
Introduction to Media Computation:

A Multimedia Cookbook in Python

Mark Guzdial

November 19, 2002

ii

Contents

I Introduction 5

1 Introduction to Media Computation 7
1.1 What is computer science about? 7
1.2 What Computers Understand 11
1.3 Media Computation: Why digitize media? 14
1.4 Computer Science for Non-Computer Scientists 15

1.4.1 It’s about communication 16
1.4.2 It’s about process . 16

2 Introduction to Programming 19
2.1 Programming is about Naming 19

2.1.1 Files and their Names 21
2.2 Programming in Python . 22

2.2.1 Programming in JES 23
2.2.2 Media Computation in JES 23
2.2.3 Making a Recipe . 32

II Sounds 43

3 Encoding and Manipulating Sounds 45
3.1 How Sound is Encoded . 45

3.1.1 The Physics of Sound 45
3.1.2 Encoding the Sound 52
3.1.3 Using MediaTools for looking at captured sounds . . . 58

3.2 Manipulating sounds . 60
3.2.1 Open sounds and manipulating samples 60
3.2.2 Introducing the loop 63
3.2.3 Changing the volume of sounds 67

iii

iv CONTENTS

3.2.4 Manipulating different sections of the sound differently 77
3.2.5 Splicing sounds . 81
3.2.6 Backwards sounds . 85
3.2.7 Changing the frequency of sounds 87

4 Creating Sounds 97
4.1 Creating an Echo . 98

4.1.1 Creating Multiple Echoes 99
4.1.2 Additive Synthesis . 100

III Pictures 113

5 Encoding and Manipulating Pictures 115
5.1 How Pictures are Encoded . 115
5.2 Manipulating Pictures . 119

5.2.1 Exploring pictures . 125
5.2.2 Changing color values 126
5.2.3 Copying pixels . 134
5.2.4 Replacing Colors . 145
5.2.5 Combining pixels . 151

5.3 Color Figures . 159

6 Creating Pictures 165
6.1 Drawing on images with pixels 165
6.2 Drawing with drawing commands 166

IV Meta-Issues: How we do what we do 169

7 Design and Debugging 171
7.1 Designing programs . 171

7.1.1 Top-down . 171
7.1.2 Bottom-up . 171

7.2 Techniques of Debugging . 172

V Files 175

8 Encoding, Creating, and Manipulating Files 177
8.1 How to walk through a directory 177

CONTENTS v

8.2 Copying files . 178

VI Text 181

9 Encoding and Manipulation of Text 183
9.1 A recipe to generate HTML 183
9.2 Converting from sound to text to graphics 185

VII Movies 187

10 Encoding, Manipulation and Creating Movies 189
10.1 Manipulating movies . 189
10.2 Compositing to create new movies 191
10.3 Animation: Creating movies from scratch 192

11 Storing Media 195

VIII Isn’t there a better way? 197

12 How fast can we get? 199
12.1 Complexity . 199
12.2 Speed limits . 199
12.3 Native code versus interpreted code 200

IX Programming and Design 201

13 Functional Decomposition 203
13.1 Using map . 203

14 Recursion 205

15 Objects 207

X Other Languages 209

16 Java 211
16.1 Java example . 211

vi CONTENTS

List of Figures

1.1 Eight wires with a pattern of voltages is a byte, which gets
interpreted as a pattern of eight 0’s and 1’s, which gets inter-
preted as a decimal number. 12

1.2 Alan Perlis . 17

2.1 JES running on MacOS X (with annotations) 24
2.2 JES running on Windows . 25
2.3 The File Picker . 28
2.4 File picker with media types identified 29
2.5 Picking, making, and showing a picture 30
2.6 Defining and executing pickAndShow 34

3.1 Raindrops causing ripples in the surface of the water, just as
sound causes ripples in the air 46

3.2 One cycle of the simplest sound, a sine wave 46
3.3 The distance between peaks in ripples in a pond are not

constant—some gaps are longer, some shorter 48
3.4 The note A above middle C is 440 Hz 49
3.5 Some synthesizers using triangular (or sawtooth) or square

waves. 50
3.6 Sound editor main tool . 50
3.7 Viewing the sound signal as it comes in 51
3.8 Viewing the sound in a spectrum view 52
3.9 Viewing a sound in spectrum view with multiple “spikes” . . 53
3.10 Viewing the sound signal in a sonogram view 54
3.11 Area under a curve estimated with rectangles 55
3.12 A depiction of the first five elements in a real sound array . . 57
3.13 A sound recording graphed in the MediaTools 57
3.14 The sound editor open menu 58

vii

viii LIST OF FIGURES

3.15 MediaTools open file dialog 58
3.16 A sound opened in the editor 59
3.17 Exploring the sound in the editor 59
3.18 Comparing the graphs of the original sound (top) and the

louder one (bottom) . 69
3.19 Comparing specific samples in the original sound (top) and

the louder one (bottom) . 70
3.20 Comparing the original sound (top) to the spliced sound (bot-

tom) . 86

4.1 The top and middle waves are added together to create the
bottom wave . 109

4.2 The raw 440 Hz signal on top, then the 440+880+1320 Hz
signal on the bottom . 110

4.3 FFT of the 440 Hz sound . 110
4.4 FFT of the combined sound 110
4.5 The 440 Hz square wave (top) and additive combination of

square waves (bottom) . 111
4.6 FFT’s of the 440 Hz square wave (top) and additive combi-

nation of square waves (bottom) 111

5.1 An example matrix . 116
5.2 Cursor and icon at regular magnification on top, and close-up

views of the cursor (left) and the line below the cursor (right) 117
5.3 Merging red, green, and blue to make new colors 118
5.4 The Macintosh OS X RGB color picker 118
5.5 Picking a color using RGB sliders from JES 119
5.6 RGB triplets in a matrix representation 120
5.7 Directly modifying the pixel colors via commands: Note the

small yellow line on the left 125
5.8 Using the MediaTools image exploration tools 126
5.9 The original picture (left) and red-reduced version (right) . . 128
5.10 Overly blue (left) and red increased by 20% (right) 129
5.11 Original (left) and blue erased (right) 129
5.12 Lightening and darkening of original picture 131
5.13 Negative of the image . 132
5.14 Color picture converted to greyscale 133
5.15 Once we pick a mirrorpoint, we can just walk x halfway and

subtract/add to mirrorpoint 135

LIST OF FIGURES ix

5.16 Original picture (left) and mirrored along the vertical axis
(right) . 136

5.17 Flowers in the mediasources folder 140
5.18 Collage of flowers . 141
5.19 Increasing reds in the browns 146
5.20 Increasing reds in the browns, within a certain range 148
5.21 A picture of a child (Katie), and her background without her 149
5.22 A new background, the moon 149
5.23 Katie on the moon . 150
5.24 Mark in front of a blue sheet 151
5.25 Mark on the moon . 152
5.26 Mark in the jungle . 153
5.27 Color: RGB triplets in a matrix representation 159
5.28 Color: The original picture (left) and red-reduced version (right)160
5.29 Color: Overly blue (left) and red increased by 20% (right) . . 160
5.30 Color: Original (left) and blue erased (right) 161
5.31 Color: Lightening and darkening of original picture 161
5.32 Color: Negative of the image 162
5.33 Color: Color picture converted to greyscale 162
5.34 Color: Increasing reds in the browns 163
5.35 Color: Increasing reds in the browns, within a certain range . 164

6.1 A very small, drawn picture 166
6.2 A very small, drawn picture 167

7.1 Seeing the variables using showVars() 173

10.1 Movie tools in MediaTools . 189
10.2 Dark starting frame number 9 190
10.3 Somewhat lighter starting frame number 9 190

x LIST OF FIGURES

Preface

This book is based on the proposition that very few people actually want to
learn to program. However, most educated people want to use a computer,
and the task that they most want to do with a computer is communicate.
Alan Perlis first made the claim in 1961 that computer science, and program-
ming explicitly, should be part of a liberal education [Greenberger, 1962].
However, what we’ve learned since then is that one doesn’t just “learn to
program.” One learns to program something [Adelson and Soloway, 1985,
Harel and Papert, 1990], and the motivation to do that something can make
the difference between learning to program or not [Bruckman, 2000].

The philosophies which drive the structure of this book include:

• People learn concrete to abstract, driven by need. Teaching structure
before content is painful and results in brittle knowledge that can’t be
used elsewhere [Bruer, 1993]. Certainly, one can introduce structure
(and theory and design), but students won’t really understand the
structure until they have the content to fill it with – and a reason to
need the structure. Thus, this book doesn’t introduce debugging or
design (or complexity or most of computer science) until the students
are doing complex enough software to make it worthwhile learning.

• Repetition is good. Variety is good. Marvin Minsky once said, “If you
know something only one way, you don’t know it at all.” The same
ideas come back frequently in this book. The same idea is framed in
multiple ways. I will use metaphor, visualizations, mathematics, and
even computer science to express ideas in enough different ways that
one of the ways will ring true for the individual student.

• The computer is the most amazingly creative device that humans have
ever conceived of. It is literally completely made up of mind-stuff. As
the movie says, “Don’t just dream it, be it.” If you can imagine it,

1

2 LIST OF FIGURES

you can make it “real” on the computer. Playing with programming
can be and should be enormous fun.

Typographical notations

Examples of Python code look like this: x = x + 1. Longer examples look
look like this:

def helloWorld():

print "Hello, world!"

When showing something that the user types in with Python’s response,
it will have a similar font and style, but the user’s typing will appear after
a Python prompt (>>>):

>>> print 3 + 4

7

User interface components of JES (Jython Environment for Students)
will be specified using a smallcaps font, like save menu item and the Load
button.

There are several special kinds of sidebars that you’ll find in the book.

Recipe 1: An Example Recipe

Recipes (programs) appear like this:

def helloWorld():

print "Hello, world!"

End of Recipe 1

Computer Science Idea: An Example Idea
Key computer science concepts appear like this.

LIST OF FIGURES 3

�

�

�

�

Common Bug: An Example Common Bug
Common things that can cause your recipe to fail ap-
pear like this.

Debugging Tip: An Example Debugging Tip
If there’s a good way to keep those bugs from creeping
into your recipes in the first place, they’re highlighted
here.

�

�

�

�
Making it Work Tip: An Example How To
Make It Work
Best practices or techniques that really help are high-
lighted like this.

Acknowledgements

Our sincere thanks go out to · · ·
• Jason Ergle, Claire Bailey, David Raines, and Joshua Sklare who made

JES a reality with amazing quality for such a short amount of time.
Jason and David took JES the next steps, improving installation, de-
bugging, and process support.

• Adam Wilson built the MediaTools that are so useful for exploring
sounds and images and processing video.

• Andrea Forte, Mark Richman, Matt Wallace, Alisa Bandlow, and
David Rennie who helped build the course materials. Mark and Matt
built a great many of the example programs.

• Jeff Pierce for reviewing and advising us on the design of the media
language used in the book.

• Bob McMath, Vice-Provost at Georgia Tech, and Jim Foley, Associate
Dean for Education in the College of Computing, for investing in this
effort early on.

• Kurt Eiselt who worked hard to make this effort real, convincing others
to take it seriously.

4 LIST OF FIGURES

• Janet Kolodner and Aaron Bobick who were excited and encouraging
about the idea of media computation for students new to computer
science.

• Joan Morton, Chrissy Hendricks, and all the staff of the GVU Center
who made sure that we had what we needed and that the paperwork
was done to make this class come together.

• Picture of Alan Perlis from http://www.cs.cmu.edu/afs/cs.cmu.
edu/Web/csd/perlis.html. Picture of Alan Turing from http://
www.dromo.com/fusionanomaly/applecomputer.html. Picture of Grace
Hopper from http://www.autodesk.com/dyf/ginvolved/december.
html. Most of the clip art is used with permission from the Art Ex-
plosion package by Nova Development.

• Finally but most importantly, Barbara Ericson, and Matthew, Kather-
ine, and Jennifer Guzdial, who allowed themselves to be photographed
and recorded for Daddy’s media project and were supportive and ex-
cited about the class.

Part I

Introduction

5

Chapter 1

Introduction to Media
Computation

1.1 What is computer science about?

Computer science is the study of process: How we do things, how we specify
what we do, how we specify what the stuff is that you’re processing. But
that’s a pretty dry definition. Let’s try a metaphorical one.

Computer Science Idea: Computer science is
the study of recipes
They’re a special kind of recipe—one that can be

executed by a computational device, but that point
is only of importance to computer scientists. The
important point overall is that a computer science
recipe defines exactly what’s to be done.

If you’re a biologist who wants to describe how migration works or how
DNA replicates, or if you’re a chemist who wants to explain how an equi-
librium is reached in a reaction, or if you’re a factory manager who wants
to define a machine-and-belt layout and even test how it works before phys-
ically moving heavy things into position, then being able to write a recipe
that specifies exactly what happens, in terms that can be completely defined
and understood, is very useful. This exactness is part of why computers have
radically changed so much of how science is done and understood.

It may sound funny to call programs or algorithms a recipe, but the
analogy goes a long way. Much of what computer scientists study can be
defined in terms of recipes:

7

8 CHAPTER 1. INTRODUCTION TO MEDIA COMPUTATION

• Some computer scientists study how recipes are written: Are there
better or worse ways of doing something? If you’ve ever had to sepa-
rate whites from yolks in eggs, you know that knowing the right way
to do it makes a world of difference. Computer science theoreticians
worry about the fastest and shortest recipes, and the ones that take
up the least amount of space (you can think about it as counter space
— the analogy works). How a recipe works, completely apart from
how it’s written, is called the study of algorithms. Software engi-
neers worry about how large groups can put together recipes that still
work. (The recipe for some programs, like the one that keeps track of
Visa/MasterCard records has literally millions of steps!)

• Other computer scientists study the units used in recipes. Does it
matter whether a recipe uses metric or English measurements? The
recipe may work in either case, but if you have the read the recipe
and you don’t know what a pound or a cup is, the recipe is a lot less
understandable to you. There are also units that make sense for some
tasks and not others, but if you can fit the units to the tasks well, you
can explain yourself more easily and get things done faster—and avoid
errors. Ever wonder why ships at sea measure their speed in knots?
Why not use things like meters per second? There are places, like
at sea, where more common terms aren’t appropriate or don’t work
as well. The study of computer science units is referred to as data
structures. Computer scientists who study ways of keeping track of
lots of data in lots of different kinds of units are studying databases.

• Can recipes be written for anything? Are there some recipes that
can’t be written? Computer scientists actually do know that there are
recipes that can’t be written. For example, you can’t write a recipe
that can absolutely tell, for any other recipe, if the other recipe will
actually work. How about intelligence? Can we write a recipe that can
think (and how would you tell if you got it right)? Computer scientsts
in theory , intelligent systems, artificial intelligence, and systems worry
about things like this.

• There are even computer scientists who worry about whether peo-
ple like what the recipes produce, like the restauraunt critics for the
newspaper. Some of these are human-computer interface specialists
who worry about whether people like how the recipes work (those
“recipes” that produce an interface that people use, like windows,
buttons, scrollbars, and other elements of what we think about as a

1.1. WHAT IS COMPUTER SCIENCE ABOUT? 9

running program).

• Just as some chefs specialize in certain kinds of recipes, like crepes or
barbeque, computer scientists also specialize in special kinds of recipes.
Computer scientists who work in graphics are mostly concerned with
recipes that produce pictures, animations, and even movies. Com-
puter scientists who work in computer music are mostly concerned
with recipes that produce sounds (often melodic ones, but not always).

• Still other computer scientists study the emergent properties of recipes.
Think about the World Wide Web. It’s really a collection of millions
of recipes (programs) talking to one another. Why would one section
of the Web get slower at some point? It’s a phenomena that emerges
from these millions of programs, certainly not something that was
planned. That’s something that networking computer scientists study.
What’s really amazing is that these emergent properties (that things
just start to happen when you have many, many recipes interacting
at once) can also be used to explain non-computational things. For
example, how ants forage for food or how termites make mounds can
also be described as something that just happens when you have lots
of little programs doing something simple and interacting.

The recipe metaphor also works on another level. Everyone knows that
some things in recipe can be changed without changing the result dramat-
ically. You can always increase all the units by a multiplier to make more.
You can always add more garlic or oregano to the spaghetti sauce. But
there are some things that you cannot change in a recipe. If the recipe calls
for baking powder, you may not substitute baking soda. If you’re supposed
to boil the dumplings then saute’ them, the reverse order will probably not
work well.

Similarly, for software recipes. There are usually things you can easily
change: The actual names of things (though you should change names con-
sistently), some of the constants (numbers that appear as plain old numbers,
not as variables), and maybe even some of the data ranges (sections of the
data) being manipulated. But the order of the commands to the computer,
however, almost always has to stay exactly as stated. As we go on, you’ll
learn what can be changed safely, and what can’t.

Computer scientists specify their recipes with programming languages.
Different programming languages are used for different purposes. Some of
them are wildly popular, like Java and C++. Others are more obscure,
like Squeak and T. Others are designed to make computer science ideas

10 CHAPTER 1. INTRODUCTION TO MEDIA COMPUTATION

very easy to learn, like Scheme or Python, but the fact that they’re easy to
learn doesn’t always make them very popular nor the best choice for experts
building larger or more complicated recipes. It’s a hard balance in teaching
computer science to pick a language that is easy to learn and is popular and
useful enough that students are motivated to learn it.

Why don’t computer scientists just use natural languages, like English
or Spanish? The problem is that natural languages evolved the way that
they did to enhance communications between very smart beings, humans.
As we’ll go into more in the next section, computers are exceptionally dumb.
They need a level of specificity that natural language isn’t good at. Further,
what we say to one another in natural communication is not exactly what
you’re saying in a computational recipe. When was the last time you told
someone how a videogame like Doom or Quake or Super Mario Brothers
worked in such minute detail that they could actually replicate the game
(say, on paper)? English isn’t good for that kind of task.

There are so many different kinds of programming languages because
there are so many different kinds of recipes to write. Programs written in
the programming language C tend to be very fast and efficient, but they
also tend to be hard to read, hard to write, and require units that are more
about computers than about bird migrations or DNA or whatever else you
want to write your recipe about. The programming language Lisp (and its
related languages like Scheme, T, and Common Lisp) is very flexible and is
well suited to exploring how to write recipes that have never been written
before, but Lisp looks so strange compared to languages like C that many
people avoid it and there are (natural consequence) few people who know it.
If you want to hire a hundred programmers to work on your project, you’re
going to find it easier to find a hundred programmers who know a popular
language than a less popular one—but that doesn’t mean that the popular
language is the best one for your task!

The programming language that we’re using in this book is Python
(http://www.python.org for more information on Python). Python is a
fairly popular programming language, used very often for Web and me-
dia programming. The web search engine Google is mostly programmed in
Python. The media company Industrial Light & Magic also uses Python.
A list of companies using Python is available at http://www.python.org/
psa/Users.html. Python is known for being easy to learn, easy to read,
very flexible, but not very efficient. The same algorithm coded in C and
in Python will probably be faster in C. The version of Python that we’re
using is called Jython (http://www.jython.org). Python is normally im-
plemented in the programming language C. Jython is Python implemented

1.2. WHAT COMPUTERS UNDERSTAND 11

in Java. Jython lets us do multimedia that will work across multiple com-
puter platforms.

1.2 What Computers Understand

Computational recipes are written to run on computers. What does a com-
puter know how to do? What can we tell the computer to do in the recipe?
The answer is “Very, very little.” Computers are exceedingly stupid. They
really only know about numbers.

Actually, even to say that computers know numbers is a myth, or more
appropriately, an encoding . Computers are electronic devices that react to
voltages on wires. We group these wires into sets (like eight of these wires
are called a byte and one of them is called a bit). If a wire has a voltage
on it, we say that it encodes a 1. If it has no voltage on it, we say that it
encodes a 0. So, from a set of eight wires (a byte), we interpret a pattern of
eight 0’s and 1’s, e.g., 01001010. Using the binary number system, we can
interpret this byte as a decimal number (Figure 1.1). That’s where we come
up with the claim that a computer knows about numbers1.

The computer has a memory filled with bytes. Everything that a com-
puter is working with at a given instant is stored in its memory. That
means that everything that a computer is working with is encoded in its
bytes: JPEG pictures, Excel spreadsheets, Word documents, annoying Web
pop-up ads, and the latest spam email.

A computer can do lots of things with numbers. It can add them, sub-
tract them, multiply them, divide them, sort them, collect them, duplicate
them, filter them (e.g., “make a copy of these numbers, but only the even
ones”), and compare them and do things based on the comparison. For
example, a computer can be told in a recipe “Compare these two numbers.
If the first one is less than the second one, jump to step 5 in this recipe.
Otherwise, continue on to the next step.”

So far, the computer is an incredible calculator, and that’s certainly why
it was invented. The first use of the computer was during World War II for
calculating trajectories of projectiles (“If the wind is coming from the SE
at 15 MPH, and you want to hit a target 0.5 miles away at an angle of 30
degrees East of North, then incline your launcher to . . .”). The computer is
an amazing calculator. But what makes it useful for general recipes is the
concept of encodings.

1We’ll talk more about this level of the computer in Chapter 12

12 CHAPTER 1. INTRODUCTION TO MEDIA COMPUTATION

0
1
0
1
0
0
1
0

74

wires

interpreted as

Figure 1.1: Eight wires with a pattern of voltages is a byte, which gets
interpreted as a pattern of eight 0’s and 1’s, which gets interpreted as a
decimal number.

Computer Science Idea: Computers can layer
encodings
Computers can layer encodings to virtually any level
of complexity. Numbers can be interpreted as charac-
ters, which can be interpreted in sets as Web pages,
which can be interpreted to appear as multiple fonts
and styles. But at the bottommost level, the com-
puter only “knows” voltages which we intepret as
numbers.

If one of these bytes is interpreted as the number 65, it could just be
the number 65. Or it could be the letter A using a standard encoding
of numbers-to-letters called the American Standard Code for Information
Interchange (ASCII). If that 65 appears in a collection of other numbers
that we’re interpreting as text, and that’s in a file that ends in “.html” it
might be part of something that looks like this <a href=. . ., which a Web
browser will interpret as the definition of a link. Down at the level of the
computer, that A is just a pattern of voltages. Many layers of recipes up,
at the level of a Web browser, it defines something that you can click on to
get more information.

If the computer understands only numbers (and that’s a stretch already),
how does it manipulate these encodings? Sure, it knows how to compare
numbers, but how does that extend to being able to alphabetize a class

1.2. WHAT COMPUTERS UNDERSTAND 13

list/ Typically, each layer of encoding is implemented as a piece or layer of
software. There’s software that understands how to manipulate characters.
The character software knows how to do things like compare names because
it has encoded that a comes before b and so on, and that the numeric
comparison of the order of numbers in the encoding of the letters leads to
alphabetical comparisons. The character software is used by other software
that manipulates text in files. That’s the layer that something like Microsoft
Word or Notepad or TextEdit would use. Still another piece of software
knows how to interpret HTML (the language of the Web), and another
layer of that software knows how to take HTML and display the right text,
fonts, styles, and colors.

We can similarly create layers of encodings in the computer for our spe-
cific tasks. We can teach a computer that cells contain mitochondria and
DNA, and that DNA has four kinds of nucleotides, and that factories have
these kinds of presses and these kinds of stamps. Creating layers of encod-
ing and interpretation so that the computer is working with the right units
(recall back to our recipe analogy) for a given problem is the task of data
representation or defining the right data structures.

If this sounds like a lot of software, it is. When software is layered
like this, it slows the computer down some. But the amazing thing about
computers is that they’re amazingly fast—and getting faster all the time!

Computer Science Idea: Moore’s Law
Gordon Moore, one of the founders of Intel (maker
of computer processing chips for all computers run-
ning Windows operating systems), made the claim
that the number of transistors (a key component of
computers) would double at the same price every 18
months, effectively meaning that the same amount of
money would buy twice as much computing power
every 18 months. That means, in a year-and-a-half,
computers get as fast over again as has taken them
since World War II. This Law has continued to hold
true for decades.

Computers today can execute literally BILLIONS of recipe steps per
second! They can hold in memory literally encyclopediae of data! They
never get tired nor bored. Search a million customers for a particular card
holder? No problem! Find the right set of numbers to get the best value
out of an equation? Piece of cake!

14 CHAPTER 1. INTRODUCTION TO MEDIA COMPUTATION

Process millions of picture elements or sound fragments or movie frames?
That’s media computation.

1.3 Media Computation: Why digitize media?

Let’s consider an encoding that would be appropriate for pictures. Imagine
that pictures were made up of little dots. That’s not hard to imagine: Look
really closely at your monitor or at a TV screen and see that your images
are already made up of little dots. Each of these dots is a distinct color.
You know from your physics that colors can be described as the sum of red ,
green, and blue. Add the red and green to get yellow. Mix all three together
to get white. Turn them all off, and you get a black dot.

What if we encoded each dot in a picture as collection of three bytes,
one each for the amount of red, green, and blue at that dot on the screen?
And we collect a bunch of these three-byte-sets to determine all the dots
of a given picture? That’s a pretty reasonable way of representing pictures,
and it’s essentially how we’re going to do it in Chapter 5.

Manipulating these dots (each referred to as a pixel or picture element)
can take a lot of processing. There are thousands or even millions of them
in a picture that you might want to work with on your computer or on the
Web. But the computer doesn’t get bored and it’s mighty fast.

The encoding that we will be using for sound involves 44,100 two-byte-
sets (called a sample) for each second of time. A three minute song requires
158,760,000 bytes. Doing any processing on this takes a lot of operations.
But at a billion operations per second, you can do lots of operations to every
one of those bytes in just a few moments.

Creating these kinds of encodings for media requires a change to the
media. Look at the real world: It isn’t made up of lots of little dots that
you can see. Listen to a sound: Do you hear thousands of little bits of sound
per second? The fact that you can’t hear little bits of sound per second is
what makes it possible to create these encodings. Our eyes and ears are
limited: We can only perceive so much, and only things that are just so
small. If you break up an image into small enough dots, your eyes can’t tell
that it’s not a continuous flow of color. If you break up a sound into small
enough pieces, your ears can’t tell that the sound isn’t a continuous flow of
auditory energy.

The process of encoding media into little bits is called digitization, some-
times referred to as “going digital .” Digital means (according to the Amer-
ican Heritage Dictionary) “Of, relating to, or resembling a digit, especially

1.4. COMPUTER SCIENCE FOR NON-COMPUTER SCIENTISTS 15

a finger.” Making things digital is about turning things from continuous,
uncountable, to something that we can count, as if with our fingers.

Digital media, done well, feel the same to our limited human sensory
apparatus as the original. Phonograph recordings (ever seen one of those?)
capture sound continuously, as an analogue signal. Photographs capture
light as a continuous flow. Some people say that they can hear a differ-
ence between phonograph recordings and CD recordings, but to my ear
and most measurements, a CD (which is digitized sound) sounds just the
same—maybe clearer. Digital cameras at high enough resolutions produce
photograph-quality pictures.

Why would you want to digitize media? Because it’s easier to manip-
ulate, to replicate exactly, to compress, and to transmit. For example, it’s
hard to manipulate images that are in photographs, but it’s very easy when
the same images are digitized. This book is about using the increasingly
digital world of media and manipulating it—and learning computation in
the process.

Moore’s Law has made media computation feasible as an introductory
topic. Media computation relies on the computer doing lots and lots of
operations on lots and lots of bytes. Modern computers can do this easily.
Even with slow (but easy to understand) languages, even with inefficient
(but easy to read and write) recipes, we can learn about computation by
manipulating media.

1.4 Computer Science for Non-Computer Scien-

tists

But why should you? Why should anyone who doesn’t want to be a com-
puter scientist learn about computer science? Why should you be interested
in learning about computation through manipulating media?

Most professionals today do manipulate media: Papers, videos, tape
recordings, photographs, drawings. Increasingly, this manipulation is done
with a computer. Media are very often in a digitized form today.

We use software to manipulate these media. We use Adobe Photoshop
for manipulating our images, and Macromedia SoundEdit to manipulate
our sounds, and perhaps Microsoft PowerPoint for assembling our media
into slideshows. We use Microsoft Word for manipulating our text, and
Netscape Navigator or Microsoft Internet Explorer for browsing media on
the Internet.

So why should anyone who does not want to be a computer scientist

16 CHAPTER 1. INTRODUCTION TO MEDIA COMPUTATION

study computer science? Why should you learn to program? Isn’t it enough
to learn to use all this great software? The following two sections provide
two answers to these questions.

