
Developing Methods to Assess Innovative Curricula for Women and

Non-Majors in Computer Science

PI: Mark Guzdial

October 21, 2003

Project Summary
Computer science educators are aware that they have a problem in motivating and en-

gaging students, especially non-CS-majors and women, who are withdrawing or failing in-
troductory computing courses at an alarming rate, or simply avoiding computing entirely.

There are several innovative efforts to address this problem. For example, CMU has made
great progress on increasing the percentage of women in their undergraduate program. We
have had a successful trial offering of a course in Introduction to Media Computation aimed
at non-CS majors. The course was quite successful at its goals. 121 students enrolled—2/3
women. 89% of the class earned an A, B, or C in the course. 60% of the respondents on a
final survey indicated that they would like to take a second course on the topic.

The problem that this proposal addresses is how to go beyond retention and WFD rates.
How do we know that students are really learning in these new approaches? How do we
know that we are changing attitudes towards computer science? How do we know that we
are having an impact long-term?

We propose to develop measures of CS1 concept learning, attitudes toward computer
science, and longitudinal impact of an introductory computing aimed at women and non-CS
majors. We plan to disseminate these measures through papers and also faculty workshops
at CS Education conferences such as ACM SIGSE and ASEE/IEEE FIE. We plan to study
faculty use of these measures through email surveys of faculty who attend our workshops or
use our course materials

Intellectual Merit : This proposal seeks to create methods to understand the value of
innovations to attract women and non-CS majors to computing

Broader Impacts : The potential broader impacts is to help develop better methods to
address the lack of women in computing and create a broader base of computing-literate
citizens, by helping to provide an infrastructure for comparing methods.

Developing Methods to Assess Innovative Curricula for Women and
Non-Majors in Computer Science

Contents

1 Goal: Assessing New Routes to Computer Science 1

2 Results from Proof-of-Concept Trial 3
2.1 Implementation of the Course . 4
2.2 Evaluation Methods and Results . 6

2.2.1 Evaluation of Retention . 6
2.2.2 Evaluation of Motivation . 7
2.2.3 Evaluation of Learning . 9

2.3 Dissemination and Self-Sustained Distribution 10

3 Project Plan 10
3.1 Developing a Survey to Assess Attitudes towards Computer Science 11
3.2 Developing a CS1 Concepts Inventory . 12
3.3 Developing a Longitudinal Evaluation of Impact on Technology Attitudes and

Use . 13
3.4 Dissemination Plans and Formative Evaluation with Faculty 14

4 Conclusion and Timeline 15

5 Budget Justification 20

6 Facilities 21

Developing Methods to Assess Innovative Curricula for Women and
Non-Majors in Computer Science

1 Goal: Assessing New Routes to Computer Science

Computer science departments are not currently successful at reaching a wide range of stu-
dents who are taking introductory computer science. The evidence for this statement in-
cludes international studies of programming performance [29], declining retention rates [16],
and failure rates sometimes as high as 50% [39]. This comes at a time when the need for
Information Technology (IT) professionals is growing [12].

At Georgia Institute of Technology (“Georgia Tech”), all students are required to take an
introductory course in computing, including programming skills. Our traditional CS1 course,
the only one that met the requirement before the Spring 2003 semester, is undoubtedly one of
the most unpopular courses on campus, especially among those not in explicitly computing-
related fields. While this is certainly a problem for the College of Computing at Georgia
Tech (where the course has its academic home), it points towards a larger problem for the
field.

Alan Perlis in April 1961 made the first argument that programming should be part of
a liberal education for all students. If Calculus is the study of rates, and that’s important
enough to be part of the liberal education, then so should computer science. Perlis argued
that computer science is the study of process, which is certainly relevant to even more fields
than those concerned with rates. The argument has been echoed and strengthened over the
intervening years—by Seymour Papert arguing for a programming as a way of learning about
learning [34][35], to Andrea diSessa’s arguments for “computational literacy” as a critical
component of many fields [9]. As long as non-CS majors have such a dislike for computing,
the hope is diminished for computer science as an accepted part of a liberal education and
for computing generally to meet its potential for intellectual impact across the range of
disciplines, not just in computational science and engineering.

Introductory computer science classes are also not meeting the needs of women. The rates
at which women take computer science classes are falling. While the factors causing women
to avoid computer science (and IT careers in general) are multi-faceted, the curriculum does
play a significant role [27]. A report in 2000 by the American Association of University
Women [1] suggested that part of the problem, at least for women, is that computer science
courses are, frankly, too boring. Specifically, they claim that computer science courses are
“overly technical” with little room for “tinkering.” At a session on increasing enrollment
of women in computer science at the latest ACM SIGCSE conference, speakers reported
that women who pursued computer science degrees were surprised at how much “creativity”
there was in later computer science courses—introductory courses did not highlight that
aspect of CS [37]. Additionally, women undergraduate CS students tend to be interested in
real applications of computing, as opposed to simply computing for its own sake [27][1]. If
we can address the reasons why women are avoiding computer science, we may be able to
interest more males, too—all those currently expressing disinterest in computing. “Women in
engineering programs are kind of like ‘canaries in the coal mine”’, said Stephen W. Director,

1

Chair of the Engineering Dean’s council. “If women do well in a program, most likely
everyone else will also do well in the same type of program.” 1

There are new, innovative efforts to address these issues. Most well-known among these
is the work at Carnegie-Mellon University (CMU) which was able to raise dramatically the
percentage of women in their undergraduate CS program [27]. New courses are being devel-
oped, such as an Alice-based pre-CS1 course [8], whose goal is to meet some of the problems
identified as preventing women and non-CS majors from succeeding at Computing. The
Alice-based course is succeeding at having higher retention rates than other introductory
computing courses [8]. New approaches within existing classes, like pair-programming meth-
ods, are leading to improved retention in the class and within the CS major [30, 32].

We also have developed a course, Introduction to Media Computation, to meet the needs
of women and non-CS majors. The course was offered as a pilot in Spring 2003 with 121
students, 2/3 women, with none of the students majoring in CS or Engineering. These
students were from the College of Architecture, Ivan Allen College of the Liberal Arts,
Dupree College of Management, and the School of Biology. The hypotheses of this effort
were that this course would demonstrate: (1) Improved student retention, (2) better student
attitudes toward computer science, and (3) better student learning of computer science.

