
Media Computation
Workshop
Day 1

Mark Guzdial
College of Computing

Georgia Institute of Technology
guzdial@cc.gatech.edu

http://www.cc.gatech.edu/~mark.guzdial
http://www.georgiacomputes.org

http://www.cc.gatech.edu/~mark.guzdial

Workshop Plan-Day 1
9 am: Introductions and overview of the workshop.
9:30-10:30: Introduction to Media Computation using
Python

Pictures: Basic Filters
10:30-10:45: Break

10:45-12:00: Compositing and scaling images.
12:00-1:00: Lunch
1:00-2:00: Tackling a homework assignment in Media
Computation. Making a collage.
2:00-3:30: Introducing sound, sound manipulations,
splicing sounds.

3:30-3:45: Break
3:45-4:30: Tackling a homework assignment in Media
Computation. Making music.

Workshop Plan-Day 2
9-10:00 am: Overview of results of Media Computation.

Why a contextualized computing education approach
Support available for teachers for adopting, adapting, and
assessing.
10:00-10:15: Break

10:15-12:00: Pictures and sounds in Java: Overview
12:00-1:00: Lunch
1:00-2:30: Movies in Media Computation

2:30-2:45: Break
2:45-3:15: Discussion. How might you use these kinds of
assignments in your classes?
3:15-4:30: Tackling a homework assignment in Media
Computation. Making a movie.

Workshop Plan-Day 3
9-10:00 am: Introducing objects in a MediaComp way

Turtles and MIDI.
10:00-10:15: Break

10:15-11:00: Linked lists of MIDI.
11:00-12:00: Linked lists and trees of pictures
12:00-1:00: Lunch
1:00-2:30: Tackling a homework assignment in Media
Computation. Creating linked list music or Making a
movie with sound.

2:30-2:45: Break
2:45-3:30: Simulations, continuous and discrete
3:30-4:30: Creating the wildebeests and villagers:
Making movies from simulations .

What’s on your CD

MediaSources: Royalty-free JPEG and WAV files

Material for this workshop
Workshop slides

CS1-Python materials
MediaTools: Squeak-based media exploration tools
Chapters from the Media Computation book in Python
Course slides
Jython Environment for Students (JES) including new
3.0

What’s on your CD - Continued
CS1-Java materials

First 6 chapters of Media Computation book in Java
All slides
Exercises with solutions
DrJava: Great Java IDE for students
Classes
Slides for Alice + MediaComputation

CS2-Java materials
Course notes
Course slides
Java Classes for data structures class
JMusic (MIDI support)

Introductions

Who are you?
Where are you from?
What do you want to get out of this workshop/

General flow

For each approach:
Media Comp Python
Media Comp Java
Media Comp Data Structures in Java

1. An overview of the syllabus
2. Slides from class

Interspersed with comments for teachers (with blue
background titles, like this one)

Multimedia CS1 in Python

Focus: Learning programming and CS concepts
within the context of media manipulation and
creation

Converting images to grayscale and negatives, splicing and
reversing sounds, writing programs to generate HTML, creating
movies out of Web-accessed content.

Computing for communications, not calculation

Python as the programming
language

Huge issue

Use in commercial contexts
authenticates the choice

IL&M, Google, Nextel, etc.

Minimal syntax

Looks like other
programming languages

Potential for transfer

Rough overview of Syllabus

Defining and executing functions
Pictures

Psychophysics, data structures, defining functions, for loops, if
conditionals
Bitmap vs. vector notations

Sounds
Psychophysics, data structures, defining functions, for loops, if
conditionals
Sampled sounds vs. synthesized, MP3 vs. MIDI

Text
Converting between media, generating HTML, database, and
networking
A little trees (directories) and hash tables (database)

Movies
Then, Computer Science topics (last 1/3 class)

Some Computer Science Topics
inter-mixed

We talk about algorithms across
media

Sampling a picture (to scale it) is
the same
algorithm as sampling a sound (to
shift frequency)
Blending two pictures (fading one
into the other) and two sounds is
the same algorithm.

We talk about representations
and mappings (Goedel)

From samples to numbers (and into
Excel), through a mapping to pixel
colors

We talk about design and
debugging

But they mostly don’t hear us

Computer Science Topics
as solutions to their problems

“Why is PhotoShop so much faster?”
Compiling vs. interpreting
Machine language and how the computer works

“Writing programs is hard! Are there ways to make it
easier? Or at least shorter?”

Object-oriented programming
Functional programming and recursion

“Movie-manipulating programs take a long time to
execute. Why? How fast/slow can programs be?”

Algorithmic complexity

Installing JES (Jython Environment for
Students)

Installing JES and starting it up
Windows users:

Just copy the folder
Double-click JES application

Mac users:
Just copy the folder
Double-click the JES application

There is always Help
Lots and lots of excellent help

We will program in JES
JES: Jython
Environment for
Students
A simple editor
(for entering in
our programs or
recipes): the
program area
A command
area for
entering in
commands for
Python to
execute.

Python understands commands

We can name data with =
We can print values, expressions, anything with
print

Using JES

>>> print 34 + 56
90
>>> print 34.1/46.5
0.7333333333333334
>>> print 22 * 33
726
>>> print 14 - 15
-1
>>> print "Hello"
Hello
>>> print "Hello" + "Mark"
HelloMark

Command Area Editing

Up/down arrows walk through command history
You can edit the line at the bottom

and then hit Return/Enter
that makes that last line execute

Demonstrating JES for files and sounds

>>> print pickAFile()
/Users/guzdial/mediasources/barbara.jpg
>>> print makePicture(pickAFile())
Picture, filename /Users/guzdial/mediasources/barbara.jpg height 294 width 222
>>> print pickAFile()
/Users/guzdial/mediasources/hello.wav
>>> print makeSound(pickAFile())
Sound of length 54757
>>> print play(makeSound(pickAFile()))
None
>>> myfilename = pickAFile()
>>> print myfilename
/Users/guzdial/mediasources/barbara.jpg
>>> mypicture = makePicture(myfilename)
>>> print mypicture
Picture, filename /Users/guzdial/mediasources/barbara.jpg height 294 width 222
>>> show(mypicture)

Writing a recipe:
Making our own functions

To make a function, use the
command def
Then, the name of the function,
and the names of the input
values between parentheses
(“(input1)”)
End the line with a colon (“:”)
The body of the recipe is
indented (Hint: Use three
spaces)

That’s called a block

Making functions the easy way

Get something working by typing commands in
the command window (bottom half of JES)
Enter the def command in the editing window
(top part of JES)
Copy-paste the right commands up into the
recipe

A recipe for playing picked sound
files

def pickAndPlay():
myfile = pickAFile()
mysound = makeSound(myfile)
play(mysound)

Note: myfile and mysound, inside pickAndPlay(), are
completely different from the same names in the command
area.

Blocking is indicated for you in JES

Statements that are
indented the same, are in
the same block.
Statements in the same
block as the cursor are
enclosed in a blue box.

A function for playing picked picture
files

def pickAndShow():
myfile = pickAFile()
mypict = makePicture(myfile)
show(mypict)

Explaining variables

At this point, we’ll do lots of variations of
filenames and function composition.

def pickAndShow():
filename = pickAFile()
picture = makePicture(filename)

show(picture)

def pas():

show(makePicture(pickAFile()))

For both pictures and sounds.
This is our “Hello, World!”

Image Processing

Goals:
Give you the basic understanding of image
processing, including psychophysics of sight,
Identify some interesting examples to use

We perceive light different from
how it actually is

Color is continuous
Visible light is in the wavelengths between 370 and
730 nanometers

That’s 0.00000037 and 0.00000073 meters
But we perceive light with color sensors that
peak around 425 nm (blue), 550 nm (green),
and 560 nm (red).