1.4.1 It’s about communication

Digital media are manipulated with software. If you can only manipulate
media with software that someone else made for you, you are limiting
your ability to communicate. What if you want to say something or say it
in some way that Adobe, Microsoft, Apple, and the rest don’t support you
in saying? If you know how to program, even if it would take you longer to
do it yourself, you have that freedom.

What about learning those tools in the first place? In my years in com-
puters, I’ve seen a variety of software come and go as the package for draw-
ing, painting, word-processing, video editing, and beyond. You can’t learn
just a single tool and expect to be able to use that your entire career. If you
know how the tools work, you have a core understanding that can transfer
from tool to tool. You can think about your media work in terms of the
algorithms, not the tools.

Finally, if you’re going to prepare media for the Web, for marketing, for
print, for broadcast, for any use whatsoever, it’s worthwhile for you to have
a sense of what’s possible, what can be done with media. It’s even more
important as a consumer of media that you know how the media can be
manipulated, to know what’s true and what could be just a trick. If you
know the basics of media computation, you have an understanding that goes
beyond what any individual tool provides.

1.4.2 It’s about process

In 1961, Alan Perlis gave a talk at MIT where he made the argument that
computer science, and programming explicitly, should be part of a general,
liberal education [Greenberger, 1962]. Perlis is an important figure in the
field of computer science (Figure 1.2). The highest award that a computer
scientist can be honored with is the ACM Turing Award. Perlis was the
first recipient of that award. He’s an important figure in software engineer-
ing, and he started several of the first computer science departments in the
United States.

Perlis’ argument was made in comparison with calculus. Calculus is
generally considered part of a liberal education: Not everyone takes calculus,
but if you want to be well-educated, you will typically take at least a term of

1.4. COMPUTER SCIENCE FOR NON-COMPUTER SCIENTISTS 17

Figure 1.2: Alan Perlis

calculus. Calculus is the study of rates, which is important in many fields.
Computer science, as we said before (page 7), is the study of process. Process
is important to nearly every field, from business to science to medicine to
law. Knowing process formally is important to everyone.

Exercises

Exercise 1: Find an ASCII table on the Web: A table listing every char-
acter and its corresponding numeric representation.
Exercise 2: Find a Unicode table on the Web. What’s the difference
between ASCII and Unicode?
Exercise 3: Consider the representation for pictures described in Sec-
tion 1.3, where each “dot” (pixel) in the picture is represented by three
bytes, for the red, green, and blue components of the color at that dot. How
many bytes does it take to represent a 640x480 picture, a common picture
size on the Web? How many bytes does it take to represent a 1024x768
picture, a common screen size? (What do you think is meant now by a “3
megapixel” camera?)
Exercise 4: How many different numbers can be represented by one byte?
In other words, eight bits can represent from zero to what number? What

18 CHAPTER 1. INTRODUCTION TO MEDIA COMPUTATION

if you have two bytes? Four bytes?
Exercise 5: (Hard) How might you represent a floating point number in
terms of bytes?
Exercise 6: Look up Alan Kay and the Dynabook on the Web. Who is
he, and what does he have to do with media computation?
Exercise 7: Look up Alan Turing on the Web. Who was he, and what
does he have to do with our notion of what a computer can do and how
encodings work?
Exercise 8: Look up Kurt Goedel on the Web. Who was he, and what
amazing things did he do with encodings?

To Dig Deeper

James Gleick’s book Chaos describes more on emergent properties.
Mitchel Resnick’s book Turtles, Termites, and Traffic Jams: Explo-

rations in Massively Parallel Microworlds [Resnick, 1997] describes how ants,
termites, and even traffic jams and slime molds can be described pretty ac-
curately with hundreds or thousands of very small programs running and
interacting all at once.

Beyond the Digital Domain [Abernethy and Allen, 1998] is a wonder-
ful introductory book to computation with lots of good information about
digital media.

Chapter 2

Introduction to
Programming

2.1 Programming is about Naming

Computer Science Idea: Much of program-
ming is about naming
A computer can associate names, or symbols, with
just about anything: With a particular byte; with a
collection of bytes making up a numeric variable or
a bunch of letters; with a media element like a file,
sound, or picture; or even with more abstract con-
cepts, like a named recipe (a program) or a named
encoding (a type). A computer scientist sees a choice
of names as being high quality in the same way that
a philosopher or mathematician might: If the naming
scheme (the names and what they name) are elegant,
parsimonious, and usable.

Obviously, the computer itself doesn’t care about names. If the computer
is just a calculator, then remembering words and the words’ association with
values is just a waste of the computer’s memory. But for humans, it’s very
powerful. It allows us to work with the computer in a natural way, even a
way that extends how we think about recipes (processes) entirely.

XXX This section needs work
A programming language is really a set of names that a computer has

encodings for, such that those names make the computer do expected ac-

19

20 CHAPTER 2. INTRODUCTION TO PROGRAMMING

tions and interpret our data in expected ways. Some of the programming
language’s names allow us to define new namings—which allows us to create
our own layers of encoding. Assigning a variable to a value is one way of
defining a name for the computer. Defining a function is giving a name to
a recipe.

There are good names and less good names. That has nothing to do
with curse words, nor with TLA’s (Three Letter Acronyms). A good set of
encodings and names allow one to describe recipes in a way that’s natural,
without having to say too much. The variety of different programming
languages can be thought of as a collection of sets of namings-and-encodings.
Some are better for some tasks than others. Some languages require you to
write more to describe the same recipe than others—but sometimes that
“more” leads to a much more (human) readable recipe that helps others to
understand what you’re saying.

Philosophers and mathematicians look for very similar senses of quality.
They try to describe the world in few words, but an elegant selection of words
that cover many situations, while remaining understandable to their fellow
philosophers and mathematicians. That’s exactly what computer scientists
do as well.

How the units and values (data) of a recipe can be interpreted is often
also named. Remember how we said in Section 1.2 (page 11) that everything
is in bytes, but we can interpret those bytes as numbers? In some program-
ming languages, you can say explicitly that some value is a byte, and later
tell the language to treat it as a number, an integer (or sometimes int).
Similarly, you can tell the computer that these series of bytes is a collection
of numbers (an array of integers), or a collection of characters (a string),
or even as a more complex encoding of a single floating point number (a
float—any number with a decimal point in it).

In Python, we will explicitly tell the computer how to interpret our
values, but we will only rarely tell the computer that certain names only
are associated with certain encodings. Languages such as Java and C++
are strongly typed : Their names are strongly associated with certain types
or encodings.They require you to say that this name will only be associated
with integers, and that one will only be a floating point number. Python
still has types (encodings that you can reference by name), but they’re not
as explicit.

2.1. PROGRAMMING IS ABOUT NAMING 21

2.1.1 Files and their Names

A programming language isn’t the only place where computers associate
names and values. Your computer’s operating system takes care of the files
on your disk, and it associates names with those files. Operating systems
you may be familiar with or use include Windows 95, Windows 98 (Windows
ME, NT, XP. . .), MacOS, and Linux. A file is a collection of values (bytes)
on your hard disk (the part of your computer that stores things after the
power gets turned off). If you know the name of a file, you can tell it to the
operating system, and it can give you the values associated with that name.

You may be thinking, “I’ve been using the computer for years, and I’ve
never ’given a file name to the operating system.’ ” Maybe not explicitly,
but when you pick a file from a file choosing dialog in Photoshop, or double-
click a file in a directory window (or Explorer or Finder), you are asking
some software somewhere to give the name you’re picking or double-clicking
to the operating system, and get the values back. When you write your own
recipes, though, you’ll be explicitly getting file names and asking for their
values.

Files are very important for media computation. Disks can store acres
and acres of information on them. Remember our discussion of Moore’s Law
(page 13)? Disk capacity per dollar is increasing faster than computer speed
per dollar! Computer disks today can store whole movies, tons of sounds,
and tons of pictures.

These media are not small. Even in a compressed form, screen size
pictures can be over a million bytes large, and songs can be three million
bytes or more. You need to keep them someplace where they’ll last past the
computer being turned off and where there’s lots of space.

In contrast, your computer’s memory is impermanent (disappears when
the power does) and is relatively small. Computer memory is getting larger
all the time, but it’s still just a fraction of the amount of space on your disk.
When you’re working with media, you will load the media from the disk into
memory, but you wouldn’t want it to stay in memory after you’re done. It’s
too big.

Think about your computer’s memory as a dorm room. You can get to
things easily in a dorm room—they’re right at hand, easy to reach, easy
to use. But you wouldn’t want to put everything you own (or everything
you hope to own) in that one dorm room. All your belongings? Your skis?
Your car? Your boat? That’s silly. Instead, you store large things in places
designed to store large things. You know how to get them when you need
them (and maybe take them back to your dorm room if you need to or can).

22 CHAPTER 2. INTRODUCTION TO PROGRAMMING

When you bring things into memory, you will name the value, so that
you can retrieve it and use it later. In that sense, programming is something
like algebra. To write generalizable equations and functions (those that work
for any number or value), you wrote equations and functions with variables,
like PV = nRT or e = Mc2 or f(x) = sin(x). Those P’s, V’s, R’s, T’s,
e’s, M’s, c’s, and x’s were names for values. When you evaluated f(30), you
knew that the x was the name for 30 when computing f . We’ll be naming
media (as values) in the same way when using them when programming.

2.2 Programming in Python

The programming language that we’re going to be using in this class is
called Python. It’s a language invented by Guido van Rossum. van Rossum
named his language for the famous British comedy troupe Monty Python.
Python has been used for years by people without formal computer science
training—it’s aimed at being easy to use. The particular form of Python
that we’re going to be using is Jython because it lends itself to cross-platform
multimedia.

You’ll actually be programming using a tool called JES for “Jython En-
vironment for Students.” JES is a simple editor (tool for entering program
text) and interaction space so that you can try things out in JES and create
new recipes within it. The media names (functions, variables, encodings)
that we’ll be talking about in this book were developed to work from within
JES (i.e., they’re not part of a normal Jython distribution, though the basic
language we’ll be using is normal Python).

To install JES, you’ll have to do these things:

1. Make sure that you have Java installed on your computer. If you don’t
have it, you can get it from the Sun site at http://www.java.sun.com.

2. You’ll need to install Jython. You will probably have a CD accom-
panying this text including both Jython and JES. You will just unzip
the archive to get Jython and JES set up.

3. If you don’t have a CD, you’ll need the individual components. You’ll
be able to get Jython from http://www.jython.org and JES from
http://coweb.cc.gatech.edu/mediaComp-plan/Gettingsetup. Be
sure to unzip JES as a directory inside the Jython directory.

2.2. PROGRAMMING IN PYTHON 23

2.2.1 Programming in JES

How you start JES depends on your platform. In Linux, you’ll probably cd
into your Jython directory and type a command like jes. In Windows or
Macintosh, you’ll have a jes.bat batch file or a Jes applet that you can
double click from within the Jython directory.

XXX Insert Pictures of What this Looks Like Here
Once you start JES, it will look something like Figure 2.1. (A Windows

screenshot of the same thing is Figure 2.2—it really does run the same
thing on all Java-supported platforms.) There are two areas in JES (the bar
between them moves so that you can differentially resize the two areas):

• The top part is the program area. This where you write your recipes:
The programs and their names that you’re creating. This area is
simply a text editor—think of it as Microsoft Word for your programs.
The computer doesn’t actually try to intepret the names that you type
up in the program area until you press the Load, and you can’t press
the Load button until you’ve saved your program (by using the Save
menu item, which is visible in Figure 2.2 under the File menu.

• The bottom part is the command area. This is where you literally
command the computer to do something. You type your commands at
the >>> prompt, and when you hit return, the computer will interpret
your words (i.e., apply the meanings and encodings of the Python
programming language) and do what you have told it to do. This
interpretation will include whatever you typed and loaded from the
program area as well.

2.2.2 Media Computation in JES

We’re going to start out by simply typing commands in the command area—
not defining new names yet, but simply using the names that the computer
already knows from within JES.

The name print is an important one to know. It’s always used with
something following it. The meaning for print is “Display a readable rep-
resentation of whatever follows.” Whatever follows can be a name that the
computer knows, or an expression (literally in the algebraic sense). Try typ-
ing print 34 + 56 by clicking in the command area, typing the command,
and hitting return—like this:

>>> print 34 + 56
90

24 CHAPTER 2. INTRODUCTION TO PROGRAMMING

Command
area

Program area

Figure 2.1: JES running on MacOS X (with annotations)

34 + 56 is a numeric expression that Python understands. Obviously,
it’s composed of two numbers and an operation (in our sense, a name) that
Python knows how to do, + meaning “add.” Python understands other kinds
of expressions, not all numeric.

>>> print 34.1/46.5

0.7333333333333334

>>> print 22 * 33

726

>>> print 14 - 15

-1

>>> print "Hello"

Hello

>>> print "Hello" + "Mark"

HelloMark

2.2. PROGRAMMING IN PYTHON 25

Figure 2.2: JES running on Windows

Python understands a bunch of standard math operations. It also knows
how to recognize different kinds of numbers, both integer and floating point.
It also knows how to recognize strings (lists of characters) that are started
and ended with " (quote) marks. It even knows what it means to “add” two
strings together: It simply puts one right after the other.

26 CHAPTER 2. INTRODUCTION TO PROGRAMMING

�

�

�

�

Common Bug: Python’s types can produce
odd results
Python takes types seriously. If it sees you using in-
tegers, it thinks you want an integer result from your
expressions. If it sees you use floating point numbers,
it thinks you want a floating point result. Sounds
reasonable, no? But how about:

>>> print 1.0/2.0
0.5
>>> print 1/2
0

1/2 is 0? Well, sure! 1 and 2 are integers. There is no
integer equal to 1/2, so the answer must be 0! Simply
by adding “.0” to an integer convinces Python that
we’re talking about floating point numbers, so the
result is in floating point form..

Python also understands about functions. Remember functions from
algebra? They’re a “box” into which you put one value, and out comes
another. One of the functions that Python knows takes a character as the
input value and returns the number that is the ASCII mapping for that
character. The name of that function is ord (for ordinal), and you can use
print to display the value that the function ord returns:

>>> print ord("A")

65

Another function that’s built in to Python is named abs—it’s the abso-
lute value function. It returns the absolute value of the input value.

>>> print abs(1)

1

>>> print abs(-1)

1

2.2. PROGRAMMING IN PYTHON 27

Debugging Tip: Common typos
If you type something that Python can’t understand
at all, you’ll get a syntax error.

>>> pint "Hello"
A syntax error is contained in the code
-- I can’t read it as Python.

If you try to access a word that Python doesn’t know,
Python will say that it doesn’t know that name.

>>> print a
A local or global name could not be
found.

Another function that JES1 knows is one that allows you to pick a file
from your disk. It takes no input, like ord did, but it does return a string
which is the name of the file on your disk. The name of the function is
pickAFile. Python is very picky about capitalization—neither pickafile
nor Pickafile will work! Try it like this print pickAFile(). When you
do, you will get something that looks like Figure 2.3.

You’re probably already familiar with how to use a file picker or file
dialog like this:

• Double-click on folders/directories to open them.

• Click to select and then click Open, or double-click, to select a file.

Once you select a file, what gets returned is the file name as a string
(a sequence of characters). (If you click Cancel, pickAFile returns the
empty string—a string of characters, with no characters in it, e.g., "".) Try
it: Do print pickAFile() and Open a file.

>>> print pickAFile()
/Users/guzdial/mediasources/barbara.jpg

What you get when you finally select a file will depend on your operating
system. On Windows, your file name will probably start with C: and will

1You might notice that I switched from saying “Python” knows to “JES” knows. print
is something that all Python implementations know. pickAFile is something that we built
for JES. In general, you can ignore the difference, but if you try to use another kind of
Python, it’ll be important to know what’s common and what isn’t.

28 CHAPTER 2. INTRODUCTION TO PROGRAMMING

Figure 2.3: The File Picker

have backslashes in it (e.g., \). On Linux or MacOS, it will probably look
something like the above. There are really two parts to this file name:

• The character between words (e.g., the / between “Users” and “guz-
dial”) is called the path delimiter . Everything from the beginning of
the file name to the last path delimiter is called the path to the file.
That describes exactly where on the hard disk (in which directory) a
file exists.

• The last part of the file (e.g. “barbara.jpg”) is called the base file
name. When you look at the file in the Finder/Explorer/Directory
window (depending on your operating system), that’s the part that
you see. Those last three characters (after the period) is called the file
extension. It identifies the encoding of the file.

Files that have an extension of “.jpg” are JPEG files. They contain
pictures. JPEG is a standard encoding for any kind of images. The other
kind of media files that we’ll be using alot are “.wav” files (Figure 2.4). The
“.wav” extension means that these are WAV files. They contain sounds.
WAV is a standard encoding for sounds. There are many other kinds of
extensions for files, and there are even many other kinds of media extensions.
For example, there are also GIF (“.gif”) files for images and AIFF (“.aif”
or “.aiff”) files for sounds. We’ll stick to JPEG and WAV in this text, just
to avoid too much complexity.

2.2. PROGRAMMING IN PYTHON 29

.wav file

.jpg file

Figure 2.4: File picker with media types identified

Showing a Picture

So now we know how to get a complete file name: Path and base name.
This doesn’t mean that we have the file itself loaded into memory. To get
the file into memory, we have to tell JES how to interpret this file. We know
that JPEG files are pictures, but we have to tell JES explicitly to read the
file and make a picture from it. There is a function for that, too, named
makePicture.

makePicture does require an argument—some input to the function. It
takes a file name! Lucky us—we know how to get one of those!

>>> print makePicture(pickAFile())
Picture, filename /Users/guzdial/mediasources/barbara.jpg height
294 width 222

The result from print suggests that we did in fact make a picture, from
a given filename and a given height and width. Success! Oh, you wanted
to actually see the picture? We’ll need another function! (Did I mention
somewhere that computers are stupid?) The function to show the picture
is named show. show also takes an argument—a Picture! Figure 2.5 is the
result. Ta-dah!

Notice that the output from show is None. Functions in Python don’t
have to return a value, unlike real mathematical functions. If a function
does something (like opening up a picture in a window), then it doesn’t also
need to return a value. It’s still pretty darn useful.

30 CHAPTER 2. INTRODUCTION TO PROGRAMMING

Figure 2.5: Picking, making, and showing a picture

Playing a Sound

We can actually replicate this entire process with sounds.

• We still use pickAFile to find the file we want and get its file name.

• We now use makeSound to make a Sound. makeSound, as you might
imagine, takes a file name as input.

• We will use play to play the sound. play takes a sound as input, but
returns None.

Here are the same steps we saw previously with pictures:

>>> print pickAFile()
/Users/guzdial/mediasources/hello.wav
>>> print makeSound(pickAFile())
Sound of length 54757
>>> print play(makeSound(pickAFile()))

2.2. PROGRAMMING IN PYTHON 31

None

(We’ll explain what the length of the sound means in the next chapter.)
Please do try this on your own, using JPEG files and WAV files that you
have on your own computer, that you make yourself, or that came on your
CD. (We talk more about where to get the media and how to create it in
future chapters.)

Congratulations! You’ve just worked your first media computation!

Naming your Media (and other Values)

print play(makeSound(pickAFile())) looks awfully complicated and long
to type. You may be wondering if there are ways to simplify it. We can
actually do it just the way that mathematicians have for centuries: We name
the pieces! The results from functions can be named, and these names can
be used in the inputs to other functions.

We name values by assigning names to values using an equals sign, =.
In the below example, we assign names (called variables in this context) to
each of the file name and to the picture.

>>> myfilename = pickAFile()
>>> print myfilename
/Users/guzdial/mediasources/barbara.jpg
>>> mypicture = makePicture(myfilename)
>>> print mypicture
Picture, filename /Users/guzdial/mediasources/barbara.jpg height
294 width 222

Notice that the algebraic notions of subsitution and evaluation work here
as well. mypicture = makePicture(myfilename) causes the exact same
picture to be created as if we had executed makePicture(pickAFile())2,
because we set myfilename to be equal to the result of pickAFile(). The
values get substituted for the names when the expression is evaluated. makePicture(myfilename)
is an expression which, at evaluation time, gets expanded into
makePicture("/Users/guzdial/mediasources/barbara.jpg")
because “/Users/guzdial/mediasources/barbara.jpg” is the name of the file
that was picked when pickAFile() was evaluated and the returned value
was named myfilename.

We actually don’t need to use print every time we ask the computer to
do something. If we want to call a function that doesn’t return anything

2Assuming, of course, that you picked the same file.

32 CHAPTER 2. INTRODUCTION TO PROGRAMMING

(and so is pretty useless to print), we can just call the function by typing
its name and its input (if any) and hitting return.

>>> show(mypicture)

We tend to call these statements to the computer that are telling it to
do things commands. print mypicture is a command. So is myfilename
= pickAFile(), and show(mypicture). These are more than expressions:
They’re telling the computer to do something.

2.2.3 Making a Recipe

We have now used names to stand for values. The values get substituted
for the names when the expression is evaluated. We can do the same for
recipes. We can name a series of commands, so that we can just use the
name whenever we want the commands to be executed. This is exactly what
defining a recipe or program is about.

Remember when we said earlier that just about anything can be named
in computers? We’ve seen naming values. Now we’ll see naming recipes.�

�

�

�

Making it Work Tip: Try every recipe!
To really understand what’s going on, type in, load,
and execute every recipe in the book. EVERY one.
None are long, but the practice will go along way to
convincing you that the programs work and helping
you understand why.

The name that Python understands as defining the name of new recipes
is def. def isn’t a function—it’s a command like print. There are certain
things that have to come after the word def, though. The structure of what
goes on the line with the def command is referred to as the syntax of the
command—the words and characters that have to be there for Python to
understand what’s going on, and the order of those things.

def needs three things to follow it on the same line:

• The name of the recipe that you’re defining, like showMyPicture.

• Whatever inputs that this recipe will take. This recipe can be a func-
tion that takes inputs, like abs or makePicture. The inputs are named
and placed between parentheses separated by commas. If your recipe
takes no inputs, you simply enter () to indicate no inputs.

• The line ends with a colon, :.

2.2. PROGRAMMING IN PYTHON 33

What comes after that are the commands to be executed, one after the
other, whenever this recipe is told to execute.

At this point, I need you to imagine a bit. Most real programs that
do useful things, especially those that create user interfaces, require the
definition of more than one function. Imagine that in the program area you
have several def commands. How do you think Python will figure out that
one function has ended and a new one begun? (Especially because it is
possible to define functions inside of other functions.) Python needs some
way of figuring out where the function body ends: Which statements are
part of this function and which are part of the next.

The answer is indentation. All the statements that are part of the def-
inition are slightly indented after the def statement. I recommend using
exactly two spaces—it’s enough to see, it’s easy to remember, and it’s sim-
ple. You’d enter the function in the program area like this (where � indicates
a single space, a single press of the spacebar): def hello():
��print "Hello!"

We can now define our first recipe! You type this into the program area
of JES. When you’re done, save the file: Use the extension “.py” to indicate
a Python file. (I saved mine as pickAndShow.py.)

Recipe 2: Pick and show a picture

def pickAndShow():

myfile = pickAFile()

mypict = makePicture(myfile)

show(mypict)

End of Recipe 2

Once you’ve typed in your recipe and saved it, you can load it. Click
the Load button.

34 CHAPTER 2. INTRODUCTION TO PROGRAMMING

Figure 2.6: Defining and executing pickAndShow

Debugging Tip: Don’t forget to Load!
The most common mistake that I make with JES is
typing in the function, saving it, then trying the func-
tion in the command area. You have to click the
Load button to get it read in.

Now you can execute your recipe. Click in the command area. Since
you aren’t taking any input and not returning any value (i.e., this isn’t a
function), simply type the name of your recipe as a command:

>>> pickAndShow()

>>>

You’ll be prompted for a file, and then the picture will appear (Fig-
ure 2.6).

2.2. PROGRAMMING IN PYTHON 35

We can similarly define our second recipe, to pick and play a sound.

Recipe 3: Pick and play a sound

def pickAndPlay():

myfile = pickAFile()

mysound = makeSound(myfile)

play(mysound)

End of Recipe 3

�

�

�

�

Making it Work Tip: Name the names you
like
You’ll notice that, in the last section, we were us-
ing the names myfilename and mypicture. In this
recipe, I used myfile and mypict. Does it matter?
Absolutely not! Well, to the computer, at any rate.
The computer doesn’t care what names you use—
they’re entirely for your benefit. Pick names that (a)
are meaningful to you (so that you can read and un-
derstand your program), (b) are meaningful to others
(so that others you show your program to can un-
derstand it), and (c) are easy to type. 25-character
names, like,
myPictureThatIAmGoingToOpenAfterThis)
are meaningful, easy-to-read, but are a royal pain to
type.

While cool, this probably isn’t the most useful thing for you. Having
to pick the file over-and-over again is just a pain. But now that we have
the power of recipes, we can define new ones however we like! Let’s define
one that will just open a specific picture we want, and another that opens
a specific sound we want.

Use pickAFile to get the file name of the sound or picture that you want.
We’re going to need that in defining the recipe to play that specific sound
or show that specific picture. We’ll just set the value of myfile directly,
instead of as a result of pickAFile, by putting the string between quotes

36 CHAPTER 2. INTRODUCTION TO PROGRAMMING

directly in the recipe.

Recipe 4: Show a specific picture

Be sure to replace FILENAME below with the complete path to your own
picture file, e.g.,
”/Users/guzdial/mediasources/barbara.jpg”

def showPicture():

myfile = "FILENAME"

mypict = makePicture(myfile)

show(mypict)

End of Recipe 4

Recipe 5: Play a specific sound

Be sure to replace FILENAME below with the complete path to your own
sound file, e.g.,
”/Users/guzdial/mediasources/hello.wav”.

def playSound():

myfile = "FILENAME"

mysound = makeSound(myfile)

play(mysound)

End of Recipe 5

2.2. PROGRAMMING IN PYTHON 37

�

�

�

�

Making it Work Tip: Copying and pasting
Text can be copied and pasted between the pro-
gram and command areas. You can use print
pickAFile() to print a filename, then select it and
copy it (from the Edit menu), then click in the com-
mand area and paste it. Similarly, you can copy
whole commands from the command area up to the
program area: That’s an easy way to test the indi-
vidual commands, and then put them all in a recipe
once you have the order right and they’re working.
You can also copy text within the command area.
Instead of re-typing a command, select it, copy it,
paste it into the bottom line (make sure the cursor
is at the end of the line!), and hit return to execute
it.

Variable Recipes: Real functions that Take Input

How do we create a real function with inputs out of our stored recipe? Why
would you want to?

An important reason for using a variable so that input to the recipe
can be specified is to make a program more general. Consider Recipe 4,
showPicture. That’s for a specific file name. Would it be useful to have a
function that could take any file name, then make and show the picture?
That kind of function handles the general case of making and showing pic-
tures. We call that kind of generalization abstraction. Abstraction leads to
general solutions that work in lots of situations.

Defining a recipe that takes input is very easy. It continues to be a matter
of substitution and evaluation. We’ll put a name inside those parentheses
on the def line. That name is sometimes called the parameter—we’ll just
call it the input variable for right now.

When you evaluate the function, by specifying its name with an input
value (also called the argument) inside parentheses (like makepicture(myfilename)
or show(mypicture)), the input value is assigned to the input variable. Dur-
ing the execution of the function (recipe), the input value will be substituted
for the value.

Here’s what a recipe would look like that takes the file name as an input

38 CHAPTER 2. INTRODUCTION TO PROGRAMMING

variable:

Recipe 6: Show the picture file whose file name is input

def showNamed(myfile):
mypict = makePicture(myfile)
show(mypict)

End of Recipe 6

When I type
showNamed("/Users/guzdial/mediasources/barbara.jpg")
and hit return, the variable myfile takes on the value
"/Users/guzdial/mediasources/barbara.jpg".
myPict will then be assigned to the picture resulting from reading and in-
terpreting the file at
‘‘/Users/guzdial/mediasources/barbara.jpg’’
Then the pictures is shown.

We can do a sound in the same way.

Recipe 7: Play the sound file whose file name is input

def playNamed(myfile):
mysound = makeSound(myfile)
play(mysound)

End of Recipe 7

We can also write recipes that take pictures or sounds in as the input
values. Here’s a recipe that shows a picture but takes the picture object as
the input value, instead of the filename.