The course was quite successful at the goal of improving student retention, but it’s not
clear if it met the goal of impacting student attitudes or learning. 121 students enrolled –
2/3 women. 89% of the class earned an A, B, or C in the course, i.e., 11% Withdrawal-
Failure-or-D (WFD) rate. 60% of the respondents on a final survey indicated that they
would like to take a second course on the topic–but at the same time, only 9% claimed
that they would ever take another course in computer science! They did learn enough
programming to be successful at it. Students wrote eight programs (six collaboratively and
two individually) creating or manipulating pictures, sounds, HTML pages, and movies, with
some of their programs reaching 100 lines of code. When we attempted to use isomorphic
exam problems (as in [18]) to compare students between the classes, we ran into difficulties
of course sequencing and language differences.

We do not believe that media computation is the only context in which students not
traditionally attracted to computer science might succeed. For example, we have described
another potential CS1 course organized around information management in which students
might build Web harvesting programs and data visualizations [21]. The general approach
we are exploring is to use an application domain of information technology that is rich in CS
concepts and relevant to the students, then explore introducing computing concepts in terms
of that domain. The Media Computation project is a trial and model of that approach.

Rather, we anticipate that there will be many innovative approaches developed over the
next five to ten years, seeking to improve the motivation and engagement with computer
science among students in groups not currently succeeding at computer science. We predict
that they will all reach the same stage that we and others are meeting. It’s easy to show

1Testimony by Stephen W. Director, Chair, Engineering Dean’s Council, American Society of Engineering
Education, to the Commission on the Advancement of Women and Minorities in Science, Engineering, and
Technology Development, Washington, DC. July 20, 1999

2

that one’s innovation changes WFD rates or retention rates. It’s another thing to show that
the innovation is actually making a difference:

• How do we know that students are really learning after the changes? One way of
lowering WDF rates is to simply make the class easier.

• Are the innovative classes changing attitudes about computer science? Or are the other
classes facing the same muddle of attitudes that we have—that students like our class,
but still don’t like computer science?

• How do the innovations impact the students beyond the course? We would like to see
the students go on to take more computer science classes, and perhaps some percentage
become computer science majors. But we would also like to see an impact within the
students’ major. Introductory computing courses for non-majors are growing (e.g.,
[23] [44] [28]), but we have little idea of how those courses is actually changing how
students relate to technology. For example, we would like to know if students who take
introductory computing courses report that they perceive that they feel that they can
learn and use new technology, perhaps more easily (in their estimation) than others
without computing education.

In this proposal, we propose to create three measures to go beyond issues of retention
and WFD rates to show an impact of educational innovations targeting women and non-
CS majors. Our measures will focus on attitudes toward computer science and technology,
learning of concepts related to CS1, and on longer term impacts of the computing course
on the students’ later academic career. We begin by describing our proof-of-concept trial
offering of the course (funded by NSF CCLI grant #0231176) and its evaluation results,
because it was the results from that trial that has led to our motivation to develop these
methods. We end by describing our dissemination plans, which include faculty workshops
at ACM SIGCSE and ASEE/IEEE FIE conferences to teach broadly (e.g., including our
methods, but also including measures such as retention and WDF rates) how to assess the
impact of educational innovation targeting under-represented groups in computer science.

2 Results from Proof-of-Concept Trial

Introduction to Media Computation (CS1315 at Georgia Tech) is our new introduction to
computation and programming contextualized around creation and manipulation of media.
The explicit goal is to interest groups typically disinterested in such courses (especially
women and non-CS majors). The course was offered as a pilot in Spring 2003.

The course was a success on several measures.

• 89% of the students who enrolled earned an A, B, or C. Our “best-practice” point of
comparison in the literature had a 66.4% success rate for non-majors in a specialized
CS1 [32].

• The course met its goal of getting female students to find CS interesting, relevant, and
creative where they hadn’t previously.

3

• We attempted direct comparisons on problems on exams between our traditional CS1,
a prototype engineering CS1 course, and the Media Computation class. We found that
such comparisons are fraught with difficulties. Nonetheless, student performance in a
problem described in the literature on CS education was relatively comparable between
the Media Computation and traditional CS1 students.

• Students found the course relevant, and the majority of respondents to a final survey
indicated that they would like to take a second course if it were offered.

Our assessment of the course, and the comparison with the other courses, went beyond
measures of success to explore how and why the class was successful, and who was successful.
For example, Collaboration may have played as much a role in the success of CS1315 as the
context. When asked the open question on the final survey, “What absolutely must not
change about the course?”, nearly 20% of the Media Computation student respondents
named the collaboration tool CoWeb [15] [19] and over 20% mentioned collaboration in
general. In general, students from Georgia Tech’s Ivan Allen College for Liberal Arts were
the most positive about the course (e.g., had the largest percentage of students who would
recommend it to others, who planned to use programming in the future, and who planned
to take further CS courses).

2.1 Implementation of the Course

The choice of multimedia as the course context in this project allows us to address several
of the issues identified as critical for increasing the number of women in computing. Sev-
eral of the academic units at Georgia Tech emphasize that multimedia literacy is a critical
component of educated professionals in the future [42]. Multimedia is a real applications
domain—especially true at Georgia Tech, with Turner Broadcasting, CNN, and the Cartoon
Network based within a few miles of campus. Multimedia is clearly not computing for its
own sake. Further, the multimedia approach allows us to give students assignments that are
open-ended and creative. The emphasis on multimedia allows the class to be more concrete,
more relevant, and more creative than traditional CS1 approaches.

The premises and core concepts of the Media Computation course are:

• All media are being published today in a digital format. Digital formats are amenable
to manipulation, creation, analysis, and transformation by computer. Text can be
interpreted, numbers can be transformed into graphs, video images can be merged,
and sounds can be created. We call these activities media computation.

• Software is the tool for manipulating digital media. Knowing how to program thus
becomes a communications skill. If someone wants to say something that her tools do
not support, knowing how to program affords the creation of the desired statement.

• Core computer science concepts can be introduced through media computation. For
example, programs can get large and cumbersome. Abstraction is our tool for managing

4

program complexity and allowing programs to become even larger yet more flexible.
However, computing has limitations. There are some programs that cannot complete
in our lifetime, and knowing that these limitations exist is important for technological
professionals.

