
Media Computation to Motivate Women and Non-Majors in

Computer Science

PI: Mark Guzdial

Co-PI: Blair MacIntyre

June 17, 2003

Project Summary
The problem being addressed by this proposal is the disinterest in computer science

exhibited by large groups of students, especially non-CS-majors and women—a particular
problem at institutions like Georgia Tech where an introductory computing course is required.

We just had a trial offering of a course in Introduction to Media Computation aimed at
non-CS-majors. The course was quite successful at its goals. 121 students enrolled – 2/3
women. 89% of the class earned an A, B, or C in the course. 60% of the respondents on a
final survey indicated that they would like to take a second course on the topic. We have
gathered external interest in the course, including a trial offering at a 2-year college and a
book contract.

We now propose (a) growing the course to a full-scale rate (of more than 600 students
per year) with multiple teachers and at other institutions, (b) assessing the course more
objectively, (c) introducing a longitudinal assessment to study how the students use their
new knowledge and interests, and (d) introduce a second course to make Media Computation
a viable path into computer science.

Intellectual Merit : The intellectual merit of the proposal is to scale up, study, and further
develop a course holding promise for interesting women and non-majors in computer science.

Broader Impacts : The potential broader impacts is to demonstrate a viable alternative
development path for introductory computer science courses that can appeal to students not
usually interested in computer sciences.

Media Computation to Motivate Women and Non-Majors in

Computer Science

Contents

1 Goal: A New Route to Computer Science 1

2 Results from Proof-of-Concept Trial 5
2.1 Implementation of the Course . 6

2.1.1 Curriculum . 8
2.1.2 Technology Development . 11

2.2 Evaluation Methods and Results . 14
2.2.1 Evaluation of Retention . 16
2.2.2 Evaluation of Motivation . 17
2.2.3 Evaluation of Learning . 20

2.3 Dissemination and Self-Sustained Distribution 22

3 Project Plan 23
3.1 Development Plan: Completing one course and creating a path 24

3.1.1 Creating a path . 25
3.1.2 Media Computation for majors . 26

3.2 More objective, credible evaluation . 27
3.2.1 Longitudinal evaluation . 28

3.3 Dissemination and self-sustaining distribution 29

4 Conclusion: Deliverables 30

5 Budget Justification 34

6 Facilities 35

Media Computation to Motivate Women and Non-Majors in

Computer Science

1 Goal: A New Route to Computer Science

Computer science departments are not currently successful at reaching a wide range of stu-

dents who are taking introductory computer science. The evidence for this statement in-

cludes international studies of programming performance [19], declining retention rates [11],

and failure rates sometimes as high as 50% [28]. This comes at a time when the need for

Information Technology (IT) professionals is growing [8].

At Georgia Institute of Technology (“Georgia Tech”), all students are required to take

an introductory course in computing, including programming skills. Our traditional CS1

course, the only one that met the requirement before our new course1, is undoubtedly one of

the most unpopular courses on campus, especially among those not in explicitly computing-

related fields. While this is certainly a problem for the College of Computing at Georgia

Tech (where the course has its academic home), it points towards a larger problem for the

field.

Alan Perlis in April 1961 made perhaps the first argument that programming should be

part of a liberal education for all students. If Calculus is the study of rates, and that’s

important enough to be part of the liberal education, then so should computer science.

Perlis argued that computer science is the study of processes, which is certainly relevant

to even more fields than those concerned with rates. The argument has been echoed and

1A second course for Engineering students only is at a prototype stage.

1

strengthened over the intervening years—by Seymour Papert arguing for a programming as

a way of learning about learning [23][24], to Andrea diSessa’s arguments for “computational

literacy” as a critical component of many fields [6]. As long as non-CS-majors have such a

dislike for computing, the hope is diminished for computer science as an accepted part of a

liberal education and for computing generally to meet its potential for intellectual impact

across the range of disciplines, not just in computational science and engineering.

Introductory computer science classes are also not meeting the needs of women. The rates

at which women take computer science classes are falling. While the factors causing women

to avoid computer science (and IT careers in general) are multi-faceted, the curriculum does

play a significant role [18]. A report in 2000 by the American Association of University

Women [1] suggested that part of the problem, at least for women, is that computer science

courses are, frankly, too boring. Specifically, they claim that computer science courses are

“overly technical” with little room for “tinkering.” At a session on increasing enrollment

of women in computer science at the latest ACM SIGCSE conference, speakers reported

that women who pursued computer science degrees were surprised at how much “creativity”

there was in later computer science courses—introductory courses did not highlight that

aspect of CS [26]. Additionally, women undergraduate CS students tend to be interested in

real applications of computing, as opposed to simply computing for its own sake [18][1]. If

we can address the reasons why women are avoiding computer science, we may be able to

interest more males, too—all those currently expressing disinterest in computing. “Women in

engineering programs are kind of like ‘canaries in the coal mine”’, said Stephen W. Director,

Chair of the Engineering Dean’s council. “If women do well in a program, most likely

2

everyone else will also do well in the same type of program.” 2

The focus of this proposal is to use multimedia construction projects as the do-

main of assignments and lectures in an introductory computer science course,

explicitly aimed at non-CS-majors and women, to engage such students in com-

puter science. The course, Introduction to Media Computation, was trialed in Spring 2003

with 120 students, 2/3 women, with none of the students majoring in CS or Engineering.

These students were from the College of Architecture, Ivan Allen College of the Liberal Arts,

Dupree College of Management, and the School of Biology. The hypotheses of this effort

are that this course will demonstrate: (1) Improved student retention, (2) better student

attitudes toward computer science, and (3) better student learning of computer science.

The course was quite successful at its goals. 121 students enrolled – 2/3 women. 89%

of the class earned an A, B, or C in the course. 60% of the respondents on a final sur-

vey indicated that they would like to take a second course on the topic. Students wrote

eight programs (six collaboratively and two individually) creating or manipulating pictures,

sounds, HTML pages, and movies, with some of their programs reaching 100 lines of code.

We have gathered external interest in the course, including a trial offering at a 2-year college

(Gainesville College) and a book contract with Prentice-Hall.