Our brain figures out which color is which by figuring out how
much of each kind of sensor is responding
One implication: We perceive two kinds of “orange” — one
that’s spectral and one that’s red+yellow (hits our color
sensors just right)
Dogs and other simpler animals have only two kinds of
sensors

They do see color. Just less color.

Luminance vs. Color
We perceive borders of
things, motion, depth via
luminance

Luminance is not the
amount of light, but our
perception of the amount of
light.
We see blue as “darker”
than red, even if same
amount of light.

Much of our luminance
perception is based on
comparison to
backgrounds, not raw
values.

Luminance is actually
color blind. Completely
different part of the brain.

Digitizing pictures as bunches of
little dots

We digitize pictures into lots of little dots
Enough dots and it looks like a continuous
whole to our eye

Our eye has limited resolution
Our background/depth acuity is particulary low

Each picture element is referred to as a pixel
Pixels are picture elements

Each pixel object knows its color
It also knows where it is in its picture

Encoding color

Each pixel encodes color at that position in the picture
Lots of encodings for color

Printers use CMYK: Cyan, Magenta, Yellow, and blacK.
Others use HSB for Hue, Saturation, and Brightness (also called
HSV for Hue, Saturation, and Brightness

We’ll use the most common for computers
RGB: Red, Green, Blue

Encoding Color: RGB
In RGB, each color has three
component colors:

Amount of redness
Amount of greenness
Amount of blueness

Each does appear as a
separate dot on most devices,
but our eye blends them.
In most computer-based
models of RGB, a single byte
(8 bits) is used for each

So a complete RGB color is
24 bits, 8 bits of each

Encoding RGB
Each component color
(red, green, and blue) is
encoded as a single byte
Colors go from (0,0,0) to
(255,255,255)

If all three components are
the same, the color is in
greyscale

(50,50,50) at (2,2)
(0,0,0) (at position (1,2) in
example) is black
(255,255,255) is white

Basic Picture Functions

makePicture(filename) creates and returns a
picture object, from the JPEG file at the filename
show(picture) displays a picture in a window
We’ll learn functions for manipulating pictures
later, like getColor, setColor, and repaint

Writing a recipe:
Making our own functions

To make a function, use the
command def
Then, the name of the function,
and the names of the input values
between parentheses (“(input1)”)
End the line with a colon (“:”)
The body of the recipe is indented
(Hint: Use two spaces)

Your function does NOT
exist for JES until you
load it

Use a loop!
Our first picture recipe

def decreaseRed(picture):
for p in getPixels(picture):
value=getRed(p)
setRed(p,value*0.5)

Used like this:
>>> file="/Users/guzdial/mediasources/barbara.jpg"
>>> picture=makePicture(file)
>>> show(picture)
>>> decreaseRed(picture)
>>> repaint(picture)

def negative(picture):
for px in getPixels(picture):
red=getRed(px)
green=getGreen(px)
blue=getBlue(px)
negColor=makeColor(255-red,255-green,255-blue)
setColor(px,negColor)

def clearRed(picture):
for pixel in getPixels(picture):
setRed(pixel,0)

def greyscale(picture):
for p in getPixels(picture):
redness=getRed(p)
greenness=getGreen(p)
blueness=getBlue(p)
luminance=(redness+blueness+greenness)/3
setColor(p,

makeColor(luminance,luminance,luminance))

Examples:

Use a loop!
Our first picture recipe

def decreaseRed(picture):
for p in getPixels(picture):
value=getRed(p)
setRed(p,value*0.5)

Used like this:
>>> file="/Users/guzdial/mediasources/katie.jpg"
>>> picture=makePicture(file)
>>> show(picture)
>>> decreaseRed(picture)
>>> repaint(picture)

It’s not iteration—it’s a set operation

Research on developing SQL in the 1970’s
found that people are better at set operations
than iteration.

For all records, get the last name, and if it starts with
“G” then… => HARD!
For all records where the last name starts with “G”…
=> Reasonable!

Because the Python for loop is a forEach, we
can start out with treating it as a set operation:

“For all pixels in the picture…”

How do you make an omelet?

Something to do with eggs…
What do you do with each of the eggs?
And then what do you do?

All useful recipes involve repetition
- Take four eggs and crack them….
- Beat the eggs until…

We need these repetition (“iteration”)
constructs in computer algorithms too

- Today we will introduce one of them

Decreasing the red in a picture

Recipe: To decrease the red
Ingredients: One picture, name it pict
Step 1: Get all the pixels of pict. For each pixel p in the
set of pixels…
Step 2: Get the value of the red of pixel p, and set it to
50% of its original value

Use a for loop!
Our first picture recipe

def decreaseRed(pict):
allPixels = getPixels(pict)
for p in allPixels:

value = getRed(p)
setRed(p, value * 0.5)

The loop

- Note the
indentation!

How for loops
are written

for is the name of the command
An index variable is used to hold each of the different
values of a sequence
The word in
A function that generates a sequence

The index variable will be the name for one value in the
sequence, each time through the loop

A colon (“:”)
And a block (the indented lines of code)

def decreaseRed(pict):
allPixels = getPixels(pict)
for p in allPixels:

value = getRed(p)
setRed(p, value * 0.5)

What happens when a for loop is
executed

The index variable is set to an item in the
sequence
The block is executed

The variable is often used inside the block
Then execution loops to the for statement, where
the index variable gets set to the next item in the
sequence
Repeat until every value in the sequence was
used.

getPixels returns a sequence of
pixels

Each pixel knows its
color and place in the
original picture
Change the pixel, you
change the picture
So the loops here
assign the index
variable p to each
pixel in the picture
picture, one at a time.

def decreaseRed(picture):
allPixels = getPixels(picture)
for p in allPixels

originalRed = getRed(p)
setRed(p, originalRed * 0.5)

def decreaseRed(picture):
for p in getPixels(picture):

originalRed = getRed(p)
setRed(p, originalRed * 0.5)

or equivalently…

Do we need the variable
originalRed?

No: Having removed allPixels, we can also do without
originalRed in the same way:

We can calculate the original red amount right when we are ready
to change it.
It’s a matter of programming style. The meanings are the same.

def decreaseRed(picture):
for p in getPixels(picture):

setRed(p, getRed(p) * 0.5)

def decreaseRed(picture):
for p in getPixels(picture):
originalRed = getRed(p)
setRed(p, originalRed * 0.5)

Let’s walk that through slowly…

Here we take a picture
object in as a parameter
to the function and call it
picture

def decreaseRed(picture):
for p in getPixels(picture):

originalRed = getRed(p)
setRed(p, originalRed * 0.5)

picture

Now, get the pixels

We get all the pixels from
the picture, then make p
be the name of each one
one at a time

Pixel,
color
r=135
g=131
b=105

Pixel,
color
r=133
g=114
b=46

Pixel,
color
r=134
g=114
b=45

p

…

getPixels()

def decreaseRed(picture):
for p in getPixels(picture):

originalRed = getRed(p)
setRed(p, originalRed * 0.5)

picture

Get the red value from pixel

We get the red value of
pixel p and name it
originalRed

def decreaseRed(picture):
for p in getPixels(picture):

originalRed = getRed(p)
setRed(p, originalRed * 0.5)

…

value = 135

picture

Pixel,
color
r=135
g=131
b=105

Pixel,
color
r=133
g=114
b=46

Pixel,
color
r=134
g=114
b=45

…

p

getPixels()

Now change the pixel

Set the red value of pixel
p to 0.5 (50%) of
originalRed

picture

Pixel,
color
r=67
g=131
b=105

p

…

value = 135

def decreaseRed(picture):
for p in getPixels(picture):

originalRed = getRed(p)
setRed(p, originalRed * 0.5)

getPixels()Pixel,
color
r=133
g=114
b=46

Pixel,
color
r=134
g=114
b=45

Then move on to the next pixel

Move on to the next pixel
and name it p

picture

…

p value = 135

def decreaseRed(picture):
for p in getPixels(picture):

originalRed = getRed(p)
setRed(p, originalRed * 0.5)

getPixels()Pixel,
color
r=67
g=131
b=105

Pixel,
color
r=133
g=114
b=46

Pixel,
color
r=134
g=114
b=45

Get its red value

p

Get its red value

Set originalRed to the
red value at the new p,
then change the red at
that new pixel.

p

def decreaseRed(picture):
for p in getPixels(picture):

originalRed = getRed(p)
setRed(p, originalRed * 0.5)

picture

…

p value = 133

getPixels()Pixel,
color
r=67
g=131
b=105

Pixel,
color
r=133
g=114
b=46

Pixel,
color
r=134
g=114
b=45

And change this red value

Change the red value at pixel
p to 50% of value

def decreaseRed(picture):
for p in getPixels(picture):

originalRed = getRed(p)
setRed(p, originalRed * 0.5)

pp

picture

…

p value = 133

getPixels()Pixel,
color
r=67
g=131
b=105

Pixel,
color
r=66
g=114
b=46

Pixel,
color
r=134
g=114
b=45

And eventually, we do all pixels
We go from this… to this!