We used the programming language Jython for the course. Jython2 is a variation of the
Python3 programming language which has been designed to be easily used by novices and
non-technical users. Jython is a variation of Python written in Java. Jython can instantiate
and subclass Java classes, and Jython can be used for virtually anything for which Java
can be used. We considered other languages (e.g., Java and Scheme), but selected Jython
based on survey responses from students and teachers [17]. Jython’s design is based on the
research findings on studying novice programmers (e.g., [40], [31], [33]).

The general structure of the course was 11 weeks of media-relevant material (e.g., sound,
pictures, movies, text manipulation, network, and database), with four weeks of computer
science that answers questions that arose during the course of the 11 weeks. Student home-
work assignments started with simple Photoshop-style filters (average score 92% with a
standard deviation of 22.1). Some of the assignments invited creativity, such as the third
homework which required creation of a collage, but allowing students to select whatever
pictures they wanted in the collage (average score 86.3% standard deviation 26.0). These
collage programs became large–the average number of lines of code (of students who gave
us consent to look at their homework results) was 64 with a standard deviation of 32.4.
The largest was 166 lines of code. The final homework assignment involved programmed
Web access and creation of animations (average score 84.6% standard deviation 29.2). Final
exam questions spanned a wide range of computing concepts, including issues of networking,
databases, and computing theory.

We developed JES (Jython Environment for Students), modelling it after the popular
DrScheme environment [10]. Development of JES also included development of a simplified
API for accessing the Java media library.

We used our existing collaboration technology, CoWeb [20, 15], to support student ques-
tion asking and sharing of media artifacts. The constructionist theory of learning suggests
that the creation of public artifacts creates a strong potential for learning [36]. We have
had good success in the past using our collaboration tools to support sharing of multimedia
artifacts to encourage critique and motivate learning [25][5][45]. The CoWeb became the
central place for question-asking and discussion, which is a critical role in CS1, since comfort
in asking questions has been highly correlated with attrition in CS1 [43]. From interviews,
we know that the CoWeb increased that comfort.

Q. Have you consistently felt comfortable asking questions? Student D:
Not at the beginning. One on one, yes. In lecture, not at the beginning because
I felt that I was so far behind other people and the ones who were putting things
on the web were the ones who really know stuff. But now I have no problem.

2http://www.jython.org
3http://www.python.org

5

Q. Do you think the CoWeb is beneficial? Student D: Yes. And there’s
no reason to feel uncomfortable because if you feel dumb, just don’t put your
name at the end! I did that a few times.

2.2 Evaluation Methods and Results

Our evaluation effort had three hypotheses: (1) the prototype course will improve student
retention, especially among non-CS-majors and women; (2) the prototype course will improve
student motivation toward computer science; and (3) the prototype course will lead to good
student learning, perhaps better than in a comparable course.

Our evaluation effort was conducted under the review of the Georgia Tech Human Sub-
jects Review Board, to whom this proposal and all our instruments were submitted for review
as they were developed. Students were informed about the research project, the instruments,
how they might be impacted, and potential risks. Assessment was organized such that the
PI and the assessment team4 designed the assessment, but the assessment team gathered
and analyzed all data apart from the PI, since he was also the teacher of the course.

We gathered and analyzed several sources of data.

• We had demographic data which we used to address the retention question. We had
course work from consenting students.

• We took surveys during the first week of the term, midway through the term, and in the
last week of the term. We used the same surveys in two other classes: A section of our
traditional CS1 course (n = 127), and a section of the prototype Engineering-oriented
CS1 (n = 75).

• We attempted to develop and distribute polymorphic problems (same problem, but
changed in language or other minor details for the course context, a method we used
successfully in [18]) that were offered in all three CS1’s on exams–for example, on
computing an average test grade and determining an appropriate letter grade, and on
the infamous Rainfall Problem [41].

• We interviewed a sample of female students in the Media Computation class on their
attitudes toward computer science and the course. We had seven interviews in total–
three early in the semester, and all three were interviewed again at the end of the term
along with another student at the end.

2.2.1 Evaluation of Retention

Retention rate is defined operationally in this study in two ways. The completion retention
rate is defined as the ratio of the number of students completing the course to the number of
students enrolled in the course. The course success retention rate is defined as the ratio of

4Graduate research assistants Andrea Forte and Rachel Fithian, and undergraduate research assistant
Lauren Rich

6

the number of students completing the course with a C or better to the number of students
who enrolled in the course. (Several academic units at Georgia Tech require students to
re-take courses if they received a D.)

The literature on both rates is rather negative. Completion rates of less than 30% is
not uncommon in CS1 [39]. In an email survey on the ACM SIGCSE members list, course
success retention rates of less than 50% were reported at several schools [16]. The “best-
practice” comparison that we have for non-majors, in a pair-programming CS1 class, had a
66.4% course success retention rate [32] (in that study, compared to a non-majors success
rate of 55.9% in a traditional CS1). Our traditional CS class typically does remarkably well
in comparison with the literature, with a completion retention rate of 80-90% and a course
success retention rate better than 70%, so it offers a high standard to meet.

Our course completion retention rate for Spring 2003 was 98%. Our course success
retention rate was 89%. During that semester, our comparison section of our traditional
CS1 had a 57.1% course success rate.

2.2.2 Evaluation of Motivation

The stated goal for the prototype course was to address the disinterest in computer sci-
ence, especially among non-CS-majors and women. We were concerned with three kinds of
motivational factors:

• Do students find the current course engaging? An engaging course is more likely to
lead to learning [26] [38] [4].

• Do students find computer science engaging?

• Would students consider taking future computer science courses? While the goal of
the prototype course is to simply address issues of disinterest, positive response to
this question would suggest that the media computation (“data-first”) approach has
potential for attracting potential CS majors.

When asked what they like about the class in the midterm survey, the students affirm that
we’re succeeding at creating a course that students recognize for its relevance, particularly
for non-CS majors:

• “Very applicable to everyday life.”

• “I dreaded CS, but ALL of the topics thus far have been applicable to my future career
(and personal) plans.”