We do not believe that media computation is the only context in which students not

traditionally attracted to computer science might succeed. For example, we have described

another potential CS1 course organized around information management in which students

2Testimony by Stephen W. Director, Chair, Engineering Dean’s Council, American Society of Engineering
Education, to the Commission on the Advancement of Women and Minorities in Science, Engineering, and
Technology Development, Washington, DC. July 20, 1999

3

might build Web harvesting programs and data visualizations [14]. The general approach

we are exploring is to use an application domain of information technology that is rich in CS

concepts and relevant to the students, then explore introducing computing concepts in terms

of that domain. The Media Computation project is a trial and model of that approach.

In this proposal, we describe our proof-of-concept trial offering of the course (funded by

NSF CCLI grant #0231176) and its evaluation results. We then describe our proposed plans

under this project:

• To continue development of the course as it ramps up to some 600 students/term, has

multiple teachers, and is adopted by more institutions. In addition, we are developing

Java-based materials to be used in more traditional CS courses.

• To assess the course more objectively. Dr. Donna Llewellyn, Director of Georgia Tech’s

Center for Enhancement of Teaching and Learning, has agreed to be the external

evaluator of the project.

• To explore the impact of the course on the students longitudinally. We want to learn (a)

how the course impacts the students’ further exploration of computer science (e.g., do

they take more CS classes?) and (b) how the course impacts their use of computation

in their own disciplines? For example, might we expect students to learn Photoshop

better or more easily once they understand better what Photoshop filters are doing?

• Finally, we plan to develop a second course to make Media Computation a viable path

into the degree. Currently, students who take Introduction to Media Computation and

are interested in taking more computing need to start over with our traditional CS1.

4

While the Media Computation course meets the requirements of a standard CS1 [2],

our traditional CS1 covers most of a CS1 and CS2 curriculum. We’d like to create

a second course so that students can then enter into the rest of the CS curriculum

without starting over.

2 Results from Proof-of-Concept Trial

Introduction to Media Computation (CS1315 at Georgia Tech) is our new introduction to

computation and programming contextualized around creation and manipulation of media.

The explicit goal is to interest groups typically disinterested in such courses (especially

women and non-CS majors). The course was offered as a pilot in Spring 2003.

The course was a success by most measures.

• 89% of the students who enrolled earned an A, B, or C. Our “best-practice” point of

comparison in the literature had a 66.4% success rate for non-majors in a specialized

CS1 [21].

• We attempted direct comparisons on problems on exams between our traditional CS1,

a prototype engineering CS1 course, and the Media Computation class. We found that

such comparisons are fraught with difficulties. Nonetheless, student performance in

a problem described in the literature on CS education was comparable between the

Media Computation and traditional CS1 students.

• Students found the course relevant, and the majority of respondents to a final survey

indicated that they would like to take a second course if it were offered.

5

• The course met its goal of getting female students to find CS interesting, relevant, and

creative where they hadn’t previously.

Our assessment of the course, and the comparison with the other courses, went beyond

measures of success to explore how and why the class was successful, and who was successful.

• Collaboration may have played as much a role in the success of CS1315 as the context.

When asked the open question on the final survey, “What absolutely must not change

about the course?”, nearly 20% of the Media Computation student respondents named

the collaboration tool CoWeb and over 20% mentioned collaboration in general.

• The technology built for the course was more effective than we anticipated, given the

pilot nature of the course and the software.

• In general, students from Georgia Tech’s Ivan Allen College for Liberal Arts were the

most positive about the course (e.g., had the largest percentage of students who would

recommend it to others, who planned to use programming in the future, and who

planned to take further CS courses).

2.1 Implementation of the Course

The choice of multimedia as the course context in this project allows us to address several

of the issues identified as critical for increasing the number of women in computing. Sev-

eral of the academic units at Georgia Tech emphasize that multimedia literacy is a critical

component of educated professionals in the future [31]. Multimedia is a real applications

6

domain—especially true at Georgia Tech, with Turner Broadcasting, CNN, and the Cartoon

Network based within a few miles of campus. Multimedia is clearly not computing for its

own sake. Further, the multimedia approach allows us to give students assignments that are

open-ended and creative. The emphasis on multimedia allows the class to be more concrete,

more relevant, and more creative than traditional CS1 approaches. The premises and core

concepts of the Media Computation course are:

• All media are being published today in a digital format. Digital formats are amenable

to manipulation, creation, analysis, and transformation by computer. Text can be

interpreted, numbers can be transformed into graphs, video images can be merged,

and sounds can be created. We call these activities media computation.

• Software is the tool for manipulating digital media. Knowing how to program thus

becomes a communications skill. If someone wants to say something that her tools do

not support, knowing how to program affords the creation of the desired statement.

• Core computer science concepts can be introduced through media computation. For

example, programs can get large and cumbersome. Abstraction is our tool for managing

program complexity and allowing programs to become even larger yet more flexible.

However, computing has limitations. There are some programs that cannot complete

in our lifetime, and knowing that these limitations exist is important for technological

professionals.

7

We used the programming language Jython for the course. Jython3 is a variation of the

Python4 programming language which has been designed to be easily used by novices and

non-technical users. Jython is a variation of Python written in Java. Jython can instantiate

and subclass Java classes, and Jython can be used for virtually anything for which Java

can be used. We considered other languages (e.g., Java and Scheme), but selected Jython

based on survey responses from students and teachers [12]. Jython’s design is based on the

research findings on studying novice programmers (e.g., [29], [20], [22]).

2.1.1 Curriculum

The semester outline of the course appears below. The course was offered as a three credit

hour course with five weeklong lab activities, six homeworks, three in-class examinations,

and two take-home examinations (programming assignments) with optional recitations. The

general structure of the course was 11 weeks of media-relevant material (e.g., sound, pictures,

movies, text manipulation, network, and database), with four weeks of computer science that

answers questions that arose during the course of the 11 weeks.

• Week 1: Introduction to the course and the argument for why media computation.

Introduction to variables and functions, in the context of playing sounds and showing

pictures.