“Tracing/Stepping/Walking through”
the program

What we just did is called “stepping” or “walking through”
the program

You consider each step of the program, in the order that the
computer would execute it
You consider what exactly would happen
You write down what values each variable (name) has at each
point.

It’s one of the most important debugging skills you can
have.

And everyone has to do a lot of debugging, especially at first.

Increasing Red

def increaseRed(picture):
for p in getPixels(picture):
value = getRed(p)
setRed(p, value * 1.2)

What happened
here?!?

Remember that the
limit for redness is
255.

If you go beyond
255, all
kinds of weird
things can happen

Happens in JES 1.0, but
not 2.0, optional in 3.0

How does increaseRed differ from
decreaseRed?

Well, it does increase rather than decrease red,
but other than that…

It takes the same parameter input
It can also work for any picture

It’s a specification of a process that’ll work for any picture
There’s nothing specific
to any particular picture here.

Practical programs =
parameterized processes

Clearing Blue

def clearBlue(picture):
for p in getPixels(picture):
setBlue(p, 0)

Again, this will work for
any picture.

Try stepping through
this one yourself!

Can we combine these?
Why not!

How do we turn this
beach scene into a
sunset?
What happens at sunset?

At first, I tried increasing
the red, but that made
things like red specks in
the sand REALLY
prominent.

Wrap-around
New Theory: As the sun
sets, less blue and green is
visible, which makes things
look more red.

A Sunset-generation Function

def makeSunset(picture):
for p in getPixels(picture):
value = getBlue(p)
setBlue(p, value * 0.7)
value = getGreen(p)
setGreen(p, value * 0.7)

Creating a negative

Let’s think it through
R, G, B go from 0 to 255
Let’s say Red is 10. That’s very light red.

What’s the opposite? LOTS of Red!

The negative of that would be 245: 255-10
So, for each pixel, if we negate each color
component in creating a new color, we negate
the whole picture.

Creating a negative

def negative(picture):
for px in getPixels(picture):

red = getRed(px)
green = getGreen(px)
blue = getBlue(px)
negColor = makeColor(255-red, 255-green, 255-blue)
setColor(px, negColor)

Original, negative, double negative

(This gives us a quick way to test our function:
Call it twice and see if the result is equivalent
to the original)

We call this a lossless transformation.

Converting to grayscale

We know that if red=green=blue, we get gray
But what value do we set all three to?

What we need is a value representing the darkness of the
color, the luminance
There are many ways, but one way that works reasonably
well is dirt simple—simply take the average:

Converting to grayscale

def grayscale(picture):
for p in getPixels(picture):

sum = getRed(p) + getGreen(p) + getBlue(p)
intensity = sum / 3
setColor(p, makeColor(intensity, intensity, intensity))

Does this make
sense?

Why can’t we get back again?
Converting to grayscale is different from
computing a negative.

A negative transformation retains information.
With grayscale, we’ve lost information

We no longer know what the ratios are between the
reds, the greens, and the blues
We no longer know any particular value.

Media compressions are one kind of transformation.
Some are lossless (like negative);
Others are lossy (like grayscale)

But that’s not really the best grayscale

In reality, we don’t perceive red, green, and blue
as equal in their amount of luminance: How
bright (or non-bright) something is.

We tend to see blue as “darker” and red as “brighter”
Even if, physically, the same amount of light is
coming off of each

Photoshop’s grayscale is very nice: Very similar
to the way that our eye sees it

B&W TV’s are also pretty good

Building a better grayscale

We’ll weigh red, green, and blue based on how
light we perceive them to be, based on laboratory
experiments.

def grayScaleNew(picture):
for px in getPixels(picture):

newRed = getRed(px) * 0.299
newGreen = getGreen(px) * 0.587
newBlue = getBlue(px) * 0.114
luminance = newRed + newGreen + newBlue
setColor(px, makeColor(luminance, luminance, luminance))

Lots and lots of filters

There are many wonderful examples that we
can do at this point.
Students see them as all different.
We know that they are all practice with simple
loops.
Here are a few more before we get to a more
traditional for loop.

More in book (like chromakey, background
subtraction, edge detection)

Let’s try making Barbara a redhead!

We could just try increasing the redness, but as
we’ve seen, that has problems.

Overriding some red spots
And that’s more than just her hair

If only we could increase the redness only of the
brown areas of Barb’s head…

Treating pixels differently

We can use the if statement to treat some pixels
differently.
For example, color replacement: Turning
Barbara into a redhead

I used the MediaTools to find the RGB values for the
brown of Barbara’s hair
I then look for pixels that are close to that color (within
a threshold), and increase by 50% the redness in
those

Making Barb a redhead

def turnRed():
brown = makeColor(57,16,8)
file = r"C:\My Documents\mediasources\barbara.jpg"
picture=makePicture(file)
for px in getPixels(picture):
color = getColor(px)
if distance(color, brown) < 50.0:

redness=getRed(px)*1.5
setRed(px,redness)

show(picture)
return(picture)

Original:

Digital makeover:

Talking through the program slowly

Why aren’t we taking any input? Don’t want any: Recipe is
specific to this one picture.
The brown is the brownness that I figured out from MediaTools
The file is where the picture of Barbara is on my computer
I need the picture to work with

def turnRed():
brown = makeColor(57,16,8)
file = r"C:\My Documents\mediasources\barbara.jpg"
picture=makePicture(file)

for px in getPixels(picture):
color = getColor(px)
if distance(color, brown) < 50.0:
redness=getRed(px)*1.5
setRed(px,redness)

show(picture)

def turnRed():
brown = makeColor(57,16,8)
file = r"C:\My Documents\mediasources\barbara.jpg"
picture=makePicture(file)
for px in getPixels(picture):
color = getColor(px)
if distance(color, brown) < 50.0:

redness=getRed(px)*1.5
setRed(px,redness)

show(picture)
return(picture)

Walking through the for loop

Now, for each pixel px in the picture, we
Get the color
See if it’s within a distance of 50 from the brown
we want to make more red
If so, increase the redness by 50%

How an if works

if is the command name
Next comes an
expression: Some kind of
true or false comparison
Then a colon

Then the body of the if—
the things that will happen
if the expression is true

if distance(color, brown) < 50.0:
redness=getRed(px)*1.5
blueness=getBlue(px)
greenness=getGreen(px)

Expressions

Can test equality with ==
Can also test <, >, >=, <=, <> (not equals)
In general, 0 is false, 1 is true

So you can have a function return a “true” or “false”
value.

Bug alert!

= means “make them equal!”
== means “are they equal?”

if distance(color, brown) < 50.0:
redness=getRed(px)*1.5
setRed(px,redness)

show(picture)
return(picture)

Returning from a function
At the end, we show and return the picture
Why are we using return?