• “The professor answers questions in class and online and is concerned about our success
in the class. He also seems to understand that most of us are not engineers and
most likely won’t do straight programming in the future—just the way of thinking is
important.”

7

• “I think that we’re doing things that I could actually use as an architecture major–I
like dealing with pictures and sounds.

When we asked students “What is something interesting, surprising, or useful that you
learned?” we found that students appreciated the relevance of the course and even found
the computer science interesting (again, all female respondents):

• “The most useful things I have learned are the basics about computers and pic-
tures/sound... interesting and useful to real life applications.”

• “Just general concepts about programming. It’s pretty logical, sort of like in math, so
it’s understandable.”

• “Programming is fun and ANYONE can do it!”

Students who have positive attitudes about CS and who enjoy computing are likely to
continue in computer science. While it is too early to tell what CS courses Media Com-
putation students will take in the future, we asked on the final survey whether or not they
would be interested in taking a more advanced media computation course. 60% of the female
respondents answered that they would take a second course (overall course average of 63%).

Surprisingly, when asked on the same survey whether or not they plan to take more CS
courses, only 6% of those same female respondents responded affirmatively (9.3% overall).
Why would 60% be willing to take media computation, while only 6% planned to take
more CS courses? One possible explanation is that there is currently no advanced media
computation course, and, given the current selection of CS courses, Media Computation
students don’t see a compelling reason to take more. Another might be interpretation of the
question: Students may interpret “CS courses” as “traditional CS courses” as opposed to
specialized courses like Media Computation.

Students indicated that the course changed their attitudes about programming in general,
into something that they could imagine themselves doing in the future. On the final survey,
30% of the students indicated that they believed that they will program again in the future.
In interviews, students talk about programming in the future.

Interviewer: What do you think about the homework galleries on the
CoWeb?

Student A: I don’t ever look at it until after I’m done, I have a thing about
not wanting to copy someone else’s ideas. I just wish I had more time to play
around with that and make neat effects. But JES will be on my computer forever,
so. . . that’s the nice thing about this class is that you could go as deep into the
homework as you wanted. So, I’d turn it in and then me and my roommate
would do more after to see what we could do with it.

8

2.2.3 Evaluation of Learning

We developed several problems that we attempted to put on all three courses’ exams and
quizzes. Unfortunately, a number of issues such as different rates of development and se-
quencing of concepts in each course, different times and numbers of exams and quizzes, and
problems equating concepts in different languages prevented us from distributing the prob-
lems as uniformly as we would have liked. In addition, those questions that did make it onto
multiple exams were modified by the individual course instructors and teaching assistant to
such an extent that it is difficult to compare them.

In general, we found that the different programming languages used, the differences
in directions given on exams, and the kinds of examples provided on the exams created
unique conditions for each course and rendered the results fundamentally incomparable. For
example, the most common problem among the Engineering students’ was mishandling of
ELSE clauses. Media Computation students never used an ELSE clause. It’s difficult to
compare these results in terms of learning.

A more reliable indicator of the Media Computation students’ programming achievement
might be found in students’ attempt to solve a classically difficult problem, such as The
Rainfall Problem. The rainfall problem is: “Write a program that repeatedly reads in positive
integers, until it reads the integer 99999. After seeing 99999, it should print out the average.”
At Yale in the mid-80’s, Elliot Soloway gave this problem to several groups of students [41].
Of first semester CS1 students, only 14% of the students got it correct (completely correct
other than syntactic errors). Only 36% of CS2 students got it correct, and only 69% of
students in a junior-senior level systems programming course. This was one of the first
empirical demonstrations that learning about programming was less than what we might
have expected. (This finding was replicated in [29].)

Our students were not directly comparable to the Yale students. For example, we hadn’t
covered the same things (e.g., at the time of the exam, they had only seen WHILE once in
class), and we had to change the wording of the problem accordingly. Nonetheless, 14 people
out of 113 (12%) who took the test “got it”–by Soloway’s standards that means they had
a correct solution (aside from syntactic errors). With partial credit, the average on the
problem was 45%.

The traditional CS1 also included a variation of the rainfall problem on two of their tests,
but we were unable to get the raw problems to code ourselves and compare. On the first
test (which stipulated the use of tail recursion), the result was an average score of 53%. On
the second test (which was open to any kind of iteration), the result was an average score of
60%.

Overall, the rainfall problem continues to be a hard problem for CS1 students. These
results don’t show that the Media Computation students are learning programming remark-
ably well. But they do show that these students aren’t out of the ballpark either. The
bottom line is that it’s still an open question how much the Media Computation students
learned about programming or CS1-relevant concepts, and how they compare to students in
other classes.

9

2.3 Dissemination and Self-Sustained Distribution

During the time of this project, we have been very active in disseminating the results and
materials, helping others to adopt the materials, and taking steps toward self-sustained
distribution.

• At SIGCSE2003, Guzdial hosted a tutorial on Media Construction Projects in Com-
puter Science Courses which covered the basics of doing media computation in Python,
Java, and Squeak. The 11 participants all stated on the final evaluation that they would
recommend this workshop to others.

• A paper on the planning and development of the Media Computation course was
presented at ITiCSE 2003 [17], which will be presented in July 2003.

• Guzdial spoke on the course at a meeting of representatives from all the CS departments
of the University System of Georgia. Several schools expressed interest in adopting the
course. Charles Fowler of Gainesville College, a two-year college, is offering the course
as a trial this summer, with is currently offering two sections of the course. Guzdial
was also invited to speak at Kennesaw College and Augusta State College, each four
year colleges. Guzdial is actively working with Kennesaw on their plans to trial the
course.

• Prentice-Hall has signed a contract with Guzdial to produce a book Introduction to
Media Computation with no completion date at this time.

3 Project Plan

While our trial results are strong, it’s also clear that our support for our hypotheses about
changing attitudes and learning is incomplete. At the same time, we see that similar efforts
to target innovation at women and non-CS majors (e.g., [27] [30] [23] [8]) have similar
problems and challenges. For example, the CMU effort used interviews to track female
students’ attitudes, but did not develop any measures to check attitudes across their female
population as they implemented their curricular changes.