• Weeks 2–3: Pictures as a media type, including psychophysics (why don’t we see

1024x768 dots on the screen?), looping to change colors with a simplified for loop

3http://www.jython.org
4http://www.python.org

8

(Figure 1), conditionals to replace specific colors, then indexing by index numbers to

implement mirroring, rotating, cropping, and scaling.

def greyScale(picture):

for p in getPixels(picture):

intensity = (getRed(p)+getGreen(p)+getBlue(p))/3

setColor(p,makeColor(intensity,intensity,intensity))

Figure 1: An example Jython program using our API to convert a picture to greyscale

• Weeks 4–6: Sound as a media type, including psychophysics (how human hearing limi-

tations make MP3 compression possible), looping to manipulate volume, then indexing

by index numbers to do splicing and reversing of sounds. Include discussion of how to

debug and how to design a program, as those issues arise. One lecture on additive and

FM sound synthesis.

• Week 7: Text as a media type: Searching for text, composing text, reading text from

a file and writing it to a file. An example program parses out the temperature from a

downloaded weather page.

• Week 8: Networks, including making the temperature-finding program work from the

“live” Web page. Introduction to HTML.

• Week 9: Discuss media transitions. Moving from sound to text and back to sound

again. Using Excel to manipulate media after converting it to text.

• Week 10: Introduction to databases: Storing media in databases, using databases in

generating HTML.

9

• Week 11: Movies: How persistence of vision makes animations and movies possible,

generating frames using the various techniques described earlier in the semester, ma-

nipulating whole directories of files.

• Week 12: “Can’t we do this any faster? Why is Photoshop faster than Python?”

Introduction to how a computer works (e.g., machine language), and the difference

between an interpreter and a compiler. Algorithmic complexity and the limits of

computation.

• Week 13: “Can we do this any easier?” Decomposing functions, modularity, and

functional programming (map, reduce, filter, and simple recursion).

• Week 14: “Can’t we do this any easier?” Introduction to objects and classes.

• Week 15: “What do other programming languages look like?” Brief overview of

JavaScript and Squeak.

Student homework assignments started with simple Photoshop-style filters (Figure 2)

(average score 92% with a standard deviation of 22.1). We moved on to sound, and students’

first take-home exam was to splice and reverse sounds (Figure 3) (average score 92.1% with

a standard deviation of 15.3). Some of the assignments invited creativity, such as the third

homework which required creation of a collage, but without concern for what was in the

collage (average score 86.3% standard deviation 26.0). These homework results became

sizable–the average number of lines of code (of students who gave us consent to look at

their homework results) was 64 with a standard deviation of 32.4. The largest was 166

10

Write a program named hw1 to accept a picture as input, and change its pixels as follows:

• Set the green component to 125% of its current value

• Decrease the blue by 25%

• Decrease the red by 75%

Figure 2: First homework assignment by Media Computation students

At the Feb. 7 class, we recorded this sound thisisatest2.wav (“This is a test.”). Using
MediaTools, we found the end points for each of the words in the sound: (Table omitted)
Write a function backSpliced that splices the last word (“test”) into the front of the word,
but backwards, so that the result is:“Tset is a test.”

Figure 3: First take-home exam assignment by Media Computation students

lines of code. Several students posted their collages in the shared collaboration space as a

creative and social space (Figure 4). The final homework assignment involved programmed

Web access and creation of animations (Figure 5) (average score 84.6% standard deviation

29.2). Final exam questions spanned a wide range of computing concepts, including issues

of networking, databases, and computing theory.

2.1.2 Technology Development

Three different software technology developments were used in the course:

• There was no Jython development environment when we started this project. We

have developed JES (Jython Environment for Students), modelling it after the pop-

ular DrScheme environment [7]. Development of JES also included development of a

simplified API for accessing the Java media library. We were pleased to receive no

reports of crashes or failures of JES over the course of the semester.

11

Figure 4: Four student collages shared from the third homework assignment

http://www.cnn.com is a popular news site. You are to write a function (named “hw6”)
that will input a directory as a string then:

• Visit http://www.cnn.com and pick out the top three news stories headlines in the
More News section.

• Create a ticker tape movie on the 640x480 canvas of all three news stories. Have
one come across at y=100, another at y=200, and the third at y=300. Generate 100
frames, and don’t have the ticker tapes move more than 5 pixels per frame. Store the
frames to files in the input directory.

Figure 5: Final homework assignment by Media Computation students

12

• Students also needed tools for exploring media: Recording and viewing sounds (and

FFTs), investigating the RGB values of individual pixels, and assembling movies and

bursting movies into individual frames. We created a cross-platform MediaTools based

on Squeak [9].

• We used our existing collaboration technology, CoWeb [13, 10], to support student

question asking and sharing of media artifacts. The constructionist theory of learning

suggests that the creation of public artifacts creates a strong potential for learning [25].

We have had good success in the past using our collaboration tools to support sharing

of multimedia artifacts to encourage critique and motivate learning [15][5][33].

We have pending a proposal to the NSF CISE Educational Innovations program to fund

further development of the technology. In particular, we hope to merge the MediaTools

and JES functionalities so that the MediaTools become effective as debugging tools. In

our observations of students using JES and MediaTools, virtually no use of MediaTools

occurred at all. Currently, students create pictures and sounds, but to study how individual

pixel values get set or to see a visualization of the generated sound (e.g., were any samples

generated, or is the volume too low to be heard?), students have to save the media out to files,

then start up MediaTools and open them there. We hope to integrate media exploration into

the programming environment so that students can explore more easily their output media.

CoWeb was particularly successful in the class.The students made extensive use of a

collaborative website 5. For example, each of the assignments (homework, labs, and take-

5at http://coweb.cc.gatech.edu/cs1315

13

home exams) had Q&A pages associated with them where extensive discussions took place.

For each exam, a review page was posted where students could answer sample questions, ask

questions about the questions or concepts, and critique each other’s remarks. Each week, a

new general “Comment on the week” page was put up for general feedback and discussion,

with leading questions on issues in the course.

