
Media Computation to Motivate Women and Non-Majors in

Computer Science

PI: Mark Guzdial

Co-PI: Blair MacIntyre

June 17, 2003

Project Summary
The problem being addressed by this proposal is the disinterest in computer science

exhibited by large groups of students, especially non-CS-majors and women—a particular
problem at institutions like Georgia Tech where an introductory computing course is required.
We just had a trial offering of a course in Introduction to Media Computation aimed at non-
CS-majors.

The course was quite successful at its goals. 121 students enrolled – 2/3 women. 89%
of the class earned an A, B, or C in the course. 60% of the respondents on a final survey
indicated that they would like to take a second course on the topic. We have gathered
external interest in the course, including a trial offering at a 2-year college and a book
contract.

We now propose (a) growing the course to a full-scale rate (of more than 600 students per
year), (b) assessing the course more objectively, (c) introducing a longitudinal assessment to
study how the students use their new knowledge and interests, and (d) introduce a second
course to make Media Computation a viable path into computer science.

Intellectual Merit : The intellectual merit of the proposal is to scale up, study, and further
develop a course holding promise for interesting women and non-majors in computer science.

Broader Impacts : The potential broader impacts is to demonstrate a viable alternative
development path for introductory computer science courses that can appeal to students not
usually interested in computer sciences.

Media Computation to Motivate Women and Non-Majors in

Computer Science

Contents

1 Goal: A New Route to Computer Science 1

2 Results from Proof-of-Concept Trial 5
2.1 Implementation of Course . 7

2.1.1 Curriculum . 9
2.1.2 Technology Development . 12

2.2 Evaluation Methods and Results . 18
2.2.1 Evaluation of Retention . 20
2.2.2 Evaluation of Motivation . 21
2.2.3 Evaluation of Learning . 25

2.3 Dissemination and Self-Sustained Distribution 27

3 Project Plan 28
3.1 Development Plan: Completing one course and creating a path 29

3.1.1 Creating a path . 30
3.1.2 Media Computation for majors . 30

3.2 More objective, credible evaluation . 31
3.2.1 Longitudinal evaluation . 32

3.3 Dissemination and self-sustaining distribution 33

4 Conclusion: Deliverables 34

5 Budget Justification 38

6 Facilities 39

Media Computation to Motivate Women and Non-Majors in

Computer Science

1 Goal: A New Route to Computer Science

Computer science departments are not currently successful at reaching a wide range of stu-

dents who are taking introductory computer science. The evidence for this statement in-

cludes international studies of programming performance [16], declining retention rates [11],

and failure rates sometimes as high as 50% [25]. This comes at a time when the need for

Information Technology (IT) professionals is growing [8].

At Georgia Institute of Technology (“Georgia Tech”), all students are required to take

an introductory course in computing, including programming skills. The current course1

is undoubtedly one of the most unpopular courses on campus, especially among those not

in explicitly computing-related fields. While this is certainly a problem for the College of

Computing at Georgia Tech (where the course has its academic home), it points towards a

larger problem for the field.

Alan Perlis in April 1961 made perhaps the first argument that programming should be

part of a liberal education for all students. If Calculus is the study of rates, and that’s

important enough to be part of the liberal education, then so should computer science.

Perlis argued that computer science is the study of processes, which is certainly relevant

to even more fields than those concerned with rates. The argument has been echoed and

strengthened over the intervening years—by Seymour Papert arguing for a programming as

1A second course for Engineering students only is at a prototype stage.

1

a way of learning about learning [20][21], to Andrea diSessa’s arguments for “computational

literacy” as a critical component of many fields [6]. As long as non-CS-majors have such a

dislike for computing, the hope is diminished for computer science as an accepted part of a

liberal education and for computing generally to meet its potential for intellectual impact

across the range of disciplines, not just in computational science and engineering.

Introductory computer science classes are also not meeting the needs of women. The rates

at which women take computer science classes are falling. While the factors causing women

to avoid computer science (and IT careers in general) are multi-faceted, the curriculum does

play a significant role [15]. A report in 2000 by the American Association of University

Women [1] suggested that part of the problem, at least for women, is that computer science

courses are, frankly, too boring. Specifically, they claim that computer science courses are

“overly technical” with little room for “tinkering.” At a session on increasing enrollment

of women in computer science at the latest ACM SIGCSE conference, speakers reported

that women who pursued computer science degrees were surprised at how much “creativity”

there was in later computer science courses—introductory courses did not highlight that

aspect of CS [23]. Additionally, women undergraduate CS students tend to be interested

in real applications for the computing, as opposed to simply computing for its own sake

[15][1]. If we can address the reasons why women are avoiding computer science, we may

be able to interest more males, too—all those currently expressing disinterest in computing.

“Women in engineering programs are kind of like ‘canaries in the coal mine”’, said Stephen

W. Director, Chair of the Engineering Dean’s council. “If women do well in a program, most

2

likely everyone else will also do well in the same type of program.” 2

The focus of this proposal is to use multimedia construction projects as the do-

main of assignments and lectures in an introductory computer science course,

explicitly aimed at non-CS-majors and women, to engage such students in com-

puter science. The course, Introduction to Media Computation, was trialed in Spring 2003

with 120 students, 2/3 women, with none of the students majoring in CS or Engineering.

These students were from College of Architecture, the Ivan Allen College of the Liberal Arts,

Dupree College of Management, and the School of Biology. The hypotheses of this effort

are that this course will demonstrate: (1) Improved student retention, (2) better student

attitudes toward computer science, and (3) better student learning of computer science.

The course was quite successful at its goals. 121 students enrolled – 2/3 women. 89%

of the class earned an A, B, or C in the course. 60% of the respondents on a final sur-

vey indicated that they would like to take a second course on the topic. Students wrote

eight programs (six collaboratively and two individually) creating or manipulating pictures,

sounds, HTML pages, and movies, with some of their programs reaching 100 lines of code.

We have gathered external interest in the course, including a trial offering at a 2-year college

(Gainesville College) and a book contract with Prentice-Hall.

