
Design Process for a Contextualized Non-majors
Computing Course

Mark Guzdial
College of Computing/GVU

Georgia Institute of
Technology

801 Atlantic Drive
Atlanta, Georgia

guzdial@cc.gatech.edu

Andrea Forte
College of Computing/GVU

Georgia Institute of
Technology

801 Atlantic Drive
Atlanta, Georgia

aforte@cc.gatech.edu

Adam Wilson
College of Computing/GVU

Georgia Institute of
Technology

801 Atlantic Drive
Atlanta, Georgia

awilson@cc.gatech.edu

ABSTRACT
Introduction to Media Computation is a new CS1 aimed
especially at non-majors that was taught in Spring 2003
with some success. The course is contextualized around the
theme of manipulating and creating media. Of the 121 stu-
dents who took the course (2/3 female), only three students
dropped (all male), and 89% completed the course with a
grade C or better. We attribute the success of the course to
the use of a domain context and the process used in design-
ing the course, which involved building upon known issues
from the CS education literature and seeking frequent feed-
back from stakeholders.

Categories and Subject Descriptors
K.4 [Computers and Education]: Computer and Infor-
mation Sciences Education

; H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems

General Terms
Experimentation,Design

Keywords
Multimedia, CS1/2, programming, non-majors

1. A SUCCESSFUL NON-MAJORS CS1 COM-
PUTING COURSE

At Georgia Institute of Technology (Georgia Tech), every
incoming student must take a course in computation, includ-
ing programming. Up until recently, the only class available
was our majors-focused CS1 based on the TeachScheme ap-
proach[6], which has become one of the most disliked courses

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE2004’04 Norfolk, Virginia, USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

on campus among the liberal arts, architecture, and manage-
ment students. We saw this requirement as an opportunity
to build toward Alan Perlis’ vision of programming for all
students—as a component of a general, liberal education [8].

The course that we developed, Introduction to Media Com-
putation, is an introduction to computing contextualized
around the theme of manipulating and creating media. Stu-
dents really do program—creating Photoshop-like filters (such
as generating negative and greyscale images), reversing and
splicing sounds, gathering information (like temperature and
news headlines) from Web pages, and creating animations.
Details on the structure and content of the course are avail-
able elsewhere1 [11].

The pilot offering of the course in Spring 2003 was suc-
cessful. 121 students enrolled, 2/3 of whom were women.
Only three students dropped the course (all male). 89% of
the class earned an A, B, or C in the course. 60% of the
respondents on a final survey indicated that they would like
to take a second course on the topic. Students wrote eight
programs (six collaboratively and two individually) creating
or manipulating pictures, sounds, HTML pages, and movies,
with some of their programs reaching 100 lines of code.

We do not believe that media computation is the only con-
text in which students not traditionally attracted to com-
puter science might succeed. For example, we have described
another potential CS1 course organized around information
management in which students might build Web harvesting
programs and data visualizations [12]. The general approach
we are exploring is to use an application domain of informa-
tion technology that is rich in CS concepts and relevant to
the students, then explore introducing computing concepts
in terms of that domain. The Media Computation project
is a trial and model of that approach.

In this paper, we describe how we designed the Media
Computation course as an example of this process. A sketch
of our process follows, and is detailed through the paper.

• Setting objectives: We set objectives for the course
based on the campus requirements for a computing
course, on the national guidelines for CS1, and on the
existing computer science education research literature
about what students found difficult about computer
science.

1See also the development website at http://coweb.cc.
gatech.edu/mediaComp-plan



• Choosing a context : We selected a context that allows
us to meet our objectives and helps students to learn
programming in a useful context.

• Set up feedback process: We sought feedback from fac-
ulty in the majors that we planned to serve, as well as
from students through on-line and pizza lunch forums.

• Define infrastructure: The first stage of defining the
content for the course is to choose the language and
programming environment, which are critical (and some-
times religious) issues. We found that the process of
choosing a language for a non-majors course is as much
about culture and politics as it is about pedagogy.