The CoWeb became a central place for question-asking and discussion. We know that

that’s a critical role in CS1, since comfort in asking questions has been highly correlated with

attrition in CS1 [32]. From interviews, we know that the CoWeb increased that comfort.

Q. Have you consistently felt comfortable asking questions? Student D:

Not at the beginning. One on one, yes. In lecture, not at the beginning because

I felt that I was so far behind other people and the ones who were putting things

on the web were the ones who really know stuff. But now I have no problem.

Q. Do you think the CoWeb is beneficial? Student D: Yes. And there’s

no reason to feel uncomfortable because if you feel dumb, just don’t put your

name at the end! I did that a few times.

2.2 Evaluation Methods and Results

Our evaluation effort had three hypotheses: (1) the prototype course will improve student

retention, especially among non-CS-majors and women; (2) the prototype course will improve

student motivation toward computer science; and (3) the prototype course will lead to good

student learning, perhaps better than in a comparable course.

14

Our evaluation effort was conducted under the review of the Georgia Tech Human Sub-

jects Review Board, to whom this proposal and all our instruments were submitted for review

as they were developed. Students were informed about the research project, the instruments,

how they might be impacted, and potential risks. Assessment was organized such that the

PI and the assessment team6 designed the assessment, but the assessment team gathered

and analyzed all data apart from the PI, since he was also the teacher of the course.

We gathered and analyzed several sources of data.

• We had demographic data which we used to address the retention question. We had

course work from consenting students.

• We took surveys during the first week of the term, midway through the term, and in the

last week of the term. We used the same surveys in two other classes: A section of our

traditional CS1 course (n = 127), and a section of the prototype Engineering-oriented

CS1 (n = 75).

• We attempted to develop and distribute polymorphic problems (same problem, but

changed in language or other minor details for the course context) that were offered

in all three CS1’s on exams–for example, on computing an average test grade and

determining an appropriate letter grade, and on the infamous Rainfall Problem [30].

• We interviewed a sample of female students in the Media Computation class on their

attitudes toward computer science and the course. We had seven interviews in total–

6Graduate research assistants Andrea Forte and Rachel Fithian, and undergraduate research assistant
Lauren Rich

15

three early in the semester, and all three were interviewed again at the end of the term

along with another student at the end.

• We also observed volunteer students working on their homework so that we could have

a sense of strategies and problems, especially with the technology. There were 11

observation sessions, including 6 with just one (male) student to track development.

The other observation sessions were all with female students.

2.2.1 Evaluation of Retention

Retention rate is defined operationally in this study in two ways. The completion retention

rate is defined as the ratio of the number of students completing the course to the number of

students enrolled in the course. The course success retention rate is defined as the ratio of

the number of students completing the course with a C or better to the number of students

who enrolled in the course. (Several academic units at Georgia Tech require students to

re-take courses if they received a D.)

The literature on both rates is rather negative. Completion rates of less than 30% is

not uncommon in CS1 [28]. In an email survey on the ACM SIGCSE members list, course

success retention rates of less than 50% were reported at several schools [11]. The “best-

practice” comparison that we have for non-majors, in a pair-programming CS1 class, had a

66.4% course success retention rate [21] (in that study, compared to a non-majors success

rate of 55.9% in a traditional CS1). Our traditional CS class typically does remarkably well

in comparison with the literature, with a completion retention rate of 80-90% and a course

16

success retention rate better than 70%, so it offers a high standard to meet.

Our course completion retention rate for Spring 2003 was 98%. Our course success

retention rate was 89%. During that semester, our comparison section of our traditional

CS1 had a 57.1% course success rate.

2.2.2 Evaluation of Motivation

The stated goal for the prototype course was to address the disinterest in computer sci-

ence, especially among non-CS-majors and women. We were concerned with three kinds of

motivational factors:

• Do students find the current course engaging? An engaging course is more likely to

lead to learning [17] [27] [3].

• Do students find computer science engaging?

• Would students consider taking future computer science courses? While the goal of

the prototype course is to simply address issues of disinterest, positive response to

this question would suggest that the media computation (“data-first”) approach has

potential for attracting potential CS majors.

When asked what they like about the class in the midterm survey, the students affirm that

we’re succeeding at creating a course that students recognize for its relevance, particularly

for non-CS majors:

• “I like the feeling when I finally get something to work.”

17

• “Very applicable to everyday life.”

• “I dreaded CS, but ALL of the topics thus far have been applicable to my future career

(& personal) plans- there isn’t anything I don’t like about this class!!!”

• “The professor answers questions in class and online and is concerned about our success

in the class. He also seems to understand that most of us are not engineers and

most likely won’t do straight programming in the future- just the way of thinking is

important.”

• “I think that we’re doing things that I could actually use as an architecture major–I

like dealing with pictures and sounds.

When we asked students “What is something interesting, surprising, or useful that you

learned?” we found that students appreciated the relevance of the course and even found

the computer science interesting (again, all female respondents):

• “The most useful things I have learned are the basics about computers and pic-

tures/sound...interesting and useful to real life applications.”

• “Just general concepts about programming. It’s pretty logical, sort of like in math, so

it’s understandable.”

• “Programming is fun and ANYONE can do it!”

Students who have positive attitudes about CS and who enjoy computing are likely to

continue in computer science. While it is too early to tell what CS courses Media Com-

putation students will take in the future, we asked on the final survey whether or not they

18

would be interested in taking a more advanced media computation course. 60% of the female

respondents answered that they would take a second course (overall course average of 63%).

Surprisingly, when asked on the same survey whether or not they plan to take more CS

courses, only 6% of those same female respondents responded affirmatively (9.3% overall).

Why would 60% be willing to take media computation, while only 6% planned to take

more CS courses? One possible explanation is that there is currently no advanced media

computation course, and, given the current selection of CS courses, Media Computation

students don’t see a compelling reason to take more. Another might be interpretation of the

question: Students may interpret “CS courses” as “traditional CS courses” as opposed to

specialized courses like Media Computation.

Students indicated that the course changed their attitudes about programming in general,

into something that they could imagine themselves doing in the future. On the final survey,

30% of the students indicated that they believed that they will program again in the future.

