
Design Process for a Non-majors Computing Course

Mark Guzdial
College of Computing/GVU

Georgia Institute of Technology
801 Atlantic Drive
Atlanta, Georgia

guzdial@cc.gatech.edu

Andrea Forte
College of Computing/GVU

Georgia Institute of Technology
801 Atlantic Drive
Atlanta, Georgia

aforte@cc.gatech.edu

ABSTRACT
There is growing interest in computing courses for non-CS
majors. We have recently built such a course that has met
with positive response. We describe our design process,
which includes involvement of stakeholders and identifying
a context that facilitates learning. We present evaluation
results on success rates (approximately 90% of the students
earn an A, B, or C) and impact of the course on students
over time (80% report that the class has influenced them
more than a semester later).

Categories and Subject Descriptors
K.4 [Computers and Education]: Computer and Infor-
mation Sciences Education

; H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems

General Terms
Experimentation,Design

Keywords
Multimedia, CS1, CS2, programming, non-majors

1. DESIGNING COMPUTER SCIENCE FOR
THE NON-MAJORS

There is growing interest in the creation of computer sci-
ence for non-CS majors. One reason for this increase is the
recognition that computing now influences every aspect of
our society, and it is a competitive advantage for students in
other majors to know more about computing. A reason for
the interest from CS departments is declining enrollment in
the CS major, which inspires CS faculty to look elsewhere
for customers [6].

At Georgia Institute of Technology (Georgia Tech), the
faculty require that every incoming student must take a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE2005 ’05 St. Louis, MO, USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

course in computing, including a requirement to learn and
use programming. When that decision was made, the only
class available was our majors-focused CS1 based on the
TeachScheme approach[7], which did not adequately meet
the needs of our liberal arts, architecture, and management
students. The course saw low success rates, and the stu-
dents and faculty were vocal in their dissatisfaction. We
saw this dissatisfaction as an opportunity to create a new
course and build toward Alan Perlis’ vision of programming
for all students—as a component of a general, liberal edu-
cation [8].

The course that we developed, Introduction to Media Com-
putation, is an introduction to computing contextualized
around the theme of manipulating and creating media. Stu-
dents really do program—creating Photoshop-like filters (such
as generating negative and greyscale images), reversing and
splicing sounds, gathering information (like temperature and
news headlines) from Web pages, and creating animations.
Details on the structure and content of the course are avail-
able elsewhere [20, 11].

The purpose of this paper is to use our course as an
instance, and abstract from it a design process for a non-
majors introductory computing course and a set of bench-
mark evaluation results. Our definition of success is:

• Non-CS majors students should have a higher suc-
cess rate than in a traditional introductory computing
course. If we are designing the course explicitly for
that audience, we should be able to satisfy their needs
and meet their interests better than we can in a course
designed for our own majors.

• The course should have impact beyond the single term.
If the course doesn’t influence how non-major students
think about computing, and they will only take a single
computing course (probably), then we will have lost
our opportunity to influence these students.

In this paper, we describe how we designed the Media
Computation course as an example process for designing
a non-majors computing course. A sketch of our process
follows, and is detailed in the second section of the paper.

• Setting objectives: We set objectives for the course
based on campus requirements for a computing course,
on ACM recommendations, and on the existing com-
puter science education research literature about what
students find difficult about computer science.

• Choosing a context : We selected a context that al-
lowed us to meet our curricular objectives and that we

believed would be motivating to non-major students.
Having an explicit context helped them understand
why they should care about computing, which is sig-
nificant issue in introductory computing [13].

• Set up feedback process: We sought feedback from fac-
ulty in the majors that we planned to serve, as well as
from students through multiple forums.

• Define infrastructure: An early challenge was to choose
the language and programming environment, which
are critical (and sometimes religious) issues. We found
that the process of choosing a language for a non-
majors course is as much about culture and politics
as it is about pedagogy.

• Define the course: Finally, we defined lectures, assign-
ments, and all the details of what makes up a course.
Here our decisions were informed by research in the
learning sciences [4].

2. DESIGN PROCESS
We detail below each stage of the development process for

the Media Computation class. We believe that a similar pro-
cess could be used to create other introductory computing
courses targeting non-CS majors.