• Define the course: Finally, we defined lectures, assign-
ments, and all the details of what makes up a course.
Here our decisions were informed by research in the
learning sciences [4].

2. DESIGN PROCESS
In the sections below, we detail what we did in each stage

of the development process for the Media Computation class.
We believe that a similar process could be used to create
other contextualized CS1 courses, and perhaps should be
used, especially when targeting non-CS majors.

2.1 Setting Objectives
The Georgia Tech computing class requirements stated

that the course content had to focus on algorithmic thinking
and about making choices between different data structures
and encodings. Students had to learn to explicitly program
algorithms. We also wanted to meet the guidelines set out
by Computing Curricula 2001 [2] in order to create a CS1
that would work at other institutions.

We explicitly chose not to prepare these students to be
software developers, but instead, to be tool modifiers. We
do not envision these students as professionals ever sitting
down to program at a blank screen. Instead, we imagine
them modifying others’ programs, and combining existing
programs to create new effects. Based on our discussions
with faculty in these majors, these students will rarely if ever
create a program exceeding 100 lines. The implications of
these assumptions and findings are that much of the design
content and code documentation procedures that appear in
many CS1 curricula are less relevant for these students.

We also explicitly chose to aim the class toward attract-
ing students currently not being retained within computer
science, especially women. We used the 2000 AAUW report
[1] and Unlocking the Clubhouse [14] as our main sources.
We set three objectives based on these studies:

• Relevance: We decided that we wanted to make the
course clearly relevant to this audience. We set an ob-
jective to make sure that all the assignments and lec-
tures were relevant to the students’ professional goals
within that context.

One implication is that we decided to discuss issues of
functional decomposition, how computers work, and
even issues of algorithmic complexity and theoretical
limits of computation (e.g., Travelling Salesman and
Halting problems), but at the end of the course. Dur-
ing the first ten weeks of the course, the students are
writing programs to manipulate media, and they begin

to have questions. “Why are my programs slower than
Photoshop?” and “Isn’t there a faster/better way to
write programs like this?” honestly did arise from the
students naturally. At the start of the course, such
content is irrelevant, but at the end of the course, it is
quite relevant. The implication is that students make
many mistakes during those first few weeks that might
have been corrected with better functional decompo-
sition, for example. That is a reasonable tradeoff for
better learning.

• Opportunities for Creativity : Comments made by fe-
male computer science graduates at a recent SIGCSE
session on women in computing suggested they were
surprised to find that computer science offered oppor-
tunities for creativity—it wasn’t obvious in the first
few courses, but was obvious later [20]. Making more
opportunities for creativity in early classes may help
improve retention [1].

• Making the Experience Social : We wanted students to
see computer science as a social activity, not as the aso-
cial lifestyle stereotypically associated with hackers—
a stereotype which has negatively influenced retention
[14].

2.2 Choosing a Context
Most CS1 curricula aim to teach generalized content and

problem-solving skills that can be used in any programming
application. Why should we limit ourselves to talking about
programming only within a given domain? Doesn’t that
place a limitation on how our students understand program-
ming?

Research in the learning sciences suggests that, indeed,
teaching programming tied to a particular domain can lead
to students understanding programming only in terms of
that domain. This is the problem of transfer [4, 5]. That’s
why it’s important to choose a domain that is relevant to
the students. This is not a problem only with students,
though—most software experts only can program well within
domains that they are familiar with [3]. However, there is
strong evidence that without teaching abstract concepts like
programming within a concrete domain, students may not
learn it at all [13]. Given the track record of CS1 with high
failure rates [21], contextualization may offer an important
key to improved learning.

One argument that has been made for teaching program-
ming, especially to non-majors, is to teach general problem-
solving skills (e.g., [18]). Empirical studies of this claim have
shown that we can’t reasonably expect an increase in gen-
eral problem-solving skills after just a single course (about
all that we might expect non-majors to take), but transfer of
specific problem-solving skills can happen [17]. Therefore,
teaching programming in a context where students might
actually use programming is the best way of teaching stu-
dents something in a single course that they might use after
the course has ended.