We do not believe that media computation is the only context in which students not

traditionally attracted to computer science might succeed. For example, we have described

another potential CS1 course organized around information management in which students

2Testimony by Stephen W. Director, Chair, Engineering Dean’s Council, American Society of Engineering
Education, to the Commission on the Advancement of Women and Minorities in Science, Engineering, and
Technology Development, Washington, DC. July 20, 1999

3

might build Web harvesting programs and data visualizations [?]. The general approach we

are exploring is to use an application domain of information technology that is rich in CS

concepts and relevant to the students, then explore introducing computing concepts in terms

of that domain. The Media Computation project is a trial and model of that approach.

In this proposal, we describe our proof-of-concept trial offering of the course (funded by

NSF CCLI grant #0231176) and its evaluation results. We then describe our proposed plans

under this project:

• To continue development of the course as it ramps up to some 600 students/term.

• To assess the course more objectively. Dr. Donna Llewellyn, Director of Georgia Tech’s

Center for Enhancement of Teaching and Learning, has agreed to be the external

evaluator of the project.

• To explore the impact of the course on the students longitudinally. We want to learn (a)

how the course impacts the students’ further exploration of computer science (e.g., do

they take more CS classes?) and (b) how the course impacts their use of computation

in their own disciplines? For example, might we expect students to learn Photoshop

better or more easily once they understand better what Photoshop filters are doing?

• Finally, we plan to develop a second course to make Media Computation a viable path

into the degree. Currently, students who take Introduction to Media Computation and

are interested in taking more computing need to start over with our traditional CS1.

While the Media Computation course meets the requirements of a standard CS1 [2],

our traditional CS1 covers most of a CS1 and CS2 curriculum. We’d like to create a

4

CS2 course so that students can then enter into the rest of our curriculum without

starting over.

2 Results from Proof-of-Concept Trial

Introduction to Media Computation (CS1315 at Georgia Tech) is our new introduction to

computation and programming contextualized around creation and manipulation of media.

The explicit goal is to interest groups typically disinterested in such courses (especially

women and non-CS majors). The course was offered as a pilot in Spring 2003 with 121

students enrolling, 2/3 of whom were women.

The course was a success by most measures.

• 89% of the students who enrolled earned an A, B, or C. Our “best-practice” point of

comparison in the literature had a 66.4% success rate for non-majors in a specialized

CS1 [18].

• Students wrote eight programs (six collaboratively and two individually) creating or

manipulating pictures, sounds, HTML pages, and movies, with some of their programs

reaching 100 lines of code.

• Students did change what they thought about computer science over the course of the

semester, and the majority self-reported that they learned to program.

• We attempted direct comparisons on problems on exams between our traditional CS1,

a prototype engineering CS1 course, and the Media Computation class. We found that

such comparisons are fraught with difficulties. Nonetheless, student performance in

5

a problem described in the literature on CS education was comparable between the

Media Computation and traditional CS1 students.

• Students found the course relevant, and the majority of respondents to a final survey

indicated that they would like to take a second course if it were offered.

• The course met its goal of getting female students to find CS interesting, relevant, and

creative where they hadn’t previously.

Our assessment of the course, and the comparison with the other courses, went beyond

measures of success to explore how and why the class was successful, and who was successful.

• Collaboration may have played as much a role in the success of CS1315 as the context.

When asked the open question on the final survey, “What absolutely must not change

about the course?”, nearly 20% of the Media Computation student respondents named

the collaboration tool CoWeb and over 20% mentioned collaboration in general.

• Separating these students from CS and Engineering majors had an impact, especially

on the female students, of making them feel more comfortable asking questions than

they might have otherwise.

• The technology built for the course was more effective than we anticipated, given the

pilot nature of the course and the software.

• In general, students from Georgia Tech’s Ivan Allen College for Liberal Arts were the

most positive about the course (e.g., had the largest percentage of students who would

6

recommend it to others, who planned to use programming in the future, and who

planned to take further CS courses).

2.1 Implementation of Course

Undergraduate computer science courses tend to emphasize the processing of any kind of

data at all. In a sense, it’s data agnostic—all data should be treated exactly the same. In

this way, focus can be shifted to abstracted data representations laid on top of the data.

However, most non-CS-majors come to computers because they want some processing

of data of interest. The focus for them is on their data. By paying attention to the data

that the students care about, we may be able to increase their motivation for learning

programming. In the terms of the ACM/IEEE Computing Curriculum 20013, this approach

is “data-first”—we start from the data that students care about, then introduce computing

as a way of creating, manipulating, and transforming the data that they care about.

The choice of multimedia as the data of choice in this project allows us to address

several of the issues identified as critical for increasing the number of women in computing.

Several of the academic units at Georgia Tech emphasize that multimedia literacy is a critical

component of educated professionals in the future [28]. Multimedia is a real applications

domain—especially true at Georgia Tech, with Turner Broadcasting, CNN, and the Cartoon

Network based within a few miles of campus. Multimedia is clearly not computing for its

own sake. Further, the multimedia approach allows us to give students assignments that are

open-ended and creative. The emphasis on multimedia allows the class to be more concrete,

3http://www.acm.org/sigcse/cc2001

7

more relevant, and more creative than traditional CS1 approaches. The premises and core

concepts of the Media Computation course are:

• All media are being published today in a digital format.

• Digital formats are amenable to manipulation, creation, analysis, and transformation

by computer. Text can be interpreted, numbers can be transformed into graphs, video

images can be merged, and sounds can be created. We call these activities media

computation.

• Software is the tool for manipulating digital media. Knowing how to program thus

becomes a communications skill. If someone wants to say something that her tools do

not support, knowing how to program affords the creation of the desired statement.

• Core computer science concepts can be introduced through media computation. For

example, programs can get large and cumbersome. Abstraction is our tool for managing

program complexity and allowing programs to become even larger yet more flexible.

• However, computing has limitations. There are some programs that cannot complete

in our lifetime, and knowing that these limitations exist is important for technological

professionals.

We used the programming language Jython for the course. Jython4 is a variation of the

Python5 programming language which has been designed to be easily used by novices and

4http://www.jython.org
5http://www.python.org

8

non-technical users. Jython is a variation of Python written in Java. Jython can use Java

classes, and Jython can be used for virtually anything for which Java can be used. We

considered other languages (e.g., Java and Scheme), but selected Jython based on survey

responses from students and teachers. Jython’s design is based on the research findings on

studying novice programmers (e.g., [26], [17], [19]).