Because the picture is created within the function
If we didn’t return it, we couldn’t get at it in the
command area

We could print the result, but we’d more likely
assign it a name

Things to change

Lower the threshold to get more pixels
But if it’s too low, you start messing with the wood
behind her

Increase the amount of redness
But if you go too high, you can go beyond the range
of valid color intensities (i.e. more than 255)

Replacing colors using if
We don’t have to do one-to-one changes or
replacements of color
We can use if to decide if we want to make a
change.

We could look for a range of colors, or one specific
color.
We could use an operation (like multiplication) to set
the new color, or we can set it to a specific value.

It all depends on the effect that we want.

Experiment!

Posterizing:
Reducing the range of colors

Posterizing: How we do it

We look for a range of colors, then map them to
a single color.

If red is between 63 and 128, set it to 95
If green is less than 64, set it to 31
...

This requires many if statements, but the idea is
pretty simple.
The end result is that many colors, get reduced
to a few colors

Posterizing function
def posterize(picture):

#loop through the pixels
for p in getPixels(picture):

#get the RGB values
red = getRed(p)
green = getGreen(p)
blue = getBlue(p)

#check and set red values
if(red < 64):

setRed(p, 31)
if(red > 63 and red < 128):

setRed(p, 95)
if(red > 127 and red < 192):

setRed(p, 159)
if(red > 191 and red < 256):

setRed(p, 223)

#check and set green values
if(green < 64):

setGreen(p, 31)
if(green > 63 and green < 128):

setGreen(p, 95)
if(green > 127 and green < 192):

setGreen(p, 159)
if(green > 191 and green < 256):

setGreen(p, 223)

#check and set blue values
if(blue < 64):

setBlue(p, 31)
if(blue > 63 and blue < 128):

setBlue(p, 95)
if(blue > 127 and blue < 192):

setBlue(p, 159)
if(blue > 191 and blue < 256):

setBlue(p, 223)

What’s with this “#” stuff?

Any line that starts with # is ignored by Python.
This allows you to insert comments: Notes to
yourself (or another programmer) that explain
what’s going on here.

When programs get longer, and have lots of separate
pieces, it’s gets hard to figure out from the code alone
what each piece does.
Comments can help explain the big picture.

Generating sepia-toned prints

Pictures that are sepia-toned have a yellowish
tint to them that we associate with older
photographs.
It’s not just a matter of increasing the amount of
yellow in the picture, because it’s not a one-to-
one correspondence.

Instead, colors in different ranges get converted to
other colors.
We can create such convertions using if

Example of sepia-toned prints

Here’s how we do it
def sepiaTint(picture):
#Convert image to greyscale
greyScale(picture)

#loop through picture to tint pixels
for p in getPixels(picture):

red = getRed(p)
blue = getBlue(p)

#tint shadows
if (red < 63):

red = red*1.1
blue = blue*0.9

#tint midtones
if (red > 62 and red < 192):

red = red*1.15
blue = blue*0.85

#tint highlights
if (red > 191):

red = red*1.08
if (red > 255):

red = 255

blue = blue*0.93

#set the new color values
setBlue(p, blue)
setRed(p, red)Bug alert!

Make sure you indent the right amount

Introducing the function range

Range returns a sequence between its first two
inputs, possibly using a third input as the
increment

>>> print range(1,4)
[1, 2, 3]
>>> print range(-1,3)
[-1, 0, 1, 2]
>>> print range(1,10,2)
[1, 3, 5, 7, 9]

That thing in [] is a sequence

>>> a=[1,2,3]
>>> print a
[1, 2, 3]
>>> a = a + 4
An attempt was made to call a
function with a parameter of an
invalid type
>>> a = a + [4]
>>> print a
[1, 2, 3, 4]
>>> a[0]
1

We can assign names to
sequences, print them,
add sequences, and
access individual pieces
of them.

We can also use for
loops to process each
element of a sequence.

Working the pixels by number

To use range, we’ll have to use nested loops
One to walk the width, the other to walk the height

Be sure to watch your blocks carefully!

def increaseRed2(picture):
for x in range(1,getWidth(picture)):

for y in range(1,getHeight(picture)):
px = getPixel(picture,x,y)
value = getRed(px)
setRed(px,value*1.1)

Replacing colors
in a range

def turnRedInRange():
brown = makeColor(57,16,8)
file=r"C:\Documents and Settings\Mark Guzdial\My

Documents\mediasources\barbara.jpg"
picture=makePicture(file)
for x in range(70,168):
for y in range(56,190):

px=getPixel(picture,x,y)
color = getColor(px)
if distance(color,brown)<50.0:

redness=getRed(px)*1.5
setRed(px,redness)

show(picture)
return(picture)

Get the range
using
MediaTools

Could we do this without
nested loops?

Yes, but
complicated
IF

def turnRedInRange2():
brown = makeColor(57,16,8)
file=r"C:\Documents and Settings\Mark Guzdial\My

Documents\mediasources\barbara.jpg"
picture=makePicture(file)
for p in getPixels(picture):
x = getX(p)
y = getY(p)
if x >= 70 and x < 168:
if y >=56 and y < 190:
color = getColor(p)
if distance(color,brown)<100.0:
redness=getRed(p)*2.0
setRed(p,redness)

show(picture)
return picture

Removing “Red Eye”
When the flash of the camera
catches the eye just right
(especially with light colored
eyes), we get bounce back
from the back of the retina.
This results in “red eye”
We can replace the “red” with
a color of our choosing.
First, we figure out where the
eyes are (x,y) using
MediaTools

Removing Red Eye
def removeRedEye(pic,startX,startY,endX,endY,replacementcolor):
red = makeColor(255,0,0)
for x in range(startX,endX):
for y in range(startY,endY):
currentPixel = getPixel(pic,x,y)
if (distance(red,getColor(currentPixel)) < 165):
setColor(currentPixel,replacementcolor)

What we’re doing here:

• Within the rectangle of pixels (startX,startY)
to (endX, endY)

• Find pixels close to red, then replace them
with a new color

Why use a
range? Because
we don’t want to
replace her red
dress!

“Fixing” it: Changing red to black

removeRedEye(jenny, 109,
91, 202, 107,
makeColor(0,0,0))
Jenny’s eyes are actually
not black—could fix that
Eye are also not mono-color

A better function would handle
gradations of red and replace
with gradations of the right
eye color

If you know where the pixels are:
Mirroring

Imagine a mirror horizontally across the picture,
or vertically
What would we see?
How do generate that digitally?

We simply copy the colors of pixels from one place to
another

Mirroring a picture
Slicing a picture down the middle and sticking a mirror on the slice
Do it by using a loop to measure a difference

The index variable is actually measuring distance from the mirrorpoint
Then reference to either side of the mirror point using the difference

Recipe for mirroring

def mirrorVertical(source):
mirrorpoint = int(getWidth(source)/2)
for y in range(1,getHeight(source)):
for xOffset in range(1,mirrorpoint):
pright = getPixel(source, xOffset+mirrorpoint,y)
pleft = getPixel(source, mirrorpoint-xOffset,y)
c = getColor(pleft)
setColor(pright,c)

Can we do it with a horizontal mirror?

def mirrorHorizontal(source):
mirrorpoint = int(getHeight(source)/2)
for yOffset in range(1,mirrorpoint):
for x in range(1,getWidth(source)):
pbottom = getPixel(source,x,yOffset+mirrorpoint)
ptop = getPixel(source,x,mirrorpoint-yOffset)
setColor(pbottom,getColor(ptop))

Doing something useful with mirroring

Mirroring can be used to
create interesting effects,
but it can also be used to
create realistic effects.
Consider this image that I
took on a trip to Athens,
Greece.

Can we “repair” the temple
by mirroring the complete
part onto the broken part?