The goal of contextualization is to give students relevant,
concrete, and understandable examples that they might use
to understand the abstract programming concepts. People
learn from examples [13, 4]. While explaining the abstract
principles can create an advanced organizer for knowledge
[4], people tend to reason from concrete and understandable
experiences [13].



Within this context, we were able to address our learn-
ing objectives. Issues of data structuring and encoding arise
naturally in media computation, e.g., sounds are typically
arrays of samples, while pictures are matrices of pixel ob-
jects, each pixel containing red, green, and blue values. We
were able to address the specifics of a CS1 course in the
details of the course construction.

Media computation is relevant for these students because,
for students not majoring in science or engineering, the
computer is used more for communication than calculation.
These students will spend their professional lives creating
and modifying media. Since all media are becoming digital,
and digital media are manipulated with software, program-
ming is a communications skill for these students. To learn
to program is to learn how the students’ tools work and even
(potentially) how to build their own tools. Our interviews
with students suggest that they accept this argument, and
that makes the class context relevant for them.

We wanted students to have choices in their media for
their homework whenever possible to make assignments more
creative. For example, one assignment requires the creation
of a collage where one image appears multiple times, modi-
fied each time. Students get to pick the required image, and
can include as many other images as they would like.

The media computation context also provided something
to share to encourage a social class setting. We encour-
aged students to post their media creations in a shared Web
space2, our CoWeb tool that we had used in previous com-
puter science courses [10]. We also allowed for collaboration
on most assignments, only designating two as “take-home
exams” on which no collaboration was allowed. We also
used in-class quizzes and exams for assessment, but encour-
aged collaborative studying including exam review pages
and shared answer space on the Web3.

2.3 Set Up Feedback Process
When we first started planning this class, we created on-

line surveys and asked teachers of freshman campus-wide
classes (such as introductory English composition, Calcu-
lus, and Biology) to invite their students to visit the pages
and address the survey questions. Later, as our questions
became more specific, we had follow-up surveys just invit-
ing non-CS majors in our introductory computing courses.
These gave us important mechanisms for gathering impres-
sions and attitudes, and then for bouncing ideas off of stu-
dents. As the class was taking shape, we invited non-CS ma-
jors in our introductory computing courses to attend pizza
lunches where we presented the class and got feedback on
the course. The pizza lunch forums helped create an in-
terest in the course, and that spurred more discussion and
feedback in the on-line surveys.

We also set up an advisory board of eight faculty from
around campus who reviewed materials and give us advice
on what they wanted for their majors. The advisory board
was very helpful in several ways. In several cases, the advi-
sory board told us specific content issues that they wanted
to see in the course, e.g., one faculty advisor told us about
the kinds of graphing that she wanted to see, and another
from Architecture suggested a particular topic that is rel-

2See, for example, http://coweb.cc.gatech.edu/cs1315/
440 for postings from the Collage assignment during Spring
2003.
3See http://coweb.cc.gatech.edu/cs1315/194

evant to architects (the difference between vector and bit-
mapped representations) that he hoped we could include.
The board was also helpful in creating local expertise in the
course when it came time for the various academic units to
vote whether or not to accept the new course for their ma-
jors. The advisory board members were advertised as the
local experts who knew the course better than just what was
in the course proposal, which helped to sell the course to the
rest of the faculty.

2.4 Define Infrastructure
Our first choice for programming language for the course

was Scheme. It’s known as a successful first language for
many students, and we knew that we could build upon an
implementation of Scheme in Squeak [9] that would give us
cross-platform multimedia access. Scheme was resoundingly
rejected by both students and non-CS faculty. Students
saw it as “more of the same”—just like our existing CS1.
The faculty rejected it for more surprising reasons: Because
Scheme is more serious CS. One English faculty member said
that she found Scheme unacceptable simply because it was
the first language taught at MIT, and that was enough for
her to prove that Scheme was unacceptable for her students.