2.1.1 Curriculum

The semester outline of the course appears below. The course was offered as a three credit

hour course with five weeklong lab activities, six homeworks, three in-class examinations,

and two take-home examinations (programming assignments) with optional recitations. The

general structure of the course was 11 weeks of media-relevant material (e.g., sound, pictures,

movies, text manipulation, network, and database), with four weeks of computer science that

answers questions that arose during the course of the 11 weeks.

• Week 1: Introduction to the course and the argument for why media computation.

Introduction to variables and functions, in the context of playing sounds and showing

pictures.

def greyScale(picture):

for p in getPixels(picture):

intensity = (getRed(p)+getGreen(p)+getBlue(p))/3

setColor(p,makeColor(intensity,intensity,intensity))

Figure 1: An example Jython program using our API to convert a picture to greyscale

• Weeks 2–3: Pictures as a media type, including psychophysics (why don’t we see

9

1024x768 dots on the screen?), looping to change colors with a simplified for loop

(Figure 1), conditionals to replace specific colors, then indexing by index numbers to

implement mirroring, rotating, cropping, and scaling.

• Weeks 4–6: Sound as a media type, including psychophysics (how human hearing

limitations make MP3 compression possible), looping to manipulate volume (Figure 2),

then indexing by index numbers to do splicing and reversing of sounds (Figure 3).

Include discussion of how to debug and how to design a program, as those issues arise.

One lecture on additive and FM sound synthesis.

def normalize(sound):

largest = 0

for s in getSamples(sound):

largest = max(largest,getSample(s))

multiplier = 32767.0 / largest

print "Largest sample value in original sound was", largest

print "Multiplier is", multiplier

for s in getSamples(sound):

louder = multiplier * getSample(s)

setSample(s,louder)

Figure 2: An example Jython program using our API to normalize sounds to a maximum
volume

• Week 7: Text as a media type: Searching for text, composing text, reading text from

a file and writing it to a file. An example program parses out the temperature from a

downloaded weather page.

• Week 8: Networks, including making the temperature-finding program work from the

10

def backwards(filename):

source = makeSound(filename)

target = makeSound(filename)

sourceIndex = getLength(source)

for targetIndex in range(1,getLength(target)+1):

sourceValue = getSampleValueAt(source,sourceIndex)

setSampleValueAt(target,targetIndex,sourceValue)

sourceIndex = sourceIndex - 1

return target

Figure 3: Return the sound in the file backwards

“live” Web page. Introduction to HTML.

• Week 9: Discuss media transitions. Moving from sound to text and back to sound

again. Using Excel to manipulate media after converting it to text.

• Week 10: Introduction to databases: Storing media in databases, using databases in

generating HTML.

• Week 11: Movies: How persistence of vision makes animations and movies possible,

generating frames using the various techniques described earlier in the semester, ma-

nipulating whole directories of files.

• Week 12: “Can’t we do this any faster? Why is Photoshop faster than Python?”

Introduction to how a computer works (e.g., machine languge), and the difference

between an interpreter and a compiler. Algorithmic complexity and the limits of

computation.

• Week 13: “Can we do this any easier?” Decomposing functions, modularity, and

11

functional programming (map, reduce, filter, and simple recursion).

• Week 14: “Can’t we do this any easier?” Introduction to objects and classes.

• Week 15: “What do other programming languages look like?” Brief overview of

JavaScript and Squeak.

Student homework assignments started with simple Photoshop-style filterings (Figure 4)

(average score 92% with a standard deviation of 22.1). We moved on to sound, and students’

first take-home exam was to splice and reverse sounds (Figure 5) (average score 92.1% with

a standard deviation of 15.3). Some of the assignments invited creativity, such as the third

homework (Figure 6) which required creation of a collage, but without concern for what

was in the collage (average score 86.3% standard deviation 26.0). These homework became

sizable–the average number of lines of code (of students who gave us consent to look at their

homeworks) was 64 with a standard deviation of 32.4. The largest was 166 lines of code.

Several students posted their collages in the shared collaboration space as a creative and

social space (Figure 7). The final homework assignment involved programmed Web access

and creation of animations (Figure 8) (average score 84.6% standard deviation 29.2). Final

exam questions spanned a wide range of computing concepts, including issues of networking,

databases, and computing theory (Figure 9).

2.1.2 Technology Development

Three different software technology developments were used in the course:

12

Write a program named hw1 to accept a picture as input, and change its pixels as
follows:

• Set the green component to 125% of its current value

• Decrease the blue by 25%

• Decrease the red by 75%

Figure 4: First homework assignment by Media Computation students

At the Feb. 7 class, we recorded this sound thisisatest2.wav (”This is a test.”). Using
MediaTools, we found the end points for each of the words in the sound:
Recorded word Index where it stops in the sound
This 7865
is 27170
a 40326
test. 55770

Write a function backSpliced that splices the last word (”test”) into the front of the
word, but backwards, so that the result is:”Tset is a test.”

Figure 5: First take-home exam assignment by Media Computation students

Create a collage of the same image at least three times fit onto the 7x9.5in blank
JPEG. (You are welcome to add additional images, too.) You can do any of

• scaling the image,

• cropping the image,

• creating a negative of the image,

• shifting or altering colors on the image,

• and making it darker or lighter.

Figure 6: Third homework assignment by Media Computation students

13

Figure 7: Student collages shared from the third homework assignment

http://www.cnn.com is a popular news site. You are to write a function (named
”hw6”) that will input a directory as a string then:

• Visit http://www.cnn.com and pick out the top three news stories headlines in
the More News section.

• Create a ticker tape movie on the 640x480 canvas of all three news stories. Have
one come across at y=100, another at y=200, and the third at y=300. Generate
100 frames, and don’t have the ticker tapes move more than 5 pixels per frame.
Store the frames to files in the input directory.

Figure 8: Final homework assignment by Media Computation students

14

• You have a new computer that seems to connect to the Internet, but when you
try to go to http://www.cnn.com you get a “Not Found” error. You call tech
support, and they tell you to try to go to http://64.236.24.20 That works. Now
both you and the Tech know what’s wrong with your computer’s settings. What
isn’t working properly since you can get to a site via the Internet but can’t get
the domain name www.cnn.com to be recognized?

• Your father calls you. “My tech support people are saying that the com-
pany website is down because the database program is broken. What does
the database have to do with our company website?” You explain to him how
databases can be integral to running large websites. Explain both (a) how the
website comes to be authored through the database and (b) how the HTML is
actually created.