Recipe 8: Show the picture provided as input

def showPicture(mypict):
show(mypict)

2.2. PROGRAMMING IN PYTHON 39

End of Recipe 8

Now, what’s the difference between the function showPicture and the
provided function show? Nothing at all. We can certainly create a function
that provides a new name to another function. If that makes your code
easier for you to understand, than it’s a great idea.

What’s the right input value for a function? Is it better to input a
filename or a picture? And what does “better” mean here, anyway? You’ll
read more about all of these later, but here’s a short answer: Write the
function that is most useful to you. If defining showPicture is more readable
for you than show, then that’s useful. If what you really want is a function
that takes care of making the picture and showing it to you, then that’s
more useful and you might find the showNamed function the most useful.

Objects and Functions Summary

In this chapter, we talk about several kinds of encodings of data (or objects).

Integers (e.g., 3) Numbers without a decimal point—they can’t
represent fractions.

Floating point numbers (e.g., 3.0, 3.01) Numbers with a fractional piece to them.
Strings (e.g., ”Hello!”) A sequence of characters (including spaces,

punctuation, etc.) delimited on either end
with a quote character.

File name A filename is just a string whose characters
represent a path, path delimiters, and a base
file name.

Pictures Pictures are encodings of images, typically
coming from a JPEG file.

Sounds Sounds are encodings of sounds, typically
coming froma WAV file.

Here are the functions introduced in this chapter:

40 CHAPTER 2. INTRODUCTION TO PROGRAMMING

ord Returns the equivalent numeric value (from
the ASCII standard) for the input character.

abs Takes input a number and returns the abso-
lute value of it.

pickAFile Lets the user pick a file and returns the com-
plete path name as a string. No input.

makePicture Takes a filename as input, reads the file, and
creates a picture from it. Returns the picture.

show Shows a picture provided as input. No return
value.

makeSound Takes a filename as input, reads the file, and
creates a sound from it. Returns the sound.

play Plays a sound provided as input. No return
value.

Exercises

Exercise 9: Try some other operations with strings in JES. What happens
if you multiple a number by a string, like 3 * "Hello"? What happens if
you try to multiply a string by a string, "a" * "b"?
Exercise 10: You can combine the sound playing and picture showing
commands in the same recipe. Trying playing a sound and then show a
picture while a sound is playing. Try playing a sound and opening several
pictures while the sound is still playing.
Exercise 11: We evaluated the expression pickAFile() when we wanted
to execute the function named pickAFile. But what is the name pickAFile
anyway? What do you get if you print pickAFile? How about print
makePicture? What do you think’s going on here?
Exercise 12: Try the playNamed function. You weren’t given any exam-
ples of its use, but you should be able to figure it out from showNamed.

To Dig Deeper

The best (deepest, most material, most elegance) computer science textbook
is Structure and Interpretation of Computer Programs [Abelson et al., 1996],
by Abelson, Sussman, and Sussman. It’s a hard book to get through, though.
Somewhat easier, but in the same spirit is the new book How to Design
Programs [Felleisen et al., 2001].

2.2. PROGRAMMING IN PYTHON 41

Neither of these books are really aimed at students who want to program
because it’s fun or because they have something small that they want to do.
They’re really aimed at future professional software developers. The best
books aimed at the less hardcore user are by Brian Harvey. His book Simply
Scheme uses the same programming language as the earlier two, Scheme,
but is more approachable. My favorite of this class of books, though, is
Brian’s three volume set Computer Science Logo Style [Harvey, 1997] which
combine good computer science with creative and fun projects.

42 CHAPTER 2. INTRODUCTION TO PROGRAMMING

Part II

Sounds

43

Chapter 3

Encoding and Manipulating
Sounds

3.1 How Sound is Encoded

There are two parts to understanding how sound is encoded and manipu-
lated.

• First, what are the physics of sound? How is it that we hear a variety
of sounds?

• Next, how can we then map these sounds into the numbers of a com-
puter?

3.1.1 The Physics of Sound

Physically, sounds are waves of air pressure. When something makes a
sound, it makes ripples in the air just like stones or raindrops dropped into
a pond cause ripples in the surface of the water (Figure 3.1). Each drop
causes a wave of pressure to pass over the surface of the water, which causes
visible rises in the water, and less visible but just as large depressions in
the water. The rises are increases in pressure and the lows are decreases
in pressure. Some of the ripples we see are actually ones that arise from
combinations of ripples—some waves are the sums and interactions from
other waves.

In the air, we call these increases in pressure compressions and decreases
in pressure rarefactions. It’s these compressions and rarefactions that lead
to our hearing. The shape of the waves, their frequency , and their amplitude
all impact what we perceive in the sound.

45

46 CHAPTER 3. ENCODING AND MANIPULATING SOUNDS

Figure 3.1: Raindrops causing ripples in the surface of the water, just as
sound causes ripples in the air

Figure 3.2: One cycle of the simplest sound, a sine wave

The simplest sound in the world is a sine wave (Figure 3.2). In a sine
wave, the compressions and rarefactions arrive with equal size and regularity.
In a sine wave, one compression plus one rarefaction is called a cycle. At
some point in the cycle, there has to be a point where there is zero pressure,
just between the compression and the rarefaction. The distance from the
zero point to the greatest pressure (or least pressure) is called the amplitude.

Formally, amplitude is measured in Newtons per meter-squared (N/m2).
That’s a rather hard unit to understand in terms of perception, but you can
get a sense of the amazing range of human hearing from this unit. The
smallest sound that humans typically hear is 0.0002N/m2 , and the point at
which we sense the vibrations in our entire body is 200N/m2! In general,
amplitude is the most important factor in our perception of volume: If the

3.1. HOW SOUND IS ENCODED 47

amplitude rises, we perceive the sound as being louder typically. Other
factors like air pressure factor into our perception of increased volume, too.
Ever noticed how sounds sound differently on very humid days as compared
with very dry days?

When we percieve an increase in volume, what we’re really perceiving
is the intensity of sound. Intensity is measured in watts per meter-squared
(W/m2). (Yes, those are watts just like the ones you’re referring to when
you get a 60-watt light bulb—it’s a measure of power.) The intensity is
proportional to the square of the amplitude. For example, if the amplitude
doubles, intensity quadruples.

Human perception of sound is not a direct mapping from the physical re-
ality. The study of the human perception of sound is called psychoacoustics.
One of the odd facts about psychoacoustics is that most of our perception
of sound is logarithmically related to the actual phenomena. Intensity is an
example of this. A change in intensity from 0.1W/m2 to 0.01W/m2 sounds
the same to us (as in the same amount of volume change) as a change in
intensity of 0.001W/m2 to 0.0001W/m2.

We measure the change in intensity in decibels (dB). That’s probably the
unit that you most often associate with volume. A decibel is a logarithmic
measure, so it does match the way we perceive volume. It’s always a ratio, a
comparison of two values. 10 ∗ log10(I1/I2) is change in intensity in decibels
between I1 and I2. If two amplitudes are measured under the same condi-
tions, we can express the same definition as amplitudes: 20 ∗ log10(A1/A2).
If A2 = 2 ∗ A1 (i.e., the amplitude doubles), the difference is roubly 6dB.

When decibel is used as an absolute measurement, it’s in reference to
the threshold of audibility at sound pressure level (SPL): 0 dB SPL. Normal
speech has intensity about 60 dB SPL. Shouted speech is about 80 dB SPL.

How often a cycle occurs is called the frequency . If a cycle is short, then
there can be lots of them per second. If a cycle is long, then there are fewer
of them. As the frequency increases we perceive the pitch to increase. We
measure frequency in cycles per second (cps) or Hertz (Hz).

All sounds are periodic: There is always some pattern of rarefaction
and compression that leads to cycles, In a sine wave, the notion of a cyle
is easy. In natural waves, it’s not so clear where a pattern repeats. Even
in the ripples in a pond, the waves aren’t as regular as you might think
(Figure 3.3). The time between peaks in waves isn’t always the same: It
varies. This means that a cycle may involve several peaks-and-valleys until
it repeats.

Humans hear between 5 Hz and 20,000 Hz (or 20 kiloHertz, abbreviated
20 kHz). Again, as with amplitudes, that’s an enormous range! To give you

48 CHAPTER 3. ENCODING AND MANIPULATING SOUNDS

Figure 3.3: The distance between peaks in ripples in a pond are not
constant—some gaps are longer, some shorter

a sense of where music fits into that spectrum, the note A above middle C
is 440 Hz in traditional, equal temperament tuning (Figure 3.4).

Like intensity, our perception of pitch is almost exactly proportional to
the log of the frequency. We really don’t perceive absolute differences in
pitch, but the ratio of the frequencies. If you heard a 100 Hz sound followed
by a 200 Hz sound, you’d percieve the same pitch change (or pitch interval)
as a shift from 1000 Hz to 2000 Hz. Obviously, a different of 100 Hz is a lot
smaller than a change of 1000 Hz, but we perceive it to be the same.

In standard tuning, the ratio in frequency between the same notes in
adjacent octaves is 2 : 1. Frequency doubles each octave. We told you
earlier that A above middle C is 440 Hz. You know then that the next A
up the scale is 880 Hz.

How we think about music is dependent upon our cultural standards
with respect to standards, but there are some universals. Among these
universals are the use of pitch intervals (e.g., the ratio between notes C and D
remains the same in every octave), the relationship between octaves remains
constant, and the existence of four to seven main pitches (not considering
sharps and flats here) in an octave.

What makes the experience of one sound different from another? Why

3.1. HOW SOUND IS ENCODED 49

Figure 3.4: The note A above middle C is 440 Hz

is it that a flute playing a note sounds so different than a trumpet or a
clarinet playing the same note? We still don’t understand everything about
psychoacoustics and what physical properties influence our perception of
sound, but here are some of the factors that make different sounds (especially
different instruments) different.

• Real sounds are almost never single frequency sound waves. Most
natural sounds have several frequencies in them, often at different
amplitudes. When a piano plays the note C, for example, part of the
richness of the tone is that the notes E and G are also in the sound,
but at lower amplitudes.

• Instrument sounds are not continuous with respect to amplitude and
frequency. Some come slowly up to the target volume and amplitude
(like wind instruments), while others hit the frequency and amplitude
very quickly and then the volume fades while the frequency remains
pretty constant (like a piano).

• Not all sound waves are represented very well by sine waves. Real
sounds have funny bumps and sharp edges. Our ears can pick these up,
at least in the first few waves. We can do a reasonable job synthesizing
with sine waves, but synthesizers sometimes also use other kinds of
wave forms to get different kinds of sounds (Figure 3.5).

Exploring how sounds look

On your CD, you will find the MediaTools with documentation for how to get
it started. The MediaTools contains tools for sound, graphics, and video.

50 CHAPTER 3. ENCODING AND MANIPULATING SOUNDS

Figure 3.5: Some synthesizers using triangular (or sawtooth) or square waves.

Using the sound tools, you can actually observe sounds to get a sense of
what louder and softer sounds look like, and what higher and lower pitched
sounds look like.

The basic sound editor looks like Figure 3.6. You can record sounds,
open WAV files on your disk, and view the sounds in a variety of ways. (Of
course, assuming that you have a microphone on your computer!)

Figure 3.6: Sound editor main tool

To view sounds, click the View button, then the Record button. (Hit
the Stop button to stop recording.) There are three kinds of views that
you can make of the sound.

The first is the signal view (Figure 3.7). In the signal view, you’re looking
at the sound raw—each increase in air pressure results in an rise in the graph,
and each decrease in sound pressure results in a drop in the graph. Note
how rapidly the wave changes! Try some softer and louder sounds so that
you can see how the sounds’ look changes. You can always get back to the
signal view from another view by clicking the Signal button.

The second view is the spectrum view (Figure 3.8). The spectrum view
is a completely different perspective on the sound. In the previous section,
you read that natural sounds are often actually composed of several different
frequencies at once. The spectrum view shows these individual frequencies.

3.1. HOW SOUND IS ENCODED 51

Figure 3.7: Viewing the sound signal as it comes in

This view is also called the frequency domain.
Frequencies increase in the spectrum view from left to right. The height

of a column indicates the amount of energy (roughly, the volume) of that
frequency in the sound. Natural sounds look like Figure 3.9 with more than
one spike (rise in the graph). (The smaller rises around a spike are often
seen as noise.)

The technical term for how a spectrum view is generated is called a
Fourier transform. A Fourier transform takes the sound from the time do-
main (rises and falls in the sound over time) into the frequency domain
(identifying which frequencies are in a sound, and the energy of those fre-
quencies, over time). The specific technique being used in the MediaTools
signal view is a Fast Fourier Transform (or FFT), a very common way to
do Fourier transforms quickly on a computer so that we can get a real time
view of the changing spectra.

The third view is the sonogram view (Figure 3.10). The sonogram view
is very much like the spectrum view in that it’s describing the frequency
domain, but it presents these frequencies over time. Each column in the
sonogram view, sometimes called a slice or window (of time), represents all
the frequencies at a given moment in time. The frequencies increase in the
slice from lower (bottom) to higher (top). The darkness of the spot in the
column indicates the amount of energy of that frequency in the input sound
at the given moment. The sonogram view is great for studying how sounds
change over time, e.g., how the sound of a piano key being struck changes
as the note fades, or how different instruments differ in their sounds, or in
how different vocal sounds differ.

52 CHAPTER 3. ENCODING AND MANIPULATING SOUNDS

Figure 3.8: Viewing the sound in a spectrum view

	

�

�

Making it Work Tip: Explore sounds!
You really should try these different views on real
sounds. You’ll get a much better understanding for
sound and what the manipulations we’re doing in this
chapter are doing to the sounds.

3.1.2 Encoding the Sound

You just read about how sounds work physically and how we perceive them.
To manipulate these sounds on a computer and to play them back on a
computer, we have to digitize them. To digitize sound means to take this
flow of waves and turn it essentially into numbers. We want to be able to
capture a sound, perhaps manipulate it, and then play it back (through the
computer’s speakers) and hear what we captured—as exactly as possible.

The first part of the process of digitizing sound is handled by the com-
puter’s hardware—the physical machinery of the computer. If a computer
has a microphone and appropriate sound equipment (like a SoundBlaster
sound card on Wintel computers), then it’s possible, at any moment, to
measure the amount of air pressure against that microphone as a single
number. Positive numbers correspond to rises in pressure, and negative

3.1. HOW SOUND IS ENCODED 53

Figure 3.9: Viewing a sound in spectrum view with multiple “spikes”

numbers correspond to rarefactions. We call this an analog-to-digital conver-
sion (ADC)—we’ve moved from an analog signal (a continuously changing
sound wave) to a digital value. This means that we can get an instanta-
neous measure of the sound pressure, but it’s only one step along the way.
Sound is a continuous changing pressure wave. How do we store that in our
computer?

By the way, playback systems on computers work essentially the same in
reverse. Sound hardware does digital-to-analog conversion (DAC), and the
analog signal is then sent to the speakers. The DAC process also requires
numbers representing pressure.

If you’ve had some calculus, you’ve got some idea of how we might
do that. You know that we can get close to measuring the area under
a curve with more and more rectangles whose height matches the curve
(Figure 3.11). With that idea, it’s pretty clear that if we capture enough
of those microphone pressure readings, we capture the wave. We call each
of those pressure readings a sample—we are literally “sampling” the sound
at that moment. But how many samples do we need? In integral calculus,
you compute the area under the curve by (conceptually) having an infinite

54 CHAPTER 3. ENCODING AND MANIPULATING SOUNDS

Figure 3.10: Viewing the sound signal in a sonogram view

number of rectangles. While computer memories are growing larger and
larger all the time, we can’t capture an infinite number of samples per sound.

Mathematicians and physicists wondered about these kinds of questions
long before there were computers, and the answer to how many samples we
need was actually computed long ago. The answer depends on the highest
frequency you want to capture. Let’s say that you don’t care about any
sounds higher than 8,000 Hz. The Nyquist theorem says that we would need
to capture 16,000 samples per second to completely capture and define a
wave whose frequency is less than 8,000 cycles per second.

Computer Science Idea: Nyquist Theorem
To capture a sound of at most n cycles per second,
you need to capture 2n samples per second.

This isn’t just a theoretical result. The Nyquist theorem influences ap-
plications in our daily life. It turns out that human voices don’t typically
get over 4,000 Hz. That’s why our telephone system is designed around
capturing 8,000 samples per second. That’s why playing music through the
telephone doesn’t really work very well. The limits of (most) human hearing

3.1. HOW SOUND IS ENCODED 55

Figure 3.11: Area under a curve estimated with rectangles

is around 22,000 Hz. If we were to capture 44,000 samples per second, we
would be able to capture any sound that we could actually hear. CD’s are
created by capturing sound at 44,100 samples per second—just a little bit
more than 44 kHz for technical reasons and for a fudge factor.

We call the rate at which samples are collected the sampling rate. Most
sounds that we hear in daily life are at frequencies far below the limits
of our hearing. You can capture and manipulate sounds in this class at a
sampling rate of 22 kHz (22,000 samples per second), and it will sound quite
reasonable. If you use too low of a sampling rate to capture a high-pitched
sound, you’ll still hear something when you play the sound back, but the
pitch will sound strange.

Typically, each of these samples are encoded in two bytes, or 16 bits.
Though there are larger sample sizes, 16 bits works perfectly well for most
applications. CD-quality sound uses 16 bit samples.

In 16 bits, the numbers that can be encoded range from -32,768 to 32,767.
These aren’t magic numbers—they make perfect sense when you understand
the encoding. These numbers are encoded in 16 bits using a technique called
two’s complement notation, but we can understand it without knowing the
details of that technique. We’ve got 16 bits to represent positive and negative
numbers. Let’s set aside one of those bits (remember, it’s just 0 or 1) to
represent whether we’re talking about a positive (0) or negative (1) number.
We call that the sign bit . That leaves 15 bits to represent the actual value.
How many different patterns of 15 bits are there? We could start counting:

000000000000000
000000000000001
000000000000010

56 CHAPTER 3. ENCODING AND MANIPULATING SOUNDS

000000000000011
...
111111111111110
111111111111111

That looks forbidding. Let’s see if we can figure out a pattern. If we’ve
got two bits, there are four patterns: 00, 01, 10, 11. If we’ve got three bits,
there are eight patterns: 000, 001, 010, 011, 100, 101, 110, 111. It turns out
that 22 is four, and 23 is eight. Play with four bits. How many patterns are
there? 24 = 16 It turns out that we can state this as a general principle.

Computer Science Idea: 2n patterns in n bits
If you have n bits, there are 2n possible patterns in
those n bits.

215 = 32, 768. Why is there one more value in the negative range than
the positive? Zero is neither negative nor positive, but if we want to repre-
sent it as bits, we need to define some pattern as zero. We use one of the
positive range values (where the sign bit is zero) to represent zero, so that
takes up one of the 32,768 patterns.

The sample size is a limitation on the amplitude of the sound that can
be captured. If you have a sound that generates a pressure greater than
32,767 (or a rarefaction greater than -32,768), you’ll only capture up to the
limits of the 16 bits. If you were to look at the wave in the signal view, it
would look like somebody took some scissors and clipped off the peaks of
the waves. We call that effect clipping for that very reason. If you play (or
generate) a sound that’s clipped, it sound bad—it sounds like your speakers
are breaking.

There are other ways of digitizing sound, but this is by far the most
common. The technical term for is pulse coded modulation (PCM). You
may encounter that term if you read further in audio or play with audio
software.

What this means is that a sound in a computer is a long list of numbers,
each of which is a sample in time. There is an ordering in these samples: If
you played the samples out of order, you wouldn’t get the same sound at all.
The most efficient way to store an ordered list of data items on a computer
is with an array . An array is literally a sequence of bytes right next to one
another in memory. We call each value in an array an element .

We can easily store the samples that make up a sound into an array.
Think of each two bytes as storing a single sample. The array will be

3.1. HOW SOUND IS ENCODED 57

large—for CD-quality sounds, there will be 44,100 elements for every second
of recording. A minute long recording will result in an array with 26,460,000
elements.

Each array element has a number associated with it called its index . The
index numbers increase sequentially. The first one is 1, the second one is 2,
and so on. You can think about an array as a long line of boxes, each one
holding a value and each box having an index number on it (Figure 3.12).

59 39 16 10 -1

1 2 3 4 5

...

Figure 3.12: A depiction of the first five elements in a real sound array

Using the MediaTools, you can graph a sound file (Figure 3.13) and
get a sense of where the sound is quiet (small amplitudes), and loud (large
amplitudes). This is actually important if you want to manipulate the sound.
For example, the gaps between recordedwords tend to be quiet—at least
quieter than the words themselves. You can pick out where words end by
looking for these gaps, as in Figure 3.13.

Figure 3.13: A sound recording graphed in the MediaTools

You will soon read about how to read a file containing a recording of a
sound into a sound object , view the samples in that sound, and change the
values of the sound array elements. By changing the values in the array, you
change the sound. Manipulating a sound is simply a matter of manipulating
elements in an array.

58 CHAPTER 3. ENCODING AND MANIPULATING SOUNDS

3.1.3 Using MediaTools for looking at captured sounds

The MediaTools for manipulating sounds that you read about earlier can
also be used to study sound files. Any WAV file on your computer can be
opened and studied within the sound tools.

From the basic sound editor tool, click on File to get the option to open
a WAV file (Figure 3.14). The MediaTools’ open file dialog will then appear.
Find a WAV file by clicking on the directories on the left until you find one
that contains the WAV files you want on the right (Figure 3.15), then click
OK.

Your CD contains a mediasources directory on it. Most of the examples
in the book use the media in this directory. You’ll probably want to drag
the mediasources d

Figure 3.14: The sound editor open menu

Figure 3.15: MediaTools open file dialog

You will then be shown the file in the sound editor view (Figure 3.16).
The sound editor lets you explore a sound in many ways (Figure 3.17). As
you scroll through the sound and change the sound cursor (the red/blue

3.1. HOW SOUND IS ENCODED 59

line in the graph) position, the index changes to show you which sound
array element you’re currently looking at, and the value shows you the
value at that index. You can also fit the whole sound into the graph to get
an overall view (but currently breaks the index/value displays). You can
even “play” your recorded sound as if it were an instrument—try pressing
the piano keys across the bottom of the editor. You can also set the cursor
(via the scrollbar or by dragging in the graph window) and play the sound
before the cursor—a good way to hear what part of the sound corresponds
to what index positions. Clicking the <> button provides a menu of option
which includes getting an FFT view of the sound.

Figure 3.16: A sound opened in the editor

Figure 3.17: Exploring the sound in the editor

60 CHAPTER 3. ENCODING AND MANIPULATING SOUNDS

3.2 Manipulating sounds

Now that we know how sounds are encoded, we can manipulate sounds using
our Python programs. Here’s what we’ll need to do.

1. We’ll need to get a filename of a WAV file, and make a sound from it.
You already saw how to do that in a previous chapter.

2. You will often get the samples of the sound. Sample objects are easy to
manipulate, and they know that when you change them, they should
automatically change the original sound. You’ll read first about ma-
nipulating the samples to start with, then about how to manipulate
the sound samples from within the sound itself.

3. Whether you get the sample objects out of a sound, or just deal with
the samples in the sound object, you will then want to do something
to the samples.

4. You may then want to write the sound back out to a new file, to
use elsewhere. (Most sound editing programs know how to deal with
audio.)

3.2.1 Open sounds and manipulating samples

You have already seen how to find a file with pickAFile and then making
a sound object with makeSound. Here’s an example of doing that in JES.

>>> filename=pickAFile()
>>> print filename
/Users/guzdial/mediasources/preamble.wav
>>> sound=makeSound(filename)
>>> print sound
Sound of length 421109

You can get the samples from a sound using getSamples. The function
getSamples takes a sound as input and returns an array of all the samples
as sample objects. When you execute this function, it may take quite a while
before it finishes—longer for longer sounds, shorter for shorter sounds.

>>> samples=getSamples(sound)
>>> print samples
Samples, length 421109

3.2. MANIPULATING SOUNDS 61

The function getSamples is making an array of sample objects out of
the basic sample array. An object is more than just a simple value like
you read about earlier—for one difference, a sample object also knows what
sound it came from and what its index is. You will read more about objects
later, but take it at face value now that getSamples provides you with
a bunch of sample objects that you can manipulate—and in fact, makes
manipulation pretty easy. You can get the value of a sample object by using
getSample (with a sample object as input), and you set the sample value
with setSample (with a sample object and a new value as input).

But before we get to the manipulations, let’s look at some other ways to
get and set samples. We can ask the sound to give us the values of specific
samples at specific indices, by using the function getSampleValueAt. The
input values to getSampleValueAt are a sound and an index number.

>>> print getSampleValueAt(sound,1)
36
>>> print getSampleValueAt(sound,2)
29

What numbers can we use as index values? Anything between 1 and the
length of the sound in samples. We get that length (the maximum index
value) with getLength. Notice the error that we get below if we try to get
a sample past the end of the array.

>>> print getLength(sound)
220568
>>> print getSampleValueAt(sound,220568)
68
>>> print getSampleValueAt(sound,220570)
I wasn’t able to do what you wanted.
The error java.lang.ArrayIndexOutOfBoundsException has occured
Please check line 0 of

We can similarly change sample values by using setSampleValueAt. It
also takes as input values a sound, and an index, but also a new value
for the sample at that index number. We can then check it again with
getSampleValueAt.

>>> print getSampleValueAt(sound,1)
36
>>> setSampleValueAt(sound,1,12)

62 CHAPTER 3. ENCODING AND MANIPULATING SOUNDS

>>> print getSampleValueAt(sound,1)
12�

�

�

�

Common Bug: Mistyping a name
You just saw a whole bunch of function names, and
some of them are pretty long. What happens if you
type one of them wrong? JES will complain that it
doesn’t know what you mean, like this:

>>> writeSndTo(sound,"mysound.wav")
A local or global name could not be
found.

It’s no big deal. JES will let you copy the mistyped
command, paste it into the bottommost line of the
command area, then fix it. Be sure to put the cursor
at the end of the line before you press the Return
key.

What do you think would happen if we then played this sound? Would
it really sound different than it did before, now that we’ve turned the first
sample from the number 36 to the number 12? Not really. To explain why
not, let’s find out what the sampling rate is for this sound, by using the
function getSamplingRate which takes a sound as its input.

>>> print getSamplingRate(sound)
22050.0

The sound that we’re manipulating in this examples (a recording of me
reading part of the U.S. Constitution’s preamble) has a sampling rate of
22,050 samples per second. Changing one sample changes 1/22050 of the
first second of that sound. If you can hear that, you have amazingly good
hearing—and I will have my doubts about your truthfulness!

Obviously, to make a significant manipulation to the sound, we have to
manipulate hundreds if not thousands of samples. We’re certainly not going
to do that by typing thousands of lines of

setSampleValueAt(sound,1,12)
setSampleValueAt(sound,2,24)
setSampleValueAt(sound,3,100)
setSampleValueAt(sound,4,99)
setSampleValueAt(sound,5,-1)

3.2. MANIPULATING SOUNDS 63

We need to take advantage of the computer executing our recipe, by
telling it to go do something hundreds or thousands of times. That’s the
topic for the next section.

But we will end this section by talking about how to write your results
back out to a file. Once you’ve manipulated your sound and want to save it
out to use elsewhere, you use writeSoundTo which takes a sound and a new
filename as input. Be sure that your file ends with the extension “.wav” if
you’re saving a sound so that your operating system knows what to do with
it!

>>> print filename
/Users/guzdial/mediasources/preamble.wav
>>> writeSoundTo(sound, "/Users/guzdial/mediasources/new-preamble.wav")

�

�

�

�

Common Bug: Saving a file quickly—and los-
ing it!
What if you don’t know the whole path to a directory
of your choosing? You don’t have to specify anything
more than the base name.

>>> writeSoundTo(sound,"new-preamble.wav")

The problem is finding the file again! In what direc-
tory did it get saved? This is a pretty simple bug to
resolve. The default directory (the one you get if you
don’t specify a path) is wherever JES is. Find JES
and you’ll find new-preamble.wav (in this example).

You’ll probably figure out when playing sounds a lot that if you use play
a couple times in quick succession, you’ll mix the sounds. How do you make
sure that the computer plays only a single sound and then waits for that
sound to end? You use something called blockingPlay. That works the
same as play, but it waits for the sound to end so that no other sound can
interfere while it’s playing.