We explored several other languages after that, including
Java and Squeak. Java was unacceptable because we used it
in our upper-level courses. That branded it as too complex
for non-majors. Squeak was simply unknown.

In the end, we settled on Python—in particular, the Jython
dialect, implemented in Java, in which we could access cross-
platform multimedia easily [19]. Python was acceptable for
two reasons:

• First, we could list a number of companies using Python
that non-CS faculty recognized, such as Industrial Light
& Magic and Google. That was quite important to
them, and it does make sense. Non-CS faculty want
some measure of quality of materials and content pro-
vided for their students, but the non-CS faculty may
not have much background in computer science them-
selves. How can they then vet a programming language
for their students? By looking at who else uses it, was
the answer we discovered.

• Second, unlike a more obscure language like Squeak,
there are references to Python everywhere on the In-
ternet, always associated with terms that the faculty
members found consoling: Easy-to-use, Internet-ready,
and simple for beginners.

While the choice of language was limited by external fac-
tors, we were happy for the choice of Python because of the
opportunities it gave us to apply lessons from computer sci-
ence education research in terms of teaching iteration and
conditionals. We know that learning iteration is hard for
students [22], but we also know that if that iteration is ex-
pressed as a set operation, novices find it easier to under-
stand [15, 16]. Because of how Python defines a for loop,
we were able to introduce pixel manipulations as a set op-
eration, e.g., for p in getPixels(picture):. Later, we
introduced a more traditional for loop where an index vari-
able varies across a range of integers, but only after students
were successfully programming and dealing with iteration at
an easier stage.

Once we had chosen our language, we needed to provide
tools for this language. We decided to build two sets of



Figure 1: JES programming environment—program
area above, and command area below

tools. The first would be a development environment for
the students, JES (Jython Environment for Students) be-
cause no such simple IDE existed for Jython. Second, we
developed a set of media tools (called MediaTools, imple-
mented in Squeak) to enable students to look at sounds at
the sample level, record new sounds, playback movies, and
look at individual pixels in pictures. We viewed the Media-
Tools as important debugging tools for the students.

We modelled JES after the successful Dr. Scheme [6]
tools. JES only allowed one open file at a time in the Pro-
gram Area, and the interpreter was always available for test-
ing and exploration in the Command Area (Figure 1). One
of our slogans for the development of JES was “No magic.”
We wanted JES to be simple to understand. For example,
there were no agents to help critique the code, nor visual-
ization tools, nor special debugging modes.

That said, we have found weaknesses in our model. The
MediaTools were never used as debugging aids as determined
from observations of students while programming. Sitting in
a separate application, the MediaTools were simply ignored
while students worked on their programs. We have been
working to provide some of the media exploration function-
ality in JES. We have also found it difficult to phrase error
messages in a way that makes sense for these students. We
are testing a new set of error messages during the Fall 2003
semester with 305 students.

2.5 Building the Course
We developed the course lectures and assignments to achieve

the objectives within the given context and infrastructure.
The syllabus4 for the course walks through each media type,
with some repetition of concepts so that conditionals and
loops can be re-visited in different contexts.

For example, we introduce pictures as a media type in
week 2, including psychophysics issues relevant to media
computation (why don’t we see 1024x768 dots on the screen?),
looping to change colors with the set-oriented for loop,
conditionals to replace specific colors, then introducing a
for loop with index numbers to implement mirroring, ro-
tating, cropping, and scaling. Later, in week 4, we in-
troduce sound as a media type, including psychophysics
(how human hearing limitations make CD recording pos-
sible), looping to manipulate volume (with for sample in

getSamples(sound):, then indexing by index numbers to do

4The syllabus for the course can be found at http://coweb.
cc.gatech.edu/cs1315/24 and is summarized in [11].

splicing and reversing of sounds.
We explicitly decided not to teach the else variation of

the if statement. CS Ed research points out that condition-
als are difficult to read [7, 22]. By removing the else and its
implicit test, we require all tests to be explicit and thus more
readable. We do not address the issue of inefficiency—it’s
only a distraction in a first course [1, 14].