Figuring out where to mirror
Use MediaTools to find the mirror point and the range
that we want to copy

Program to mirror the temple

def mirrorTemple():
source = makePicture(getMediaPath("temple.jpg"))
mirrorpoint = 277
lengthToCopy = mirrorpoint - 14
for x in range(1,lengthToCopy):
for y in range(28,98):
p = getPixel(source,mirrorpoint-x,y)
p2 = getPixel(source,mirrorpoint+x,y)
setColor(p2,getColor(p))

show(source)
return source

Did it really work?
It clearly did the mirroring,
but that doesn’t create a
100% realistic image.
Check out the shadows:
Which direction is the sun
coming from?

More Picture Methods

Compositing and scaling
Necessary for making a collage

Copying pixels

In general, what we want to do is to keep track
of a sourceX and sourceY, and a targetX and
targetY.

We increment (add to them) in pairs
sourceX and targetX get incremented together
sourceY and targetY get incremented together

The tricky parts are:
Setting values inside the body of loops
Incrementing at the bottom of loops

Copying Barb to a canvas

def copyBarb():
Set up the source and target pictures
barbf=getMediaPath("barbara.jpg")
barb = makePicture(barbf)
canvasf = getMediaPath("7inX95in.jpg")
canvas = makePicture(canvasf)
Now, do the actual copying
targetX = 1
for sourceX in range(1,getWidth(barb)):
targetY = 1
for sourceY in range(1,getHeight(barb)):
color = getColor(getPixel(barb,sourceX,sourceY))
setColor(getPixel(canvas,targetX,targetY), color)
targetY = targetY + 1

targetX = targetX + 1
show(barb)
show(canvas)
return canvas

Copying into the middle of the canvas

def copyBarbMidway():
Set up the source and target pictures
barbf=getMediaPath("barbara.jpg")
barb = makePicture(barbf)
canvasf = getMediaPath("7inX95in.jpg")
canvas = makePicture(canvasf)
Now, do the actual copying
targetX = 100
for sourceX in range(1,getWidth(barb)):
targetY = 100
for sourceY in range(1,getHeight(barb)):
color = getColor(getPixel(barb,sourceX,sourceY))
setColor(getPixel(canvas,targetX,targetY), color)
targetY = targetY + 1

targetX = targetX + 1
show(barb)
show(canvas)
return canvas

Copying: How it works
Here’s the initial setup:

Copying: How it works 2
After incrementing the
sourceY and targetY
once (whether in the for
or via expression):

Copying: How it works 3
After yet another
increment of sourceY and
targetY:
When we finish that
column, we increment
sourceX and targetX, and
start on the next column.

Copying: How it looks at the end

Eventually, we copy
every pixel

Making a collage
Could we do something
to the pictures we copy
in?

Sure! Could either apply
one of those functions
before copying, or do
something to the pixels
during the copy.

Could we copy more than
one picture!

Of course! Make a collage!

def createCollage():
flower1=makePicture(getMediaPath("flower1.jpg"))
print flower1
flower2=makePicture(getMediaPath("flower2.jpg"))
print flower2
canvas=makePicture(getMediaPath("640x480.jpg"))
print canvas
#First picture, at left edge
targetX=1
for sourceX in range(1,getWidth(flower1)):
targetY=getHeight(canvas)-getHeight(flower1)-5
for sourceY in range(1,getHeight(flower1)):
px=getPixel(flower1,sourceX,sourceY)
cx=getPixel(canvas,targetX,targetY)
setColor(cx,getColor(px))
targetY=targetY + 1

targetX=targetX + 1
#Second picture, 100 pixels over
targetX=100
for sourceX in range(1,getWidth(flower2)):
targetY=getHeight(canvas)-getHeight(flower2)-5
for sourceY in range(1,getHeight(flower2)):
px=getPixel(flower2,sourceX,sourceY)
cx=getPixel(canvas,targetX,targetY)
setColor(cx,getColor(px))
targetY=targetY + 1

targetX=targetX + 1

#Third picture, flower1 negated
negative(flower1)
targetX=200
for sourceX in range(1,getWidth(flower1)):
targetY=getHeight(canvas)-getHeight(flower1)-5
for sourceY in range(1,getHeight(flower1)):
px=getPixel(flower1,sourceX,sourceY)
cx=getPixel(canvas,targetX,targetY)
setColor(cx,getColor(px))
targetY=targetY + 1

targetX=targetX + 1
#Fourth picture, flower2 with no blue
clearBlue(flower2)
targetX=300
for sourceX in range(1,getWidth(flower2)):
targetY=getHeight(canvas)-getHeight(flower2)-5
for sourceY in range(1,getHeight(flower2)):
px=getPixel(flower2,sourceX,sourceY)
cx=getPixel(canvas,targetX,targetY)
setColor(cx,getColor(px))
targetY=targetY + 1

targetX=targetX + 1
#Fifth picture, flower1, negated with decreased red
decreaseRed(flower1)
targetX=400
for sourceX in range(1,getWidth(flower1)):
targetY=getHeight(canvas)-getHeight(flower1)-5
for sourceY in range(1,getHeight(flower1)):
px=getPixel(flower1,sourceX,sourceY)
cx=getPixel(canvas,targetX,targetY)
setColor(cx,getColor(px))
targetY=targetY + 1

targetX=targetX + 1
show(canvas)
return(canvas)

Page 76-77

Cropping: Just the face

def copyBarbsFace():
Set up the source and target pictures
barbf=getMediaPath("barbara.jpg")
barb = makePicture(barbf)
canvasf = getMediaPath("7inX95in.jpg")
canvas = makePicture(canvasf)
Now, do the actual copying
targetX = 100
for sourceX in range(45,200):
targetY = 100
for sourceY in range(25,200):
color = getColor(getPixel(barb,sourceX,sourceY))
setColor(getPixel(canvas,targetX,targetY), color)
targetY = targetY + 1

targetX = targetX + 1
show(barb)
show(canvas)
return canvas

Again, swapping the loop works fine

def copyBarbsFace2():
Set up the source and target pictures
barbf=getMediaPath("barbara.jpg")
barb = makePicture(barbf)
canvasf = getMediaPath("7inX95in.jpg")
canvas = makePicture(canvasf)
Now, do the actual copying
sourceX = 45
for targetX in range(100,100+(200-45)):
sourceY = 25
for targetY in range(100,100+(200-25)):
color = getColor(getPixel(barb,sourceX,sourceY))
setColor(getPixel(canvas,targetX,targetY), color)
sourceY = sourceY + 1

sourceX = sourceX + 1
show(barb)
show(canvas)
return canvas

We can use targetX
and targetY as the
for loop index
variables, and
everything works
the same.

Scaling

Scaling a picture (smaller or larger) has to do
with sampling the source picture differently

When we just copy, we sample every pixel
If we want a smaller copy, we skip some pixels

We sample fewer pixels

If we want a larger copy, we duplicate some pixels
We over-sample some pixels

Scaling the picture down

def copyBarbsFaceSmaller():
Set up the source and target pictures
barbf=getMediaPath("barbara.jpg")
barb = makePicture(barbf)
canvasf = getMediaPath("7inX95in.jpg")
canvas = makePicture(canvasf)
Now, do the actual copying
sourceX = 45
for targetX in range(100,100+((200-45)/2)):
sourceY = 25
for targetY in range(100,100+((200-25)/2)):
color = getColor(getPixel(barb,sourceX,sourceY))
setColor(getPixel(canvas,targetX,targetY), color)
sourceY = sourceY + 2

sourceX = sourceX + 2
show(barb)
show(canvas)
return canvas

Scaling Up: Growing the picture

To grow a picture, we
simply duplicate some
pixels
We do this by
incrementing by 0.5,
but only use the
integer part.