3.2.2 Introducing the loop

The problem we’re facing is a common one in computing: How do we get
the computer to do something over-and-over again? We need to get the
computer to loop or iterate. Python has commands especially for looping

64 CHAPTER 3. ENCODING AND MANIPULATING SOUNDS

(or iterating). We’re mostly going to use the command for. A for loop
executes some commands (that you specify) for an array (that you provide),
where each time that the commands are executed, a particular variable (that
you, again, get to name) will have the value of a different element of the
array.

We are going to use the getSamples function we saw earlier to provide
our array. We will use a for loop that looks like this:

for sample in getSamples(sound):

Let’s talk through the pieces here.

• First comes the command name for.

• Next comes the variable name that you want to use in your code for
addressing (and manipulating) the elements of the array.

• The word in is required—you must type that! It makes the command
more readable than leaving it out, so there’s a benefit to the extra four
keystrokes (space-i-n-space).

• Then, you need the array. We use the function getSamples to generate
an array for us.

• Finally, you need a colon (“:”). The colon is important—it signifies
that what comes next is a block (you should recall reading about them
in Section 2.2.3 on 32).

What comes next are the commands that you want to execute for each
sample. Each time the commands are executed, the variable (in our example
sample) will be a different element from the array. The commands (called
the body) are specified as a block. This means that they should follow the
for statement, each on their own line, and indented by two more spaces!
For example, here is the for loop that simply sets each sample to its own
value (a particularly useless exercise, but it’ll get more interesting in just a
couple pages).

for sample in getSamples(sound):
value = getSample(sample)
setSample(sample,value)

Let’s talk through this code.

3.2. MANIPULATING SOUNDS 65

• The first statement says that we’re going to have a for loop that will
set the variable sample to each of the elements of the array that is
output from getSamples(sound).

• The next statement is indented, so it’s part of the body of the for
loop—one of the statements that will get executed each time sample
has a new value. It says to name the value of the sample in the variable
sample. That name is value.

• The third statement is still indented, so it’s still part of the loop body.
Here we set the value of the sample to the value of the variable value.

Here’s the exact same code (it would work exactly the same), but with
different variable names.

for s in getSamples(sound):
v = getSample(s)
setSample(s,v)

What’s the difference? Slightly easier to confuse variable names. s and v are
not as obvious what they are naming as sample and value. Python doesn’t
care which we use, and the single character variable names are clearly easier
to type. But the longer variable names make it easier to understand your
code later.

Notice that the earlier paragraph had emphasized by two more spaces.
Remember that what comes after a function definition def statement is also
a block. If you have a for loop inside a function, then the for statement is
indented two spaces already, so the body of the for loop (the statements to
be executed) must be indented four spaces. The for loop’s block is inside the
function’s block. That’s called a nested block—one block is nested inside the
other. Here’s an example of turning our useless loop into an equally useless
function:

def doNothing():
for sample in getSamples(sound):
value = getSample(sample)
setSample(sample,value)

You don’t actually have to put loops into functions to use them. You can
type them into the command area of JES. JES is smart enough to figure out
that you need to type more than one command if you’re specifying a loop, so
it changes the prompt from >>> to Of course, it can’t figure out when

66 CHAPTER 3. ENCODING AND MANIPULATING SOUNDS

you’re done, so you’ll have to just hit return without typing anything else
to tell JES that you’re done with the body of your loop. It looks something
like this:

>>> for sample in getSamples(sound):

... value = getSample(sample)

... setSample(sample,value)

You probably realize that we don’t really need the variable value (or v).
We can combine the two statements in the body into one. Here’s doing it
at the command line:

>>> for sample in getSamples(sound):

... setSample(sample,getSample(sample))

Now that we see how to get the computer to do thousands of commands
without writing thousands of individual lines, let’s do something useful with
this.	

�

�

Common Bug: Keep sounds short
Don’t work with sounds over 10 seconds. You could
have problems with memory, but much worse, there’s
a bug in JES where the sound can get hideously noisy
past 10 seconds.

3.2. MANIPULATING SOUNDS 67

�

�

�

�

Common Bug: Windows and WAV files
The world of WAV files isn’t as compatible and
smooth as one might like. WAV files saved from JES
play fine in JES or any Java-based application. Medi-
aTools handles them fine, as does Apple QuickTime,
which is available for free for both Windows and
Macintosh computers1. But WinAmp 2 (WinAmp 3
seems to be better) and Windows Media Player can-
not play WAV files generated from JES. It seems that
Sun’s definition of WAV files in Java, and Microsoft’s
definition of WAV files differ. Imagine that. . ..
We don’t yet have a complete and free solution to
this problem. If you open the WAV file in the Media-
Tools, then save it back out to a WAV file (an option
under the File menu), you can definitely open the
file in WinAmp 3. A complete solution is to purchase
QuickTime Player Pro (for about $50). If you open
a JES-saved WAV file from QuickTime Player Pro,
then Export the file back out as a WAV file, you
will get a WAV file that works correctly in WinAmp
and Windows Media Player.

3.2.3 Changing the volume of sounds

Earlier, we said that the amplitude of a sound is the main factor in the
volume. This means that if we increase the amplitude, we increase the
volume. Or if we decrease the amplitude, we decrease the volume.

Don’t get confused here — changing the amplitude doesn’t reach out
and twist up the volume knob on your speakers. If your speaker’s volume
(or computer’s volume) is turned down, the sound will never get very loud.
The point is getting the sound itself louder. Have you ever watched a movie
on TV where, without changing the volume on the TV, sound becomes so
low that you can hardly hear it? (Marlon Brando’s dialogue in the movie
The Godfather comes to mind.) That’s what we’re doing here. We can make
sounds shout or whisper by tweaking the amplitude.

68 CHAPTER 3. ENCODING AND MANIPULATING SOUNDS

Increasing volume

Here’s a function that doubles the amplitude of an input sound.

Recipe 9: Increase an input sound’s volume by doubling the amplitude

def increaseVolume(sound):
for sample in getSamples(sound):
value = getSample(sample)
setSample(sample,value * 2)

End of Recipe 9

Go ahead and type the above into your JES Program Area. Click Load
to get Python to process the function and make the name increaseVolume
stand for this function. Follow along the example below to get a better idea
of how this all works.

To use this recipe, you have to create a sound first, then pass it in as
input. In the below example, we get the filename by setting the variable
f explicitly to a string that is a filename, as opposed to using pickAFile.
Don’t forget that you can’t type this code in and have it work as-is: Your
path names will be different than mine!

>>> f="/Users/guzdial/mediasources/gettysburg10.wav"
>>> s=makeSound(f)
>>> increaseVolume(s)

We then create a sound that we name s. When we evaluate increaseVolumes,
the sound that is named s becomes also named sound, within the function
increaseVolume. This is a very important point. Both names refer to
the same sound! The changes that take place in increaseVolume are
really changing the same sound. You can think of each name as an alias for
the other: They refer to the same basic thing.

There’s a side point to mention just in passing, but becomes more im-
portant later: When the function increaseVolume ends, the name sound
has no value. It only exists during the duration of that function’s execution.
We say that it only exists within the scope of the function increaseVolume.

We can now play the file to hear that it’s louder, and write it to a new
file.

3.2. MANIPULATING SOUNDS 69

>>> play(s)

>>> writeSoundTo(s,"/Users/guzdial/mediasources/louder-g10.wav")

Did that really work?

Now, is it really louder, or does it just seem that way? We can check it in
several ways. You could always make the sound even louder by evaluating
increaseVolume on our sound a few more times—eventually, you’ll be to-
tally convinced that the sound is louder. But there are ways to test even
more subtle effects.

If we compared graphs of the two sounds, you’d find that the sound
in the new file (louder-g10.wav in our example) has much bigger ampli-
tude than the sound in the original file (gettysburg10.wav, which is in the
mediasources directory on your CD). Check it out in Figure 3.18.

Figure 3.18: Comparing the graphs of the original sound (top) and the
louder one (bottom)

Maybe you’re unsure that you’re really seeing a larger wave in the second
picture. (It’s particularly hard to see in the MediaTools which automatically
scales the graphs so that they look the same—I had to use an another sound

70 CHAPTER 3. ENCODING AND MANIPULATING SOUNDS

Figure 3.19: Comparing specific samples in the original sound (top) and the
louder one (bottom)

tool to generate the pictures in Figure 3.18.) You can use the MediaTools
to check the individual sample values. Open up both WAV files, and open
the sound editor for each. Scroll down into the middle of the sound, then
drag the cursor to any value you want. Now, so the same to the second one.
You’ll see that the louder sound (bottom one in Figure 3.19) really does
have double the value of the same sample in the original sound.

Finally, you can always check for yourself from within JES. If you’ve
been following along with the example2, then the variable s is the now
louder sound. f should still be the filename of the original sound. Go ahead
and make a new sound object which is the original sound—that is named
below as soriginal (for sound original). Check any sample value that you
want—it’s always true that the louder sound has twice the sample values of
the original sound.

>>> print s
Sound of length 220567

2What? You haven’t? You should ! It’ll make much more sense if you try it yourself!

3.2. MANIPULATING SOUNDS 71

>>> print f
/Users/guzdial/mediasources/gettysburg10.wav
>>> soriginal=makeSound(f)
>>> print getSampleValueAt(s,1)
118
>>> print getSampleValueAt(soriginal,1)
59
>>> print getSampleValueAt(s,2)
78
>>> print getSampleValueAt(soriginal,2)
39
>>> print getSampleValueAt(s,1000)
-80
>>> print getSampleValueAt(soriginal,1000)
-40

That last one is particularly telling. Even negative values become more
negative. That’s what’s meant by “increasing the amplitude.” The ampli-
tude of the wave goes in both directions. We have to make the wave larger
in both the positive and negative dimensons.

It’s important to do what you just read in this chapter: Doubt your
programs. Did that really do what I wanted it to do? The way you check is
by testing . That’s what this section is about. You just saw several ways to
test:

• By looking at the result overall (like with the graphs),

• By checking at pieces of the results (like with the MediaTools), and

• By writing additional code statements that check the results of the
original program.

How did it work?

Let’s walk through the code, slowly, and consider how this program worked.

def increaseVolume(sound):
for sample in getSamples(sound):
value = getSample(sample)
setSample(sample,value * 2)

72 CHAPTER 3. ENCODING AND MANIPULATING SOUNDS

Recall our picture of how the samples in a sound array might look.

59 39 16 10 -1

1 2 3 4 5

...

This is what getSamples(sound) would return: An array of sample
values, each numbered. The for loop allows us to walk through each sample,
one at a time. The name sample will be assigned to each sample in turn.

When the for loop begins, sample will be the name for the first sample.

59 39 16 10 -1

1 2 3 4 5

...

sample

getSamples
(sound)

The variable valuewill take on the value of 59 when value=getSample(sample)
is executed. The sample that the name sample references will then be dou-
bled with setSample(sample,value*2).

118 39 16 10 -1

1 2 3 4 5

...

sample

getSamples
(sound)

That’s the end of the first pass through the body of the for loop. Python
will then start the loop over and move sample on to point at the next element
in the array.

3.2. MANIPULATING SOUNDS 73

118 39 16 10 -1

1 2 3 4 5

...

sample

getSamples
(sound)

Again, the value is set to the value of the sample, then the sample will
be doubled.

118 78 16 10 -1

1 2 3 4 5

...

sample

getSamples
(sound)

Again, the loop repeats through the five samples pictured.

118 78 32 20 -2

1 2 3 4 5

...

sample

getSamples
(sound)

But really, the for loop keeps going through all the samples—tens of
thousands of them! Thank goodness it’s the computer executing this recipe!

One way to think about what’s happening here is that the for loop
doesn’t really do anything, in the sense of changing anything in the sound.
Only the body of the loop does work. The for loop tells the computer what
to do. It’s a manager. What the computer actually does is something like
this:

sample = sample #1
value = value of the sample, 59
change sample to 118
sample = sample #2
value = 39
change sample to 78

74 CHAPTER 3. ENCODING AND MANIPULATING SOUNDS

sample = sample #3
...
sample = sample #5
value = -1
change sample to -2
...

The for loop is only saying, “Do all of this for every element in the
array.” It’s the body of the loop that contains the Python commands that
get executed.

What you have just read in this section is called tracing the program.
We slowly went through how each step in the program was executed. We
drew pictures to describe the data in the program. We used numbers, ar-
rows, equations, and even plain English to explain what was going on in the
program. This is the single most important technique in programming. It’s
part of debugging . Your program will not always work. Absolutely, guar-
anteed, without a shadow of a doubt—you will write code that does not do
what you want. But the computer will do SOMETHING. How do you figure
out what it is doing? You debug, and the most significant way to do that
is by tracing the program.

Decreasing volume

Decreasing volume, then, is the reverse of the previous process.

Recipe 10: Decrease an input sound’s volume by halving the amplitude

def decreaseVolume(sound):
for sample in getSamples(sound):
value = getSample(sample)
setSample(sample,value * 0.5)

End of Recipe 10

We can use it like this.

>>> f=pickAFile()
>>> print f
/Users/guzdial/mediasources/louder-g10.wav

3.2. MANIPULATING SOUNDS 75

>>> sound=makeSound(f)

>>> print sound

Sound of length 220568

>>> play(sound)

>>> decreaseVolume(sound)

>>> play(sound)

We can even do it again, and lower the volume even further.

>>> decreaseVolume(sound)

>>> play(sound)

Normalizing sounds

If you think about it some, it seems strange that the last two recipes work!
We can just multiply these numbers representing a sound—and the sound
seems (essentially) the same to our ears? The way we experience a sound
depends less on the specific numbers than on the relationship between them.
Remember that the overall shape of the sound waveform is dependent on
many samples. In general, if we multiply all the samples by the same mul-
tiplier, we only effect our sense of volume (intensity), not the sound itself.
(We’ll work to change the sound itself in future sections.)

A common operation that people want to do with sounds is to make them
as LOUD AS POSSIBLE. That’s called normalizing . It’s not really hard
to do, but it takes more lines of Python code than we’ve used previously
and a few more variables, but we can do it. Here’s the recipe, in English,
that we need to tell the computer to do.

• We have to figure out what the largest sample in the sound is. If it’s
already at the maximum value (32767), then we can’t really increase
the volume and still get what seems like the same sound. Remember
that we have to multiply all the samples by the same multiplier.

It’s an easy recipe (algorithm) to find the largest value—sort of a
sub-recipe within the overall normalizing recipe. Define a name (say,
largest) and assign it a small value (0 works). Now, check all the
samples. If you find a sample larger than the largest, make that
larger value the new meaning for largest. Keep checking the samples,
now comparing to the new largest. Eventually, the very largest value
in the array will be in the variable largest.

76 CHAPTER 3. ENCODING AND MANIPULATING SOUNDS

To do this, we’ll need a way of figuring out the maximum value of
two values. Python provides a built-in function called max that can do
that.

>>> print max(8,9)
9
>>> print max(3,4,5)
5

• Next, we need to figure out what value to multiply all the samples by.
We want the largest value to become 32767. Thus, we want to figure
out a multiplier such that

(multiplier)(largest) = 32767.

Solve for the multiplier:

multiplier = 32767/largest. The multiplier will need to be a floating
point number (have a decimal component), so we need to convince
Python that not everything here is an integer. Turns out that that’s
easy—use 32767.0.

• Now, loop through all the samples, as we did for increaseVolume,
and multiply the sample by the multiplier.

Here’s a recipe to normalize sounds.

Recipe 11: Normalize the sound to a maximum amplitude

def normalize(sound):
largest = 0
for s in getSamples(sound):

largest = max(largest,getSample(s))
multiplier = 32767.0 / largest

print "Largest sample value in original sound was", largest
print "Multiplier is", multiplier

for s in getSamples(sound):
louder = multiplier * getSample(s)
setSample(s,louder)

3.2. MANIPULATING SOUNDS 77

End of Recipe 11

There are several notational items to note about this program.

• There are blank lines in there! Sure, Python doesn’t care about those.
Adding blank lines can be useful to break up and improve the under-
standability of longer programs.

• There are print statements in there! Sure, print statements can be
really useful. First, they give you some feedback that the program is
running—a useful thing in long-running programs. Second, they show
you what it’s finding, which can be interesting. Third, it’s a terrific
testing method and a way to debug your programs. Let’s imagine that
the printout showed that the multiplier was less than 1.0. We know
that that kind of multiplier decreases volume. You should probably
suspect that something went wrong.

• Some of the statements in this recipe are pretty long, so they wrap
around in the text. Type them as a single line! Python doesn’t let you
hit return until the end of the statement—make sure that your print
statements are all on one line.

Here’s what the program looks like running.

>>> normalize(sound)
Largest sample in original sound was 5656
Multiplier is 5.7933168316831685
>>> play(sound)

Exciting, huh? Obviously, the interesting part is hearing the much louder
volume, which is awfully hard to do in a book.

3.2.4 Manipulating different sections of the sound differently

These are useful things to do to sounds overall, but really interesting effects
come from chopping up sounds and manipulating them differentially: Some
words this way, other sounds that way. How would you do that? We need to
be able to loop through portions of the sample, without walking through the
whole thing. Turns out to be an easy thing to do, but we need to manipulate
samples somewhat differently (e.g., we have to use index numbers) and we
have to use our for loop in a slightly different way.

78 CHAPTER 3. ENCODING AND MANIPULATING SOUNDS

Recall that each sample has a number, and that we can get each indi-
vidual sample with getSampleValueAt (with a sound and an index number
as input). We can set any sample with setSampleValueAt (with inputs of a
sound, an index number, and a new value). That’s how we can manipulate
samples without using getSamples and sample objects. But we still don’t
want to have to write code like:

setSampleAt(sound,1,12)
setSampleAt(sound,2,28)
...

Not for tens of thousands of samples!
What we need is to get the computer to address each of those samples,

in turn, by index number. We need to get the for loop to go from 1 to
20,000-something (or whatever the length of the sound may be). As you
might expect, Python does have a way of doing this. It’s called the function
range. range takes two inputs and returns an array of the integers between
the two numbers—including the first one, but stopping before the last one.
Some examples will help to make clearer what it does.

>>> print range(1,3)
[1, 2]
>>> print range(3,1)
[]
>>> print range(-1,5)
[-1, 0, 1, 2, 3, 4]
>>> print range(1,100)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66,
67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82,
83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98,
99]

You might be wondering what this square bracket stuff is, e.g., [1,2] in
the first example above. That’s the notation for an array—it’s how Python
prints out a series of numbers to show that this is an array3. If we use range

3Technically, range returns a sequence, which is a somewhat different ordered collection
of data from an array. But for our purposes, we’ll call it an array.

3.2. MANIPULATING SOUNDS 79

to generate the array for the for loop, our variable will walk through each
of the sequential numbers we generate.

It turns out that range can also take three inputs. If a third input is
provided, it’s an increment—the amount to step between generated integers.

>>> print range(0,10,2)
[0, 2, 4, 6, 8]
>>> print range(1,10,2)
[1, 3, 5, 7, 9]
>>> print range(0,100,3)
[0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45,
48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93,
96, 99]

Using range, we can do everything that we were doing with getSamples,
but now directly referencing the index numbers. Here’s Recipe 9 (page 68)
written using range.

Recipe 12: Increase an input sound’s volume by doubling the amplitude, using range

def increaseVolumeByRange(sound):
for sampleIndex in range(1,getLength(sound)+1):
value = getSampleValueAt(sound,sampleIndex)
setSampleValueAt(sound,sampleIndex,value * 2)

End of Recipe 12

Try it—you’ll find that it performs just like the previous one.
But now we can do some really odd things with sounds, because we can

control which samples that we’re talking to. The below recipe increases the
sound for the first half of the sound, then decreases it in the second half.
See if you can trace how it’s working.

Recipe 13: Increase the volume in the first half of the sound, and decrease in the second

def increaseAndDecrease(sound):
for sampleIndex in range(1,getLength(sound)/2):

80 CHAPTER 3. ENCODING AND MANIPULATING SOUNDS

value = getSampleValueAt(sound,sampleIndex)
setSampleValueAt(sound,sampleIndex,value * 2)

for sampleIndex in range(getLength(sound)/2,getLength(sound)+1):
value = getSampleValueAt(sound,sampleIndex)
setSampleValueAt(sound,sampleIndex,value * 0.2)

End of Recipe 13

Another way of writing array references

It’s worth pointing out that, in many languages, square brackets ([]) are
central to manipulating arrays. It’s a standard notation in mnay languages
for manipulating arrays. In fact, it works the same here in Python. For any
array, array[index] returns the index-th element in the array. The number
inside the square brackets is always an index variable, but it’s sometimes
referred to as a subscript , because of the way that mathematicians refer to
the i-th element of a, e.g., ai.

There is one catch from what we’ve been doing earlier: Arrays in Python
are traditional computer science arrays. The first index is zero. The media
functions built-in to JES allow you to think in terms of starting with 1,
like most normal human endeavors. But when you do the square brackets,
you’re dealing with raw Python. Some of your results may feel like they’re
off-by-one.

Let’s do it here with samples to demonstrate.

>>> samples = getSamples(sound)
>>> print samples[1]
Sample at 2 value at 696
>>> print samples[0]
Sample at 1 value at 0
>>> print samples[22000]
Sample at 22001 value at 22364

To demonstrate it in ways that you can trust the result (because you
don’t really know what’s in the sound in the above examples), let’s use
range to make an array, then reference it the same way.

>>> myArray = range(0,100)
>>> print myArray[1]

3.2. MANIPULATING SOUNDS 81

1

>>> print myArray[0]

0

>>> print myArray[35]

35

>>> mySecondArray = range(0,100,2)

>>> print mySecondArray[35]

70

3.2.5 Splicing sounds

Splicing sounds is a term that dates back to when sounds were recorded on
tape, so juggling the order of things on the tape involved literally cutting
the tape into segments and then gluing it back together in the right order.
That’s “splicing”. When everything is digital, it’s much easier.

To splice sounds, we simply have to copy elements around in the array.
It’s easiest to do this with two (or more) arrays, rather than copying within
the same array. If you copy all the samples that represent someone saying
the word “The” up to the beginning of a sound (starting at index number
1), then you make the sound start with the word “The.” Splicing lets you
create all kinds of sounds, speeches, non-sense, and art.

The first thing to do in splicing is to figure out the index numbers that
delimit the pieces you’re interested in. Using the MediaTools, that’s pretty
easy to do.

• Open your WAV file in the MediaTools sound tools.

• Open the editor.

• Scroll and move the cursor (by dragging in the graph) until you think
that the cursor is before or after a sound of interest.

• Check your positioning by playing the sound before and after the cur-
sor, using the buttons in the sound editor.

Using exactly this process, I found the ending points of the first few
words in preamble10.wav. (I figure that the first word starts at the index
1, though that might not always be true for every sound.)

82 CHAPTER 3. ENCODING AND MANIPULATING SOUNDS

Word Ending index
We 15730
the 17407
People 26726
of 32131
the 33413
United 40052
States 55510

Writing a loop that copies things from one array to another requires a
little bit of juggling. You need to think about keeping track of two indices:
Where you are in the array that you’re copying from, and where you are in
the array that you’re copying to. These are two different variables, tracking
two different indexes. But they both increment in the same way.

The way that we’re going to do it (another sub-recipe) is to use one index
variable to point at the right entry in the target array (the one that we’re
copying to), use a for loop to have the second index variable move across
the right entries in the source array (the one that we’re copying from), and
(very important!) move the target index variable each time that we do a
copy. This is what keeps the two index variables synchronized (or “in synch”
but not “N*sync”).

The way that we make the target index move is to add one to it. Very
simply, we’ll tell Python to do targetIndex = targetIndex + 1. If you’re
a mathematician, that probably looks non-sensical. “How can any variable
equal itself plus one?” It’s never true that x = x+1. But remember that “=”
doesn’t assert that the two sides are equal—it means “Make the name on the
left stand for the value on the right.” Thus, targetIndex = targetIndex
+ 1 makes a lot of sense: Make the name targetIndex now be whatever
targetIndex currently is plus one. That moves the target index. If we put
this in the body of the loop where we’re changing the source index, we’ll get
them moving in synchrony.

The general form of the sub-recipe is:

targetIndex = Where-the-incoming-sound-should-start

for sourceIndex in range(startingPoint,endingPoint)

setSampleValueAt(target, targetIndex, getSampleValueAt(source,
sourceIndex))

targetIndex = targetIndex + 1

xxx Would some example pictures help here?

3.2. MANIPULATING SOUNDS 83

Below is the recipe that changes the preamble from ”We the people of
the United States” to ”We the UNITED people of the United States.”

Recipe 14: Splice the preamble to have united people

Be sure to change the file variable before trying this on your computer.

Splicing
Using the preamble sound, make "We the united people"
def splicePreamble():
file = "/Users/guzdial/mediasources/preamble10.wav"
source = makeSound(file)
target = makeSound(file) # This will be the newly spliced sound

targetIndex=17408 # targetIndex starts at just after
"We the" in the new sound
for sourceIndex in range(33414, 0052): # Where the word "United"
is in the sound
setSampleValueAt(target, targetIndex, getSampleValueAt(source,
sourceIndex))
targetIndex = targetIndex + 1

for sourceIndex in range(17408, 26726): # Where the word "People"
is in the sound
setSampleValueAt(target, targetIndex, getSampleValueAt(source,
sourceIndex))
targetIndex = targetIndex + 1

for index in range(1,1000): #Stick some quiet space after that
setSampleValueAt(target, targetIndex,0)
targetIndex = targetIndex + 1

play(target) #Let’s hear and return the result
return target

End of Recipe 14

We’d use it as simply as saying:

>>> newSound=splicePreamble()

84 CHAPTER 3. ENCODING AND MANIPULATING SOUNDS

There’s a lot going on in this recipe! Let’s walk through it, slowly.
Notice that there are lots of lines with “#” in them. The hash charac-

ter signifies that what comes after that character on the line is a note to
the programmer and should be ignored by Python! It’s called a comment .
Comments are great ways to explain what you’re doing to others—and to
yourself! The reality is that it’s hard to remember all the details of a pro-
gram, so it’s often very useful to leave notes about what you did if you’ll
ever play with the program again.

The function splice takes no parameters. Sure, it would be great to
write a single function that can do any kind of splicing we want, in the same
way as we’ve done generalized increasing volume and normalization. But
how could you? How do you generalize all the start and end points? It’s
easier, at least to start, to create single recipes that handle specific splicing
tasks.

We see here three of those copying loops like we set up earlier. Actually,
there are only two. The first one copies the word “United” into place. The
second one copies the word “people” into place. “But wait,” you might be
thinking. “The word ‘people’ was already in the sound!” That’s true, but
when we copy “United” in, we overwrite some of the word “people,” so we
copy it in again.

Here’s the simpler form. Try it and listen to the result:

def spliceSimpler():
file = "/Users/guzdial/mediasources/preamble10.wav"
source = makeSound(file)
target = makeSound(file) # This will be the newly spliced

sound
targetIndex=17408 # targetIndex starts at just after

"We the" in the new sound
for sourceIndex in range(33414, 40052): # Where the word

"United" is in the sound
setSampleValueAt(target, targetIndex, getSampleValueAt(

source, sourceIndex))
targetIndex = targetIndex + 1

play(target) #Let’s hear and return the result
return target

Let’s see if we can figure out what’s going on mathematically. Recall the
table back on page 82. We’re going to start inserting samples at sample index
17408. The word “United” has (40052− 33414) 6638 samples. (Exercise for

3.2. MANIPULATING SOUNDS 85

the reader: How long is that in seconds?) That means that we’ll be writing
into the target from 17408 to (17408 + 6638) sample index 24046. We know
from the table that the word “People” ends at index 26726. If the word
“People” is more than (26726 − 24046) 2,680 samples, then it will start
earlier than 24046, and our insertion of “United” is going to trample on
part of it. If the word “United” is over 6000 samples, I doubt that the word
“People” is less than 2000. That’s why it sounds crunched. Why does it
work with where the “of” is? The speaker must have paused in there. If you
check the table again, you’ll see that the word “of” ends at sample index
32131 and the word before it ends at 26726. The word “of” takes fewer than
(32131 − 26726) 5405 samples, which is why the original recipe works.

The third loop in the original Recipe 14 (page 83) looks like the same
kind of copy loop, but it’s really only putting in a few 0’s. As you might
have already guessed, samples with 0’s are silent. Putting a few in creates
a pause that sounds better. (There’s an exercise which suggests pulling it
out and seeing what you hear.)