Table 1 looks at these final survey results by College of major. In interviews, students talk

about programming in the future.

Interviewer: What do you think about the homework galleries on the

CoWeb?

Student A: I don’t ever look at it until after I’m done, I have a thing about

not wanting to copy someone else’s ideas. I just wish I had more time to play

around with that and make neat effects. But JES will be on my computer forever,

so. . . that’s the nice thing about this class is that you could go as deep into the

homework as you wanted. So, I’d turn it in and then me and my roommate

would do more after to see what we could do with it.

19

N
respon-
dents.

Will use
program-
ming
again in
the future.

Feel they
learned to
program.

Plan to
take more
CS.

Would rec-
ommend
1315 to
friends
who didn’t
have to
take it.

Architecture 8 12.5% 50.0% 0.0% 37.5%
Ivan Allen (lib-
eral arts)

24 41.7% 91.7% 17.4% 82.6%

Management 19 21.1% 68.4% 5.3% 68.4%
Science 3 33.0% 100% 0.0% 50.0%

Table 1: Media Computation student responses on final survey by College of major

Many students were clearly excited about the potential for using media in ways they had

not previously encountered. Two students reported on the midterm survey that they had

written programs to reverse popular songs, in order to find out if there were hidden messages.

One student reported using Python to create an online scrapbook. Students often turned in

homework assignments that included far more complex code than was required.

2.2.3 Evaluation of Learning

We developed several problems that we attempted to put on all three courses’ exams and

quizzes. Unfortunately, logistical considerations such as different rates of development and

sequencing of concepts in each course and different times and numbers of exams and quizzes

prevented us from distributing the problems as uniformly as we would have liked. In addition,

those questions that did make it onto multiple exams were modified by the individual course

instructors and teaching assistant to such an extent that it is difficult to compare them. In

general, we found that the different programming languages used, the differences in directions

20

given on exams, and the kinds of examples provided on the exams created unique conditions

for each course and rendered the results fundamentally incomparable. For example, the most

common problem among the Engineering students’ was mishandling of ELSE clauses. Media

Computation students never used an ELSE clause. It’s difficult to compare these results in

terms of learning.

A more reliable indicator of the Media Computation students’ programming achievement

could be found in students’ attempt to solve a classically difficult problem, such as The

Rainfall Problem. The rainfall problem is: “Write a program that repeatedly reads in positive

integers, until it reads the integer 99999. After seeing 99999, it should print out the average.”

At Yale in the mid-80’s, Elliot Soloway gave this problem to several groups of students [30].

Of first semester CS1 students, only 14% of the students got it correct (completely correct

other than syntactic errors). Only 36% of CS2 students got it correct, and only 69% of

students in a junior-senior level systems programming course. This was one of the first

empirical demonstrations that learning about programming was less than what we might

have expected. (This finding was replicated in [19].)

Our students were not directly comparable to the Yale students. For example, we hadn’t

covered the same things (e.g., at the time of the exam, they had only seen WHILE once in

class), and we had to change the wording of the problem accordingly. Nonetheless, 14 people

out of 113 (12%) who took the test “got it”–by Soloway’s standards that means they had

a correct solution (aside from syntactic errors). With partial credit, the average on the

problem was 45%.

The traditional CS1 also included a variation of the rainfall problem on two of their tests,

21

but we were unable to get the raw problems to code ourselves and compare. On the first

test (which stipulated the use of tail recursion), the result was an average score of 53%. On

the second test (which was open to any kind of iteration), the result was an average score of

60%.

Overall, the rainfall problem continues to be a hard problem for CS1 students. These

results don’t show that the Media Computation students are learning programming remark-

ably well. But they do show that these students aren’t out of the ballpark either. The

bottomline is that it’s still an open question how much the Media Computation students

learned about programming and how they compare to students in other classes.

2.3 Dissemination and Self-Sustained Distribution

During the time of this project, we have been very active in disseminating the results and

materials, helping others to adopt the materials, and taking steps toward self-sustained

distribution.

• At SIGCSE2003, Guzdial hosted a tutorial on Media Construction Projects in Com-

puter Science Courses which covered the basics of doing media computation in Python,

Java, and Squeak. The 11 participants all stated on the final evaluation that they would

recommend this workshop to others.

• A similar tutorial and a paper on the planning and development of the Media Com-

putation course was accepted for ITiCSE 2003 [12], which will be presented in July

2003.

22

• Guzdial spoke on the course at a meeting of representatives from all the CS departments

of the University System of Georgia. Several schools expressed interest in adopting the

course. Charles Fowler of Gainesville College, a two-year college, is offering the course

as a trial this summer, with plans to offer two sections of the course in the Fall (letter of

support included). Guzdial was also invited to speak at Kennesaw College and Augusta

State College, each four year colleges. Guzdial is actively working with Kennesaw on

their plans to trial the course.

• Guzdial also gave a talk at DePauw University on the course.

• Finally, Prentice-Hall has signed a contract with Guzdial to produce a book Introduc-

tion to Media Computation with no completion date at this time.

3 Project Plan

While the results from the pilot offering of the course have been quite strong, there is still

much to do.

• We view our results with some skepticism. The PI was also the teacher for the course.

There was probably a strong Hawthorne Effect (though that’s not necessarily bad [4])

given the trial offering of the course.

• The course materials have now worked once at the developer’s institution. We will

clearly need to adapt the course materials as we get feedback from other institutions.

• We are very interested in the longer term effects of the course. Do students take more

computer science? We would like to provide that second course that students state that

23

they’re interested in, and thus provide an entry way into the rest of the CS curriculum.

Do some students become computer science majors? How does the course impact their

use of computation in their own disciplines?

3.1 Development Plan: Completing one course and creating a

path

We plan to continue developing Introduction to Media Computation over the proposed three

year period. The development of the course will continue to be led by the PI, Professor Mark

Guzdial. There are several challenges that we will be facing that will lead to changes in the

course materials.