2.1 Setting Objectives
The Georgia Tech computing course requirements states

that the introductory course curriculum has to focus on al-
gorithmic thinking and on making choices between different
data structures and encodings. There is an explicit require-
ment that students learn to program algorithms being stud-
ied. We also wanted to build upon the recommendations in
Computing Curricula 2001 [2] as a standard for what should
be in a computing introduction, with a “CS1”-level course
as our target.

We explicitly decided not to prepare these students to be
software developers, but instead, we focused on preparing
them to be tool modifiers. We do not envision these stu-
dents as professionals ever sitting down to program at a
blank screen. Instead, we imagine them modifying others’
programs, and combining existing programs to create new
functionality. Based on our discussions with faculty in these
majors, we realized that these students, as professionals, will
very rarely create a program exceeding 100 lines. The im-
plications of these assumptions and findings are that much
of the design content and code documentation procedures
that appear in many introductory computing curricula are
less relevant for these students than for majors.

We also explicitly chose to use this class to attract stu-
dents currently not being retained within computer science,
especially women. Since our audience was non-majors, they
clearly fit into the model of students not choosing computer
science as a major. We used the 2000 AAUW report [1] and
Unlocking the Clubhouse [13] as our main sources. We set
three objectives based on these studies: Making the content
relevant, creating opportunities for creativity, and making
the experience social

Relevance: A frequently cited complaint about introduc-
tory computing courses is that they are too abstract and not
anchored in a relevant context–students do not understand
how introductory course content is useful or relevant to their
goals or needs. We set an objective to make sure that all

the assignments and lectures were relevant to the students’
professional goals within that context.

One implication is that we decided to discuss issues of
functional decomposition, how computers work, and even
issues of algorithmic complexity and theoretical limits of
computation (e.g., Travelling Salesman and Halting prob-
lems), but at the end of the course. During the first ten
weeks of the course, the students write programs to manip-
ulate media (which they do see as relevant), and they begin
to have questions that relate to these more abstract topics.
“Why are my programs slower than Photoshop?” and “Isn’t
there a faster/better way to write programs like this?” do
arise from the students naturally. At the start of the course,
the abstract content is irrelevant (from the students’ per-
ception), but at the end of the course, it is quite relevant.

Opportunities for Creativity : Comments made by female
computer science graduates at a recent SIGCSE session on
women in computing suggested they were surprised to find
that computer science offered opportunities for creativity—
it wasn’t obvious in the first few courses, but was obvious
later [19]. Providing more opportunities for seeing comput-
ing as a creative activity in early classes may help improve
retention [1].

Making the Experience Social : We wanted students to
see computer science as a social activity, not as the asocial
lifestyle stereotypically associated with hackers—a stereo-
type which has negatively influenced retention [13].

2.2 Choosing a Context
Most introductory computing curricula aim to teach gen-

eralized content and problem-solving skills that can be used
in any programming application. Research in the learning
sciences suggests that, indeed, teaching programming tied to
a particular domain can lead to students understanding pro-
gramming only in terms of that domain. This is the problem
of transfer [4, 5]. That’s why it’s important to choose a do-
main that is relevant to the students. This is not a problem
only with students, though—most software experts only can
program well within domains with which they are familiar
[3]. However, there is strong evidence that without teach-
ing abstract concepts like programming within a concrete
domain, students may not learn it at all [12]. Contextu-
alization may offer an important key to improved learning.
By teaching for depth instead of breadth, we can teach more
transferable knowledge [4].

The argument has been made that teaching programming,
especially to non-majors, improves general problem-solving
skills. Empirical studies of this claim have shown that we
can’t reasonably expect an increase in general problem-solving
skills after just a single course (about all that we might ex-
pect non-majors to take), but transfer of specific problem-
solving skills can happen [17]. Therefore, teaching program-
ming in a context where students might actually use pro-
gramming is the best way of teaching students something
in a single course that they might use after the course has
ended.

Within this context, we were able to address our learn-
ing objectives. Issues of data structuring and encoding arise
naturally in media computation, e.g., sounds are typically
arrays of samples, while pictures are matrices of pixel ob-
jects, each pixel containing red, green, and blue values. We
were able to address the specifics of a CS1 course in the
details of the course construction.