• What are three reasons why someone should use multiple functions in their
programs, rather than one big function?

• What is a protocol and where is it specified in a URL?

• Is it possible to write a program to solve the Traveling Salesman Problem? Is
it possible to write a program to solve the Halting Problem?

Figure 9: Some final exam essay questions from the Media Computation class

15

• There was no Jython development environment when we started this project, and

none that is well-suited to students. We have developed JES (Jython Environment for

Students), modelling it after the popular DrScheme environment [7]. Development of

JES also included development of a simplified API for accessing the Java media library.

• Students also needed tools for exploring media: Recording and viewing sounds (and

FFTs), investigating the RGB values of individual pixels, and assembling movies and

bursting movies into individual frames. We created a cross-platform MediaTools based

on Squeak [9].

• We used our existing collaboration technology, CoWeb [12, 10], to support student

question asking and sharing of media artifacts. The constructionist theory of learning

suggests that the creation of public artifacts creates a strong potential for learning [22].

We have had good success in the past using our collaboration tools to support sharing

of multimedia artifacts to encourage critique and motivate learning [13][5][30].

We have pending a proposal to the NSF CISE Educational Innovations program to fund

further development of the technology. In particular, we hope to merge the MediaTools

and JES functionalities so that the MediaTools become effective as debugging tools. In

our observations of students using JES and MediaTools, virtually no use of MediaTools

occurred at all. Currently, students create pictures and sounds, but to study how individual

pixel values get set or to see a visualization of the generated sound (e.g., were any samples

generated, or is the volume too low to be heard, or what?), students have to save the media

out to files, then start up MediaTools and open them there. We hope to integrate media

16

exploration into the programming environment so that students can explore more easily the

details of their output.

The CoWeb was particularly successful in the class.The students made extensive use of

a collaborative website (CoWeb)6.

• Each of the assignments (homework, labs, and take-home exams) had Q&A pages

associated with them where extensive discussions took place.

• For each exam, a review page was posted where students could answer sample questions,

ask questions about the questions or concepts, and critique each other’s remarks.

• Each week, a new general “Comment on the week” page was put up for general feedback

and discussion, with leading questions on issues in the course.

• A number of special topics pages were provided to encourage discussion (favorite

movies, music, Atlanta-area restaurants).

• Pages encouraging anonymous feedback were provided.

• A “Soapbox” section at the top of the CoWeb pages encouraged students to make

public comments, which often led to lively discussion.

The CoWeb became a central place for question-asking and discussion. We know that

that’s a critical role in CS1, since comfort in asking questions has been highly correlated with

attrition in CS1 [29]. From interviews, we know that the CoWeb increased that comfort.

6at http://coweb.cc.gatech.edu/cs1315

17

Q. Have you ever posted to the CoWeb?

I think I’ve posted to everything. Sometimes I’ll just make random comments.

Sometimes I ask a specific question and he [the professor] asks for clarification. I

would feel different in a class with a bunch of CS majors. But since we are there

with a bunch of management—other students—it’s kind of more comfortable.

Q. Have you consistently felt comfortable asking questions?

Not at the beginning. One on one, yes. In lecture, not at the beginning because

I felt that I was so far behind other people and the ones who were putting things

on the web were the ones who really know stuff. But now I have no problem.

Do you think the CoWeb is beneficial? Yes. And there’s no reason to feel

uncomfortable because if you feel dumb, just don’t put your name at the end! I

did that a few times.

2.2 Evaluation Methods and Results

Our evaluation effort had three hypotheses: (1) the prototype course will improve student

retention, especially among non-CS-majors and women; (2) the prototype course will improve

student motivation toward computer science; and (3) the prototype course will lead to good

student learning, perhaps better than in a comparable course.

Our evaluation effort was conducted under the review of the Georgia Tech Human Sub-

jects Review Board, to whom this proposal and all our instruments were submitted for review

as they were developed. Students were informed about the research project, the instruments,

18

how they might be impacted, and potential risks. Assessment was organized such that the

PI and the assessment team7 designed the assessment, but the assessment team gathered

and analyzed all data apart from the PI, since he was also the teacher of the course.

We gathered and analyzed several sources of data.

• We had demographic data which we used to address the retention question. We had

course work from consenting students.

• We took surveys during the first week of the term, midway through the term, and in the

last week of the term. We used the same surveys in two other classes: A section of our

traditional CS1 course (n = 127, and a section of the prototype Engineering-oriented

CS1 (n = 75).

• We attempted to develop and distribute polymorphic problems (same problem, but

changed in language or other minor details for the course context) that were offered

in all three CS1’s on exams–for example, on computing an average test grade and

determining an appopriate letter grade, and on the infamous Rainfall Problem [27].

• We interviewed a sample of female students in the Media Computation class on their

attitudes toward computer science and the course. We had seven interviews in total–

three early in the semester, and all three were interviewed again at the end of the term

along with another student at the end.

• We also observed volunteer students working on their homework so that we could have

7Graduate research assistants Andrea Forte and Rachel Fithian, and undergraduate research assistant
Lauren Rich

19

a sense of strategies and problems, especially with the technology. There were 11

observation sessions, including 6 with just one (male) student to track development.

The other observation sessions were all with female students.

2.2.1 Evaluation of Retention

Retention rate is defined operationally in this study in two ways.

• The completion retention rate is defined as the ratio of the number of students com-

pleting the course to the number of students enrolled in the course;

• The course success retention rate is defined as the ratio of the number of students

completing the course with a C or better to the number of students who enrolled in

the course. (Several academic units at Georgia Tech require students to re-take courses

if they received a D.)

The literature on both rates is rather negative. Completion rates of less than 30% is not

uncommon in CS1 [25]. Course success retention rates of less than 50% have been reported

at several schools [11]. The “best-practice” comparison that we have for non-majors, in a

pair-programming CS1 class, had a 66.4% course success retention rate [18] (in that studey,

compared to a non-majors success rate of 55.9% in a traditional CS1). Our traditional CS

class typically does remarkably well in comparison with the literature, with a completion

retention rate of 80-90% and a course success retention rate better than 70%, so it will offer

a high standard to meet.

20

Our course completion retention rate for Spring 2003 was 98%. Our course success

retntion rate was 89%. During that semester, our comparison section of our traditional CS1

had a 57.1% course success rate.

