Agents get blocked
	Key Ideas
	Key idea #1: �Introducing a Queue
	Key idea #2: �Different kinds of random
	Key idea #3: Straightening Time
	Finally: A Discrete Event Simulation
	Running a DESimulation
	What we see (not much)
	The detail tells the story
	What questions we can answer
	How DESimulation works
	FactorySimulation: Extend a few classes
	Finally! Making Wildebeests
	Story: The Curious Birds
	The Movie
	“What’s the big deal?”
	A Mapping
	BirdSimulation
	Setting up the Simulation
	Creating the Animation
	Explaining the key lines
	Getting the timestep
	Simulation change
	Addition to Agent
	BirdAgent
	Setting up birds
	Finishing BirdAgent init()
	What Birds do
	Birds also change character look (cell animation)
	Zooming in on the switch
	EggAgent
	Init() for an EggAgent
	Meet the Eggs
	The rest of EggAgent init()
	Eggs don’t move in act(int t)
	Even when they’re looking scary
	To Explore