>>> print int(1)
1
>>> print int(1.5)
1
>>> print int(2)
2
>>> print int(2.5)
2

Scaling the picture up

def copyBarbsFaceLarger():
Set up the source and target pictures
barbf=getMediaPath("barbara.jpg")
barb = makePicture(barbf)
canvasf = getMediaPath("7inX95in.jpg")
canvas = makePicture(canvasf)
Now, do the actual copying
sourceX = 45
for targetX in range(100,100+((200-45)*2)):
sourceY = 25
for targetY in range(100,100+((200-25)*2)):
color = getColor(getPixel(barb,int(sourceX),int(sourceY)))
setColor(getPixel(canvas,targetX,targetY), color)
sourceY = sourceY + 0.5

sourceX = sourceX + 0.5
show(barb)
show(canvas)
return canvas

Scaling up: How it works
Same basic setup as
copying and rotating:

Scaling up: How it works 2
But as we increment by
only 0.5, and we use the
int() function, we end up
taking every pixel twice.
Here, the blank pixel at
(1,1) in the source gets
copied twice onto the
canvas.

Scaling up: How it works 3
Black pixels gets copied
once…

Scaling up: How it works 4
And twice…

Scaling up: How it ends up
We end up in the same
place in the source, but
twice as much in the
target.
Notice the degradation:

Gaps that weren’t there
previously
Curves would get “choppy”:
Pixelated

Homework Assignment!
Create a collage where the same picture appears at least
three times:

Once in its original form
Then with any modification you want to make to it

Scale, crop, change colors, grayscale, edge detect, posterize, etc.

Then mirror the whole canvas
Creates an attractive layout
Horizontal, vertical, or diagonal (if you want to work it out…)

We’ll spend an hour on this.
Save pictures with writePictureTo(picture,filename)
Share them at http://home.cc.gatech.edu/gacomputes

Key: “workshop”

http://home.cc.gatech.edu/gacomputes

Sound Processing

Goals:
Give you the basic understanding of audio
processing, including psycho-acoustics,
Identify some interesting examples to use.

How sound works:
Acoustics, the physics of sound

Sounds are waves of air
pressure

Sound comes in cycles
The frequency of a wave is
the number of cycles per
second (cps), or Hertz

(Complex sounds have
more than one frequency
in them.)

The amplitude is the
maximum height of the
wave

Live demos here!

Use the Squeak MediaTools to see real sound
patterns.
Try to bring in few musical instruments

Volume and pitch:
Psychoacoustics, the psychology of sound

Our perception of volume is related (logarithmically) to
changes in amplitude

If the amplitude doubles, it’s about a 3 decibel (dB) change.
A decibel is a ratio between two intensities: 10 * log10(I1/I2)
As an absolute measure, it’s in comparison to threshold of
audibility

0 dB can’t be heard.
Normal speech is 60 dB.
A shout is about 80 dB

Our perception of pitch is related (logarithmically) to
changes in frequency

Higher frequencies are perceived as higher pitches
We can hear between 5 Hz and 20,000 Hz (20 kHz)
A above middle C is 440 Hz

Digitizing Sound: How do we get
that into numbers?

Remember in calculus,
estimating the curve by
creating rectangles?
We can do the same to
estimate the sound curve

Analog-to-digital
conversion (ADC) will give
us the amplitude at an
instant as a number: a
sample
How many samples do we
need?

Nyquist Theorem

We need twice as many samples as the
maximum frequency in order to represent (and
recreate, later) the original sound.
The number of samples recorded per second is
the sampling rate

If we capture 8000 samples per second, the highest
frequency we can capture is 4000 Hz

That’s how phones work
If we capture more than 44,000 samples per second,
we capture everything that we can hear (max 22,000
Hz)

CD quality is 44,100 samples per second

Digitizing sound in the computer

Each sample is stored as a number (two bytes)
What’s the range of available combinations?

16 bits, 216 = 65,536
But we want both positive and negative values

To indicate compressions and rarefactions.
What if we use one bit to indicate positive (0) or negative (1)?
That leaves us with 15 bits
15 bits, 215 = 32,768
One of those combinations will stand for zero

We’ll use a “positive” one, so that’s one less pattern for positives

Each sample can be between -32,768 and
32,767

Basic Sound Functions

makeSound(filename) creates and returns a
sound object, from the WAV file at the filename
play(sound) makes the sound play (but doesn’t
wait until it’s done)
blockingPlay(sound) waits for the sound to finish
We’ll learn more later like getSample and
setSample

Working with sounds
We’ll use pickAFile and makeSound as we have
before.

But now we want .wav files
We’ll use getSamples to get all the sample objects out
of a sound
We can also get the value at any index with
getSampleValueAt
Sounds also know their length (getLength) and their
sampling rate (getSamplingRate)
Can save sounds with writeSoundTo(sound,”file.wav”)

Recipe to Increase the Volume

def increaseVolume(sound):
for sample in getSamples(sound):

value = getSample(sample)
setSample(sample,value * 2)

Using it:
>>> f="/Users/guzdial/mediasources/gettysburg10.wav"
>>> s=makeSound(f)
>>> increaseVolume(s)
>>> play(s)
>>> writeSoundTo(s,"/Users/guzdial/mediasources/louder-g10.wav")

Decreasing the volume

def decreaseVolume(sound):
for sample in getSamples(sound):

value = getSample(sample)
setSample(sample,value * 0.5)

This works just
like
increaseVolume,
but we’re lowering
each sample by
50% instead of
doubling it.

Maximizing volume

How do we get maximal volume?
It’s a three-step process:

First, figure out the loudest sound (largest sample).
Next, figure out a multiplier needed to make that
sound fill the available space.

We want to solve for x where x * loudest = 32767
So, x = 32767/loudest

Finally, multiply the multiplier times every sample

Maxing (normalizing) the sound

def normalize(sound):
largest = 0
for s in getSamples(sound):

largest = max(largest,getSample(s))
multiplier = 32767.0 / largest

print "Largest sample value in original sound was", largest
print "Multiplier is", multiplier

for s in getSamples(sound):
louder = multiplier * getSample(s)
setSample(s,louder)

Increasing volume by sample index

def increaseVolumeByRange(sound):
for sampleIndex in range(1,getLength(sound)+1):
value = getSampleValueAt(sound,sampleIndex)
setSampleValueAt(sound,sampleIndex,value * 2)

This really is the same as:
def increaseVolume(sound):
for sample in getSamples(sound):
value = getSample(sample)
setSample(sample,value * 2)

Recipe to play a sound backwards
(Trace it!)

def playBackward(filename):
source = makeSound(filename)
dest = makeSound(filename)

srcSample = getLength(source)
for destSample in range(1, getLength(dest)+1):
srcVolume = getSampleValueAt(source, srcSample)
setSampleValueAt(dest, destSample, srcVolume)
srcSample = srcSample - 1

return dest Return the processed sound for further use
in the function that calls playBackward

Work backward

Start at end
of sound

How does this work?

We make two copies of the sound
The srcSample starts at the end, and the destSample goes from 1 to
the end.
Each time through the loop, we copy the sample value from the
srcSample to the destSample

Note that the
destSample is
increasing by 1 each
time through the loop,
but srcSample is
decreasing by 1 each
time through the loop

def playBackward(filename):
source = makeSound(filename)
dest = makeSound(filename)

srcSample = getLength(source)
for destSample in range(1, getLength(dest)+1):

srcVolume = getSampleValueAt(source, srcSample)
setSampleValueAt(dest, destSample, srcVolume)
srcSample = srcSample - 1

return dest

def playBackward(filename):
source = makeSound(filename)
dest = makeSound(filename)

srcSample = getLength(source)
for destSample in range(1, getLength(dest)+1):
srcVolume = getSampleValueAt(source, srcSample)
setSampleValueAt(dest, destSample, srcVolume)
srcSample = srcSample - 1

return dest

Starting out (3 samples here)

12 25 13 12 25 13

source dest

You are here

Ready for the copy

12 25 13 12 25 13

Ready for the copy

12 25 13 12 25 13

srcSample destSample

source dest

You are here

def playBackward(filename):
source = makeSound(filename)
dest = makeSound(filename)

srcSample = getLength(source)
for destSample in range(1, getLength(dest)+1):
srcVolume = getSampleValueAt(source, srcSample)
setSampleValueAt(dest, destSample, srcVolume)
srcSample = srcSample - 1

return dest

Do the copy

12 25 13 13 25 13

source dest

srcSample destSample

def playBackward(filename):
source = makeSound(filename)
dest = makeSound(filename)

srcSample = getLength(source)
for destSample in range(1, getLength(dest)+1):
srcVolume = getSampleValueAt(source, srcSample)
setSampleValueAt(dest, destSample, srcVolume)
srcSample = srcSample - 1

return dest

You are here

def playBackward(filename):
source = makeSound(filename)
dest = makeSound(filename)

srcSample = getLength(source)
for destSample in range(1, getLength(dest)+1):
srcVolume = getSampleValueAt(source, srcSample)
setSampleValueAt(dest, destSample, srcVolume)
srcSample = srcSample - 1

return dest

Ready for the next one?