2.2.2 Evaluation of Motivation

The stated goal for the prototype course was to address the disinterest in computer sci-

ence, especially among non-CS-majors and women. We were concerned with three kinds of

motivational factors:

• Do students find the current course engaging? An engaging course is more likely to

lead to learning [14] [24] [3].

• Do students find computer science engaging?

• Would students consider taking future computer science courses? While the goal of

the prototype course is to simply address issues of disinterest, positive response to

this question would suggest that the media computation (“data-first”) approach has

potential for attracting potential CS majors.

When asked what they like about the class in the midterm survey, the students affirm that

we’re succeeding at creating a course that students recognize for its relevance, particularly

for non-CS majors: (All of the quotes below are from female students.)

• “I like the feeling when I finally get something to work.”

• “Very applicable to everyday life.”

21

• ”I dreaded CS, but ALL of the topics thus far have been applicable to my future career

(& personal) plans- there isn’t anything I don’t like about this class!!!”

• “When I finally get a program to work like I want it to.”

• “The professor answers questions in class and online and is concerned about our success

in the class. He also seems to understand that most of us are not engineers and

most likely won’t do straight programming in the future- just the way of thinking is

important.”

• “Collaboration! If I can’t figure it out, I can ask for help.”

When we asked students “What is something interesting, surprising, or useful that you

learned?” we found that students appreciated the relevance of the course and even found

the computer science interesting (again, all female respondents):

• “The most useful things I have learned are the basics about computers and pic-

tures/sound...interesting and useful to real life applications.”

• “Just general concepts about programming. It’s pretty logical, sort of like in math, so

it’s understandable.”

• “Programming is fun and ANYONE can do it!”

Students who have positive attitudes about CS and who enjoy computing are likely to

continue in computer science. While it is too early to tell what CS courses Media Com-

putation students will take in the future, we asked on the final survey whether or not they

22

would be interested in taking a more advanced media computation course. 60% of the female

respondents answered that they would take Media Computation II, which is very close to

the overall course average of 63%.

Surprisingly, when asked on the same survey whether or not they plan to take more CS

courses, only 6% of those same female respondents responded affirmatively (9.3% overall).

Why would 60% be willing to take media computation, while only 6% planned to take

more CS courses? One possible explanation is that there is currently no advanced media

computation course, and, given the current selection of CS courses, Media Computation

students don’t see a compelling reason to take more. Another might be interpretation of the

question: Students may interpret “CS courses” as “traditional CS courses” as opposed to

specialized courses like Media Computation.

Students indicated that the course changed their attitudes about programming in general,

into something that they could imagine themselves doing in the future. On the final survey,

30% of the students indicated that they believed that they will program again in the future.

Table 1 looks at these final survey results by College of major. In interviews, students talk

about programming in the future.

Interviewer: What do you think about the homework galleries on the

CoWeb?

Student A: I don’t ever look at it until after I’m done, I have a thing about

not wanting to copy someone else’s ideas. I just wish I had more time to play

around with that and make neat effects. But JES will be on my computer forever,

23

so. . . that’s the nice thing about this class is that you could go as deep into the

homework as you wanted. So, I’d turn it in and then me and my roommate

would do more after to see what we could do with it.

Interviewer: Have you ever written code outside of assignments?

Student B: Sometimes I would write other stuff on my way to an assignment but

not just like I sat down and wrote something. I don’t have time to play with it.

Like, I’m not gonna delete JES off my computer, and I may play with it when I

get some free time later on, but not yet.

N re-
spon-
dents.

Will
use pro-
gram-
ming
again
in the
future.

Feel
they
learned
to pro-
gram.

Plan
to take
more
CS.

Would
recom-
mend
1315 to
friends
who
didn’t
have to
take it.

Architecture 8 12.5% 50.0% 0.0% 37.5%
Ivan Allen
(liberal arts)

24 41.7% 91.7% 17.4% 82.6%

Management 19 21.1% 68.4% 5.3% 68.4%
Science 3 33.0% 100% 0.0% 50.0%

Table 1: Media Computation student responses on final survey by College of major

A striking example of change in attitudes toward CS can be found in the following

statement made by a female Media Computation student when asked whether or not the

course had changed her perception of computer science:

24

“YES, I’m not intimidated by it anymore. My mom was SO surprised when I

told her that I want to be a TA8 she almost fell on the floor, cuz she’s heard me

complain for 3 years about taking this class and now I want to go do it to myself

again!”

Many students were clearly excited about the potential for using media in ways they had

not previously encountered. Two students reported on the midterm survey that they had

written programs to reverse popular songs, in order to find out if there were hidden messages.

One student reported using Python to create an online scrapbook. Students often turned in

homework assignments that included far more complex code than was required.

2.2.3 Evaluation of Learning

We developed several problems that we attempted to put on all three courses’ exams and

quizzes. Unfortunately, logistical considerations such as different rates of development and

sequencing of concepts in each course and different times and numbers of exams and quizzes

prevented us from distributing the problems as uniformly as we would have liked. In addition,

those questions that did make it onto all three exams were modified by the individual course

instructors and teaching assistant to such an extent that it is difficult to compare them. In

general, we found that the different programming languages used, the differences in directions

given on exams, and the kinds of examples provided on the exams created unique conditions

for each course and rendered the results fundamentally incomparable. For example, the most

common problem among the Engineering students’ was mishandling of ELSE clauses. Media

8All of our CS1 courses make extensive use of undergraduate teaching assistants.

25

Computation students never used an ELSE clause. It’s difficult to compare these results in

terms of learning.

A more reliable indicator of the Media Computation students’ programming achievement

could be found in students’ attempt to solve a classically difficult problem: The Rainfall

Problem. The rainfall problem is:

”Write a program that repeatedly reads in positive integers, until it reads the

integer 99999. After seeing 99999, it should print out the average. ”

At Yale in the mid-80’s, Elliot Soloway gave this problem to several groups of students

[27]. Of first semester CS1 students, only 14% of the students got it correct (completely

correct other than syntactic errors). Only 36% of CS2 students got it correct, and only 69%

of students in a junior-senior level systems programming course. This was one of the first

empirical demonstrations that programming instruction was less than what we might have

expected

Our students were not directly comparable to the Yale students. For example, we hadn’t

covered the same things (e.g., at the time of the exam, they had only seen WHILE once in

class), and we had to change the wording of the problem accordingly. Nonetheless, 14 people

out of 113 (12%) who took the test who “got it” –by Soloway’s standards that means they

had a correct solution (aside from syntactic errors). With partial credit, the average on the

problem was 45%.