Finally, at the very end of the recipe, there’s a new statement we haven’t
seen yet: return. We’ve now seen many functions in Python that return
values. This is how one does it. It’s important for splice to return the
newly spliced sound. Because of the scope of the function splice, if the
new sound wasn’t created, it would simply disappear when the function
ended. By returning it, it’s possible to give it a name and play it (and even
further manipulate it) after the function stops executing.

Figure 3.20 shows the original preamble10.wav file in the top sound
editor, and the new spliced one (saved with writeSoundTo) on the bottom.
The lines are drawn so that the spliced section lies between them, while the
rest of the sounds are identical.

3.2.6 Backwards sounds

In the splicing example, we copied the samples from the words just as they
were in the original sound. We don’t have to do always go in the same order.
We can reverse the words—or make them faster, slower, louder, or softer.
For an example, here’s a recipe that plays a sound in a file, backwards.

Recipe 15: Play the given sound backwards

def backwards(filename):
source = makeSound(filename)

86 CHAPTER 3. ENCODING AND MANIPULATING SOUNDS

Figure 3.20: Comparing the original sound (top) to the spliced sound (bot-
tom)

target = makeSound(filename)

sourceIndex = getLength(source)

for targetIndex in range(1,getLength(target)+1):

sourceValue = getSampleValueAt(source,sourceIndex)

setSampleValueAt(target,targetIndex,sourceValue)

sourceIndex = sourceIndex - 1

return target

3.2. MANIPULATING SOUNDS 87

End of Recipe 15

This recipe uses another variant of the array element copying sub-recipe
that we’ve seen previously.

• The recipe starts the sourceIndex at the end of the array, rather than
the front.

• The targetIndex moves from 1 to the length, during which time the
recipe:

– Get the sample value in the source at the sourceIndex.

– Copy that value into the target at the targetIndex

– Reduce the sourceIndex by 1, meaning that the sourceIndex
moves from the end of the array back to the beginning.

3.2.7 Changing the frequency of sounds

Modern music and sound keyboards (and synthesizers) allow musicians to
record sounds in their daily lives, and turn them into “instruments” by
shifting the frequency of the original sounds. How do the synthesizers do it?
It’s not really complicated, but it certainly is non-intuitive—at first. The
interesting part is that it allows you to use any sound you want and make
it into an instrument.

This first recipe works by creating a sound that skips every other sample.
You read that right. After being so careful treating all the samples the same,
we’re now going to skip half of them! In the mediasources directory, you’ll
find a sound named c4.wav. This is the note C, in the fourth octave of a
piano, played for one second. It makes a good sound to experiment with,
though really, any sound will work.

Recipe 16: Double the frequency of a sound

def double(filename):
source = makeSound(filename)
target = makeSound(filename)

targetIndex = 1

88 CHAPTER 3. ENCODING AND MANIPULATING SOUNDS

for sourceIndex in range(1, getLength(source)+1, 2):

setSampleValueAt(target, targetIndex, getSampleValueAt(
source, sourceIndex))

targetIndex = targetIndex + 1

#Clear out the rest of the target sound -- it’s only half full!

for secondHalf in range(getLength(target)/2, getLength(target)):

setSampleValueAt(target,targetIndex,0)

targetIndex = targetIndex + 1

play(target)

return target

End of Recipe 16

Here’s how I use it.

>>> file = pickAFile()

>>> print file
/Users/guzdial/mediasources/c4.wav

>>> c4 = makeSound(file)

>>> play(c4)

>>> c4doubled=double(file)

This recipe looks like it’s using the array-copying sub-recipe we saw ear-
lier, but notice that the range uses the third parameter—we’re incrementing
by two. If we increment by two, we only fill half the samples in the target,
so the second loop just fills the rest with zeroes.

Try it4! You’ll see that the sound really does double in frequency!
How did that happen? It’s not really all that complicated. Think of it

this way. The frequency of the basic file is really the number of cycles that
pass by in a certain amount of time. If you skip every other sample, the new
sound has just as many cycles, but has them in half the amount of time!

Now let’s try the other way: Let’s take every sample twice! What hap-
pens then?

To do this, we need to learn a new Python function: int. int returns
the integer portion of the input.

4You are now trying this out as you read, aren’t you?

3.2. MANIPULATING SOUNDS 89

>>> print int(0.5)

0

>>> print int(1.5)

1

Here’s the recipe that halves the frequency. We’re using the array-
copying sub-recipe again, but we’re sort of reversing it. The for loop moves
the targetIndex along the length of the sound. The sourceIndex is now
being incremented–but only by 0.5! The effect is that we’ll take every sam-
ple in the source twice. The sourceIndex will be 1, 1.5, 2, 2.5, and so on,
but because we’re using the int of that value, we’ll take samples 1, 1, 2, 2,
and so on.

Recipe 17: Half the frequency

def half(filename):

source = makeSound(filename)

target = makeSound(filename)

sourceIndex = 1

for targetIndex in range(1, getLength(target)+1):

setSampleValueAt(target, targetIndex, getSampleValueAt(
source, int(sourceIndex)))

sourceIndex = sourceIndex + 0.5

play(target)

return target

End of Recipe 17

Think about what we’re doing here. Imagine that the number 0.5 above
were actually 0.75. Or 2. or 3. Would this work? The for loop would have
to change, but essentially the idea is the same in all these cases. We are
sampling the source data to create the target data. Using a sample index of
0.5 slows down the sound and halves the frequency. A sample index larger
than one speeds up the sound and increases the frequency.

90 CHAPTER 3. ENCODING AND MANIPULATING SOUNDS

Let’s try to generalize this sampling with the below recipe. (Note that
this one won’t work right!)

Recipe 18: Shifting the frequency of a sound: BROKEN!

def shift(filename,factor):
source = makeSound(filename)
target = makeSound(filename)

sourceIndex = 1
for targetIndex in range(1, getLength(target)+1):
setSampleValueAt(target, targetIndex, getSampleValueAt(

source, int(sourceIndex)))
sourceIndex = sourceIndex + factor

play(target)
return target

End of Recipe 18

Here’s how we could use this:

>>> hello=pickAFile()
>>> print hello
/Users/guzdial/mediasources/hello.wav
>>> lowerhello=shift(hello,0.75)

That will work really well! But what if the factor for sampling is MORE
than 1.0?

>>> higherhello=shift(hello,1.5)
I wasn’t able to do what you wanted.
The error java.lang.ArrayIndexOutOfBoundsException has occured
Please check line 7 of /Users/guzdial/shift-broken.py

Why? What’s happening? Here’s how you could see it: Print out
the sourceIndex just before the setSampleValueAt. You’d see that the
sourceIndex becomes larger than the source sound! Of course, that makes

3.2. MANIPULATING SOUNDS 91

sense. If each time through the loop, we increment the targetIndex by 1,
but we’re incrementing the sourceIndex by more than one, we’ll get past
the end of the source sound before we reach the end of the target sound.
But how do we avoid it?

Here’s what we want to happen: If the sourceIndex ever gets larger than
length of the source, we want to reset the sourceIndex—probably back to 1.
The key word there is if, or even if. It turns out that we can can tell Python
to make decisions based on a test and do something based on if something is
true. In our case, the test is sourceIndex > getLength(source). We can
test on <, >, == (for equality), and even <= and >=. An if statement takes a
block , just as def and for do. The block defines the things to do if the test
in the if statement is true. In this case, our block is simply sourceIndex
= 1.

The below recipe generalizes this and allows you to specify how much to
shift the samples by.

Recipe 19: Shifting the frequency of a sound

def shift(filename,factor):
source = makeSound(filename)
target = makeSound(filename)

sourceIndex = 1
for targetIndex in range(1, getLength(target)+1):
setSampleValueAt(target, targetIndex, getSampleValueAt(

source, int(sourceIndex)))
sourceIndex = sourceIndex + factor
if sourceIndex > getLength(source):
sourceIndex = 1

play(target)
return target

End of Recipe 19

We can actually set the factor so that we get whatever frequency we
want. We call this factor the sampling interval . For a desired frequency f0,

92 CHAPTER 3. ENCODING AND MANIPULATING SOUNDS

the sampling interval should be:
sampling − inteval = (size − of − source − sound) f0

sampling−rate

This is how a keyboard synthesizer works. It has recordings of pianos,
voices, bells, drums, whatever. By sampling those sounds at different sam-
pling intervals, it can shift the sound to the desired frequency.

Functions and Objects Summary

In this chapter, we talk about several kinds of encodings of data (or objects).

Sounds Sounds are encodings of sounds, typically
coming froma WAV file.

Samples Samples are collections of Sample objects,
each indexed by a number, e.g. sample #1,
sample #2, etc. samples[1] is the first Sam-
ple object. You can manipulate each Sample
in the Samples like this for s in samples:.

Sample A sample is a value between -32000 and 32000
(roughly) representing the voltage that a mi-
crophone would generate at a given instant
when recording a sound. The length of the
instant is typically either 1/44, 1000 of a sec-
ond (for CD-quality sound) or 1/22, 050 of a
second (for good enough sound on most com-
puters). A Sample object remembers what
sound it came from, so if you change its value,
it knows to go back and change the right sam-
ple in the sound.

Here are the functions used or introduced in this chapter:
range Takes two numbers, and returns an array of

all integers starting at the first number and
stopping before the last number.

range Can also take three numbers, and then returns
an array of all the integers from the first, up-
to-but-not-including the second, incrementing
each time by the third.

int Returns the integer part of the input value
max Takes as many numbers as you want, and re-

turns the largest value

3.2. MANIPULATING SOUNDS 93

pickAFile Lets the user pick a file and returns the com-
plete path name as a string. No input

makeSound Takes a filename as input, reads the file, and
creates a sound from it. Returns the sound.

play Plays a sound provided as input. No return
value.

getLength Takes a sound as input and returns the num-
ber of samples in that sound.

getSamples Takes a sound as input and returns the Sam-
ples in that sound.

blockingPlay Plays the sound provided as input, and makes
sure that no other sound plays at the exact
same time. (Try two play’s right after each
other.)

playAtRate Takes a sound and a rate (1.0 means normal
speed, 2.0 is twice as fast, and 0.5 is half as
fast), and plays the sound at that rate. The
duration is always the same, e.g., if you play
it twice as fast, the sound plays twice to fill
the given time.

playAtRateDur Takes a sound, a rate, and a duration as the
number of samples to play.

writeSoundTo Takes a sound and a filename (a string) and
writes the sound to that file as a WAV file.
(Make sure that the filename ends in “.wav”
if you want the operating system to treat it
right.)

getSamplingRate Takes a sound as input and returns the num-
ber representing the number of samples in
each second for the sound.

getLength Returns the length of the sound as a number
of samples

getSampleValueAt Takes a sound and an index (an integer value),
and returns the value of the sample (between
-32000 and 32000) for that object.

setSampleValueAt Takes a sound, an index, and a value (should
be between -32000 and 32000), and sets the
value of the sample at the given index in the
given sound to the given value.

getSampleObjectAt Takes a sound and an index (an integer value),
and returns the Sample object at that index.

94 CHAPTER 3. ENCODING AND MANIPULATING SOUNDS

getSample Takes a Sample object and returns its value
(between -32000 and 32000)

setSample Takes a Sample object and a value, and sets
the sample to that value.

getSound Takes a Sample object and returns the Sound
that it remembers as its own.

Exercises

Exercise 13: Open up the Sonogram view and say some vowel sounds.
Is there a distinctive pattern? Do “Oh’s” always sound the same? Do
“Ah’s”? Does it matter if you switch speakers—are the patterns the same?
Exercise 14: Get a couple of different instruments and play the same note
on them into MediaTools sound editor with the sonogram view open. Are
all “C’s” made equal? Can you see some of why one sound is different than
another?
Exercise 15: Try out a variety of WAV files as instruments, using the
piano keyboard in the MediaTools sound editor. What kinds of recordings
work best as instruments?
Exercise 16: Recipe 9 (page 68) takes a sound as input. Write a function
increaseVolumeNamed that takes a file name as input then play the louder
sound.
Exercise 17: Rewrite Recipe 9 (page 68) so that it takes two inputs: The
sound to increase in volume, and a filename where the newly louder sound
should be stored. Then, increase the volume, and write the sound out to the
name file. Also, try doing it taking an input filename instead of the sound,
so that inputs are both filenames.
Exercise 18: Rewrite Recipe 9 (page 68) so that it takes two inputs: A
sound to increase in volume, and a multiplier. Use the multiplier as how
much to increase the amplitude of the sound samples. Can we use this same
function to both increase and decrease the volume? Demonstrate commands
that you would execute to do each.
Exercise 19: In section 3.2.3, we walked through how Recipe 9 (page 68)
worked. Draw the pictures to show how Recipe 10 (page 74) works, in the
same way.
Exercise 20: What happens if you increase a volume too far? Do it
once, and again, and again. Does it always keep getting louder? Or does
something else happen? Can you explain why?
Exercise 21: Try sprinkling in some specific values into your sounds.

3.2. MANIPULATING SOUNDS 95

What happens if you put a few hundred 32767 samples into the middle of a
sound? Or a few hundred -32768? Or a bunch of zeroes? What happens to
the sound?
Exercise 22: In Recipe 12 (page 79), we add one to getLength(sound)
in the range function. Why’d we do that?
Exercise 23: Rewrite Recipe 13 (page 79) so that two input values are
provided to the function: The sound, and a percentage of how far into the
sound to go before dropping the volume.
Exercise 24: Rewrite Recipe 13 (page 79) so that you normalize the first
second of a sound, then slowly decrease the sound in steps of 1/5 for each
following second. (How many samples are in a second? getSamplingRate
is the number of samples per second for the given sound.)
Exercise 25: Try rewriting Recipe 13 (page 79) so that you have a linear
increase in volume to halfway through the sound, then linearly decrease the
volume down to zero in the second half.
Exercise 26: What happens if you take out the bit of silence added in
to the target sound in Recipe 14 (page 83)? Try out? Can you hear any
difference?
Exercise 27: I think that if we’re going to say “We the UNITED people”
in Recipe 14 (page 83), the “UNITED” should be really emphasized—really
loud. Change the recipe so that the word “united” is louder in the phrase
“united people.”
Exercise 28: How long is a sound compared to the original when it’s been
doubled by Recipe 16 (page 87)?
Exercise 29: Hip-hop DJ’s move turntables so that sections of sound are
moved forwards and backwards quickly. Try combining Recipe 15 (page 86)
and Recipe 16 (page 87) to get the same effect. Play a second of a sound
quickly forward, then quickly backward, two or three times. (You might
have to move faster than just double the speed.)
Exercise 30: Try using a stopwatch to time the execution of the recipes
in this chapter. Time from hitting return on the command, until the next
prompt appears. What is the relationship between execution time and the
length of the sound? Is it a linear relationship, i.e., longer sounds take longer
to process and shorter sounds take less time to process? Or is it something
else? Compare the individual recipes. Does normalizing a sound take longer
than raising (or lowering) the amplitude a constant amount? How much
longer? Does it matter if the sound is longer or shorter?
Exercise 31: Consider changing the if block in Recipe 19 (page 91) to
sourceIndex = sourceIndex - getLength(source). What’s the differ-
ence from just setting the sourceIndex to 1? Is this better or worse? Why?

96 CHAPTER 3. ENCODING AND MANIPULATING SOUNDS

Exercise 32: If you use Recipe 19 (page 91) with a factor of 2.0 or 3.0,
you’ll get the sound repeated or even triplicated. Why? Can you fix it?
Write shiftDur that takes a number of samples (or even seconds) to play
the sound.
Exercise 33: Change the shift function in Recipe 19 (page 91) to shiftFreq
which takes a frequency instead of a factor, then plays the given sound at
the desired frequency.

To Dig Deeper

There are many wonderful books on psychoacoustics and computer music.
One of my favorites for understandability is Computer Music: Synthesis,
Composition, and Performance by Dodge and Jerse [Dodge and Jerse, 1997].
The bible of computer music is Curtis Roads’ massive The Computer Music
Tutorial [Roads, 1996].

When you are using MediaTools, you are actually using a programming
language called Squeak , developed initially and primarily by Alan Kay, Dan
Ingalls, Ted Kaehler, John Maloney, and Scott Wallace [Ingalls et al., 1997].
Squeak is now open-source5, and is an excellent cross-platform multimedia
tool. There is a good book introducing Squeak, including the sound capabil-
ities [Guzdial, 2001], and another book on Squeak [Guzdial and Rose, 2001]
that includes a chapter on Siren, an off-shoot of Squeak by Stephen Pope
especially designed for computer music exploration and composition.

5http://www.squeak.org

Chapter 4

Creating Sounds

XXX THIS CHAPTER IS STILL ROUGH
Creating sounds digitally that didn’t exist previously is lots of fun.

Rather than simply moving around samples or multiplying them, we ac-
tually change their values—add waves together. The result are sounds that
never existed until you made them.

In physics, adding sounds involves issues of cancelling waves out and
enforcing other factors. In math, it’s about matrices. In computer science,
it’s the easiest process in the world! Let’s say that you’ve got a sound,
source, that you want to add in to the target. Simply add the values at
the same index numbers! That’s it!

for sourceIndex in range(1,getLength(source)+1):
targetValue=getSampleValueAt(target,sourceIndex)
sourceValue=getSampleValueAt(source,sourceIndex)
setSampleValueAt(source,sourceIndex,sourceValue+targetValue)

To make some of our manipulations easier, we’re going to start using a
shorthand for accessing media files. JES knows how set a media folder, and
then reference media files within that folder. This makes it much easier to
reference media files—you don’t have to spell out the whole path. The func-
tions we’ll use are setMediaFolder and getMediaPath. setMediaFolder
will put up a file picker—pick any file in your media folder. getMediaPath
takes a base file name as an argument, and will stick the path to the media
folder in front of the base name and return a whole path to it.

>>> setMediaFolder()
New media folder: /Users/guzdial/mediasources/

97

98 CHAPTER 4. CREATING SOUNDS

>>> print getMediaPath("barbara.jpg")
/Users/guzdial/mediasources/barbara.jpg
>>> print getMediaPath("sec1silence.wav")
/Users/guzdial/mediasources/sec1silence.wav�

�

�

�

Common Bug: It’s not a file, it’s a string
Just because getMediaPath returns something that
looks like a path doesn’t mean that a file really exists
there. You have to know the right base name, but
if you do, it’s easier to use in your code. But if you
put in a non-existent file, you’ll get a path to a non-
existent file. getMediaPath will warn you.

>>> print getMediaPath("blah-blah-blah")
Note: There is no file at
/Users/guzdial/mediasources/blah-blah-blah
/Users/guzdial/mediasources/blah-blah-blah

4.1 Creating an Echo

Creating an echo effect is similar to the splicing recipe (Recipe 14 (page 83))
that we saw in the last chapter, but involves actually creating sounds that
didn’t exist before. We do that by actually adding wave forms. What we’re
doing here is adding samples from a delay number of samples away into the
sound, but multiplied by 0.6 so that they’re fainter.

Recipe 20: Make a sound and a single echo of it

def echo(delay):
f = pickAFile()
s1 = makeSound(f)
s2 = makeSound(f)
for p in range(delay+1, getLength(s1)):
set delay to original value + delayed value * .6
setSampleValueAt(s1, p, getSampleValueAt(s1,p) + .6*getSampleValueAt(

s2, p-delay))

4.1. CREATING AN ECHO 99

play(s1)

End of Recipe 20

4.1.1 Creating Multiple Echoes

This recipe actually lets you set the number of echoes that you get. You
can generate some amazing effects like this.

Recipe 21: Creating multiple echoes

def echoes(delay,echoes):
f = pickAFile()
s1 = makeSound(f)
s2 = makeSound(f)
endCurrentSound = getLength(s1)
newLength = endCurrentSound+(echoes * delay) # get ultimate

length of sound

for i in range (endCurrentSound,newLength+1):
initialize delay samples to zero
setSampleValueAt(s1,i,0)

echoAmplitude = 1
for echoCount in range (1, echoes+1): # for each echo
decrement amplitude to .6 of current volume
echoAmplitude = echoAmplitude * 0.6
loop through the entire sound
for e in range (1,endCurrentSound+1):
increment position by one
position = e+delay*echoCount
Set this sample’s value to the original value plus the

amplitude * the original sample value
setSampleValueAt(s1,position, getSampleValueAt(s1, position)

+ echoAmplitude * getSampleValueAt(s2, position-(delay*echoCount)
))

play(s1)

100 CHAPTER 4. CREATING SOUNDS

End of Recipe 21

4.1.2 Additive Synthesis

Additive synthesis creates sounds by adding sine waves together. We saw
earlier that it’s really pretty easy to add sounds together. With additive
synthesis, you can shape the waves yourselves, set their frequencies, and
create “instruments” that have never existed.

Making sine waves

Let’s figure out how to produce a set of samples to generate a sound at a
given frequency and amplitude.

From trignometry, we know that if we take the sine of the radians from 0
to 2π, we’ll get a circle. Spread that over time, and you get a sine wave. In
other words, if you took values from 0 to 2π, computed the sine of each value,
and graphed the computed values. You’d get a sine wave. From your really
early math courses, you know that there’s an infinity of numbers between
0 and 1. Computers don’t handle infinity very well, so we’ll actually only
take some values between 0 to 2π.

To create the below graph, I filled 20 rows (a totally arbitrary number)
of a spreadsheet with values from 0 and 2Π (about 6.28). I added about
0.314 (6.28/20) to each preceeding row. In the next column, I took the sine
of each value in the first column, then graphed it.

Now, if we want to create a sound at a given frequency, say 440 Hz.
This means that we have to fit an entire cycle like the above into 1/440 of a
second. (440 cycles per second, means that each cycle fits into 1/440 second,
or 0.00227 seconds.) I made the above picture using 20 values. Call it 20
samples. How many samples to I have to chop up the 440 Hz cycle into?
That’s the same question as: How many samples must go by in 0.00227

4.1. CREATING AN ECHO 101

seconds? We know the sampling rate—that’s the number of samples in one
second. Let’s say that it’s 22050 samples per second (our default sampling
rate). Each sample is then (1/22050) 0.0000453 seconds. How many samples
fit into 0.00227? That’s 0.00227/0.0000453, or about 50. What we just did
here mathematically is:

interval = 1/frequency

samplesPerCyle = interval
1/samplingRate = (samplingRate)(interval)

Now, let’s spell this out as Python. To get a waveform at a given fre-
quency, say 440 Hz, we need 440 of these waves in a single second. Each one
must fit into the interval of 1/frequency. The number of samples that needs
to be produced during the interval is the sampling rate divided by the fre-
quency, or interval (1/f)∗(samplingrate). Call that the samplesPerCycle.

At each entry of the sound sampleIndex, we want to:

• Get the fraction of sampleIndex/samplesPerCycle.

• Multiply that fraction by 2Π. That’s the number of radians we need.
Take the sin of (sampleIndex/samplesPerCycle) ∗ 2Π.

• Multiply the result by the desired amplitude, and put that in the
sampleIndex.

To build sounds, there are some silent sounds in the media sources. Our
sine wave generator will use one second of silence to build a sine wave of one
second. We’ll provide an amplitude as input—that will be the maximum
amplitude of the sound. (Since sine generates between −1 and 1, the range
of amplitudes will be between −amplitude and amplitude.)�

�

�

�

Common Bug: Set the media folder first!
If you’re to use code that uses getMediaPath, you’ll
need to execute setMediaFolder first.

Recipe 22: Generate a sine wave at a given frequency and amplitude

def sineWave(freq,amplitude):

Get a blank sound
mySound = getMediaPath(’sec1silence.wav’)

102 CHAPTER 4. CREATING SOUNDS

buildSin = makeSound(mySound)

Set sound constant

sr = getSamplingRate(buildSin) # sampling rate

interval = 1.0/freq # Make sure it’s floating point

samplesPerCycle = interval * sr # samples per cycle

maxCycle = 2 * pi

for pos in range (1,getLength(buildSin)+1):

rawSample = sin((pos / samplesPerCycle) * maxCycle)

sampleVal = int(amplitude*rawSample)

setSampleValueAt(buildSin,pos,sampleVal)

return (buildSin)

End of Recipe 22

Here we are building a sine wave of 880 Hz at an amplitude of 4000.

>>> f880=sineWave(880,4000)

>>> play(f880)

Adding sine waves together

Now, let’s add sine waves together. Like we said at the beginning of the
chapter, that’s pretty easy: Just add the samples at the same indices to-
gether. Here’s a function that adds one sound into a second sound.

Recipe 23: Add two sounds together

def addSounds(sound1,sound2):

for index in range(1,getLength(sound1)+1):

s1Sample = getSampleValueAt(sound1,index)

s2Sample = getSampleValueAt(sound2,index)

setSampleValueAt(sound2,index,s1Sample+s2Sample)

4.1. CREATING AN ECHO 103

End of Recipe 23

How are we going to use this function to add together sine waves? We
need both of them at once? Turns out that it’s easy:	

�

�

Making it Work Tip: You can put more than
one function in the same file!
It’s perfectly okay to have more than one function
in the same file. Just type them all in in any order.
Python will figure it out.

My file additive.py looks like this:

def sineWave(freq,amplitude):

Get a blank sound

mySound = getMediaPath(’sec1silence.wav’)
buildSin = makeSound(mySound)

Set sound constant
sr = getSamplingRate(buildSin) # sampling rate

interval = 1.0/freq
samplesPerCycle = interval * sr # samples per cycle:

make sure floating point
maxCycle = 2 * pi

for pos in range (1,getLength(buildSin)+1):
rawSample = sin((pos / samplesPerCycle) * maxCycle)
sampleVal = int(amplitude*rawSample)
setSampleValueAt(buildSin,pos,sampleVal)

return (buildSin)

def addSounds(sound1,sound2):
for index in range(1,getLength(sound1)+1):
s1Sample = getSampleValueAt(sound1,index)
s2Sample = getSampleValueAt(sound2,index)
setSampleValueAt(sound2,index,s1Sample+s2Sample)

104 CHAPTER 4. CREATING SOUNDS

Let’s add together 440 Hz, 880 Hz (twice 440), and 1320 Hz (880+440),
but we’ll have the amplitudes increase. We’ll double the amplitude each
time: 2000, then 4000, then 8000. We’ll add them all up into the name
f440. At the end, I generate a 440 Hz sound so that I can listen to them
both and compare.

>>> f440=sineWave(440,2000)
>>> f880=sineWave(880,4000)
>>> f1320=sineWave(1320,8000)
>>> addSounds(f880,f440)
>>> addSounds(f1320,f440)
>>> play(f440)
>>> just440=sineWave(440,2000)
>>> play(just440)�

�

�

�

Common Bug: Beware of adding amplitudes
past 32767
When you add sounds, you add their amplitudes, too.
A maximum of 2000+4000+8000 will never be greater
than 32767, but do worry about that. Remember
what happened when the amplitude got too high last
chapter. . .

Checking our result

How do we know if we really got what we wanted? We can test our code by
using the sound tools in the MediaTools. First, we save out a sample wave
(just 400 Hz) and the combined wave.

>>> writeSoundTo(just440,"/Users/guzdial/mediasources/just440.wav")
>>> writeSoundTo(f440,"/Users/guzdial/mediasources/combined440.wav")

Open up each of these in turn in the sound editor. Right away, you’ll
notice that the wave forms look very different (Figure 4.2). That tells you
that we did something to the sound, but what?

The way you can really check your additive synthesis is with an FFT.
Generate the FFT for each signal. You’ll see that the 440 Hz signal has a
single spike (Figure 4.3). That’s what you’d expect—it’s supposed to be a
single sine wave. Now, look at the combined wave form’s FFT (Figure 4.4).
Wow! It’s what it’s supposed to be! You see three spikes there, and each
succeeding one is double the height of the last one.

4.1. CREATING AN ECHO 105

Square waves

We don’t have to just add sine waves. We can also add square waves. These
are literally square-shaped waves, moving between +1 and −1. The FFT
will look very different, and the sound will be very different. It can actually
be a much richer sound.

Try swapping this recipe in for the sine wave generator and see what you
think. Note the use of an if statement to swap between the positive and
negative sides of the wave half-way through a cycle.