Over the next few years, we can anticipate more efforts to innovate in CS education
explicitly targeting women and non-CS majors. We expect that these efforts will probably
reach the same place that the rest of us are at now—we can easily assess retention and WDF
rates, but we are challenged to assess learning, attitudinal change, and long term impact.

We propose to develop methods to address learning, attitudinal change, and long term
impact on attitudes and use of technology. We plan to develop these in the context of our
course, but then to disseminate them and evaluate how they are used in new contexts. Our
course is being offered to 300 students in Fall 2003 semester, with plans to offer 400 seats in
the Spring 2004 semester, with similar levels of offerings in future years.

The summary of our project plan is:

• To develop a survey to measure attitudes toward computer science, which will be
validated internally and with interviews.

10

• To develop an inventory of CS1-related concepts (knowledge units as in [2]) in a
language-independent context so that we can get a sense of how well students in inno-
vative curricula are actually learning computer science. We will validate the inventory
using expert review by ABET/CSAB accreditation auditors. We will also use repeated
offerings with a sample of students to establish reliability.

• To develop a survey to measure impact of introductory computing on attitudes and
use of technology beyond the scope of an individual course. We plan to establish
validity with interviews and use repeated offerings with a sample of students to establish
reliability.

• We plan to offer workshops at ACM SIGCSE (Special Interest Group in CS Education)
and ASEE/IEEE Frontiers in Education (FIE) conferences to help faculty learn how
to assess curricular innovations targeting women and non-CS majors. Our plan is to
discuss issues like measurement of retention and WDF rates, as well as the measures
that we are using. Through our publisher, we also plan to directly seek out faculty
interested in our curriculum to invite them to use our measures as well. We plan
to follow up with email surveys to learn how effective the measures are at the other
institutions.

All of our development and assessment will be overseen by the Georgia Institute of
Technology’s Human Subjects Review Board. All the researchers working on the project will
be certified by the Board as capable of doing human subjects research. All our instruments
will be reviewed by the board to respect the rights and safety of the subjects.

3.1 Developing a Survey to Assess Attitudes towards Computer
Science

Many students attitudes toward computer science today, especially women and non-CS ma-
jors, are pretty abysmal as described by several studies [27] [1]. An important result of
any introductory course should be an appreciation for what’s interesting and useful about a
topic. Students should emerge from introductory computing courses with attitudes that are
positive about the usefulness of computer science and about its relevance.

Our results so-far in the Media Computation course have been confounding on this point.
Our students emerge feeling that programming to manipulate samples in arrays and pixels
in matrices is relevant and interesting, and worthy of additional courses—but they are still
overwhelmingly disinterested in “computer science.”

We plan to develop a survey to measure attitudes that asks for fine-grained distinctions
about what interests the students about their current course and its content and about
what they perceive as computer science. We are interested both to understand the seeming
contradiction in our own students’ attitudes and to develop a measure that we can use to
assess changes in the attitudes as we change the course. We want to understand issues such
as:

11

• What is it that students find interesting about technology, the innovative course that
they are taking, and its content?

• What concepts, skills, and practices are they learning that they find relevant for them-
selves now and for their future career?

• What are their perceptions of what computer science is?

• How relevant is computer science as they perceive it to their current and future careers?

• How has their attitude toward computer science changed do to the innovation that
they are engaged in?

We plan to ask the same question in multiple ways to establish internal validity [6]. For
example, we may ask students to state their agreement with the statements “Computer
science will be useful to me in my career” and “I do not expect to find computer science
relevant to my future career.” If we find radical differences in these kinds of statements, we
will need to re-word and re-work the questions, using our interview process as input.

Our plan to develop and validate the attitude survey is through an iterative process of
interviews and survey development using methods described in [13] [3] [7]. We plan to use
interviews on these topics to develop the survey questions. We will then use these surveys,
and interview a sample of students who answer the surveys to ask them:

• Did we ask the right questions? Are these issues important, or are they the wrong
ones?

• Are there issues that you wanted to express or that are relevant that are not addressed
by these questions?

• Did the questions make sense?

During the second and third years, we plan to use repeated offerings with a sample of
students, to establish the reliability of the survey.

3.2 Developing a CS1 Concepts Inventory

We have found it difficult to establish what students are learning in an innovative CS1 course.
We can anticipate that many new educational developments will differ from traditional CS1
courses on features such as order of topics, kinds of topics covered, context for topics, and
programming language used—as ours does. Because of these differences, it’s difficult to
compare learning on midterm exams or other measures, because of different ordering of
topics. Even when we simply focus on end of term measurements, simple programming
activities are difficult to compare when there are significant language differences (e.g., as in
our case, Python vs. Scheme vs. Matlab).

We propose to construct an instrument to measure concepts that one would expect to be
covered in a CS1 course, as defined by the ACM/IEEE Computing Curriculum 2001 [2], in
a manner as language independent as possible. For example:

12

• We can ask what concepts like iteration, conditionals, and assignment mean, without
presenting their syntax, but perhaps with asking the students to present the syntax
of their language (making the instrument language-independent, but the evaluation of
the instrument langauge-dependent).

• We can ask about data structures such as arrays, matrices, and trees without requiring
language explanations.

• We can ask about algorithmic complexity and similar theoretical concepts.

Our plan for content validation is to use expert review by ABET accreditation for CS
programs auditors. We plan to start at a formative level [11] with our colleagues who are
ABET accreditation auditors (e.g., Dr. Rich LeBlanc5 and Mr. Mike McCracken). During
our second year, we plan to seek out ABET accreditation auditors outside our institution
and ask them to review the questions, to determine content validity by a panel of experts
[6].

We will establish reliability by repeated use in a sample of our students in the Media
Computation class. We will ask for a re-take of the instrument within a week with a sample
size of approximately n = 50.

3.3 Developing a Longitudinal Evaluation of Impact on Technol-
ogy Attitudes and Use

An additional area of evaluation that we plan to introduce is longitudinal tracking of Media
Computation students as they continue their careers. We want to know:

• Do these students take more computer science courses?

• Do these students become computer science majors or minors?

• How does the course impact the students’ use and learning of computation within their
own majors? For example, do Liberal Arts majors who use Photoshop learn it more
easily or use it better (by their own estimation) than students who do not take the
course? Do Architecture majors learn AutoCAD more easily or use it better?