The traditional CS1 also included a variation of the rainfall problem on two of their tests,

but we were unable to get the raw problems to code. On the first test (which stipulated the

26

use of tail recursion), the result was an average score of 53%. On the second test (which was

open to any kind of iteration), the result was an average score of 60%.

Overall, the rainfall problem continues to be a hard problem for CS1 students. These

results don’t show that the Media Computation students are learning programming remark-

ably well. But they do show that these students aren’t out of the ballpark either. (It

was probably a bit unfair from an assessment perspective to include this problem on the

midterm, since it was known to be so hard and students hadn’t had much experience with

similar problems.)

The bottomline is that it’s still an open question how much the Media Computation

students learned about programming and how they compare to students in other classes.

The Rainfall Problem was probably not a good choice on which to base a comparison–

performance is always poor on that problem.

2.3 Dissemination and Self-Sustained Distribution

During the time of this project, we have been very active in disseminating the project,

helping others to adopt the materials, and taking steps toward self-sustained distribution.

• At SIGCSE2003, Guzdial hosted a tutorial on Media Construction Projects in Com-

puter Science Courses which covered the basics of doing media computation in Python,

Java, and Squeak. The 11 participants all stated on the final evaluation that they would

recommend this workshop to others.

• A similar tutorial and a paper on the planning and development of the Media Com-

27

putation course was accepted for ITiCSE 2003 [?], which will be presented in July

2003.

• Guzdial spoke on the course at a meeting of representatitives from all the CS de-

partments of the University System of Georgia. Several schools expressed interest in

adopting the course. Charles Fowler of Gainesville College, a two-year college, is of-

fering the course as a trial this summer, with plans to offer two sections of the course

in the Fall (letter of support attached). Guzdial was also invited to speak at Kenne-

saw College and Augusta State College, each four year Colleges. Guzdial is actively

working with Kennesaw in their plans to trial the course.

• Guzdial also gave a talk at DePauw University on the course.

• Finally, Prentice-Hall has signed a contract with Guzdial to produce a book Introduc-

tion to Media Computation with no completion date at this time.

3 Project Plan

While the results from the pilot offering of the course have been quite strong, there is still

much to do.

• We view our results with some skepticism. The teacher was also the PI for the course.

There was probably a strong Hawthorne Effect (though that’s not necessarily bad [4])

given the trial offering of the course.

• The course materials have now worked once at the developer’s institution. We will

clearly need to adapt the course materials as we get feedback from other institutions.

28

• We are very interested in the longer term effects of the course. Do students take more

computer science? We would like to provide that second course that students state

that they’re interested in, and do it in such a way that it can serve as an entry way

into the rest of the curriculum. Do some students become computer science majors?

How does the course impact their use of computation in their own disciplines?

3.1 Development Plan: Completing one course and creating a

path

We plan to continue developing Introduction to Media Computation over the proposed three

year period. The development of the course will continue to be led by the PI, Professor Mark

Guzdial. There are several challenges that we will be facing that will lead to changes in the

course materials.

• The course will be ramping up in size. During the Fall 2003 semester, there will be

two sections of 120, and three in Spring 2004. The initial pilot of 120 could be taught

with incomplete materials by responding to many questions. As the class ramps up,

the materials need to be better.

• The course will be taught by others. In the Spring 2004 semester, Professors Blair

MacIntyre and Colin Potts will each teach sections of the course, and most probably

a full-time instructor will teach a section in Summer 2004. The course materials will

need to be adaptable easily by other instructors.

• The course will be taught elsewhere. Currently, it’s being taught at Gainesvillege

29

College with close cooperation from Georgia Tech, but eventually, it will be taught by

others without our knowledge. We want to evaluate the initial offerings elsewhere so

that we can learn what needs to be changed for other audiences.

3.1.1 Creating a path

In addition, we want to develop a second course that will serve as a follow-on to our Media

Computation course. Our plan is for Media Computation plus the second course will be

accepted as a pre-requisite for our CS2, so that students can use Media Computation as a

path into the major.

Co-PI Professor Blair MacIntyre will be developing the second course during the second

year of the grant, and working with us on evaluation during the third year of the grant.

Professor MacIntyre has a strong research background in interdisciplinarity and applications

of computer science to liberal arts concerns, and a strong interest in undergraduate education.

Professor MacIntyre’s research is in augmented reality, and he does extensive work with

faculty in our Ivan Allen College of Liberal Arts who are developing new media. In particular,

Professor MacIntyre works with Professor Jay Bolter in digital storytelling with agumented

reality.

3.1.2 Media Computation for majors

We are already developing Java versions of some of our materials, and using them (in our

recent SIGCSE2003 workshop). We view the Java versions as being more likely to be adopted

in courses aimed at CS majors. Our goal is not to change all CS1 courses into Media

30

Computation, but to make it easier to include media-focused projects that motivate students

into Java-based CS1 courses. We believe that Media Computation may engender similar

excitement among CS majors as what we’re seeing among non-majors, and may help to raise

retention rates in introductory CS courses among majors as well. Our goal is for the Java

materials to be supplemental, not a central text.

We plan to continue developing the Java materials, and in years two and three of the

proposed project, develop these into a book. These materials will be available throughout

the period of the grant on our website and in workshops, and we will seek out a publisher

during year three for sustained dissemination of the materials. Prentice-Hall has expressed

interest in the Java version of the book.

3.2 More objective, credible evaluation

The current evaluation will become more credible simply by continuing the current evaluation

protocols! As the class moves out of it’s trial period, and as others start to teach the class,

we will probably see some diminishing of the euphoria around a non-majors CS1 course. In

the next year to two years, we should see results that better reflect the effectiveness of the

course.

We also plan to expand our interviews to males, as well as females. Though we’re pleased

to see that we are meeting the goals of keeping females’ interest, we hope that we are not

achieving that goal at the expense of the men! We want to understand, generally, the gender

impact of the course.

31

The evaluation will also become more objective and credible by separating the PI from the

evaluation process. For that reason, evaluation will be taken over by theDirector of Georgia

Tech’s Center for Enhancement of Teaching and Learning (CETL), Dr. Donna Llewellyn.