Recipe 24: Square wave generator for given frequency and amplitude

def squareWave(freq,amplitude):

Get a blank sound
mySound = getMediaPath("sec1silence.wav")
square = makeSound(mySound)

Set music constants
samplingRate = getSamplingRate(square) # sampling rate
seconds = 1 # play for 1 second

Build tools for this wave
seconds per cycle: make sure floating point
interval = 1.0 * seconds / freq
creates floating point since interval is fl point
samplesPerCycle = interval * samplingRate
we need to switch every half-cycle
samplesPerHalfCycle = int(samplesPerCycle / 2)
sampleVal = amplitude
s = 1
i = 1

for s in range (1, getLength(square)+1):
if end of a half-cycle
if (i > samplesPerHalfCycle):
reverse the amplitude every half-cycle
sampleVal = sampleVal * -1
and reinitialize the half-cycle counter

106 CHAPTER 4. CREATING SOUNDS

i = 0
setSampleValueAt(square,s,sampleVal)
i = i + 1

return(square)

End of Recipe 24

Use it like this:

>>> sq440=squareWave(440,4000)
>>> play(sq440)
>>> sq880=squareWave(880,8000)
>>> sq1320=squareWave(1320,10000)
>>> writeSoundTo(sq440,getMediaPath("square440.wav"))
Note: There is no file at /Users/guzdial/mediasources/square440.wav
>>> addSounds(sq880,sq440)
>>> addSounds(sq1320,sq440)
>>> play(sq440)
>>> writeSoundTo(sq440,getMediaPath("squarecombined440.wav"))
Note: There is no file at /Users/guzdial/mediasources/squarecombined440.wav

You’ll find that the waves (in the wave editor of MediaTools) really do
look square (Figure 4.5), but the most amazing thing is all the additional
spikes in FFT (Figure 4.6). Square waves really do result in a much more
complex sound.

Triangle waves

Try triangle waves instead of square waves with this recipe.

Recipe 25: Generate triangle waves

def triangleWav(freq):

Get a blank sound
myFolder = setMediaFolder()
mySound = getMediaPath("sec1silence.wav")
triangle = makeSound(mySound)

4.1. CREATING AN ECHO 107

Set music constants
amplitude = 6000 # Loudness at 6000:

could be any from 1 to32768
samplingRate = 22050 # sampling rate
seconds = 1 # play for 1 second

Build tools for this wave
seconds per cycle: make sure floating point
interval = 1.0 * seconds / freq
creates floating point since interval is fl point
samplesPerCycle = interval * samplingRate
we need to switch every half-cycle
samplesPerHalfCycle = int(samplesPerCycle / 2)
value to add for each subsequent sample; must be integer
increment = int(amplitude / samplesPerHalfCycle)
start at bottom and increment or decrement as needed
sampleVal = -amplitude
i = 1

for s in range (1, samplingRate + 1): # create 1 second
sound

if end of a half-cycle
if (i > samplesPerHalfCycle):
reverse the increment every half-cycle
increment = increment * -1
and reinit the half-cycle counter
i = 0

sampleVal = sampleVal + increment
setSampleValueAt(triangle,s,sampleVal)
i = i + 1

play(triangle)

End of Recipe 25

108 CHAPTER 4. CREATING SOUNDS

Exercises

Exercise 34: Using the sound tools, figure out the characteristic pattern
of different instruments. For example, pianos tend to have a pattern the
opposite of what we created—the amplitudes decrease as we get to higher
sine waves. Try creating a variety of patterns and see how they sound and
how they look.
Exercise 35: When musicians work with additive synthesis, they will of-
ten wrap envelopes around the sounds, and even around each added sine
wave. An envelope changes the amplitude over time: It might start out
small, then grow (rapidly or slowly), then hold at a certain value during the
sound, and then drop before the sound ends. That kind of pattern is some-
times called the attack-sustain-decay (ASD) envelope. Try implementing
that for the sine and square wave generators.

To Dig Deeper

Good books on computer music will talk a lot about creating sounds from
scratch like in this chapter. One of my favorites for understandability is
Computer Music: Synthesis, Composition, and Performance by Dodge and
Jerse [Dodge and Jerse, 1997]. The bible of computer music is Curtis Roads’
massive The Computer Music Tutorial [Roads, 1996].

One of the most powerful tools for playing with this level of computer
music is CSound . It’s a software music synthesis system, free, and totally
cross-platform. The book by Richard Boulanger [Boulanger, 2000] has ev-
erything you need for playing with CSound.

4.1. CREATING AN ECHO 109

Figure 4.1: The top and middle waves are added together to create the
bottom wave

110 CHAPTER 4. CREATING SOUNDS

Figure 4.2: The raw 440 Hz signal on top, then the 440+880+1320 Hz signal
on the bottom

Figure 4.3: FFT of the 440 Hz sound

Figure 4.4: FFT of the combined sound

4.1. CREATING AN ECHO 111

Figure 4.5: The 440 Hz square wave (top) and additive combination of
square waves (bottom)

Figure 4.6: FFT’s of the 440 Hz square wave (top) and additive combination
of square waves (bottom)

112 CHAPTER 4. CREATING SOUNDS

Part III

Pictures

113

Chapter 5

Encoding and Manipulating
Pictures

Pictures (images, graphics) are an important part of any media communica-
tion. In this chapter, we discuss how pictures are represented on a computer
(mostly as bitmap images—each dot or pixel is represented separately) and
how they can be manipulated. The next chapter will discuss more about
other kinds of representations, such as vector images.

5.1 How Pictures are Encoded

Pictures are two-dimensional arrays of pixels. In this section, each of those
terms will be described.

For our purposes, a picture is an image stored in a JPEG file. JPEG
is an international standard for how to store images with high quality but
in little space. JPEG is a lossy compression format. That means that it is
compressed , made smaller, but not with 100% of the quality of the original
format. Typically, though, what gets thrown away is stuff that you don’t
see or don’t notice anyway. For most purposes, a JPEG image works fine.

A two-dimensional array is a matrix . Recall that we described an array
as a sequence of elements, each with an index number associated with it. A
matrix is a collection of elements arranged in both a horizontal and vertical
sequence. Instead of talking about element at index j, that is arrayj, we’re
now talking about element at column i and rowj, that is, matrixi,j.

In Figure 5.1, you see an example matrix (or part of one, the upper-left-
hand corner of one). At coordinates (1, 2) (horizontal, vertical), you’ll find
the matrix element whose value is 9. (1, 1) is 15, (2, 1) is 12, and (3, 1) is

115

116 CHAPTER 5. ENCODING AND MANIPULATING PICTURES

13. We will often refer to these coordinates as (x, y) ((horizontal, vertical).

15 12 13 10

9 7

6

1 2 3 4

1

2

3

Figure 5.1: An example matrix

What’s stored at each element in the picture is a pixel . The word “pixel”
is short for “picture element.” It’s literally a dot, and the overall picture
is made up of lots of these dots. Have you ever taken a magnifying glass
to pictures in the newspaper or magazines, or to a television or even your
own monitor? (Figure 5.2 was generated by taking an Intel microscope and
pointing it at the screen at 60x magnification.) It’s made up of many, many
dots. When you look at the picture in the magazine or on the television, it
doesn’t look like it’s broken up into millions of discrete spots, but it is.

Just like the samples that make up a sound, our human sensor apparatus
can’t distinguish (without magnification or other special equipment) the
small bits in the whole. That’s what makes it possible to digitize pictures.
We break up the picture into smaller elements (pixels), but enough of them
that the picture doesn’t look choppy when looked at it overall. If you can
see the effects of the digitization (e.g., lines have sharp edges, you see little
rectangles in some spots), we call that pixelization—the effect when the
digitization process becomes obvious.

Picture encoding is only the next step in complexity after sound encod-
ing. A sound is inherently linear—it progresses forward in time. A picture
has two dimensions, a width and a height. But other than that, it’s quite
similar.

We will encode each pixel as a triplet of numbers. The first number
represents the amount of red in the pixel. The second is the amount of
green, and the third is the amount of blue. It turns out that we can actually

5.1. HOW PICTURES ARE ENCODED 117

Figure 5.2: Cursor and icon at regular magnification on top, and close-up
views of the cursor (left) and the line below the cursor (right)

make up any color by combining red, green, and blue light (Figure 5.3).
Combining all three gives us pure white. Turning off all three gives us
black. We call this the RGB model .

There are other models for defining and encoding colors besides the RGB
color model. There’s the HSV color model which encodes Hue, Saturation,
and Value. The nice thing about the HSV model is that some notions, like
making a color “lighter” or “darker” map cleanly to it (e.g., you simply
change the saturation). Another model is the CMYK color model , which
encodes Cyan, Magenta, Yellow, and blacK (“B” could be confused with
Blue). The CMYK model is what printers use—those are the inks they
combine to make colors. However, the four elements means more to encode
on a computer, so it’s less popular for media computation. RGB is probably
the most popular model on computers.

Each color component in a pixel is typically represented with a single
byte, eight bits. If you recall our earlier discussion, eight bits can represent
256 values (28), which we typically use to represent the values 0 to 255.
Each pixel, then, uses 24 bits to represent colors. Using our same formula
(224), we know that the standard encoding for color using the RGB model
can represent 16,777,216 colors. There are certainly more than 16 million

118 CHAPTER 5. ENCODING AND MANIPULATING PICTURES

Figure 5.3: Merging red, green, and blue to make new colors

colors in all of creation, but it would take a very discerning eye to pick out
any missing in this model.

Most facilities for allowing users to pick out colors let the users specify
the color as RGB components. The Macintosh offers RGB sliders in its basic
color picker (Figure 5.4). The color chooser in JES (which is the standard
Java Swing color chooser) offers a similar set of sliders (Figure 5.5).

Figure 5.4: The Macintosh OS X RGB color picker

As mentioned a triplet of (0, 0, 0) (red, green, blue components) is black,
and (0, 0, 0) is white. (255, 0, 0) is pure red, but (100, 0, 0) is red, too—just

5.2. MANIPULATING PICTURES 119

Figure 5.5: Picking a color using RGB sliders from JES

less intense. (0, 100, 0) is a light green, and (0, 0, 100) is light blue.
When the red component is the same as the green and as the blue,

the resultant color is gray. (50, 50, 50) would be a fairly light gray, and
(100, 100, 100) is darker.

The Figure 5.6 (replicated at Figure 5.27 (page 159) in the color pages
at the end of this chapter) is a representation of pixel RGB triplets in a
matrix representation. Thus, the pixel at (2, 1) has color (5, 10, 100) which
means that it has a red value of 5, a green value of 10, and a blue value of
100—it’s a mostly blue color, but not pure blue. Pixel at (4, 1) has a pure
green color ((0, 100, 0)), but only 100 (out of a possible 255), so it’s a fairly
light green.

5.2 Manipulating Pictures

We manipulate pictures in JES by making a picture object out of a JPEG
file, then changing the pixels in that picture. We change the pixels by chang-
ing the color associated with the pixel—by manipulating the red, gree, and
blue components. Manipulating pictures, thus, is pretty similar to ma-
nipulating samples in a sound, but a little more complex since it’s in two
dimensions rather than one.

We make pictures using makePicture. We make the picture appear with
show.

>>> file=pickAFile()
>>> print file

120 CHAPTER 5. ENCODING AND MANIPULATING PICTURES

Figure 5.6: RGB triplets in a matrix representation

/Users/guzdial/mediasources/barbara.jpg
>>> picture=makePicture(file)
>>> show(picture)
>>> print picture
Picture, filename /Users/guzdial/mediasources/barbara.jpg height
294 width 222

Pictures know their width and their height. You can query them with
getWidth and getHeight.

>>> print getWidth(picture)
222
>>> print getHeight(picture)
294

We can get any particular pixel from a picture using getPixel with the
picture, and the coordinates of the pixel desired. We can also get all the
pixels with getPixels.

>>> pixel=getPixel(picture,1,1)
>>> print pixel
Pixel, color=color r=168 g=131 b=105
>>> pixels=getPixels(picture)

5.2. MANIPULATING PICTURES 121

>>> print pixels[0]
Pixel, color=color r=168 g=131 b=105�

�

�

�

Common Bug: Don’t try printing the pixels:
Way too big!
getPixels literally returns an array of all the pix-
els (as opposed to a samples object, like getSamples
returns). If you try to print the return value from
getPixels, you’ll get the printout of each pixel, like
you see above. How many pixels are there? Well, this
small sample picture has a width of 222 and a height
of 294. 222x294 = 65, 268 65 thousand lines like the
above is a big printout. You probably don’t want to
wait for it to finish. If you do this accidentally, just
quit JES and re-start it.

Pixels know where they came from. You can ask them their x and y
coordinates with getX and getY.

>>> print getX(pixel)
1
>>> print getY(pixel)
1

Each pixel knows how to getRed and setRed. (Green and blue work
similarly.)

>>> print getRed(pixel)
168
>>> setRed(pixel,255)
>>> print getRed(pixel)
255

You can also ask a pixel for its color with getColor, and you can also
set the color with setColor. Color objects know their red, green, and blue
components. You can also make new colors with makeColor.

>>> color=getColor(pixel)
>>> print color
color r=255 g=131 b=105
>>> setColor(pixel,color)

122 CHAPTER 5. ENCODING AND MANIPULATING PICTURES

>>> newColor=makeColor(0,100,0)
>>> print newColor
color r=0 g=100 b=0
>>> setColor(pixel,newColor)
>>> print getColor(pixel)
color r=0 g=100 b=0

If you change the color of a pixel, the picture that the pixel is from does
get changed.

>>> print getPixel(picture,1,1)
Pixel, color=color r=0 g=100 b=0�

�

�

�

Common Bug: Seeing changes in the picture
If you show your picture, and then change the
pixels, you might be wondering, “Where are the
changes?!?” Picture displays don’t automatically up-
dated. If you execute repaint with the picture, e.g.,
repaint(picture), the picture will update.

One of the important things that you can do with colors is to compare
them. Some recipes for manipulating pictures will do different things with
pixels depending on the color of the pixel. There are several ways of com-
paring pictures.

One way of comparing colors is the same way that one would compare
numbers. We can subtract one color from the other. If we do that, we get a
new color whose red, green, and blue components are the differences of each.
So, if color1 has red, green, and blue components (r1, g1, b1), and color2 has
(r2, g2, b2), then color1 − color2 creates a new color (r1 − r2, g1 − g2, b1 − b2).
We can also use <, >, and == (test for equality) to compare colors.

>>> print c1
color r=10 g=10 b=10
>>> print c2
color r=20 g=20 b=20
>>> print c2-c1
color r=10 g=10 b=10
>>> print c2 > c1
1
>>> print c2 < c1
0

5.2. MANIPULATING PICTURES 123

Another method of comparing pictures is with a notion of color distance.
You often won’t care about an exact match of colors—two shades of blue
might be close enough for your purposes. distance lets you measure close
enough.

>>> print color
color r=81 g=63 b=51
>>> print newcolor
color r=255 g=51 b=51
>>> print distance(color,newcolor)
174.41330224498358

The distance between two colors is the Cartesian distance between the
colors as points in a three-dimensional space, where red, green, and blue are
the three dimensions. Recall that the distance between two points (x1, y1)
and (x2, y2) is:√

(x1 − x2)2 + (y1 − y2)2

The similar measure for two colors (red1, green1, blue1) and (red2, green2, blue2)
is: √

(red1 − red2)2 + (green1 − green2)2 + (blue1 − blue2)2

You can automatically get the darker or lighter versions of colors with
makeDarker or makeLighter. (Remember that this was easy in HSV, but
not so easy in RGB. These functions do it for you.)

>>> print color
color r=168 g=131 b=105
>>> print makeDarker(color)
color r=117 g=91 b=73
>>> print color
color r=117 g=91 b=73

You can also make colors from pickAColor, which gives you a variety of
ways of picking a color.

>>> newcolor=pickAColor()
>>> print newcolor
color r=255 g=51 b=51

Once you have a color, you can get lighter or darker versions of the same
color with makeLighter and makeDarker.

124 CHAPTER 5. ENCODING AND MANIPULATING PICTURES

>>> print c

color r=10 g=100 b=200

>>> print makeLighter(c)

color r=10 g=100 b=200

>>> print c

color r=14 g=142 b=255

>>> print makeDarker(c)

color r=9 g=99 b=178

>>> print c

color r=9 g=99 b=178

When you have finished manipulating a picture, you can write it out
with writePictureTo.

>>> writePictureTo(picture,"/Users/guzdial/newpicture.jpg")

�

�

�

�

Common Bug: End with .jpg
Be sure to end your filename with “.jpg” in order to
get your operating system to recognize it as a JPEG
file.

Of course, we don’t have to write new functions to manipulate pictures.
We can do it from the command area using the functions just described.

>>> file="/Users/guzdial/mediasources/barbara.jpg"

>>> pict=makePicture(file)

>>> show(pict)

>>> setColor(getPixel(pict,10,100),yellow)

>>> setColor(getPixel(pict,11,100),yellow)

>>> setColor(getPixel(pict,12,100),yellow)

>>> setColor(getPixel(pict,13,100),yellow)

>>> repaint(pict)

The result showing a small yellow line on the left side appears in Fig-
ure 5.7. This is 100 pixels down, and the pixels 10, 11, 12, and 13 from the
left edge.

5.2. MANIPULATING PICTURES 125

Figure 5.7: Directly modifying the pixel colors via commands: Note the
small yellow line on the left

5.2.1 Exploring pictures

The MediaTools has a set of image exploration tools that are really useful
for studying a picture (Figure 5.8). Use the Open button to bring up a file
selection box, like you did for sounds. When the image appears, you have
several different tools available. Move your cursor over the picture and press
down with the mouse button.

• The red, green, and blue values will be displayed for the pixel you’re
pointing at. This is useful when you want to get a sense of how the
colors in your picture map to numeric red, green, and blue values. It’s
also helpful if you’re going to be doing some computation on the pixels
and want to check the values.

• The x and y position will be display for the pixel you’re point at. This

126 CHAPTER 5. ENCODING AND MANIPULATING PICTURES

is useful when you want to figure out regions of the screen, e.g., if you
want to process only part of the picture. If you know the range of x
and y coordinates where you want to process, you can tune your for
loop to reach just those sections.

• Finally, a magnifier is available to let you see the pixels blown up.
(The magnifier can be clicked and dragged around.)

Figure 5.8: Using the MediaTools image exploration tools

5.2.2 Changing color values

The easiest thing to do with pictures is to change the color values of their
pixels by changing the red, green, and blue components. You can get rad-
ically different effects by simply tweaking those values. Many of Adobe
Photoshop’s filters do just what we’re going to be doing in this section.

Increasing/decreasing red (green, blue)

A common desire when working with digital pictures is to shift the redness
(or greenness or blueness—but most often, redness) of a picture. You might
shift it higher to “warm” the picture, or to reduce it to “cool” the picture
or deal with overly-red digital cameras.

5.2. MANIPULATING PICTURES 127

The below recipe reduces the amount of color 50% in an input picture.

Recipe 26: Reduce the amount of red in a picture by 50%

def decreaseRed(picture):
for p in getPixels(picture):
value=getRed(p)
setRed(p,value*0.5)

End of Recipe 26

The recipe was used like this:

>>> file="/Users/guzdial/mediasources/barbara.jpg"
>>> picture=makePicture(file)
>>> show(picture)
>>> decreaseRed(picture)
>>> repaint(picture)�

�

�

�

Common Bug: Patience: for loops always end
The most common bug with this kind of code is to
give up and hit the Stop button before it stops. If
you’re using a for loop, the program will always stop.
But it might take a full minute (or two!) for some of
the manipulations we’ll do—especially if your source
image is large.

The original picture and its red-reduced version appear in Figure 5.9
(and at Figure 5.28 on page 160). 50% is obviously a lot of red to reduce!
The picture looks like it was taken through a blue filter.

Let’s increase the red in the picture now. If multiplying the red compo-
nent by 0.5 reduced it, multiplying it by something over 1.0 should increase
it. I’m going to apply the increase to the exact same picture, to see if we
can even it out some (Figure 5.10 and Figure 5.29).

Recipe 27: Increase the red component by 20%

128 CHAPTER 5. ENCODING AND MANIPULATING PICTURES

Figure 5.9: The original picture (left) and red-reduced version (right)

def increaseRed(picture):
for p in getPixels(picture):
value=getRed(p)
setRed(p,value*1.2)

End of Recipe 27

We can even get rid of a color completely. The below recipe erases the
blue component from a picture (Figure 5.11 and Figure 5.30).

Recipe 28: Clear the blue component from a picture

def clearBlue(picture):
for p in getPixels(picture):
setBlue(p,0)

End of Recipe 28

5.2. MANIPULATING PICTURES 129

Figure 5.10: Overly blue (left) and red increased by 20% (right)

Figure 5.11: Original (left) and blue erased (right)

130 CHAPTER 5. ENCODING AND MANIPULATING PICTURES

Lightening and darkening

To lighten or darken a picture is pretty simple. It’s the same pattern as we
saw previously, but instead of changing a color component, you change the
overall color. Here’s lightening and then darkening as recipes. Figure 5.12
(Figure 5.31) shows the lighter and darker versions of the original picture
seen earlier.

Recipe 29: Lighten the picture

def lighten(picture):
for px in getPixels(picture):
color = getColor(px)
makeLighter(color)
setColor(px,color)

End of Recipe 29

Recipe 30: Darken the picture

def darken(picture):
for px in getPixels(picture):
color = getColor(px)
makeDarker(color)
setColor(px,color)

End of Recipe 30

Creating a negative

Creating a negative image of a picture is much easier than you might think
at first. Let’s think it through. What we want is the opposite of each of
the current values for red, green, and blue. It’s easiest to understand at the
extremes. If we have a red component of 0, we want 255 instead. If we have
255, we want the negative to have a zero.

5.2. MANIPULATING PICTURES 131

Figure 5.12: Lightening and darkening of original picture

Now let’s consider the middle ground. If the red component is slightly
red (say, 50), we want something that is almost completely red—where the
“almost” is the same amount of redness in the original picture. We want
the maximum red (255), but 50 less than that. We want a red component of
255− 50 = 205. In general, the negative should be 255− original. We need
to compute the negative of each of the red, green, and blue components,
then create a new negative color, and set the pixel to the negative color.

Here’s the recipe that does it, and you can see even from the grayscale
image that it really does work (Figure 5.13 and Figure 5.32).

Recipe 31: Create the negative of the original picture

def negative(picture):

for px in getPixels(picture):

red=getRed(px)

green=getGreen(px)

blue=getBlue(px)

negColor=makeColor(255-red, 255-green, 255-blue)

setColor(px,negColor)

132 CHAPTER 5. ENCODING AND MANIPULATING PICTURES

End of Recipe 31

Figure 5.13: Negative of the image

Converting to greyscale

Converting to greyscale is a fun recipe. It’s short, not hard to understand,
and yet has such a nice visual effect. It’s a really nice example of what one
can do easily yet powerfully by manipulating pixel color values.

Recall that the resultant color is grey whenever the red component, green
component, and blue component have the same value. That means that our
RGB encoding supports 256 levels of grey from, (0, 0, 0) (black) to (1, 1, 1)
through (100, 100, 100) and finally (255, 255, 255). The tricky part is figuring
out what the replicated value should be.

What we want is a sense of the intensity of the color. It turns out that
it’s pretty easy to compute: We average the three component colors. Since
there are three components, the formula for intensity is:

(red+green+blue)
3

This leads us to the following simple recipe and Figure 5.14 (and Fig-

5.2. MANIPULATING PICTURES 133

Figure 5.14: Color picture converted to greyscale

ure 5.33 on page 162).

Recipe 32: Convert to greyscale

def greyScale(picture):
for p in getPixels(picture):
intensity = (getRed(p)+getGreen(p)+getBlue(p))/3
setColor(p,makeColor(intensity,intensity,intensity))

End of Recipe 32

This is an overly simply notion of greyscale. Below is a recipe that takes
into account how the human eye percieves luminance.

Recipe 33: Convert to greyscale with more careful control of luminance

def greyScaleNew(picture):
for px in getPixels(picture):

134 CHAPTER 5. ENCODING AND MANIPULATING PICTURES

newRed = getRed(px) * 0.299
newGreen = getGreen(px) * 0.587
newBlue = getBlue(px) * 0.114
luminance = newRed+newGreen+newBlue
setColor(px,makeColor(luminance,luminance,luminance))

End of Recipe 33

5.2.3 Copying pixels

With sounds, we could only get so far with getSamples before we had to
start using more sophisticated for loops. Similarly, we can only get so far
in our image processing with getPixels, so we’ll need to start building our
own for loops using range. Once we start doing that, we have more control
over the exact x and y coordinates that we’re processing, so we can start
moving pixels where we want them, which is very powerful.

Looping across the pixels with range

Unlike sounds and samples, we can’t use just a single for loop if we want
to address every pixel. We have to use two of for loops—one to move
horizontally across the pixels, and the other to move vertically to get every
pixel. The function getPixels did this inside itself, to make it easier to write
simple picture manipulations. But if you want to access each individual
pixel, you’ll need to use two loops, one for each dimension of the picture.
The inner loop will be nested inside the outer loop, literally, inside its block.
At this point, you’re going to have to be careful in how you space your code
to make sure that your blocks line up right.

Your loops will look something like this:

for x in range(1,getWidth(picture)):
for y in range(1,getHeight(picture)):
pixel=getPixel(picture,x,y)

For example, here’s Recipe 29 (page 130), but using explicit pixel refer-
ences.

Recipe 34: Lighten the picture using nested loops

5.2. MANIPULATING PICTURES 135

def lighten(picture):
for x in range(1,getWidth(picture)):
for y in range(1,getHeight(picture)):
px = getPixel(picture,x,y)
color = getColor(px)
makeLighter(color)
setColor(px,color)

End of Recipe 34

Mirroring a picture

Let’s start out with an interesting effect that isn’t particularly useful, but it
is fun. Let’s mirror a picture along its vertical axis. In other words, imagine
that you have a mirror, and you place it on a picture so that the left side
of the picture shows up in the mirror. That’s the effect that we’re going to
implement. We’ll do it in a couple of different ways.

First, let’s think through what we’re going to do. We’ll pick a horizon-
tal mirrorpoint—halfway across the picture, getWidth(picture)/2. (We
want this to be an integer, a whole number, so we’ll apply int to it.) We’ll
have the x cooridinate move from 1 to the mirrorpoint. At each value
of x, we want to copy the color at the pixel x pixels to the left of the
mirrorpoint to the pixel x pixels to the right of the mirrorpoint. The left
would be mirrorpoint-x and the right would be mirrorpoint+x. Take a
look at Figure 5.15 to convince yourself that we’ll actually reach every pixel
using this scheme. Here’s the actual recipe.

a b c d e

mirrorpoint
mirrorpoint-1 mirrorpoint+1

Figure 5.15: Once we pick a mirrorpoint, we can just walk x halfway and
subtract/add to mirrorpoint

Recipe 35: Mirror pixels in a picture along a vertical line

136 CHAPTER 5. ENCODING AND MANIPULATING PICTURES

def mirrorVertical(source):
mirrorpoint = int(getWidth(source)/2)
for y in range(1,getHeight(source)):
for x in range(1,mirrorpoint):

p = getPixel(source, x+mirrorpoint,y)
p2 = getPixel(source, mirrorpoint-x,y)
setColor(p,makeColor(getRed(p2), getGreen(p2), getBlue(p2)))

End of Recipe 35

We’d use it like this, and the result appears in Figure 5.16.

>>> file="/Users/guzdial/mediasources/santa.jpg"
>>> print file
/Users/guzdial/mediasources/santa.jpg
>>> picture=makePicture(file)
>>> mirrorVertical(picture)
>>> show(picture)

Figure 5.16: Original picture (left) and mirrored along the vertical axis
(right)

We can do the same thing without the mirrorpoint by simply computing
it as we move along. Here’s the same recipe, shorter but more complex.

Recipe 36: Mirroring along the vertical axis, shorter

5.2. MANIPULATING PICTURES 137

def mirrorVertical(source):
for y in range(1, getHeight(source)):
for x in range((getWidth(source)/2)+1, getWidth(source)):
p = getPixel(source,x,y)
p2 = getPixel(source,((getWidth(source)/2)- (x-(getWidth(source)/2))),y)
setColor(p,makeColor(getRed(p2), getGreen(p2), getBlue(p2)))

End of Recipe 36

Scaling a picture

A very common thing to do with pictures is to scale them. Scaling up
means to make them larger, and scaling them down makes them smaller.
It’s common to scale a 1-megapixel or 3-megapixel picture down to a smaller
size to make it easier to place on the Web. Smaller pictures require less disk
space, and thus less network bandwidth, and thus are easier and faster to
download.