Our plan is to use a combination of email surveys and in-person or phone interviews.

• At the end of each year, 100% of the students who have taken the Media Computation
course will be surveyed by email to ask about the CS classes they’ve taken, their majors
and minors, and their use of computational tools.

• At the end of each year, some small sample of students who have taken the course
(perhaps 3–5 students) will be interviewed (by phone or in person) to understand how
the course has effected their later careers and interaction with computation. These

5Dr. LeBlanc was also part of the writing team for [2]

13

data will also be used to inform further development of the course materials and to
validate our instrument, using a method similar to what we plan to do for our attitude
survey, e.g., asking if the questions seem appropriate, what additional issues or impacts
would they consider relevant, etc.

3.4 Dissemination Plans and Formative Evaluation with Faculty

We have a three part plan for disseminating our measurement instruments and methods. The
first part is fairly traditional: We plan to write papers for ACM SIGCSE, the international
ITiCSE (Innovation and Technology in CS Education), and ASEE/IEEE FIE conferences
using our instruments to evaluate our own innovations, as a model for others and to set a
benchmark for others to compare to (using our methods, or improvements upon our meth-
ods). We have been successful at using this approach in other, related research. In our
research on computer-supported collaborative learning (CSCL) (sponsored, in-part, by the
PI’s NSF Career award, grant #REC-955048), we developed a set of measures for how well
a CSCL environment was being used by students [14]. The measures were used by others
in assessing their own environments (e.g., [22]), and formed the basis of other research to
develop theory explaining the kinds of findings that having these methods of comparison
enabled [24]. Thus, we believe that using our methods in our own research will set a model
that can be an effective force for dissemination.

The second part is to offer faculty workshops at ACM SIGCSE and ASEE/IEEE FIE6

on methods for measuring impact of education innovations targeted at women and non-CS
majors. We plan to introduce our instruments, as well as others that are well-known (such
as retention and WDF rates) and methods that are developed by others over the next few
years.

The third part is to use the book for the Media Computation course as a source of
potential faculty targets. Working with our publisher, we plan to get email addresses of
faculty who seek an evaluation copy of the book, and invite them (whether they use our
book or not) to use our methods to assess whatever innovations they attempt to attract
women and non-CS majors in CS courses. If the faculty are interested in a course such as
this, it may be that they are planning to attempt some educational innovation to attempt
to attract a non-traditional audience, even if they eventually choose a different path than
our course. We plan to develop a manual as well as a CD with copies of our instruments to
send to interested faculty. We will continue to make all our materials (for the course and for
assessment) available on our development website7, and we plan to create a project website
(with a more easily remembered URL) for wider dissemination.

Our plan is to follow up with faculty who attend our workshop using email surveys on
a regular (e.g., every six month basis) to learn how their use of the instruments is going, to
learn about their results, and to solicit feedback on how we might improve our manual or
the instruments.

6Workshops are sparsely attended when offered at ITiCSE.
7http://coweb.cc.gatech.edu/mediaComp-plan

14

4 Conclusion and Timeline

Our goal is to help ourselves and others to assess the value of the innovations that are
being developed to target women and non-CS majors to improve their odds of success in
introductory computer science. It’s easy to show that more women stay in a course or
program, or that more non-CS majors succeed where they may have withdrawn or failed
in a comparison traditional CS1 course. It’s much harder to show that there is learning
equivalent to a traditional CS1 going on, to show that there are changes in attitudes, and to
show that there is a significant longer term impact, beyond the end of the course. We plan
to use our own course and students as a testbed, but we will be active in engaging others
to use our instruments and give us feedback, so that we can create measures and methods
that truly benefit the community. We don’t see that our measures will only be applicable to
settings where the targets for innovation are women or non-CS majors. That’s just where
we’ll be starting from. We expect that our methods will be useful in assessing a broad range
of innovations where the objectives include CS1-level learning, impacting attitudes toward
CS, and generating impact at a longer-term scale than a single class.

We believe that the potential broader impact of this work is to create an infrastructure for
comparing innovations to attract under-represented groups (such as women) to computing
and to create a broader base of computing-literate citizens by helping non-CS majors to
be more successful at computing. By making it possible to compare innovative methods,
on the basis of learning, attitudes, and longer-term impact, we believe that we create the
opportunity to create better methods and to improve existing methods. Thus, creating
assessment methods to go beyond retention and WFD rate will help us to create better
innovations to target under-represented groups.

We are proposing a three year effort. Our timeline follows:

• Year One: We will develop initial versions of all three of our instruments: Attitude
survey, CS1 concepts inventory, and longitudinal impact survey. We will iterate on
all three in the three semesters of the year. We will also be engaging in interviews
to validate the two surveys, and we will ask colleague ABET accreditation auditors
to help us with content validation of the inventory in a formative stage. We plan to
continue publishing papers on our findings in the course.

• Year Two: We will continue to iterate on the instruments, but we will more actively
seek to validate them and test them for reliability. We will begin proposing workshops
at ACM SIGCSE and ASEE/IEEE FIE conferences during year two. Also during year
two, the book for the Media Computation class will be published, so we will begin
targeting faculty interested in the book to use our methods.

• Year Three: We will focus on reaching out to faculty using our methods (through the
workshop or book) to invite their feedback and to use it in updating the instruments.
As we update the measures, we plan to re-validate and re-test for reliability as needed.
Again, we plan to publish our findings, with a particular emphasis on use of our
methods as a way of establishing a model for others.

15

References

[1] AAUW. Tech-Savvy: Educating Girls in the New Computer Age. American Association
of University Women Education Foundation, New York, 2000.

[2] ACM/IEEE. Computing curriculum 2001. http: // www. acm. org/ sigcse/ cc2001

(2001).

[3] Allen, D., Ed. Assessing student learning: From grading to understanding. Teachers
College Press, New York, 1998.

[4] Blumenfeld, P. C., Soloway, E., Marx, R. W., Krajcik, J. S., Guzdial, M., and Palincsar,
A. Motivating project-based learning: Sustaining the doing, supporting the learning.
Educational Psychologist 26, 3 & 4 (1991), 369–398.