Dr. Llewellyn has extensive experience in evaluation and in studying issues of gender at a

technical institution. The PI and his team will be involved in design of the studies, but will

not be conduncting the data collection and analysis.

We also plan to work with schools adopting our course, who are willing to be part of

our evaluation. Gainesville College is working with us now, using similar surveys to ours,

so that we can evaluate how well the class is working in other situations, and can adapt the

materials accordingly.

3.2.1 Longitudinal evaluation

An additional area of evaluation that we plan to introduce is longitudinal tracking of Media

Computation students as they continue their careers. We want to know:

• Do these students take more computer science courses?

• Do these students become computer science majors?

• How does the course impact the students’ use and learning of computation within their

own majors? For example, do Liberal Arts majors who use Photoshop learn it more

easily or use it better (by their own estimation) than students who do not take the

course? Do Architecture majors learn AutoCAD more easily or use it better?

Our plan is to use a combination of email surveys and in-person or phone interviews.

32

• At the end of each year, 10% of the students who have taken the Media Computation

course will be surveyed by email to ask about the CS classes they’ve taken and their

use of computational tools.

• At the end of each year, some small sample of students who have taken the course

(perhaps 3–5 students) will be interviewed (by phone or in person) to understand how

the course has effected their later careers and interaction with computation. These

data will also be used to inform further development of the course materials.

3.3 Dissemination and self-sustaining distribution

Our further plans for dissemenation are:

• We will continue to write papers as results arise and propose workshops/tutorials at

ACM SIGCSE, ITiCSE, and IEEE/ASEE FIE conferences. For SIGCSE2004, we plan

to submit a paper on the course results overall, a paper on the female attitudes toward

the course, and a paper on the comparison between the three CS1 courses that we

studied this year. Depending on acceptances and travel budgets, we plan to present at

one-to-two conferences per year.

• We will continue to make materials available on our development website9, and we

plan to create a project website (with a more easily remembered URL) for wider

dissemination.

9http://coweb.cc.gatech.edu/mediaComp-plan

33

We already have a plan for self-sustained distribution of the materials, through a contract

with Prentice-Hall. We plan to continue developing the materials during year one and

publishing the book sometime in year two of the proposed project. As mentioned, we also

plan to seek a publisher for our Java materials that we plan to develop in years two and

three.

4 Conclusion: Deliverables

At the end of the funding period, several resources will be available publicly to others who

would like to use this method at their own institutions, such as the books, lecture slides

and technologies, as well as the course planning website, where the rationale for the course

decisions is made explicit, and the assessment instruments and evaluation results. All of

these materials will be made available at the development website, at a project website that

we are setting up, and at the course CoWeb.

We believe that Media Computation is a viable approach to making CS more relevant

and improving retention rates in introductory computing courses. It’s not the only approach,

and we see that our process of development (which has involved faculty advisors from across

campus, on-line surveys of students, with close ties to evaluation) is part of what we are

developing and delivering–that’s the point of our ITiCSE paper [?]. We hope that, by

developing this approach, we can improve the success of both non-majors and majors in

computer science.

34

References

[1] AAUW. Tech-Savvy: Educating Girls in the New Computer Age. American Association
of University Women Education Foundation, New York, 2000.

[2] ACM/IEEE. Computing curriculum 2001. http: // www. acm. org/ sigcse/ cc2001

(2001).

[3] Blumenfeld, P. C., Soloway, E., Marx, R. W., Krajcik, J. S., Guzdial, M., and Palincsar,
A. Motivating project-based learning: Sustaining the doing, supporting the learning.
Educational Psychologist 26, 3 & 4 (1991), 369–398.

[4] Brown, A. L. Design experiments: Theoretical and methodological challenges in creating
complex interventions in classroom settings. The Journal of the Learning Sciences 2, 2
(1992), 141–178.

[5] Craig, D., ul Haq, S., Khan, S., Zimring, C., Kehoe, C., Rick, J., and Guzdial, M.
Using an unstructured collaboration tool to support peer interaction in large college
classes. In International Conference of the Learning Sciences 2000. Ann Arbor, MI,
2000, pp. 178–184.

[6] diSessa, A. Changing Minds. MIT Press, Cambridge, MA, 2001.

[7] Felleisen, M., Findler, R. B., Flatt, M., and Krishnamurthi, S. How to Design Programs:
An Introduction to Programming and Computing. MIT Press, Cambridge, MA, 2001.

[8] Freeman, P., and Aspray, W. The Supply of Information Technology Workers in the
United States. Computing Research Association, New York, 1999.

[9] Guzdial, M. Squeak: Object-oriented design with Multimedia Applications. Prentice-
Hall, Englewood, NJ, 2001.

[10] Guzdial, M. Use of collaborative multimedia in computer science classes. In Proceedings
of the 2001 Integrating Technology into Computer Science Education Conference. ACM,
Canterbury, UK, 2001.

[11] Guzdial, M. Summary: Retention rates in cs vs. institution. Message posted on acm
sigcse moderated members list, Georgia Tech, April 23 2002.

[12] Guzdial, M., Rick, J., and Kehoe, C. Beyond adoption to invention: Teacher-created
collaborative activities in higher education. Journal of the Learning Sciences 10, 3
(2001), 265–279.

[13] Kehoe, C. M. Supporting Critical Design Dialog. Unpublished ph.d. dissertation, Geor-
gia Institute of Technology, 2001.

35

[14] Malone, T., and Lepper, M. Making learning fun: A taxonomy of intrinsic motivations
for learning. In Aptitude, Learning, and Instruction., R. Snow and M. Farr, Eds., vol. 3
of Conative and Affective Process Analyses. LEA, Hillsdale, NJ, 1987, pp. 223–253.

[15] Margolis, J., and Fisher, A. Unlocking the Clubhouse: Women in Computing. MIT
Press, Cambridge, MA, 2002.

[16] McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y. B.-D.,
Laxer, C., Thomas, L., Utting, I., and Wilusz, T. A multi-national, multi-institutional
study of assessment of programming skills of first-year cs students. ACM SIGCSE
Bulletin 33, 4 (2001), 125–140.

[17] Miller, L. A. Natural language programming: Styles, strategies, and contrasts. IBM
Systems Journal 20, 2 (1981), 184–215. Languages require iteration where aggregate
operations are much easier for novices.