Scaling a picture requires the use of the sampling sub-recipe that we saw
earlier. But instead of taking double-samples (to halve the frequency) or
every-other-sample (to double the frequency), we’ll be taking double-pixels
(to double the size, that is, scale up) or every-other-pixel (to shrink the
picture, that is, scale down).

XXX NEED TO EXPLAIN THIS BETTER
Our target will be the paper-sized JPEG file in the mediasources direc-

tory, which is 7x9.5 inches, which will fit on a 9x11.5 inch lettersize piece of
paper with one inch margins.

>>> paperfile=getMediaPath("7inx95in.jpg")
>>> paperpicture=makePicture(paperfile)
>>> print getWidth(paperpicture)
504
>>> print getHeight(paperpicture)
684

Here’s how this recipe works:

• We take as input a picture and an increment—a number of pixels to
skip each time that we increment the source indices (x and y). If we
use an increment less than 1.0, then the target picture grows larger.
That’s because we’ll include the same pixel more than once. If we use
an increment greater than 1.0, the target picture will be smaller.

138 CHAPTER 5. ENCODING AND MANIPULATING PICTURES

• We set the sourceX index to start at one, and then start the targetX
for loop.

• Same for the Y.

• We then copy the pixel color from the source to the target.

• While inside the targetY loop, we increment sourceY, and if it goes
beyond the end of the picture, set it to the same amount as it went
beyond the picture to the beginng of the picture.

• Then while inside the targetX loop, we do the same to sourceX.

Recipe 37: Scaling a picture

def resize(source,increment):

newWidth = int(getWidth(source)* (1/increment))

newHeight = int(getWidth(source)* (1/increment))

target = makePicture(getMediaPath("7inx95in.jpg"))

sourceX = 1

for targetX in range(1,newWidth):

sourceY = 1

for targetY in range(1,newHeight):

targetPixel=getPixel(target, targetX, targetY)

sourcePixel=getPixel(source, int(sourceX), int(sourceY))

setColor(targetPixel,getColor(sourcePixel))

sourceY = sourceY + increment

if sourceY > getHeight(source):

sourceY = sourceY- getHeight(source)

sourceX = sourceX + increment

if sourceX > getWidth(source):

sourceX = sourceX- getWidth(source)

return target

5.2. MANIPULATING PICTURES 139

End of Recipe 37

Here’s a shorter version that does the same thing.

Recipe 38: Scaling, shorter

#Resizes a picture by a given positve real > 0

#such that 1 is the image unalterd, 2 is the image double in
size,

#0.5 is the image sized down in half

#so far only both the width and height can be altered at once(not
one seperate of the other)

#basic formula is old(x or y) / szMult = new(x or y)

#this code takes the new picture and for every pixel get a coresponding
pixel from the original

#szMult > 1 reuses pixels, while szMult < 1 skips pixels

#this is the simplest way to go about resizing an image, the
result will look blocky

#better algorithims involve linear interpolation and other such
ways to smoth the image and

#fill in the gaps, one thing that does help is to blur the enlarged
images to smooth them.

def resize(szMult):

pic = makePicture(pickAFile())

print(’old szw ’ , getWidth(pic) , ’ old szH ’ ,getHeight(pic))

szW = getWidth(pic) * szMult

szH = getHeight(pic) * szMult

szW = int(szW)

szH = int(szH)

print(’new szw ’ , szW , ’ new szH ’ , szH)

newPic = BlankPicture(szW,szH)

for x in range(0,getWidth(newPic)):

for y in range(0,getHeight(newPic)):

setColor(getPixel(newPic,x,y), getColor(getPixel(pic,
int(x/szMult), int(y/szMult))))

return newPic

140 CHAPTER 5. ENCODING AND MANIPULATING PICTURES

End of Recipe 38

Creating a collage

In the mediasources folder are a couple images of flowers (Figure 5.17),
each 100 pixels wide. Let’s make a collage of them, by combining several
of our effects to create different flowers. We’ll copy them all into the blank
image 640x480.jpg. All we really have to do is to copy the pixel colors to
the right places.

Figure 5.17: Flowers in the mediasources folder

Here’s how we run the collage(Figure 5.18):

>>> flowers=createCollage()
Picture, filename /Users/guzdial/mediasources/flower1.jpg height
138 width 100
Picture, filename /Users/guzdial/mediasources/flower2.jpg height
227 width 100
Picture, filename /Users/guzdial/mediasources/640x480.jpg height
480 width 640

5.2. MANIPULATING PICTURES 141

Figure 5.18: Collage of flowers

Recipe 39: Creating a collage

def createCollage():
flower1=makePicture(getMediaPath("flower1.jpg"))
print flower1
flower2=makePicture(getMediaPath("flower2.jpg"))
print flower2
canvas=makePicture(getMediaPath("640x480.jpg"))
print canvas
#First picture, at left edge
targetX=1
for sourceX in range(1,getWidth(flower1)):
targetY=getHeight(canvas)-getHeight(flower1)-5
for sourceY in range(1,getHeight(flower1)):
px=getPixel(flower1,sourceX,sourceY)
cx=getPixel(canvas,targetX,targetY)

142 CHAPTER 5. ENCODING AND MANIPULATING PICTURES

setColor(cx,getColor(px))
targetY=targetY + 1

targetX=targetX + 1
#Second picture, 100 pixels over
targetX=100
for sourceX in range(1,getWidth(flower2)):
targetY=getHeight(canvas)-getHeight(flower2)-5
for sourceY in range(1,getHeight(flower2)):

px=getPixel(flower2,sourceX,sourceY)
cx=getPixel(canvas,targetX,targetY)
setColor(cx,getColor(px))
targetY=targetY + 1

targetX=targetX + 1
#Third picture, flower1 negated
negative(flower1)
targetX=200
for sourceX in range(1,getWidth(flower1)):
targetY=getHeight(canvas)-getHeight(flower1)-5
for sourceY in range(1,getHeight(flower1)):

px=getPixel(flower1,sourceX,sourceY)
cx=getPixel(canvas,targetX,targetY)
setColor(cx,getColor(px))
targetY=targetY + 1

targetX=targetX + 1
#Fourth picture, flower2 with no blue
clearBlue(flower2)
targetX=300
for sourceX in range(1,getWidth(flower2)):
targetY=getHeight(canvas)-getHeight(flower2)-5
for sourceY in range(1,getHeight(flower2)):

px=getPixel(flower2,sourceX,sourceY)
cx=getPixel(canvas,targetX,targetY)
setColor(cx,getColor(px))
targetY=targetY + 1

targetX=targetX + 1
#Fifth picture, flower1, negated with decreased red
decreaseRed(flower1)
targetX=400
for sourceX in range(1,getWidth(flower1)):
targetY=getHeight(canvas)-getHeight(flower1)-5

5.2. MANIPULATING PICTURES 143

for sourceY in range(1,getHeight(flower1)):
px=getPixel(flower1,sourceX,sourceY)
cx=getPixel(canvas,targetX,targetY)
setColor(cx,getColor(px))
targetY=targetY + 1

targetX=targetX + 1
show(canvas)
return(canvas)

End of Recipe 39

As long as this is, it would be even longer if we actually put all the
effects in the same function. Instead, I copied the functions we did earlier.
My whole program area looks like this:

def createCollage():
flower1=makePicture(getMediaPath("flower1.jpg"))
print flower1
flower2=makePicture(getMediaPath("flower2.jpg"))
print flower2
canvas=makePicture(getMediaPath("640x480.jpg"))
print canvas
#First picture, at left edge
targetX=1
for sourceX in range(1,getWidth(flower1)):
targetY=getHeight(canvas)-getHeight(flower1)-5
for sourceY in range(1,getHeight(flower1)):
px=getPixel(flower1,sourceX,sourceY)
cx=getPixel(canvas,targetX,targetY)
setColor(cx,getColor(px))
targetY=targetY + 1

targetX=targetX + 1
#Second picture, 100 pixels over
targetX=100
for sourceX in range(1,getWidth(flower2)):
targetY=getHeight(canvas)-getHeight(flower2)-5
for sourceY in range(1,getHeight(flower2)):
px=getPixel(flower2,sourceX,sourceY)
cx=getPixel(canvas,targetX,targetY)
setColor(cx,getColor(px))

144 CHAPTER 5. ENCODING AND MANIPULATING PICTURES

targetY=targetY + 1
targetX=targetX + 1

#Third picture, flower1 negated
negative(flower1)
targetX=200
for sourceX in range(1,getWidth(flower1)):
targetY=getHeight(canvas)-getHeight(flower1)-5
for sourceY in range(1,getHeight(flower1)):

px=getPixel(flower1,sourceX,sourceY)
cx=getPixel(canvas,targetX,targetY)
setColor(cx,getColor(px))
targetY=targetY + 1

targetX=targetX + 1
#Fourth picture, flower2 with no blue
clearBlue(flower2)
targetX=300
for sourceX in range(1,getWidth(flower2)):
targetY=getHeight(canvas)-getHeight(flower2)-5
for sourceY in range(1,getHeight(flower2)):

px=getPixel(flower2,sourceX,sourceY)
cx=getPixel(canvas,targetX,targetY)
setColor(cx,getColor(px))
targetY=targetY + 1

targetX=targetX + 1
#Fifth picture, flower1, negated with decreased red
decreaseRed(flower1)
targetX=400
for sourceX in range(1,getWidth(flower1)):
targetY=getHeight(canvas)-getHeight(flower1)-5
for sourceY in range(1,getHeight(flower1)):

px=getPixel(flower1,sourceX,sourceY)
cx=getPixel(canvas,targetX,targetY)
setColor(cx,getColor(px))
targetY=targetY + 1

targetX=targetX + 1
show(canvas)
return(canvas)

def clearBlue(picture):
for p in getPixels(picture):

5.2. MANIPULATING PICTURES 145

setBlue(p,0)

def negative(picture):
for px in getPixels(picture):
red=getRed(px)
green=getGreen(px)
blue=getBlue(px)
negColor=makeColor(255-red, 255-green, 255-blue)
setColor(px,negColor)

def decreaseRed(picture):
for p in getPixels(picture):
value=getRed(p)
setRed(p,value*0.5)

5.2.4 Replacing Colors

Replacing colors with another color is pretty easy. We can do it broadly, or
just within a range.

Here’s a recipe that tries to replace the brown color in Barbara’s hair
with red. I used the MediaTools pixel tools to figure out roughly what the
RGB values were for Barb’s brown hair, then wrote a program to look for
colors close to that, and increase the redness of those pixels. I played a
lot with the value that I used for distance (here, 50.0) and the amount of
redness increase (here, 50% increase). The result is that the wood behind
her gets increased, too (Figure 5.19 and Figure 5.34).

Recipe 40: Color replacement: Turn Barbara into a redhead

def turnRed():
brown = makeColor(57,16,8)
file="/Users/guzdial/mediasources/barbara.jpg"
picture=makePicture(file)
for px in getPixels(picture):
color = getColor(px)
if distance(color,brown)<50.0:
redness=int(getRed(px)*1.5)
blueness=getBlue(px)
greenness=getGreen(px)

146 CHAPTER 5. ENCODING AND MANIPULATING PICTURES

setColor(px,makeColor(redness,blueness,greenness))
show(picture)
return(picture)

End of Recipe 40

Figure 5.19: Increasing reds in the browns

With the MediaTools, we can also figure out the coordinates just around
Barb’s face, and then just do the browns near her face. The effect isn’t too
good, though it’s clear that it worked. The line of redness is too sharp and
rectangular (Figure 5.20 and Figure 5.35).

Recipe 41: Color replacement in a range

5.2. MANIPULATING PICTURES 147

def turnRedInRange():
brown = makeColor(57,16,8)
file="/Users/guzdial/mediasources/barbara.jpg"
picture=makePicture(file)
for x in range(70,168):
for y in range(56,190):
px=getPixel(picture,x,y)
color = getColor(px)
if distance(color,brown)<50.0:

redness=int(getRed(px)*1.5)
blueness=getBlue(px)
greenness=getGreen(px)
setColor(px,makeColor(redness,blueness,greenness))

show(picture)
return(picture)

End of Recipe 41

Background subtraction

Let’s imagine that you have a picture of someone, and a picture of where they
stood without them there (Figure 5.21). Could you subtract the background
of the person (i.e., figure out where the colors are exactly the same), and
then replace another background? Say, of the moon (Figure 5.22)?

Recipe 42: Subtract the background and replace it with a new one

#Picture with person, background, and newbackground
def swapbg(pic1, bg, newbg):

for x in range(1,getWidth(pic1)):
for y in range(1,getHeight(pic1)):
p1px = getPixel(pic1,x,y)
bgpx = getPixel(bg,x,y)
if (distance(getColor(p1px),getColor(bgpx)) < 15.0):

setColor(p1px,getColor(getPixel(newbg,x,y)))
return pic1

148 CHAPTER 5. ENCODING AND MANIPULATING PICTURES

Figure 5.20: Increasing reds in the browns, within a certain range

End of Recipe 42

You can, but the effect isn’t as good as you’d like (Figure 5.23). My
daughter’s shirt color was too close to the color of the wall. And though the
light was dim, a shadow is definitely having an effect here.

Chromakey

The way that weatherpersons do it is to stand before a background of a
fixed color (usually blue or green), then subtract that color. This is called
chromakey . I took my son’s blue sheet, attached it to the entertainment
center, then took a picture of myself in front of it using a timer on a camera
(Figure 5.24).

5.2. MANIPULATING PICTURES 149

Figure 5.21: A picture of a child (Katie), and her background without her

Figure 5.22: A new background, the moon

Recipe 43: Chromakey: Replace all blue with the new background

def chromakey(source,bg):
source should have something in front of blue, bg is the

new background
for x in range(1,getWidth(source)):
for y in range(1,getHeight(source)):
p = getPixel(source,x,y)
My definition of blue: If the redness + greenness < blueness

150 CHAPTER 5. ENCODING AND MANIPULATING PICTURES

Figure 5.23: Katie on the moon

if (getRed(p) + getGreen(p) < getBlue(p)):

#Then, grab the color at the same spot from the new background

setColor(p,getColor(getPixel(bg,x,y)))

return source

End of Recipe 43

The effect is really quite striking (Figure 5.25). Do note the “folds” in
the lunar surface, though. The really cool thing is that this recipe works for
any background that’s the same size as the image (Figure 5.26).

There’s another way of writing this code, which is shorter but does the
same thing.

Recipe 44: Chromakey, shorter

def chromakey2(source,bg):

for p in pixels(source):

if (getRed(p)+getGreen(p) < getBlue(p)):

setColor(p,getColor(getPixel(bg,x(p),y(p))))

return source

5.2. MANIPULATING PICTURES 151

Figure 5.24: Mark in front of a blue sheet

End of Recipe 44

5.2.5 Combining pixels

Some of our best effects come from combining pixels—using pixels from
other sides of a target pixel to inform what we do.

Blurring

Recipe 45: Blurring a picture to get rid of rough edges

def blurExample(size):
pic = makePicture(pickAFile())
newPic = blur(pic,size)
show(newPic)
show(pic)

#!!
#To blur an image we take a pixel and set it’s color to the average
of all pixels around

152 CHAPTER 5. ENCODING AND MANIPULATING PICTURES

Figure 5.25: Mark on the moon

#it(of a certain distance) to the current pixels color. This
give the effect of

#blending things together such as in the case of a blur where
you lose detail.

#

#pic is the image, and size is how big an area to average, 1=3x3
pixel area with current pixel
#in the center, 2=5x5, 3=7x7...

#positive #s only , 0 will do nothing and return the original
image

def blur(pic,size):
new = getFolderPath("640x480.jpg")

for x in range(1,getWidth(pic)):

print ’On x> ’, x
for y in range(1,getHeight(pic)):

newClr = blurHelper(pic,size,x-size,y-size)
setColor(getPixel(new,x,y),newClr)

return new

#!!
#At a given x,y(integer that is in the image) in the picture,pic,
is sums up the area

#of pixels as indicated by size.

#

5.2. MANIPULATING PICTURES 153

Figure 5.26: Mark in the jungle

returns a Color representing the average of the surrounding
pixels

def blurHelper(pic,size,x,y):

red,green,blue = 0,0,0

cnt = 0

for x2 in range(0,(1+(size*2))):

if(x+x2 >= 0):

if(x+x2 < getWidth(pic)):

for y2 in range(0,(1+(size*2))):

if(y+y2 >= 0):

if(y+y2 < getHeight(pic)):

p = getPixel(pic,(x+x2),(y+y2))

blue = blue + getBlue(p)

red = red + getRed(p)

green = green + getGreen(p)

cnt = cnt + 1

return makeColor(red/cnt,green/cnt,blue/cnt)

End of Recipe 45

154 CHAPTER 5. ENCODING AND MANIPULATING PICTURES

Functions and Objects Summary

In this chapter, we talk about several kinds of encodings of data (or objects).

Pictures Pictures are encodings of images, typically
coming from a JPEG file.

Pixels Pixels are a sequence of Pixel objects. They
flatten the two dimensional nature of the pix-
els in a picture and give you instead an array-
like sequence of pixels. pixels[1] returns the
leftmost pixel in a picture.

Pixel A pixel is a dot in the Picture. It has a color
and an (x, y) position associated with it. It
remembers its own Picture so that a change
to the pixel changes the real dot in the picture.

Color It’s a mixture of red, green, and blue values,
each between 0 and 255.

Here are the functions used or introduced in this chapter:

5.2. MANIPULATING PICTURES 155

pickAFile Lets the user pick a file and returns the com-
plete path name as a string. No input

makePicture Takes a filename as input, reads the file, and
creates a picture from it. Returns the picture.

show Shows a picture provided as input. No return
value.

getPixels Takes a picture as input and returns the se-
quence of Pixel objects in the picture.

getPixel Takes a picture, an x position and a y position
(two numbers), and returns the Pixel object
at that point in the picture.

getWidth Takes a picture as input and returns its width
in the number of pixels across the picture.

getHeight Takes a picture as input and returns its length
in the number of pixels top-to-bottom in the
picture.

writePictureTo Takes a picture and a file name (string) as
input, then writes the picture to the file as
a JPEG. (Be sure to end the filename in
“.jpg” for the operating system to understand
it well.)

addText Takes a picture, an x position and a y posi-
tion (two numbers), and some text as a string,
which will get drawn into the picture.

addLine Takes a picture, a starting (x, y) position (two
numbers), and an ending (x, y) position (two
more numbers, four total) and draws a black
line from the starting point to the ending
point in the picture.

addRect Takes a picture, a starting (x, y) position (two
numbers), and a width and height (two more
numbers, four total) then draws a black rect-
angle in outline of the given width and height
with the position (x, y) as the upper left cor-
ner.

addRectFilled Exactly like addRect, but fills the rectangle
with black.

156 CHAPTER 5. ENCODING AND MANIPULATING PICTURES

getRed, getGreen, getBlue Each of these functions takes a Pixel object
and returns the value (between 0 and 255) of
the amount of redness, greenness, and blue-
ness (respectively) in that pixel.

setRed, setGreen, setBlue Each of these functions takes a Pixel object
and a value (between 0 and 244) and sets the
redness, greenness, or blueness (respectively)
of that pixel to the given value.

getColor Takes a Pixel and returns the Color object at
that pixel.

setColor Takes a Pixel object and a Color object and
sets the color for that pixel.

getX, getY Takes a Pixel object and returns the x or y
(respectively) position of where that Pixel is
at in the picture.

makeColor Takes three inputs: For the red, green, and
blue components (in order), then returns a
color object.

pickAColor Takes no input, but puts up a color picker.
Find the color you want, and the function will
return the Color object of what you picked.

distance Takes two Color objects and returns a single
number representing the distance between the
colors. The red, green, and blue values of the
colors are taken as a point in (x, y, z) space,
and the cartesian distance is computed.

makeDarker, makeLighter Each take a color and return a slightly darker
or lighter (respectively) version of the color.

There are a bunch of constants that are useful in this chapter. These are
variables with pre-defined values. These values are colors: black, white,
blue, red, green, gray, darkGray, lightGray, yellow, orange, pink,
magenta, cyan.

Exercises

Exercise 36: Recipe 26 (page 127) is obviously too much color reduction.
Write a version that only reduces the red by 10%, then one by 20%. Which
seems to be more useful? Note that you can always repeatedly reduce the

5.2. MANIPULATING PICTURES 157

redness in a picture, but you don’t want to have to do it too many times,
either.
Exercise 37: Write the blue and green versions of Recipe 26 (page 127).
Exercise 38: Each of the below is equivalent to Recipe 27 (page 127).
Test them and convince them. Which do you prefer and why?

def increaseRed2(picture):

for p in getPixels(picture):
setRed(p,getRed(p)*1.2)

def increaseRed3(picture):
for p in getPixels(picture):

redComponent = getRed(p)

greenComponent = getGreen(p)

blueComponent = getBlue(p)

newRed=int(redComponent*1.2)

newColor = makeColor(newRed,greenComponent,blueComponent)

setColor(p,newColor)

Exercise 39: If you keep increasing the red, eventually the red looks like
it disappears, and you eventually get errors about illegal arguments. What
you do think is going on?
Exercise 40: Rewrite Recipe 28 (page 128) to clear blue, but for red and
green. For each of these, which would be the most useful in actual practice?
How about combinations of these?
Exercise 41: Rewrite Recipe 28 (page 128) to maximize blue (i.e., setting
it to 255) instead of clearing it. Is this useful? Would the red or green
versions be useful?
Exercise 42: There is more than one way to compute the right greyscale
value for a color value. The simple recipe that we use in Recipe 32 (page 133)
may not be what your greyscale printer uses when printing a color picture.
Compare the color (relatively unconverted by the printer) greyscale image
using our simple algorithm in Figure 5.33 with the original color picture
that the printer has converted to greyscale (left of Figure 5.9). How do the
two pictures differ?
Exercise 43: Are Recipe 35 (page 135) and Recipe 36 (page 136) really
the same? Look at them carefully and consider the end conditions: The
points when x is at the beginning and end of its range, for example. It’s
easy in loops to be “off-by-one.”

158 CHAPTER 5. ENCODING AND MANIPULATING PICTURES

Exercise 44: Can you rewrite the vertical mirroring function (Recipe 35
(page 135)) to do horizontal mirroring? How about mirroring along the
diagonal (from (1, 1) to (width, height)?
Exercise 45: Think about how the greyscale algorithm works. Basically,
if you know the luminance of anything visual (e.g., a small image, a letter),
you can replace a pixel with that visual element in a similar way to create
a collage image. Try implementing that. You’ll need 256 visual elements of
increasing lightness, all of the same size. You’ll create a collage by replacing
each pixel in the original image with one of these visual elements.

To Dig Deeper

The bible of computer graphics is Introduction to Computer Graphics [Foley et al., 1993].
It’s highly recommended.

5.3. COLOR FIGURES 159

5.3 Color Figures

Figure 5.27: Color: RGB triplets in a matrix representation

160 CHAPTER 5. ENCODING AND MANIPULATING PICTURES

Figure 5.28: Color: The original picture (left) and red-reduced version
(right)

Figure 5.29: Color: Overly blue (left) and red increased by 20% (right)

5.3. COLOR FIGURES 161

Figure 5.30: Color: Original (left) and blue erased (right)

Figure 5.31: Color: Lightening and darkening of original picture

162 CHAPTER 5. ENCODING AND MANIPULATING PICTURES

Figure 5.32: Color: Negative of the image

Figure 5.33: Color: Color picture converted to greyscale

5.3. COLOR FIGURES 163

Figure 5.34: Color: Increasing reds in the browns

164 CHAPTER 5. ENCODING AND MANIPULATING PICTURES

Figure 5.35: Color: Increasing reds in the browns, within a certain range

Chapter 6

Creating Pictures

Sometimes you want to create your own images, or add things to images
other than other images. That’s what this chapter is about.

6.1 Drawing on images with pixels

One way of drawing on images is to simply set the pixels appropriately.
Here’s an example that creates a graph over the top of Santa (Figure 6.1).

Recipe 46: Draw lines by setting pixels

def lineExample():
img = makePicture(pickAFile())
new = verticalLines(img)
new2 = horizontalLines(img)
show(new2)
return new2

def horizontalLines(src):
for x in range(1,getHeight(src),5):
for y in range(1,getWidth(src)):
setColor(getPixel(src,y,x),black)

return src

def verticalLines(src):
for x in range(1,getWidth(src),5):

165

166 CHAPTER 6. CREATING PICTURES

Figure 6.1: A very small, drawn picture

for y in range(1,getHeight(src)):
setColor(getPixel(src,x,y),black)

return src

End of Recipe 46

6.2 Drawing with drawing commands

Recipe 47: An example of using drawing commands

def littlepicture():
canvas=makePicture(getMediaPath("640x480.jpg"))
addText(canvas,10,50,"This is not a picture")
addLine(canvas,10,20,300,50)
addRectFilled(canvas,0,200,300,500,yellow)
addRect(canvas,10,210,290,490)
return canvas

End of Recipe 47

6.2. DRAWING WITH DRAWING COMMANDS 167

Figure 6.2: A very small, drawn picture

The recipe above draws the picture in Figure 6.2. These are examples
of the drawing commands available in JES.

Here’s a thought: Which of these is smaller? The picture, on my disk, is
about 15 kilobytes (a kilobyte is a thousand bytes). The recipe is less than
100 bytes. But they are equivalent. What if you just saved the program and
not the pixels? That’s what a vector representation for graphics is about.

168 CHAPTER 6. CREATING PICTURES

Part IV

Meta-Issues: How we do
what we do

169

Chapter 7

Design and Debugging

How do we do this? How do we make programs, and then make them
actually run? This chapter is about some techniques for this.

7.1 Designing programs

7.1.1 Top-down

• Start out with the program statement. If you don’t have one, write
one. What are you trying to do?

• Start breaking it down. Are there parts to the program? Do you know
that you have to open some pictures or set some constant values? And
then are there some loops? How many do you need?

• Keep breaking it down until you get to statements or commands or
functions that you know. Write those down.

7.1.2 Bottom-up

• What do you know how to do of your program? Does it say that you
have to manipulate sound? Try a couple of the sound recipes in the
book to remember how to do that. Does it say that you have to change
red levels? Can you find a recipe that does that and try it?

• Now, can you add some of these together? Can you put together a
couple of recipes that do part of what you want?

• Keep growing the program. Is it closer to what you need? What else
do you need to add?

171

172 CHAPTER 7. DESIGN AND DEBUGGING

• Run your program often. Make sure it works, and that you understand
what you have so far.

• Repeat until you’re satisfied with the result.

7.2 Techniques of Debugging

How do you figure out what your program is doing, if it runs, but isn’t doing
what you want?

Tracing Code

Sit down with pencil and paper and figure out the variable values and what’s
happening.

Print statements really are very useful to help one in tracing code.

Seeing the Variables

The showVars function will show you all the variables at that point in the
program.

Exercises

To Dig Deeper

7.2. TECHNIQUES OF DEBUGGING 173

Figure 7.1: Seeing the variables using showVars()

174 CHAPTER 7. DESIGN AND DEBUGGING

Part V

Files

175

Chapter 8

Encoding, Creating, and
Manipulating Files

This chapter will eventually talk about directories and manipulating direc-
tories, and how to read and write files.

8.1 How to walk through a directory

To manipulate a directory of files, you have to import a module that contains
additional functionality. To manipulate the functions in the module, you’ll
have to use dot notation.

>>> print file

/Users/guzdial/Work/mediasources/dark-bladerunner/dark-bladerunner
001.jpg

>>> import os

>>> for file in os.listdir("/Users/guzdial/Work/mediasources/dark-bladerunner"):

... print file

...

dark-bladerunner 001.jpg

dark-bladerunner 002.jpg

dark-bladerunner 003.jpg

...

177

178CHAPTER 8. ENCODING, CREATING, AND MANIPULATING FILES

8.2 Copying files

Recipe 48: Simplest file copy

def copyFile(path1,path2):

inFile = open(path1,’r’)
outFile = open(path2,’w’)

temp = inFile.read()
outFile.write(temp)

outFile.close()
return

End of Recipe 48

What if we can’t fit the whole file into memory? But what if we run out
of memory?