• The course will be ramping up in size. During the Fall 2003 semester, there will be

two sections of 120, and three in Spring 2004. The initial pilot of 120 could be taught

with incomplete materials by responding to many questions. As the class ramps up,

the materials need to be better.

• The course will be taught by others. In the Spring 2004 semester, Professors Blair

MacIntyre and Colin Potts will each teach sections of the course (along with Guzdial),

and most probably a full-time instructor will teach a section in Summer 2004. The

course materials will need to be adaptable easily by other instructors.

• The course will be taught elsewhere. Currently, it’s being taught at Gainesville College

with close cooperation from Georgia Tech, but eventually, it will be taught by others

24

without our knowledge. We want to evaluate the initial offerings elsewhere so that we

can learn what needs to be changed for other audiences.

3.1.1 Creating a path

In addition, we want to develop a second course that will serve as a follow-on to our Media

Computation course. Our plan is for Media Computation plus the second course will be

accepted as a pre-requisite for our CS2, so that students can use Media Computation as a

path into the major.

The definition of the second course falls out from what is commonly in a CS1 course

according to the ACM/IEEE Computing Curriculum 2001[2]. The current Media Compu-

tation course covers well the knowledge units in the topics PF1 Fundamental programming

constructs, PF2 Algorithms and problem-solving, and SP1 History of computing. However,

we only touch on PF3 Fundamental data structures (just strings, lists, and arrays, with lit-

tle trees and no graphs or linked lists) and AL3 Fundamental computing algorithms (linear

search, some binary search, but no graph traversals or sorts). The second course would need

to cover the rest of PF3 and AL3.

We would use a media-oriented approach for some of the course, but not just media. The

second course would also be a second course for the prototype Engineering CS1, again, as a

pathway into computer science. The Engineering CS1 course plus the second course would

also meet the pre-requisite for our CS2. In general, the second course will be a data-first

approach, as the Media Computation course is.

Undergraduate computer science courses tend to emphasize the processing of any kind

25

of data at all. In a sense, it’s data agnostic—all data should be treated exactly the same.

In this way, focus can be shifted to abstracted data representations laid on top of the data.

However, most non-CS-majors come to computers because they want some processing of data

of interest. The focus for them is on their data. By paying attention to the data that the

students care about, we may be able to increase their motivation for learning programming.

In the terms of the ACM/IEEE Computing Curriculum 2001, our approach is “data-first”—

we start from the data that students care about, then introduce computing as a way of

creating, manipulating, and transforming the data that they care about.

Co-PI Professor Blair MacIntyre will be leading the effort to develop the second course

during the second year of the grant, and working with us on evaluation during the third

year of the grant. Professor MacIntyre has a strong interdisciplinary research background,

especially in applications of computer science to liberal arts concerns, and a strong interest

in undergraduate education. Professor MacIntyre’s research is in augmented reality, and he

does extensive work with faculty in our Ivan Allen College of Liberal Arts who are developing

new media. In particular, Professor MacIntyre works with Professor Jay Bolter in digital

storytelling with agumented reality [16].

3.1.2 Media Computation for majors

We are already developing Java versions of some of our materials, and using them (in our

recent SIGCSE2003 workshop). We view the Java versions as being more likely to be adopted

in courses aimed at CS majors. Our goal is not to change all CS1 courses into Media

Computation, but to make it easier to include media-focused projects that motivate students

26

into Java-based CS1 courses. We believe that Media Computation may engender similar

excitement among CS majors as what we’re seeing among non-majors, and may help to raise

retention rates in introductory CS courses among majors as well. We agree with the quote

from Stephen Director earlier–women and non-majors may be “canaries in the coal mine”

and what works better for them might work better for men, too. Our goal is for the Java

materials to be supplemental, not a central text.

We plan to continue developing the Java materials, and in years two and three of the

proposed project, develop these into a book. These materials will be available throughout

the period of the grant on our website and in workshops, and we will seek out a publisher

during year three for sustained dissemination of the materials. Prentice-Hall has expressed

interest in the Java version of the book.

3.2 More objective, credible evaluation

The current evaluation will become more credible simply by continuing the current evaluation

protocols! (Hopefully with more success on the learning evaluation.) As the class moves

out of it’s trial period, and as others start to teach the class, we will probably see some

diminishment of the euphoria surrounding the first offering of a CS1 course for non-majors.

In the next year to two years, we should see results that better reflect the effectiveness of

the course. We would also plan to continue comparisons with the existing, traditional CS1

course.

We also plan to expand our interviews to males, as well as females. Though we’re pleased

27

to see that we are meeting the goal of keeping females’ interest, we hope that we are not

achieving that goal at the expense of the men! We want to understand, generally, the gender

impact of the course.

The evaluation will also become more objective and credible by separating the PI from the

evaluation process. For that reason, evaluation will be taken over by the Director of Georgia

Tech’s Center for Enhancement of Teaching and Learning (CETL), Dr. Donna Llewellyn.

Dr. Llewellyn has extensive experience in evaluation and in studying issues of gender at a

technical institution. The PI and his team will be involved in design of the studies, but will

not be overseeing the data collection and analysis.

We also plan to work with schools adopting our course, who are willing to be part of

our evaluation. Gainesville College is working with us now, using similar surveys to ours,

so that we can evaluate how well the class is working in other situations, and can adapt the

materials accordingly.

3.2.1 Longitudinal evaluation

An additional area of evaluation that we plan to introduce is longitudinal tracking of Media

Computation students as they continue their careers. We want to know:

• Do these students take more computer science courses?

• Do these students become computer science majors?

• How does the course impact the students’ use and learning of computation within their

own majors? For example, do Liberal Arts majors who use Photoshop learn it more

28

easily or use it better (by their own estimation) than students who do not take the

course? Do Architecture majors learn AutoCAD more easily or use it better?

Our plan is to use a combination of email surveys and in-person or phone interviews.

• At the end of each year, 10% of the students who have taken the Media Computation

course will be surveyed by email to ask about the CS classes they’ve taken and their

use of computational tools.

• At the end of each year, some small sample of students who have taken the course

(perhaps 3–5 students) will be interviewed (by phone or in person) to understand how

the course has effected their later careers and interaction with computation. These

data will also be used to inform further development of the course materials.