12 25 13 13 25 13

Ready for the next one?

12 25 13 13 25 13

source dest

srcSample destSample

You are here

Moving them together

12 25 13 13 25 13

source dest

srcSample destSample

You are here

def playBackward(filename):
source = makeSound(filename)
dest = makeSound(filename)

srcSample = getLength(source)
for destSample in range(1, getLength(dest)+1):
srcVolume = getSampleValueAt(source, srcSample)
setSampleValueAt(dest, destSample, srcVolume)
srcSample = srcSample - 1

return dest

How we end up

12 25 13 13 25 12

source dest

srcSample destSample

def playBackward(filename):
source = makeSound(filename)
dest = makeSound(filename)

srcSample = getLength(source)
for destSample in range(1, getLength(dest)+1):
srcVolume = getSampleValueAt(source, srcSample)
setSampleValueAt(dest, destSample, srcVolume)
srcSample = srcSample - 1

return dest You are here

Recipe for halving the frequency of
a sound

def half(filename):
source = makeSound(filename)
dest = makeSound(filename)

srcSample = 1
for destSample in range(1, getLength(dest)+1):

volume = getSampleValueAt(source, int(srcSample))
setSampleValueAt(dest, destSample, volume)
srcSample = srcSample + 0.5

play(dest)
return dest

This is how a
sampling synthesizer
works!

Here are the
piece that
do it

Changing pitch
of sound vs.
changing
picture size

def half(filename):
source = makeSound(filename)
target = makeSound(filename)

srcSample = 1
for destSample in range(1, getLength(dest)+1):

vol = getSampleValueAt(source, int(srcSample))
setSampleValueAt(dest, destSample, vol)
srcSample = srcSample + 0.5

play(dest)
return dest

def copyBarbsFaceLarger():
barbf=getMediaPath("barbara.jpg")
barb = makePicture(barbf)
canvasf = getMediaPath("7inX95in.jpg")
canvas = makePicture(canvasf)
sourceX = 45
for targetX in range(100,100+((200-45)*2)):

sourceY = 25
for targetY in range(100,100+((200-25)*2)):

px = getPixel(barb,int(sourceX),int(sourceY))
color = getColor(px)
setColor(getPixel(canvas,targetX,targetY), color)
sourceY = sourceY + 0.5

sourceX = sourceX + 0.5
show(barb)
show(canvas)
return canvas

1

3

2

1

3

2

Both of them are sampling

Both of them have three parts:
A start where objects are set up
A loop where samples or pixels are copied from one
place to another

To decrease the frequency or the size, we take each
sample/pixel twice
In both cases, we do that by incrementing the index by 0.5
and taking the integer of the index

Finishing up and returning the result

1

2

3

Recipe to double the frequency of a
sound
def double(filename):
source = makeSound(filename)
target = makeSound(filename)
targetIndex = 1
for sourceIndex in range(1, getLength(source)+1, 2):
setSampleValueAt(target, targetIndex,

getSampleValueAt(source, sourceIndex))
targetIndex = targetIndex + 1

#Clear out the rest of the target sound -- it's only half full!
for secondHalf in range(getLength(target)/2, getLength(target)):
setSampleValueAt(target,targetIndex,0)
targetIndex = targetIndex + 1

play(target)
return target

Here’s the critical piece:
We skip every other
sample in the source!

What happens if we don’t “clear out”
the end?

Try this out!

def double(filename):
source = makeSound(filename)
target = makeSound(filename)
targetIndex = 1
for sourceIndex in range(1, getLength(source)+1, 2):
setSampleValueAt(target, targetIndex,

getSampleValueAt(source, sourceIndex))
targetIndex = targetIndex + 1

#Clear out the rest of the target sound -- it's only half full!
#for secondHalf in range(getLength(target)/2, getLength(target)):
setSampleValueAt(target,targetIndex,0)
targetIndex = targetIndex + 1
play(target)
return target “Switch off” these lines of

code by commenting them out.

Splicing Sounds
Splicing gets its name from literally cutting and pasting
pieces of magnetic tape together
Doing it digitally is easy (in principle), but painstaking
Say we want to splice pieces of speech together:

We find where the end points of words are
We copy the samples into the right places to make the words
come out as we want them
(We can also change the volume of the words as we move them,
to increase or decrease emphasis and make it sound more
natural.)

Finding the word end-points
Using MediaTools and
play before/after cursor,
can figure out the index
numbers where each
word ends

Now, it’s all about copying

We have to keep track of the source and target
indices, srcSample and destSample

destSample = Where-the-incoming-sound-should-start
for srcSample in range(startingPoint, endingPoint):

sampleValue = getSampleValueAt(source, srcSample)
setSampleValueAt(dest, destSample, sampleValue)
destSample = destSample + 1

def splicePreamble():
file = "/Users/guzdial/mediasources/preamble10.wav"
source = makeSound(file)
dest = makeSound(file) # This will be the newly spliced sound
destSample=17408 # targetIndex starts at just after "We the" in the new sound
for srcSample in range(33414, 40052): # Where the word "United" is in the sound
setSampleValueAt(dest, destSample, getSampleValueAt(source, srcSample))
destSample = destSample + 1

for srcSample in range(17408, 26726): # Where the word "People" is in the sound
setSampleValueAt(dest, destSample, getSampleValueAt(source, srcSample))
destSample = destSample + 1

for index in range(1, 1000): #Stick some quiet space after that
setSampleValueAt(dest, destSample, 0)
destSample = destSample + 1

play(dest) #Let's hear and return the result
return dest

The Whole Splice

What’s going on here?

First, set up a source and target.
Next, we copy “United” (samples 33414 to
40052) after “We the” (sample 17408)

That means that we end up at 17408+(40052-
33414) =
17408+6638=24046
Where does “People” start?

Next, we copy “People” (17408 to 26726)
immediately afterward.

Do we have to copy “of” to?
Or is there a pause in there that we can make
use of?

Finally, we insert a little (1/441-th of a second)
of space – 0’s

What if we didn’t do that second copy?
Or the pause?

def splicePreamble():
file = "/Users/guzdial/mediasources/preamble10.wav"
source = makeSound(file)
dest = makeSound(file) # This will be the newly spliced sound
destSample=17408 # targetIndex starts at just after "We the" in the new sound
for srcSample in range(33414, 40052): # Where the word "United" is in the sound
setSampleValueAt(dest, destSample, getSampleValueAt(source, srcSample))
destSample = destSample + 1
#for srcSample in range(17408, 26726): # Where the word "People" is in the sound
#setSampleValueAt(dest, destSample, getSampleValueAt(source, srcSample))
#destSample = destSample + 1

#for index in range(1, 1000): #Stick some quiet space after that
#setSampleValueAt(dest, destSample, 0)
#destSample = destSample + 1

play(dest) #Let's hear and return the result
return dest

Changing the splice

What if we wanted to increase or decrease the
volume of an inserted word?

Simple! Multiply each sample by something as it’s
pulled from the source.

Could we do something like slowly increase
volume (emphasis) or normalize the sound?

Sure! Just like we’ve done in past programs, but
instead of working across all samples, we work
across only the samples in that sound!