[18] Nagappan, N., Williams, L., Ferzil, M., Wiebe, E., Yang, K., Miller, C., and Balik,
S. Improving the cs1 experience with pair programming. In Twenty-fourth SIGCSE
Technical Symposium on Computer Science Education (New York, NY, 2003), D. Joyce
and D. Knox, Eds., ACM, pp. 359–362.

[19] Pane, J. F., Ratanamahatana, C., and Myers, B. Studying the language and struc-
ture in non-programmers’ solutions to programming problems. International Journal of
Human-Computer Studies 54 (2001), 237–264.

[20] Papert, S. Teaching children to be mathematicians versus teaching about mathematics.
Ai memo no. 249 and logo memo no. 4, MIT, 1971.

[21] Papert, S. Mindstorms: Children, computers, and powerful ideas. Basic Books, New
York, NY, 1980.

[22] Papert, S. Situating constructionism. In Constructionism, I. Harel and S. Papert, Eds.
Ablex Publishing Company, Norwood, NJ, 1991, pp. 1–11.

[23] Pfleeger, S. L., Teller, P., Castaneda, S. E., Wilson, M., and Lindley, R. Increas-
ing the enrollment of women in computer science. In The Proceedings of the Thirty-
second SIGCSE Technical Symposium on Computer Science Education, R. McCauley
and J. Gersting, Eds. ACM Press, New York, 2001, pp. 386–387.

[24] Pintrich, P. R., and Schunk, D. H. Motivation in Education: Theory, Research, and
Applications. Prentice-Hall, 1996.

[25] Roumani, H. Design guidelines for the lab component of objects-first cs1. In The
Proceedings of the Thirty-third SIGCSE Technical Symposium on Computer Science
Education, 2002, D. Knox, Ed. ACM, New York, 2002, pp. 222–226. WFD (Withdrawl-
Failure-D) rates in CS1 in excess of 30

36

[26] Soloway, E., Bonar, J., and Ehrlich, K. Cognitive strategies and looping constructs: An
empirical study. Communications of the ACM 26, 11 (1983), 853–860.

[27] Soloway, E., Ehrlich, K., Bonar, J., and Greenspan, J. What do novices know about
programming? In Directions in Human-Computer Interaction, A. Badre and B. Schnei-
derman, Eds. Ablex Publishing, Norwood, NJ, 1982, pp. 87–122.

[28] Soloway, E., Guzdial, M., and Hay, K. E. Reading and writing in the 21st century.
EDUCOM Review 28, 1 (1993), 26–28.

[29] Wilson, B. C., and Shrock, S. Contributing to success in an introductory computer sci-
ence course: A study of twelve factors. In The Proceedings of the Thirty-second SIGCSE
Technical Symposium on Computer Science Education, R. McCauley and J. Gersting,
Eds. ACM, New York, 2001, pp. 184–188.

[30] Zimring, C., Khan, S., Craig, D., Haq, S.-u., and Guzdial, M. Cool studio: Using simple
tools to expand the discursive space of the design studio. In Design Thinking Research
Symposium. MIT, Cambridge, MA, 1999.

37

5 Budget Justification

To fund this effort, this grant includes a budget request for a three year project.

• One summer month of the PI’s time in Year One, and 0.75 of a summer month in

each of Years Two and Three to develop the course materials (both for the Media

Computation class and the Java-based materials) and work with evaluation,

• One summer month of the co-PI’s time in Years Two and Three to develop the follow-on

course and work with evaluation on the pathway into CS through Media Computation,

• Two graduate student research assistants to focus on evaluation with Dr. Llewellyn,

• One graduate student research assistant to help development of the course materials,

• Our costs for these personnel include fringe, computing charges (for support within

the College of Computing), and graduate student tuition,

• Travel support for attending conferences to disseminate materials and results.

• Materials and supplies, to support the development and evaluation effort.

38

6 Facilities

The College of Computing maintains a variety of computer systems in support of academic

and research activities. These include more than 50 Sun, Silicon Graphics, and Intel systems

used as file and compute servers, many of which are quad-processor machines. In addition,

there are more than 1,000 workstation class machines from Sun, Silicon Graphics, Intel, and

Apple especially for student use. A number of specialized facilities augment these general-

purpose computing capabilities. The hardware that will be purchased for this project will

be of similar quality to what the students use, for testing purposes, but will be set up to

facilitate development.

The Graphics, Visualization, and Usability (GVU) Center houses a variety of graphics and

multimedia equipment, including high-performance systems from Silicon Graphics, Sun, In-

tel, and Apple. The affiliated Multimedia, Computer Animation, Audio/Video Production,

Usability/Human Computer Interface, Virtual Reality/Environments, Electronic Learning

Communities, Computational Perception, Software Visualization, Biomedical Imaging, Col-

laborative Software, and Future Computing Environments labs provide shared facilities tar-

geting specific research areas. These laboratories’ equipments will be of use in developing

our multimedia projects.

PI Guzdial is the Director of the Collaborative Software Lab, affiliated with GVU. The

Collaborative Software Lab has a bank of ten servers supporting our experimental software

for studying computer-supported collaborative learning. In addition, we have three Linux

workstations, two NT workstations, and two Apple workstations used for development. The

39

focus of the Collaborative Software Lab is on facilitating multimedia collaboration, so mul-

timedia facilities available include a high-end Alesis keyboard, projection facilities, a Canon

digital video camera, and a Nikon digital camera.

All of the College’s facilities are linked via local area networks which provide a choice

of communications capabilities from 10 to 1000 Mbps. The College’s network employs a

high-performance OC12C (622 Mbps) ATM and GigabitEthernet (1000 Mbps) backbone,

with connectivity to the campus ATM network provided via OC12C. The primary campus

Internet connection is provided by a direct 100 Mbps link to the service provider’s Atlanta

switching center, augmented by OC3C ATM and OC12C connections, respectively, to the

NSF vBNS (very high performance Backbone Network Service) and Abilene research net-

works. Georgia Tech is also leading southern regional gigabit network efforts (SoX.net, the

Southern Crossroads) as part of Internet2.

Additional computing facilities are provided to the Georgia Tech campus by the Insti-

tute’s Office of Information Technology (OIT), including five public-access clusters of Sun,

Apple, and Dell workstations, a collection of Sun multi-processors which are treated as a

single computational resource via login load sharing, and various mainframes.

40