3.3 Dissemination and self-sustaining distribution

Our further plans for dissemination are:

• We will continue to write papers as results arise and propose workshops/tutorials at

ACM SIGCSE, ITiCSE, and IEEE/ASEE FIE conferences. For SIGCSE2004, we plan

to submit a paper on the course results overall, a paper on the female attitudes toward

the course, and a paper on the comparison between the three CS1 courses that we

studied this year. Depending on acceptances and travel budgets, we plan to present at

one-to-two conferences per year.

• We will continue to make materials available on our development website7, and we

7http://coweb.cc.gatech.edu/mediaComp-plan

29

plan to create a project website (with a more easily remembered URL) for wider

dissemination.

We already have a plan for self-sustained distribution of the materials, through a contract

with Prentice-Hall. We plan to continue developing the materials during year one and

publishing the book sometime in year two of the proposed project. As mentioned, we also

plan to seek a publisher for our Java materials that we plan to develop in years two and

three.

4 Conclusion: Deliverables

At the end of the funding period, several resources will be available publicly to others who

would like to use this method at their own institutions, such as the books, lecture slides

and technologies, as well as the course planning website, where the rationale for the course

decisions is made explicit, and the assessment instruments and evaluation results. All of

these materials will be made available at the development website, at a project website that

we are setting up, and at the course CoWeb.

We believe that Media Computation is a viable approach to making CS more relevant

and improving retention rates in introductory computing courses. It’s not the only approach,

and we see that our process of development (which has involved faculty advisors from across

campus, on-line surveys of students, with close ties to evaluation) is part of what we are

studying and disseminating. That’s the point of our ITiCSE paper [12] and a recent SIGCSE

invited editorial [14]. We hope that, by developing this approach, we can improve the success

of both non-majors and majors in computer science.

30

References

[1] AAUW. Tech-Savvy: Educating Girls in the New Computer Age. American Association
of University Women Education Foundation, New York, 2000.

[2] ACM/IEEE. Computing curriculum 2001. http: // www. acm. org/ sigcse/ cc2001

(2001).

[3] Blumenfeld, P. C., Soloway, E., Marx, R. W., Krajcik, J. S., Guzdial, M., and Palincsar,
A. Motivating project-based learning: Sustaining the doing, supporting the learning.
Educational Psychologist 26, 3 & 4 (1991), 369–398.

[4] Brown, A. L. Design experiments: Theoretical and methodological challenges in creating
complex interventions in classroom settings. The Journal of the Learning Sciences 2, 2
(1992), 141–178.

[5] Craig, D., ul Haq, S., Khan, S., Zimring, C., Kehoe, C., Rick, J., and Guzdial, M.
Using an unstructured collaboration tool to support peer interaction in large college
classes. In International Conference of the Learning Sciences 2000. Ann Arbor, MI,
2000, pp. 178–184.

[6] diSessa, A. Changing Minds. MIT Press, Cambridge, MA, 2001.

[7] Felleisen, M., Findler, R. B., Flatt, M., and Krishnamurthi, S. How to Design Programs:
An Introduction to Programming and Computing. MIT Press, Cambridge, MA, 2001.

[8] Freeman, P., and Aspray, W. The Supply of Information Technology Workers in the
United States. Computing Research Association, New York, 1999.

[9] Guzdial, M. Squeak: Object-oriented design with Multimedia Applications. Prentice-
Hall, Englewood, NJ, 2001.

[10] Guzdial, M. Use of collaborative multimedia in computer science classes. In Proceedings
of the 2001 Integrating Technology into Computer Science Education Conference. ACM,
Canterbury, UK, 2001.

[11] Guzdial, M. Summary: Retention rates in cs vs. institution. Message posted on acm
sigcse moderated members list, Georgia Tech, April 23 2002.

[12] Guzdial, M. A media computation course for non-majors. In Proceedings of the Innova-
tion and Technology in Computer Science Education (ITiCSE) 2003 Conference (New
York, 2003), ACM, ACM, pp. In–Press.

[13] Guzdial, M., Rick, J., and Kehoe, C. Beyond adoption to invention: Teacher-created
collaborative activities in higher education. Journal of the Learning Sciences 10, 3
(2001), 265–279.

31

[14] Guzdial, M., and Soloway, E. Computer science is more important than calculus: The
challenge of living up to our potential. Inroads – The SIGCSE Bulletin 35, 2 (June
2003), 5–8.

[15] Kehoe, C. M. Supporting Critical Design Dialog. Unpublished ph.d. dissertation, Geor-
gia Institute of Technology, 2001.

[16] MacInytre, B., Bolter, J. D., Moreno, E., and Hannigan, B. Augmented reality as
a new media experience. In International Symposium on Augmented Reality (2001),
pp. 197–206.

[17] Malone, T., and Lepper, M. Making learning fun: A taxonomy of intrinsic motivations
for learning. In Aptitude, Learning, and Instruction., R. Snow and M. Farr, Eds., vol. 3
of Conative and Affective Process Analyses. LEA, Hillsdale, NJ, 1987, pp. 223–253.

[18] Margolis, J., and Fisher, A. Unlocking the Clubhouse: Women in Computing. MIT
Press, Cambridge, MA, 2002.

[19] McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y. B.-D.,
Laxer, C., Thomas, L., Utting, I., and Wilusz, T. A multi-national, multi-institutional
study of assessment of programming skills of first-year cs students. ACM SIGCSE
Bulletin 33, 4 (2001), 125–140.

[20] Miller, L. A. Natural language programming: Styles, strategies, and contrasts. IBM
Systems Journal 20, 2 (1981), 184–215. Languages require iteration where aggregate
operations are much easier for novices.

[21] Nagappan, N., Williams, L., Ferzil, M., Wiebe, E., Yang, K., Miller, C., and Balik,
S. Improving the cs1 experience with pair programming. In Twenty-fourth SIGCSE
Technical Symposium on Computer Science Education (New York, NY, 2003), D. Joyce
and D. Knox, Eds., ACM, pp. 359–362.