[5] Craig, D., ul Haq, S., Khan, S., Zimring, C., Kehoe, C., Rick, J., and Guzdial, M.
Using an unstructured collaboration tool to support peer interaction in large college
classes. In International Conference of the Learning Sciences 2000. Ann Arbor, MI,
2000, pp. 178–184.

[6] Cronbach, L. Test validation. In Educational Measurement (2nd Ed.) (Washington,
D.C., 1971), R. Thorndike, Ed., American Council on Education.

[7] Cross, K. P., and Angelo, T. P. Classroom Assessment Techniques: A Handbook for
Faculty. NCRIPTAL, University of Michigan, Ann Arbor, 1988.

[8] Dann, W., Dragon, T., Cooper, S., Dietzler, K., Ryan, K., and Pausch, R. Objects:
Visualization of behavior and state. In ITiCSE 2003: Proceedings of the 8th Annual
Conference on Innovation and Technology in Computer Science Education, D. Finkel,
Ed. ACM, New York, NY, 2003, pp. 84–88.

[9] diSessa, A. Changing Minds. MIT Press, Cambridge, MA, 2001.

[10] Felleisen, M., Findler, R. B., Flatt, M., and Krishnamurthi, S. How to Design Programs:
An Introduction to Programming and Computing. MIT Press, Cambridge, MA, 2001.

[11] Flagg, B. N. Formative Evaluation for Educational Technologies. Communication.
Erlbaum and Associates, Hillsdale, NJ, 1990.

[12] Freeman, P., and Aspray, W. The Supply of Information Technology Workers in the
United States. Computing Research Association, New York, 1999.

[13] Gardner, H. Assessment in context: An alternative to standardized testing. In Changing
Assessments: Alternative Views of Aptitude, Achievement, and Instruction (Boston,
1992), B. R. Gifford and M. C. O’Connor, Eds., Kluwer Academic Publishers.

16

[14] Guzdial, M. Information ecology of collaborations in educational settings: Influence
of tool. In Proceedings of Computer-Supported Collaborative Learning’97, R. Hall,
N. Miyake, and N. Enyedy, Eds. LEA, Toronto, Ontario, Canada, 1997, pp. 83–90.

[15] Guzdial, M. Use of collaborative multimedia in computer science classes. In Proceedings
of the 2001 Integrating Technology into Computer Science Education Conference. ACM,
Canterbury, UK, 2001.

[16] Guzdial, M. Summary: Retention rates in cs vs. institution. Message posted on acm
sigcse moderated members list, Georgia Tech, April 23 2002.

[17] Guzdial, M. A media computation course for non-majors. In Proceedings of the Innova-
tion and Technology in Computer Science Education (ITiCSE) 2003 Conference (New
York, 2003), ACM, ACM, pp. In–Press.

[18] Guzdial, M., and Kehoe, C. Apprenticeship-based learning environments: A principled
approach to providing software-realized scaffolding through hypermedia. Journal of
Interactive Learning Research 9, 3/4 (1998), 289–336.

[19] Guzdial, M., Ludovice, P., Realff, M., Morley, T., Carroll, K., and Ladak, A. The chal-
lenge of collaborative learning in engineering and math. In Proceedings of IEEE/ASEE
Frontiers in Education (FIE) 2001 Conference. IEEE, Reno, NV, 2001.

[20] Guzdial, M., Rick, J., and Kehoe, C. Beyond adoption to invention: Teacher-created
collaborative activities in higher education. Journal of the Learning Sciences 10, 3
(2001), 265–279.

[21] Guzdial, M., and Soloway, E. Computer science is more important than calculus: The
challenge of living up to our potential. Inroads – The SIGCSE Bulletin 35, 2 (June
2003), 5–8.

[22] Hewitt, J., and Teplovs, C. An analysis of growth patterns in computer conferencing
threads. Lawrence Erlbaum Associates, Mahwah, NJ, 1999.

[23] Hickey, T. Scheme-based web programming as a basis for a cs0 curriculum. In Proceed-
ings of the ACM SIGCSE Conference (2004), p. Submitted.

[24] Hudson, J. M., and Bruckman, A. S. The bystander effect: A lens for understanding
patterns of participation. Journal of the Learning Sciences 13, 2 (2004), Forthcoming.

[25] Kehoe, C. M. Supporting Critical Design Dialog. Unpublished ph.d. dissertation, Geor-
gia Institute of Technology, 2001.

[26] Malone, T., and Lepper, M. Making learning fun: A taxonomy of intrinsic motivations
for learning. In Aptitude, Learning, and Instruction., R. Snow and M. Farr, Eds., vol. 3
of Conative and Affective Process Analyses. LEA, Hillsdale, NJ, 1987, pp. 223–253.

17

[27] Margolis, J., and Fisher, A. Unlocking the Clubhouse: Women in Computing. MIT
Press, Cambridge, MA, 2002.

[28] Marks, J., Freeman, W., and Leitner, H. Teaching applied computing without pro-
gramming: A case-based introductory course for general education. In The Proceedings
of the Thirty-second SIGCSE Technical Symposium on Computer Science Education,
R. McCauley and J. Gersting, Eds. ACM Press, New York, 2001, pp. 80–84.

[29] McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y. B.-D.,
Laxer, C., Thomas, L., Utting, I., and Wilusz, T. A multi-national, multi-institutional
study of assessment of programming skills of first-year cs students. ACM SIGCSE
Bulletin 33, 4 (2001), 125–140.

[30] McDowell, C., Bullock, H., Fernald, J., and Werner, L. The effects of pair-programming
on performance in an introductory programming course. In The Proceedings of the
Thirty-third SIGCSE Technical Symposium on Computer Science Education, 2002,
D. Knox, Ed. ACM, New York, 2002, pp. 38–42. Pair-programming (social) reduces
attrition rates.

[31] Miller, L. A. Natural language programming: Styles, strategies, and contrasts. IBM
Systems Journal 20, 2 (1981), 184–215. Languages require iteration where aggregate
operations are much easier for novices.

[32] Nagappan, N., Williams, L., Ferzil, M., Wiebe, E., Yang, K., Miller, C., and Balik,
S. Improving the cs1 experience with pair programming. In Twenty-fourth SIGCSE
Technical Symposium on Computer Science Education (New York, NY, 2003), D. Joyce
and D. Knox, Eds., ACM, pp. 359–362.