We do, however, address the encoding issues, such as the
number of bits per red, green, and blue channel in the pixel,
and the theoretical number of colors that such an encoding
provides. We consider this a relevant technical detail since
representations of color are part of the communications fo-
cus of the course, and it allowed us to address the Institute
requirements of discussing encoding and data structuring.
We similarly discuss the number of bits in a sound sam-
ple and sampling rate, and relate that to the limitations of
sound recording (e.g., the Nyquist theorem).

Originally, we planned to discuss sound first, before pic-
tures, because the simple one-dimensional array would be
easier to manipulate for students than the two-dimensional
matrix of pixels. We offered a one day workshop for faculty
interested in trying out the course where we used this order-
ing, and found that the results of the sound examples were
too subtle for the students (faculty members). When we
moved to pictures, the faculty workshop participants found
it much easier to understand. We switched to pictures-first
in the class since it gave visual feedback.

In end of the term surveys, however, some students told
us that they preferred sound to pictures, for the simplicity
and to match their personal interests. This result confirmed
our decision to essentially replicate the progression from set-
based for, to conditionals, and finally to integer-indexed
for in both pictures and sounds, because it allows students
to revisit the same issues in different media and to match
different student interests.

Student programming assignments built upon the media
in relevant communications tasks. The third programming
assignment required creation of a collage. A student pro-
gramming assignment during the week when text manipu-
lation and HTML were introduced was to write a function
to generate an HTML index page for all sound and picture
files in a given directory. The students’ final programming
assignment (during week 14) was to write a program to fetch
the index page of http://www.cnn.com, find the top three
headlines from the page, then generate a ticker-tape movie
of those headlines.

2.6 Evaluate
Evaluating a contextualized CS1 requires a somewhat broader

focus than considering only whether students learn the course
objectives. An evaluation should also consider student atti-
tudes and motivations, e.g., does the contextualization work
to engage students and offer examples that make the ab-
stractions easier to understand? We evaluated the course
with surveys at three points during the term and interviews
with volunteer women in the class. We also undertook ob-
servations of students using JES to determine usability and
strategy errors.

We learned that the class was perceived as being rele-
vant by the students, and that students were motivated to
want to take more classes like this one, though students still
reported being dubious about taking more traditional com-
puter science courses. We also learned of the problems with



JES and MediaTools through the observations.
One of the most interesting evaluation lessons was the

importance of the social aspect of the course to the students.
When asked on a final survey what was the most important
aspect of the class not to change as we went forward with
revising the class, nearly 20% mentioned our collaborative
CoWeb and over 20% mentioned “collaboration” in general.

3. CONCLUSIONS
The process that we describe in this paper is not specific to

designing a Media Computation course for non-CS majors.
Rather, we feel that this process is the right kind of pro-
cess to follow whenever creating a CS course for non-majors.
Setting objectives at the start of the process is important.
Those objectives helped us determine our context in me-
dia computation, though another context may have been
perceived to be just as relevant by the students. Setting
up a feedback process is absolutely critical, especially when
the target audience is not one’s own majors. Infrastructure
questions, as we learned, cannot be addressed purely from
theoretical or pedagogical reasons—there are important cul-
tural and political questions to address, especially when the
students come from other disciplines. The evaluation is im-
portant to test one’s assumptions and where the weaknesses
still are in the design of the course.

The Media Computation course is being continued and
grown at Georgia Tech, with over 300 students in Fall 2003
and a planned 450 students in Spring 2004. It is also start-
ing to be adopted elsewhere, with two sections in Fall 2003
at Gainesville College, a two-year institution in Northern
Georgia.

4. ACKNOWLEDGMENTS
This research is supported in part by grants from the

National Science Foundation (CISE EI program and DUE
CCLI program), from the Al West Fund at Georgia Tech,
and by the College of Computing and GVU Center. We
wish to thank all the students who helped create JES and
the Media Computation class, and all the students in the
class who volunteered to participate in our studies.