[22] Pane, J. F., Ratanamahatana, C., and Myers, B. Studying the language and struc-
ture in non-programmers’ solutions to programming problems. International Journal of
Human-Computer Studies 54 (2001), 237–264.

[23] Papert, S. Teaching children to be mathematicians versus teaching about mathematics.
Ai memo no. 249 and logo memo no. 4, MIT, 1971.

[24] Papert, S. Mindstorms: Children, computers, and powerful ideas. Basic Books, New
York, NY, 1980.

[25] Papert, S. Situating constructionism. In Constructionism, I. Harel and S. Papert, Eds.
Ablex Publishing Company, Norwood, NJ, 1991, pp. 1–11.

32

[26] Pfleeger, S. L., Teller, P., Castaneda, S. E., Wilson, M., and Lindley, R. Increas-
ing the enrollment of women in computer science. In The Proceedings of the Thirty-
second SIGCSE Technical Symposium on Computer Science Education, R. McCauley
and J. Gersting, Eds. ACM Press, New York, 2001, pp. 386–387.

[27] Pintrich, P. R., and Schunk, D. H. Motivation in Education: Theory, Research, and
Applications. Prentice-Hall, 1996.

[28] Roumani, H. Design guidelines for the lab component of objects-first cs1. In The
Proceedings of the Thirty-third SIGCSE Technical Symposium on Computer Science
Education, 2002, D. Knox, Ed. ACM, New York, 2002, pp. 222–226. WFD (Withdrawl-
Failure-D) rates in CS1 in excess of 30

[29] Soloway, E., Bonar, J., and Ehrlich, K. Cognitive strategies and looping constructs: An
empirical study. Communications of the ACM 26, 11 (1983), 853–860.

[30] Soloway, E., Ehrlich, K., Bonar, J., and Greenspan, J. What do novices know about
programming? In Directions in Human-Computer Interaction, A. Badre and B. Schnei-
derman, Eds. Ablex Publishing, Norwood, NJ, 1982, pp. 87–122.

[31] Soloway, E., Guzdial, M., and Hay, K. E. Reading and writing in the 21st century.
EDUCOM Review 28, 1 (1993), 26–28.

[32] Wilson, B. C., and Shrock, S. Contributing to success in an introductory computer sci-
ence course: A study of twelve factors. In The Proceedings of the Thirty-second SIGCSE
Technical Symposium on Computer Science Education, R. McCauley and J. Gersting,
Eds. ACM, New York, 2001, pp. 184–188.

[33] Zimring, C., Khan, S., Craig, D., Haq, S.-u., and Guzdial, M. Cool studio: Using simple
tools to expand the discursive space of the design studio. In Design Thinking Research
Symposium. MIT, Cambridge, MA, 1999.

33

5 Budget Justification

To fund this effort, this proposal includes a budget request for a three year project.

• One summer month of the PI’s time in Year One, and 0.75 of a summer month in

each of Years Two and Three to develop the course materials (both for the Media

Computation class and the Java-based materials) and work with evaluation,

• One summer month of the co-PI’s time in Years Two and Three to develop the follow-on

course and work with evaluation on the pathway into CS through Media Computation,

• Two graduate student research assistants to focus on evaluation with Dr. Llewellyn,

• One graduate student research assistant to help development of the course materials,

• Our costs for these personnel include fringe, computing charges (for support within

the College of Computing), and graduate student tuition,

• Travel support for attending conferences to disseminate materials and results.

• Materials and supplies, to support the development and evaluation effort.

34

6 Facilities

The College of Computing maintains a variety of computer systems in support of academic

and research activities. These include more than 50 Sun, Silicon Graphics, and Intel systems

used as file and compute servers, many of which are quad-processor machines. In addition,

there are more than 1,000 workstation class machines from Sun, Silicon Graphics, Intel, and

Apple especially for student use. A number of specialized facilities augment these general-

purpose computing capabilities. The hardware that will be purchased for this project will

be of similar quality to what the students use, for testing purposes, but will be set up to

facilitate development.

The Graphics, Visualization, and Usability (GVU) Center houses a variety of graphics and

multimedia equipment, including high-performance systems from Silicon Graphics, Sun, In-

tel, and Apple. The affiliated Multimedia, Computer Animation, Audio/Video Production,

Usability/Human Computer Interface, Virtual Reality/Environments, Electronic Learning

Communities, Computational Perception, Software Visualization, Biomedical Imaging, Col-

laborative Software, and Future Computing Environments labs provide shared facilities tar-

geting specific research areas. These laboratories’ equipments will be of use in developing

our multimedia projects.

PI Guzdial is the Director of the Collaborative Software Lab, affiliated with GVU. The

Collaborative Software Lab has a bank of ten servers supporting our experimental software

for studying computer-supported collaborative learning. In addition, we have three Linux

workstations, two NT workstations, and two Apple workstations used for development. The

35

focus of the Collaborative Software Lab is on facilitating multimedia collaboration, so mul-

timedia facilities available include a high-end Alesis keyboard, projection facilities, a Canon

digital video camera, and a Nikon digital camera.

All of the College’s facilities are linked via local area networks which provide a choice

of communications capabilities from 10 to 1000 Mbps. The College’s network employs a

high-performance OC12C (622 Mbps) ATM and GigabitEthernet (1000 Mbps) backbone,

with connectivity to the campus ATM network provided via OC12C. The primary campus

Internet connection is provided by a direct 100 Mbps link to the service provider’s Atlanta

switching center, augmented by OC3C ATM and OC12C connections, respectively, to the

NSF vBNS (very high performance Backbone Network Service) and Abilene research net-

works. Georgia Tech is also leading southern regional gigabit network efforts (SoX.net, the

Southern Crossroads) as part of Internet2.

Additional computing facilities are provided to the Georgia Tech campus by the Insti-

tute’s Office of Information Technology (OIT), including five public-access clusters of Sun,

Apple, and Dell workstations, a collection of Sun multi-processors which are treated as a

single computational resource via login load sharing, and various mainframes.

36