[33] Pane, J. F., Ratanamahatana, C., and Myers, B. Studying the language and struc-
ture in non-programmers’ solutions to programming problems. International Journal of
Human-Computer Studies 54 (2001), 237–264.

[34] Papert, S. Teaching children to be mathematicians versus teaching about mathematics.
Ai memo no. 249 and logo memo no. 4, MIT, 1971.

[35] Papert, S. Mindstorms: Children, computers, and powerful ideas. Basic Books, New
York, NY, 1980.

[36] Papert, S. Situating constructionism. In Constructionism, I. Harel and S. Papert, Eds.
Ablex Publishing Company, Norwood, NJ, 1991, pp. 1–11.

[37] Pfleeger, S. L., Teller, P., Castaneda, S. E., Wilson, M., and Lindley, R. Increas-
ing the enrollment of women in computer science. In The Proceedings of the Thirty-
second SIGCSE Technical Symposium on Computer Science Education, R. McCauley
and J. Gersting, Eds. ACM Press, New York, 2001, pp. 386–387.

18

[38] Pintrich, P. R., and Schunk, D. H. Motivation in Education: Theory, Research, and
Applications. Prentice-Hall, 1996.

[39] Roumani, H. Design guidelines for the lab component of objects-first cs1. In The
Proceedings of the Thirty-third SIGCSE Technical Symposium on Computer Science
Education, 2002, D. Knox, Ed. ACM, New York, 2002, pp. 222–226. WFD (Withdrawl-
Failure-D) rates in CS1 in excess of 30

[40] Soloway, E., Bonar, J., and Ehrlich, K. Cognitive strategies and looping constructs: An
empirical study. Communications of the ACM 26, 11 (1983), 853–860.

[41] Soloway, E., Ehrlich, K., Bonar, J., and Greenspan, J. What do novices know about
programming? In Directions in Human-Computer Interaction, A. Badre and B. Schnei-
derman, Eds. Ablex Publishing, Norwood, NJ, 1982, pp. 87–122.

[42] Soloway, E., Guzdial, M., and Hay, K. E. Reading and writing in the 21st century.
EDUCOM Review 28, 1 (1993), 26–28.

[43] Wilson, B. C., and Shrock, S. Contributing to success in an introductory computer sci-
ence course: A study of twelve factors. In The Proceedings of the Thirty-second SIGCSE
Technical Symposium on Computer Science Education, R. McCauley and J. Gersting,
Eds. ACM, New York, 2001, pp. 184–188.

[44] Zimmerman, G. W., and Eber, D. E. When worlds collide! an interdisciplinary course in
virtual-reality art. In The Proceedings of the Thirty-second SIGCSE Technical Sympo-
sium on Computer Science Education, R. McCauley and J. Gersting, Eds. ACM Press,
New York, 2001, pp. 75–79.

[45] Zimring, C., Khan, S., Craig, D., Haq, S.-u., and Guzdial, M. Cool studio: Using simple
tools to expand the discursive space of the design studio. In Design Thinking Research
Symposium. MIT, Cambridge, MA, 1999.

19

5 Budget Justification

To fund this effort, this proposal includes a budget request for a three year project.

• One summer month of the PI’s time in all three years, to build the instruments, to
plan and conduct the workshops, and to work on dissemination.

• Two graduate student research assistants. One will focus on development of the in-
struments and the manual/CD for faculty, as well as the formative evaluation of the
instruments. The other will focus on use of the instrument and analysis of the data
that we gather from it, including testing for reliability and validity.

• Our costs for these personnel include fringe, computing charges (for support within
the College of Computing), and graduate student tuition,

• Travel support for attending conferences to disseminate materials and results and con-
duct workshops.

• Materials and supplies, to support the development and evaluation effort.

20

6 Facilities

The College of Computing maintains a variety of computer systems in support of academic
and research activities. These include more than 50 Sun, Silicon Graphics, and Intel systems
used as file and compute servers, many of which are quad-processor machines. In addition,
there are more than 1,000 workstation class machines from Sun, Silicon Graphics, Intel, and
Apple especially for student use. A number of specialized facilities augment these general-
purpose computing capabilities. The hardware that will be purchased for this project will
be of similar quality to what the students use, for testing purposes, but will be set up to
facilitate development.

The Graphics, Visualization, and Usability (GVU) Center houses a variety of graphics and
multimedia equipment, including high-performance systems from Silicon Graphics, Sun, In-
tel, and Apple. The affiliated Multimedia, Computer Animation, Audio/Video Production,
Usability/Human Computer Interface, Virtual Reality/Environments, Electronic Learning
Communities, Computational Perception, Software Visualization, Biomedical Imaging, Col-
laborative Software, and Future Computing Environments labs provide shared facilities tar-
geting specific research areas. These laboratories’ equipments will be of use in developing
our multimedia projects.

PI Guzdial is the Director of the Collaborative Software Lab, affiliated with GVU. The
Collaborative Software Lab has a bank of ten servers supporting our experimental software
for studying computer-supported collaborative learning. In addition, we have three Linux
workstations, two NT workstations, and two Apple workstations used for development. The
focus of the Collaborative Software Lab is on facilitating multimedia collaboration, so mul-
timedia facilities available include a high-end Alesis keyboard, projection facilities, a Canon
digital video camera, and a Nikon digital camera.

All of the College’s facilities are linked via local area networks which provide a choice
of communications capabilities from 10 to 1000 Mbps. The College’s network employs a
high-performance OC12C (622 Mbps) ATM and GigabitEthernet (1000 Mbps) backbone,
with connectivity to the campus ATM network provided via OC12C. The primary campus
Internet connection is provided by a direct 100 Mbps link to the service provider’s Atlanta
switching center, augmented by OC3C ATM and OC12C connections, respectively, to the
NSF vBNS (very high performance Backbone Network Service) and Abilene research net-
works. Georgia Tech is also leading southern regional gigabit network efforts (SoX.net, the
Southern Crossroads) as part of Internet2.

Additional computing facilities are provided to the Georgia Tech campus by the Insti-
tute’s Office of Information Technology (OIT), including five public-access clusters of Sun,
Apple, and Dell workstations, a collection of Sun multi-processors which are treated as a
single computational resource via login load sharing, and various mainframes.

21