Recipe 49: Memory-protecting file copy

def copyFile(path1,path2):

inFile = open(path1,’r’)
outFile = open(path2,’w’)

more = 1 # set so we can perform the first
read
while (more > 0):

Alternative (less readable but cooler): while
(more):

temp = inFile.read(4096) # reads 4096 bytes or whatever
is left at end

8.2. COPYING FILES 179

more = len(temp) # when no more data more is set
to 0

outFile.write(temp)

outFile.close()
return

End of Recipe 49

temp in these examples is a string. If we want to copy binary files, we
use this form.

Recipe 50: Memory-protecting binary file copy

def copyFile(path1,path2):

inFile = open(path1,’rb’)
outFile = open(path2,’wb’)

more = 1 # set so we can perform the first
read

while (more > 0):
Alternative (less readable but cooler): while

(more):

temp = inFile.read(4096) # reads 4096 bytes or whatever
is left at end

more = len(temp) # when no more data more is set
to 0

outFile.write(temp)

outFile.close()
return

End of Recipe 50

180CHAPTER 8. ENCODING, CREATING, AND MANIPULATING FILES

Part VI

Text

181

Chapter 9

Encoding and Manipulation
of Text

Manipulating text is what this chapter is about. It’s very important for
us because a very common form of text for us today is HyperText Markup
Language (HTML).

9.1 A recipe to generate HTML

Be sure to do setMediaFolder() before running this!

Recipe 51: A recipe to generate HTML

def html():

To use this routine the Media folder must be used for your
output and picture files

myHTML = getMediaPath("myHTML.html")
pictureFile = getMediaPath("barbara.jpg")
eol=chr(11) #End-of-line character
The following line builds a literal string that includes

both single and double quotes
buildSpecial = "<IMG SRC="̈+ pictureFile + ’" ALT= "I am one

heck of a programmer!">’+eol

183

184 CHAPTER 9. ENCODING AND MANIPULATION OF TEXT

outFile = open(myHTML,’w’)

outFile.write(’<HTML>’+eol)
outFile.write(’<HEAD>’+eol)
outFile.write(’<TITLE>Homepage of Georgia P. Burdell</TITLE>’+eol)
outFile.write(’<LINK REL=STYLESHEET TYPE="text/css" HREF="style.css">’)
outFile.write(’</HEAD>’+eol)
outFile.write(’<BODY>’+eol)
outFile.write(’<CENTER><H2>Welcome to the home page of Georgia

P. Burdell!</H2></CENTER>’+eol)
outFile.write(’
’+eol)
outFile.write(’<P> Hello, and welcome to my home page! As

you should have already’+eol)
outFile.write(’ guessed, my name is Georgia, and I am a ’+eol)
outFile.write(’Computer Science major at <A HREF=http://www.gatec
outFile.write(’Georgia Tech ’+eol)
outFile.write(’
’+eol)
outFile.write(’Here is a picture of me in case you were wondering

what I looked like.’+eol)
outFile.write(’</P>’+eol)
outFile.write(buildSpecial) #

Write the special line we built up near the top
outFile.write(’<P><H4> Well, welcome to my web page. The

majority of it is still under construction, so I dont́ have a
lot to show you right now. ’+eol)

outFile.write(’I am in my 75th year at Georgia Tech but am
taking CS 1315 so I dont́ have a lot of spare time to update the
page.’+eol)

outFile.write(’I promise to start real soon!’+eol)
outFile.write(’--Georgia P. Burdell</P></H4>’+eol)
outFile.write(’<HR>’+eol)
outFile.write(’<PIf you want to send me e-mail, click <>name@ece.gatech.edu’+eol)
outFile.write(’<HR></P>’+eol)
outFile.write(’<CENTER>’+eol)
outFile.write(’<IMG SRC="http://www.cc.gatech.edu/newhome_images/CoC_logo

ALT= "To my school"></CENTER>’+eol)
outFile.write(’’+eol)
outFile.write(’</BODY>’+eol)

9.2. CONVERTING FROM SOUND TO TEXT TO GRAPHICS 185

outFile.write(’</HTML>’+eol)

outFile.close()

End of Recipe 51

9.2 Converting from sound to text to graphics

The creation of a signal visualization of a sound is something that Excel can
do, too.

Recipe 52: Convert a sound into a text file that Excel can read

def writeSampleValue():
f = pickAFile() # File where the original sound resides
source = makeSound(f)
eol = chr(11)

getPath = f.split(’.’) # find the ’.’ in the
full file name

suffix = ’.txt’
myFile = getPath[0] + suffix # get the part leading

up to the ’.’ and make it a ".txt" file
outFile = open(myFile,’w’)

endCurrentSound = getLength(source)

for pos in range (1, endCurrentSound+1):
sampVal = getSampleValueAt(source,pos)
stringVal = ’ outFile.write(stringVal + eol)
#outFile.write(eol)

outFile.close()

End of Recipe 52

186 CHAPTER 9. ENCODING AND MANIPULATION OF TEXT

Part VII

Movies

187

Chapter 10

Encoding, Manipulation and
Creating Movies

Movies (video) are actually very simple to manipulate. They are arrays
of pictures (frames). You need to be concerned with the frame rate (the
number of frames per second), but it’s mostly just things you’ve seen before.

It just takes a long time to process. . .

10.1 Manipulating movies

To manipulate movies, we have to break it into frames. The MediaTools can
do that for you (Figure 10.1). The Menu button lets you save any MPEG
movie as a series of JPEG frame pictures.

I’ve already broken up a section of the start of the movie Bladerunner

Figure 10.1: Movie tools in MediaTools

189

190CHAPTER 10. ENCODING, MANIPULATION AND CREATING MOVIES

Figure 10.2: Dark starting frame number 9

Figure 10.3: Somewhat lighter starting frame number 9

into a folder in the mediasources directory. You’ll find that these are very
dark frames (Figure 10.2). Can we lighten them (Figure 10.3)? Well, maybe
a little.	

�

�

Common Bug: If you see getMediaPath, then
setMediaFolder
Whenever you see getMediaPath in a recipe, you
know that you have to setMediaFolder before using
that recipe.

You’d run this like lightenMovie("/Users/guzdial/mediasources/dark-bladerunner/").
Be sure to include the final file directory delimeter!.

Recipe 53: Lightening frames of a movie

def lightenMovie(folder):
import os

for file in os.listdir(folder):
picture=makePicture(folder+file)

for px in getPixels(picture):
color=getColor(px)

makeLighter(color)

10.2. COMPOSITING TO CREATE NEW MOVIES 191

setColor(px,color)
writePictureTo(picture,folder+"l"+file)

End of Recipe 53

10.2 Compositing to create new movies

What if Santa were sneaking along just below the camera when Bladerunner
was shot? (Or maybe it’s a Tribble.)

Recipe 54: Compositing new images into movie frames

def santaMovie(folder):
santafile="/Users/guzdial/Work/mediasources/santa.jpg"
santa=makePicture(santafile)
startXPos = 10
startYPos = 100
import os
for file in os.listdir(folder):
frame=makePicture(folder+file)
xmax=min(startXPos+getWidth(santa),getWidth(frame))
ymax=min(startYPos+getHeight(santa),getHeight(frame))
santaX = 1
for x in range(startXPos,xmax):
santaY = 1
for y in range(startYPos,ymax):

px=getPixel(frame,x,y)
santaPixel=getPixel(santa,santaX,santaY)
setColor(px,getColor(santaPixel))
santaY = santaY + 1

santaX = santaX + 1
writePictureTo(frame,folder+"s"+file)
make Santa sink one line lower each frame
startXPos = startXPos + 1

End of Recipe 54

192CHAPTER 10. ENCODING, MANIPULATION AND CREATING MOVIES

10.3 Animation: Creating movies from scratch

An example: Needs to be cleaned up for use in general, platform-independent
way.

Recipe 55: Animation example

def AnimationSimple():
frames = 50
rx = 0
ry = 0
rw = 50
rh = 50
for f in range(1,frames+1):
pic = BlankPicture(500,500)
pic.addOvalFilled(Color(255,0,0),x,y,w,h)
if(f < 10):
pic.writeTo(’test0else:
pic.writeTo(’test0x = 5 + x
y = 5 + y

def AnimationSimple2():
frames = 100
w = 50
h = 50
#ball postions balls r,g,b,y x and y posistions
rx = 0
ry = 0
bx = 275
by = 225
gx = 275
gy = 275
yx = 225
yy = 275
for f in range(1,frames+1):
pic = BlankPicture(500,500)
if(f < 50):
rx += 5

10.3. ANIMATION: CREATING MOVIES FROM SCRATCH 193

ry += 5
else:
rx -= 2
ry -= 2
bx += 5
by -= 5
gx += 5
gy += 5
yx -= 5
yy += 5
pic.addOvalFilled(red,rx,ry,w,h)
pic.addOvalFilled(blue,bx,by,w,h)
pic.addOvalFilled(green,gx,gy,w,h)
pic.addOvalFilled(yellow,yx,yy,w,h)
if(f < 10):
pic.writeTo(’test00elif(f < 100):
pic.writeTo(’test0else:
pic.writeTo(’test

End of Recipe 55

Exercises

Exercise 46: How would we lighten the Bladerunner frame more?
Exercise 47: Under what conditions would it not be worth anything to
do so?
Exercise 48: Try applying a different manipulation, besides lightening,
to frames of a movie.

194CHAPTER 10. ENCODING, MANIPULATION AND CREATING MOVIES

Chapter 11

Storing Media

Database example will come here.

195

196 CHAPTER 11. STORING MEDIA

Part VIII

Isn’t there a better way?

197

Chapter 12

How fast can we get?

When are programs fast, and when are they slow? And why?

12.1 Complexity

Why are the movie programs so slow, while others are so fast?
Here’s a rough way of figuring it out: Count the loops.
Look at the normalization recipe (Recipe 11 (page 76)). Do you see two

loops? Each of which goes through n samples. We’d say that this order of
complexity of this recipe is O(2n). As you’ll see, the real speed differences
have little to do with the constants, so we’ll often call this O(n).

Now look at the picture processing code. You’ll often see two loops, one
working across m pixels and up and down n pixels. We’d call that O(mn).
If m and n are near one another, we’d say O(n2).

Now look at movie processing. l frames, each m by n. That’s O(lmn).
And if these are close to one another. O(n3).

12.2 Speed limits

Some things can’t be made faster.
Imagine trying to find an optimal arrangement of sounds in a compo-

sition/synthesis, or composition of images in a picture. You have to check
every combination. Let’s imagine that you could write a function that will
tell you how perfect a picture or sound is.

Let’s say that you have 60 sounds you want to arrange and any order is
possible, but you want to figure out the best one

199

200 CHAPTER 12. HOW FAST CAN WE GET?

Basically, if you have to try every combination of n things, there are 2n

combinations. (You can convince yourself of this pretty easily)
O(260) = 11, 52, 921, 504, 606, 846, 976
Imagine that you have a 1 Ghz computer (1 billion basic operations per

second) – a top of the line processor today
It’ll take you 1152921504.606847 seconds to optimize that data

• That’s 19,215,358.41011412 minutes

• That’s 800,639.933754755 days

• That’s 2,193 years

• With Moore’s law, in two years, you can do that in only 1,000 years!

• And 60 sounds is a SMALL amount – most songs have many more
notes than that

Can we do better? Maybe — can you be satisfied with less than perfect?
Can we be smarter than checking EVERY combination? That’s part of
heuristics, a part of what artificial intelligence researchers do.

12.3 Native code versus interpreted code

Why is Photoshop faster than what we’re doing? Because Photoshop is
written in native code.

There is a programming language that computers understand at the
level of their wires. It’s called native code or machine language. It’s always
faster than having the computer interpret a language it doesn’t understand
natively. Python is an interpreted language.

In this section of the book, we talk about the components of a computer,
and why some things are faster than others.

Part IX

Can’t we do this any easier?

201

Chapter 13

Functional Decomposition

13.1 Using map

map applies a function to a sequence of data.
Imagine that we have a function increaseOneSample that increases the

amplitude of a single sample.

def increaseOneSample(sample):
setSample(sample,getSample(sample)*2)

We can use that function and apply it to the whole sequence of samples
like this:

>>> file="/Users/guzdial/mediasources/hello.wav"
>>> sound=makeSound(file)
>>> result=map(increaseOneSample,getSamples(sound))
>>> play(sound)

But it turns out that we don’t even have to create that extra function.
lambda allows us to create a function without even naming it!

>>> file="/Users/guzdial/mediasources/hello.wav"
>>> sound=makeSound(file)
>>> result=map(lambda s:setSample(s,getSample(s)*2),getSamples(sound))
>>> play(sound)

203

204 CHAPTER 13. FUNCTIONAL DECOMPOSITION

Chapter 14

Recursion: It’s functions all
the way down

This chapter will be based on Brian Harvey’s coverage of recursion in Com-
puter Science Logo Style.

205

206 CHAPTER 14. RECURSION

Chapter 15

Objects: Lifting the lid on
our media

Remember the modules that we saw? Those are akin to objects. We’ll use
dot notation.

sound.writeTo and picture.writeTo are easier than remembering writeSoundTo
and writePictureTo. It’s always writeTo.

Both colors and pixels understand getRed. Makes it easier to work with.

207

208 CHAPTER 15. OBJECTS

Part X

Other Languages

209

Chapter 16

Java: Reaching below the
encodings

Java is a popular programming language today. It’s interesting to contrast
with Jython because it allows us to look “under the covers” and see how
our programs would look if they were written to address memory locations
more directly.

16.1 Java example

Here’s the normalize recipe (Recipe 11 (page 76)) rewritten in Java. Ignore
the syntactic differences. Can you see each of the loops in normalize? The
one to find the maximum value? And the other to multiply all the samples
by the maximizing multiplier?

Recipe 56: Java normalize

public class Normalize

JavaSound normal; // only one variable

public Normalize(String filename) // parms: string defining
the file path

normal = new JavaSound();

211

212 CHAPTER 16. JAVA

JavaSound s = new JavaSound();
s.loadFromFile(filename); // load the sound
normal.loadFromFile(filename); initialize normalized sound
int loudest = 0;
int asample ;
double multiplier, newValue;

for (int i=1; i < s.getLengthInFrames();i++) // find loudest
sample

asample = s.getSample(i);
if (asample > loudest)
loudest = asample;

multiplier = 32767.0 / loudest; // determine multiplier
System.out.println("Multiplier is " + multiplier);

if (multiplier == 1)
return;

for (int i=1; i < s.getLengthInFrames();i++) // build normalized
sound

newValue = multiplier * s.getSample(i); // multiply each sample
value
asample = (int) newValue; // change to integer
normal.setSample(i,asample); // load into normalized sound

s.blockingPlay(); // play original sound
normal.blockingPlay(); // play normalized sound

// main method to test our code
public static void main(String[] args)

Normalize norm = new Normalize("squareout.wav");

16.1. JAVA EXAMPLE 213

System.exit(0);

End of Recipe 56

214 CHAPTER 16. JAVA

Bibliography

[Abelson et al., 1996] Abelson, H., Sussman, G. J., and Sussman, J. (1996).
Structure and Intepretation of Computer Programs – 2nd Edition. MIT
Press, Cambridge, MA.

[Abernethy and Allen, 1998] Abernethy, K. and Allen, T. (1998). Exploring
the Digital Domain: An Introduction to Computing with Multimedia and
Networking. PWS Publishing, Boston.

[Adelson and Soloway, 1985] Adelson, B. and Soloway, E. (1985). The role
of domain experience in software design. IEEE Transactions on Software
Engineering, SE-11(11):1351–1360.

[Boulanger, 2000] Boulanger, R., editor (2000). The CSound Book: Perspec-
tives in Synthesis, Sound Design, Signal Processing, and Programming.
MIT Press, Cambridge, MA.

[Bruckman, 2000] Bruckman, A. (2000). Situated support for learning:
Storm’s weekend with rachael. Journal of the Learning Sciences, 9(3):329–
372.

[Bruer, 1993] Bruer, J. T. (1993). Schools for Thought: A Science of Learn-
ing in the Classroom. MIT Press, Cambridge, MA.

[Dodge and Jerse, 1997] Dodge, C. and Jerse, T. A. (1997). Computer
Music: Synthesis, Composition, and Performance. Schimer:Thomason
Learning Inc.

[Felleisen et al., 2001] Felleisen, M., Findler, R. B., Flatt, M., and Krish-
namurthi, S. (2001). How to Design Programs: An Introduction to Pro-
gramming and Computing. MIT Press, Cambridge, MA.

[Foley et al., 1993] Foley, J. D., Van Dam, A., and Feiner, S. K. (1993).
Introduction to Computer Graphics. Addison Wesley, Reading, MA.

215

216 BIBLIOGRAPHY

[Greenberger, 1962] Greenberger, M. (1962). Computers and the World of
the Future. Transcribed recordings of lectures held at the Sloan School of
Business Administration, April, 1961. MIT Press, Cambridge, MA.

[Guzdial, 2001] Guzdial, M. (2001). Squeak: Object-oriented design with
Multimedia Applications. Prentice-Hall, Englewood, NJ.

[Guzdial and Rose, 2001] Guzdial, M. and Rose, K., editors (2001). Squeak,
Open Personal Computing for Multimedia. Prentice-Hall, Englewood, NJ.

[Harel and Papert, 1990] Harel, I. and Papert, S. (1990). Software design
as a learning environment. Interactive Learning Environments, 1(1):1–32.

[Harvey, 1997] Harvey, B. (1997). Computer Science Logo Style 2/e Vol. 1:
Symbolic Computing. MIT Press, Cambridge, MA.

[Ingalls et al., 1997] Ingalls, D., Kaehler, T., Maloney, J., Wallace, S., and
Kay, A. (1997). Back to the future: The story of squeak, a practical
smalltalk written in itself. In OOPSLA’97 Conference Proceedings, pages
318–326. ACM, Atlanta, GA.

[Resnick, 1997] Resnick, M. (1997). Turtles, Termites, and Traffic Jams:
Explorations in Massively Parallel Microworlds. MIT Press, Cambridge,
MA.

[Roads, 1996] Roads, C. (1996). The Computer Music Tutorial. MIT Press,
Cambridge, MA.

Index

“A local or global name could not
be found.”, 27

“A syntax error is contained in the
code – I can’t read it as
Python.”, 27

abstraction, 37
ACM Turing Award, 16
algebra, 22
algorithm, 7, 75
algorithms, 8
alias, 68
American Standard Code for In-

formation Interchange (ASCII),
12

amplitude, 45, 46
analog-to-digital conversion (ADC),

53
analogue, 15
apply, 203
argument, 29, 37
array, 20, 56

copying, 82
element, 56
index, 57
notation, 78, 80

artificial intelligence, 8
ASCII, 12

getting the mapping, 26
assigning, 31
attack-sustain-decay (ASD) enve-

lope, 108

background subtraction, 147
base file name, 28
binary, 11
binary files, 179
bit, 11
bitmap, 115
block, 64, 91
blue, 14
body of function, 33
Brando, Marlon, 67
byte, 11, 20

C, 10
calculus, 16
capitalization, 27
chromakey, 148
clipped, 56
clipping, 56
CMYK color model, 117
collage, 140
color replacement, 145
command area, 23
commands, 32
comment, 84
common bug

An Example Common Bug, 2
Beware of adding amplitudes

past 32767, 104
Don’t try printing the pixels:

Way too big, 121
End with .jpg, 124

217

218 INDEX

If you see getMediaPath, then
setMediaFolder, 190

It’s not a file, it’s a string, 98
Keep sounds short, 66
Mistyping a name, 62
Patience: for loops always end,

127
Python’s types can produce odd

results, 25
Saving a file quickly—and los-

ing it, 63
Seeing changes in the picture,

122
Set the media folder first, 101
Windows and WAV files, 66

compressed, 21, 115
compressions, 45
computational recipe, 7
computer, 11
computer hardware, 52
computer music, 9
computer science idea

2n patterns in n bits, 56
An Example Idea, 2
Computer science is the study

of recipes, 7
Computers can layer encodings,

11
Moore’s Law, 13
Much of programming is about

naming, 19
Nyquist Theorem, 54

constants, 9, 156
coordinates, 115
CSound, 108
cycle, 46
cycles per second, 47

data, 20
data representation, 13

data structures, 8, 13
databases, 8
debugging, 74, 77
debugging tip

An Example Debugging Tip,
3

Common typos, 26
Don’t forget to Load, 33

decibels, 47
decimal number, 11
def, 32, 37
defining functions, 32
Digital, 14
Digital media, 15
digital-to-analog conversion (DAC),

53
digitization, 14
digitizing media

pictures, 116
sounds, 52
why?, 15

directory, 21, 28
disk, 21
distance, 123
dot notation, 177, 207
drawing commands, 167
Dynabook, 18

editor, 22
emergent properties, 9
empty string, 27
encoding, 11
end conditions, 157
envelopes, 108
equal temperament, 48
equals, 31
errors

“A local or global name could
not be found.”, 27

INDEX 219

“A syntax error is contained
in the code – I can’t read
it as Python.”, 27

evaluation, 31, 37
expression, 23

Fast Fourier Transform, 51
FFT, 51
file, 21
file extension, 28
file name, 27
float, 20
floating point

typing, 26
floating point number, 18
for loop, 64

body, 64
in command area, 65

Fourier transform, 51
frame rate, 189
frames, 189
frequency, 45, 47, 54
frequency domain, 51
function

arguments, 37
input values, 37
input variables, 37
parameters, 37
when to make one, 39

function body, 33
functions, 26

getColor, 121
getHeight, 120
getMediaPath, 97
getPixel, 120
getPixels, 120
getRed, 121
getSample, 61
getSamples, 61

getSampleValueAt, 61
getWidth, 120
getX, 121
getY, 121
going digital, 14
Google, 10
graphics, 9
green, 14
greyscale, 132
Guido, 22

hard disk, 21
hardware, 52
Hertz, 47
heuristics, 200
HSV color model, 117
HTML, 13
human-computer interface, 8
HyperText Markup Language (HTML),

183

if, 91, 105
import, 177
indentation, 33
Industrial Light & Magic, 10
Ingalls, Dan, 96
input, 26
input value, 37
input variable, 37
inputs, 32
int, 88
integer, 20

typing, 26
integer function, 88
Intel, 13
intelligence, 8
intelligent systems, 8
intensity, 47, 132
interface, 8
interpreted language, 200

220 INDEX

iterate, 63

Java
installing, 22

JES, 22
command area, 23
installing, 22
loading, 23
program area, 23
starting, 23

JPEG, 28
Jython, 10, 22

installing, 22
Jython Environment for Students,

22

Kaehler, Ted, 96
Kay, Alan, 96
kilobyte, 167
knots, 8

lambda, 203
liberal education, 16
Lisp, 10
loading, 23
loop, 63
lossy compression, 115
luminance, 133

machine language, 200
makeColor, 121
makeDarker, 123
makeLighter, 123
makePicture, 119
makePicture(), 29
makeSound(), 30
making it work

An Example How To Make It
Work, 3

Copying and pasting, 36
Explore sounds, 51

Name the names you like, 35
Try every recipe, 32
You can put more than one

function in the same file,
103

Maloney, John, 96
map, 203
matrix, 115
max, 75
maximum, finding, 75
media computation, 14
MediaTools, 49

sound tools, 49
memory, 11, 21
module, 177
modules, 207
Monty Python, 22
Moore, Gordon, 13
MPEG, 189

native code, 200
negative image, 130
nested, 134
nested block, 65
networking, 9
noise, 51
normalizing, 75
Nyquist theorem, 54

applications, 54

object, 61
objects, 61, 207
operating system, 21
ord(), 26
order of complexity, 199
ordinal, 26

parameter, 37
path, 28
path delimiter, 28
PCM, 56

INDEX 221

Perlis, Alan, 16
physics

color, 14
pickAColor, 123
pickAFile(), 27
picture

makePicture(), 29
show(), 29

picture element, 14
picture objects, 115
pitch, 47
pitch interval, 48
pixel, 14, 115, 116
pixelization, 116
pixels, 115
play(), 30
process, 16
program, 7, 19
program area, 23
programming language, 19
programming languages, 9
psychoacoustics, 47
pulse coded modulation (PCM), 56
Python, 10, 22

capitalization, 27
defining functions, 32

quote marks, 25

ranges, 9
rarefactions, 45
recipe, 7

A recipe to generate HTML,
183

Add two sounds together, 102
An example of using drawing

commands, 166
An Example Recipe, 2
Animation example, 192

Blurring a picture to get rid of
rough edges, 151

Chromakey, shorter, 150
Chromakey: Replace all blue

with the new background,
149

Clear the blue component from
a picture, 128

Color replacement in a range,
146

Color replacement: Turn Bar-
bara into a redhead, 145

Compositing new images into
movie frames, 191

Convert a sound into a text
file that Excel can read,
185

Convert to greyscale, 133
Convert to greyscale with more

careful control of luminance,
133

Create the negative of the orig-
inal picture, 131

Creating a collage, 141
Creating multiple echoes, 99
Darken the picture, 130
Decrease an input sound’s vol-

ume by halving the ampli-
tude, 74

Double the frequency of a sound,
87

Draw lines by setting pixels,
165

Generate a sine wave at a given
frequency and amplitude,
101

Generate triangle waves, 106
Half the frequency, 89
Increase an input sound’s vol-

ume by doubling the am-

222 INDEX

plitude, 68
Increase an input sound’s vol-

ume by doubling the am-
plitude, using range, 79

Increase the red component by
20%, 127

Increase the volume in the first
half of the sound, and de-
crease in the second half,
79

Java normalize, 211
Lighten the picture, 130
Lighten the picture using nested

loops, 134
Lightening frames of a movie,

190
Make a sound and a single echo

of it, 98
Memory-protecting binary file

copy, 179
Memory-protecting file copy, 178
Mirror pixels in a picture along

a vertical line, 135
Mirroring along the vertical axis,

shorter, 136
Normalize the sound to a max-

imum amplitude, 76
Pick and play a sound, 35
Pick and show a picture, 33
Play a specific sound, 36
Play the given sound backwards,

85
Play the sound file whose file

name is input, 38
Reduce the amount of red in

a picture by 50%, 127
Scaling a picture, 138
Scaling, shorter, 139
Shifting the frequency of a sound,

91

Shifting the frequency of a sound:
BROKEN, 90

Show a specific picture, 36
Show the picture file whose file

name is input, 38
Show the picture provided as

input, 38
Simplest file copy, 178
Splice the preamble to have united

people, 83
Square wave generator for given

frequency and amplitude,
105

Subtract the background and
replace it with a new one,
147

red, 14
repaint, 122
RGB model, 117
Roads, Curtis, 96, 108

sample, 14, 53
sample index, 89
sample objects, 60
sample sizes, 55
sampling, 89, 92
sampling interval, 91
sampling rate, 55, 62

in additive synthesis, 101
sampling sub-recipe, 137
sawtooth, 50
scope, 68, 85
sequence, 78
setColor, 121
setMediaFolder, 97
setRed, 121
setSample, 61
setSampleValueAt, 61
show, 119
show(), 29

INDEX 223

sign bit, 55
signal view, 50
sine wave, 46
Siren, 96
slice, 51
software engineering, 8, 16
sonogram view, 51
sound

amplitude, 45
decibels, 47
decreasing volume, 74
frequency, 45
how to manipulate, 60
increasing volume, 68
intensity, 47
makeSound(), 30
pitch, 47
play(), 30
splicing, 81
volume, 47, 68, 74

sound cursor, 58
sound editor, 49
sound object, 57
sound pressure level, 47
spectrum view, 50
spike, 51
splicing, 81
square brackets, 80
square waves, 105
Squeak, 96
string, 20
strings, 25
strongly typed, 20
sub-recipe, 75, 82

array copying, 82
sampling, 89

subscript, 80
subsitution, 31
substitution, 37
Sun, 22

symbols, 19
syntax, 32
synthesizers, 87
systems, 8

test, 91
testing, 71
testing methods, 71, 77
The Godfather, 67
theory, 8
time domain, 51
tracing, 74
transistor, 13
Tribble, 191
two’s complement notation, 55
type, 19
types

byte, 20
defined, 20
float, 20
integer, 20
integer array, 20
string, 20

Unicode, 17

van Rossum, Guido, 22
variables, 22, 31
vector, 115
vector representation, 167
volume, 46

Wallace, Scott, 96
WAV, 28
window (of time), 51
writePictureTo, 124