Making more complex sounds

We know that natural sounds are often the
combination of multiple sounds.
Adding waves in physics or math is hard.
In computer science, it’s easy! Simply add the
samples at the same index in the two waves:

for srcSample in range(1, getLength(source)+1):
destValue=getSampleValueAt(dest, srcSample)
srcValue=getSampleValueAt(source,srcSample)
setSampleValueAt(source, srcSample, srcValue+destValue)

Adding sounds

The first two are sine waves
generated in Excel.

The third is just the sum of
the first two columns.

a

b

a + b = c

Uses for adding sounds

We can mix sounds
We even know how to change the volumes of the two
sounds, even over time (e.g., fading in or fading out)

We can create echoes
We can add sine (or other) waves together to
create kinds of instruments/sounds that do not
physically exist, but which sound interesting and
complex

A function for adding two sounds

def addSoundInto(sound1, sound2):

for sampleNmr in range(1, getLength(sound1)+1):
sample1 = getSampleValueAt(sound1, sampleNmr)
sample2 = getSampleValueAt(sound2, sampleNmr)
setSampleValueAt(sound2, sampleNmr, sample1 + sample2)

Notice that this adds sound1 and sound
by adding sound1 into sound2

Making a chord by mixing three notes

>>> setMediaFolder()
New media folder: C:\Documents and Settings\Mark Guzdial\My
Documents\mediasources\
>>> getMediaPath("bassoon-c4.wav")
'C:\\Documents and Settings\\Mark Guzdial\\My
Documents\\mediasources\\bassoon-c4.wav'
>>> c4=makeSound(getMediaPath("bassoon-c4.wav"))
>>> e4=makeSound(getMediaPath("bassoon-e4.wav"))
>>> g4=makeSound(getMediaPath("bassoon-g4.wav"))
>>> addSoundInto(e4,c4)
>>> play(c4)
>>> addSoundInto(g4,c4)
>>> play(c4)

Adding sounds with a delay

def makeChord(sound1, sound2, sound3):
for index in range(1, getLength(sound1)):

s1Sample = getSampleValueAt(sound1, index)
if index > 1000:

s2Sample = getSampleValueAt(sound2, index - 1000)
setSampleValueAt(sound1, index, s1Sample + s2Sample)

if index > 2000:
s3Sample = getSampleValueAt(sound3, index - 2000)
setSampleValueAt(sound1, index, s1Sample + s2Sample + s3Sample)

-Add in sound2 after 1000 samples

-Add in sound3 after 2000 samples

Note that in this
version we’re
adding into
sound1!

Homework Assignment!
Option #1: Create an audio collage where the same sound is spliced in at
least three times:

Once in its original form
Then with any modification you want to make to it

Reverse, scale up or down.

Option #2: Make music (it’s up to you what you do!)
Look in MusicSounds folder in MediaSources

Several instruments, different notes

Shift frequencies to get new tones
Crop to get shorter notes

We’ll spend an hour on this.
Save pictures with writeSoundTo(sound,filename)
Share them at http://home.cc.gatech.edu/gacomputes

Key: “workshop”

http://home.cc.gatech.edu/gacomputes

	Media Computation Workshop�Day 1
	Workshop Plan-Day 1
	Workshop Plan-Day 2
	Workshop Plan-Day 3
	What’s on your CD
	What’s on your CD - Continued
	Introductions
	General flow
	Multimedia CS1 in Python
	Python as the programming language
	Rough overview of Syllabus
	Some Computer Science Topics �inter-mixed
	Computer Science Topics�as solutions to their problems
	Installing JES (Jython Environment for Students)
	We will program in JES
	Python understands commands
	Using JES
	Command Area Editing
	Demonstrating JES for files and sounds
	Writing a recipe: �Making our own functions
	Making functions the easy way
	A recipe for playing picked sound files
	Blocking is indicated for you in JES
	A function for playing picked picture files
	Explaining variables
	Image Processing
	We perceive light different from how it actually is
	Luminance vs. Color
	Digitizing pictures as bunches of little dots
	Encoding color
	Encoding Color: RGB
	Encoding RGB
	Basic Picture Functions
	Writing a recipe: �Making our own functions
	Use a loop!�Our first picture recipe
	Use a loop!�Our first picture recipe
	It’s not iteration—it’s a set operation
	How do you make an omelet?
	Decreasing the red in a picture
	Use a for loop!�Our first picture recipe
	How for loops are written
	What happens when a for loop is executed
	getPixels returns a sequence of pixels
	Do we need the variable originalRed?
	Let’s walk that through slowly…
	Now, get the pixels
	Now change the pixel
	Then move on to the next pixel
	Get its red value
	And change this red value
	And eventually, we do all pixels
	“Tracing/Stepping/Walking through” �the program
	Increasing Red
	How does increaseRed differ from decreaseRed?
	Clearing Blue
	Can we combine these?�Why not!
	A Sunset-generation Function
	Creating a negative
	Creating a negative
	Original, negative, double negative
	Converting to grayscale
	Converting to grayscale
	Why can’t we get back again?
	But that’s not really the best grayscale
	Building a better grayscale
	Lots and lots of filters
	Let’s try making Barbara a redhead!
	Treating pixels differently
	Making Barb a redhead
	Talking through the program slowly
	Walking through the for loop
	How an if works
	Expressions
	Returning from a function
	Things to change
	Replacing colors using if
	Posterizing:�Reducing the range of colors
	Posterizing: How we do it
	Posterizing function
	What’s with this “#” stuff?
	Generating sepia-toned prints
	Example of sepia-toned prints
	Here’s how we do it
	Introducing the function range
	That thing in [] is a sequence
	Working the pixels by number
	Replacing colors�in a range
	Could we do this without �nested loops?
	Removing “Red Eye”
	Removing Red Eye
	“Fixing” it: Changing red to black
	If you know where the pixels are: Mirroring
	Mirroring a picture
	Recipe for mirroring
	Can we do it with a horizontal mirror?
	Doing something useful with mirroring
	Figuring out where to mirror
	Program to mirror the temple
	Did it really work?
	More Picture Methods
	Copying pixels
	Copying Barb to a canvas
	Copying into the middle of the canvas
	Copying: How it works
	Copying: How it works 2
	Copying: How it works 3
	Copying: How it looks at the end
	Making a collage
	Cropping: Just the face
	Again, swapping the loop works fine
	Scaling
	Scaling the picture down
	Scaling Up: Growing the picture
	Scaling the picture up
	Scaling up: How it works
	Scaling up: How it works 2
	Scaling up: How it works 3
	Scaling up: How it works 4
	Scaling up: How it ends up
	Homework Assignment!
	Sound Processing
	How sound works:�Acoustics, the physics of sound
	Live demos here!
	Volume and pitch:�Psychoacoustics, the psychology of sound
	Digitizing Sound: How do we get that into numbers?
	Nyquist Theorem
	Digitizing sound in the computer
	Basic Sound Functions
	Working with sounds
	Recipe to Increase the Volume
	Decreasing the volume
	Maximizing volume
	Maxing (normalizing) the sound
	Increasing volume by sample index
	Recipe to play a sound backwards (Trace it!)
	How does this work?
	Starting out (3 samples here)
	Ready for the copy
	Do the copy
	Ready for the next one?
	Moving them together
	How we end up
	Recipe for halving the frequency of a sound
	Changing pitch of sound vs. changing picture size
	Both of them are sampling
	Recipe to double the frequency of a sound
	What happens if we don’t “clear out” the end?
	Splicing Sounds
	Finding the word end-points
	Now, it’s all about copying
	The Whole Splice
	What’s going on here?
	What if we didn’t do that second copy? Or the pause?
	Changing the splice
	Making more complex sounds
	Adding sounds
	Uses for adding sounds
	A function for adding two sounds
	Making a chord by mixing three notes
	Adding sounds with a delay
	Homework Assignment!