5. REFERENCES
[1] AAUW. Tech-Savvy: Educating Girls in the New

Computer Age. American Association of University
Women Education Foundation, New York, 2000.

[2] ACM/IEEE. Computing Curriculum 2001.
http: // www. acm. org/ sigcse/ cc2001 , 2001.

[3] B. Adelson and E. Soloway. The role of domain
experience in software design. IEEE Transactions on
Software Engineering, SE-11(11):1351–1360, 1985.

[4] J. D. Bransford, A. L. Brown, and R. R. Cocking,
editors. How People Learn: Brain, Mind, Experience,
and School. National Academy Press, Washington,
D.C., 2000.

[5] J. T. Bruer. Schools for Thought: A Science of
Learning in the Classroom. MIT Press, Cambridge,
MA, 1993.

[6] M. Felleisen, R. B. Findler, M. Flatt, and
S. Krishnamurthi. How to Design Programs: An
Introduction to Programming and Computing. MIT
Press, Cambridge, MA, 2001.

[7] T. R. G. Green. Conditional program statements and
comprehensibility to professional programmers.
Journal of Occupational Psychology, 50:93–109, 1977.

[8] M. Greenberger. Computers and the World of the
Future. Transcribed recordings of lectures held at the
Sloan School of Business Administration, April, 1961.
MIT Press, Cambridge, MA, 1962.

[9] M. Guzdial. Squeak: Object-oriented design with
Multimedia Applications. Prentice-Hall, Englewood,
NJ, 2001.

[10] M. Guzdial. Use of collaborative multimedia in
computer science classes. In Proceedings of the 2001
Integrating Technology into Computer Science
Education Conference. ACM, Canterbury, UK, 2001.

[11] M. Guzdial. A media computation course for
non-majors. In Proceedings of the Innovation and
Technology in Computer Science Education (ITiCSE)
2003 Conference, pages 104–108, New York, 2003.
ACM, ACM.

[12] M. Guzdial and E. Soloway. Computer science is more
important than calculus: The challenge of living up to
our potential. Inroads – The SIGCSE Bulletin,
35(2):5–8, June 2003.

[13] J. Kolodner. Case Based Reasoning. Morgan
Kaufmann Publishers, San Mateo, CA, 1993.

[14] J. Margolis and A. Fisher. Unlocking the Clubhouse:
Women in Computing. MIT Press, Cambridge, MA,
2002.

[15] L. A. Miller. Programming by non-programmers.
International Journal of Man-Machine Studies,
6:237–260, 1974.

[16] L. A. Miller. Natural language programming: Styles,
strategies, and contrasts. IBM Systems Journal,
20(2):184–215, 1981.

[17] D. B. Palumbo. Programming
language/problem-solving research: A review of
relevant issues. Review of Educational Research,
60(1):65–89, 1990.

[18] S. Papert. Mindstorms: Children, computers, and
powerful ideas. Basic Books, New York, NY, 1980.

[19] S. Pedroni and N. Rappin. Jython Essentials. O’Reilly
and Associates, 2002.

[20] S. L. Pfleeger, P. Teller, S. E. Castaneda, M. Wilson,
and R. Lindley. Increasing the enrollment of women in
computer science. In R. McCauley and J. Gersting,
editors, The Proceedings of the Thirty-second SIGCSE
Technical Symposium on Computer Science Education,
pages 386–387. ACM Press, New York, 2001.

[21] H. Roumani. Design guidelines for the lab component
of objects-first CS1. In D. Knox, editor, The
Proceedings of the Thirty-third SIGCSE Technical
Symposium on Computer Science Education, 2002,
pages 222–226. ACM, New York, 2002.

[22] E. Soloway, J. Bonar, and K. Ehrlich. Cognitive
strategies and looping constructs: An empirical study.
Communications of the ACM, 26(11):853–860, 1983.