Media computation is relevant for these students because,
for students not majoring in science or engineering, the
computer is used more for communication than calculation.
These students will spend their professional lives creating
and modifying media. Since all media are becoming digital,
and digital media are manipulated with software, program-
ming is a communications skill for these students. To learn
to program is to learn how the students’ tools work and even
(potentially) how to build their own tools. Our interviews
with students suggest that they accept this argument, and
that makes the class context relevant for them.

To create opportunities for creativity in assignments, we
wanted students to have choices in selecting media to use
in their homework whenever possible. For example, one as-
signment requires the creation of a collage where one image
appears multiple times, modified each time. Students get to
pick the required image, the modifications to use, and can
include as many other images as they would like.

The media computation context also provided something
to share which helped to encourage a social class setting.
We encouraged students to post their media creations in a
shared Web space, our CoWeb tool that we had used success-
fully in previous computer science courses [10]. Such sharing
transforms the programming activity. Instead of completing
the program for the TA to grade, students are completing
the program in order to generate the artifact that can be
shared with others. We use the same CoWeb every term
of the class1, so that the “Galleries” build up over time.
A healthy sense of competition develops–one student told
us that her collage “can’t be beat by the others” from past
terms.

We explicitly encouraged a social context in the tradi-
tional parts of the class, as well. We allowed for collabo-
ration on most assignments, only designating two as “take-
home exams” on which no collaboration was allowed. We
also used in-class quizzes and exams for assessment, but
encouraged collaborative studying including collaborative
exam review pages.

2.3 Set Up Feedback Process
We frequently involved students in our course design pro-

cess. When we first started planning this class, we created
on-line surveys and asked teachers of freshman campus-wide
classes (such as introductory English composition, Calcu-
lus, and Biology) to invite their students to visit the pages
and address the survey questions. Later, as our questions
became more specific, we had follow-up surveys just invit-
ing non-CS majors in our introductory computing courses.
These were important mechanisms for gathering impressions
and attitudes, and then for bouncing ideas off of students.
As the class was taking shape, we invited non-CS majors in
our introductory computing courses to attend pizza lunches
where we presented the class and got feedback on the course.
The lunch forums helped create an interest in the course,
and that spurred more discussion and feedback in the on-
line surveys.

We also set up an advisory board of eight faculty from
around campus who reviewed materials and give us advice
on what they wanted for their majors. The advisory board
was very helpful in several ways. In several cases, the advi-
sory board told us specific content issues that they wanted
to see in the course, e.g., one faculty advisor told us about

1http://coweb.cc.gatech.edu/cs1315

the kinds of graphing that she wanted to see, and another
from Architecture suggested a particular topic that is rel-
evant to architects (the difference between vector and bit-
mapped representations) that he hoped we could include.
The board was also helpful in creating local expertise in the
course when it came time for the various academic units to
vote whether or not to accept the new course for their ma-
jors. The advisory board members were advertised as the
local experts who knew the course better than just what was
in the course proposal, which helped to sell the course to the
rest of the faculty.

2.4 Define Infrastructure
Our first choice for programming language for the course

was Scheme, since it was what we were already using [7].
Scheme was resoundingly rejected by both students and non-
CS faculty. Students saw it as “more of the same”—just like
our existing introductory computing course. The faculty
rejected it for more surprising reasons: Because Scheme is
perceived as more serious CS. One English faculty member
said that she found Scheme unacceptable for her students
simply because it was the first language taught at MIT.

We explored several other languages after that, includ-
ing Java and Squeak [9], since the media manipulation was
simple and cross-platform in those languages. Java was un-
acceptable to the non-CS faculty because we used it in our
upper-level courses. That branded it as too complex for
non-majors. Squeak was simply unknown–it could not be
vetted in the same way that other languages could.

In the end, we settled on Python—in particular, the Jython
dialect, implemented in Java, in which we could access cross-
platform multimedia easily [18]. Python was acceptable for
two reasons:

• First, we could list a number of companies using Python
that non-CS faculty recognized, such as Industrial Light
& Magic and Google. Having such a list was quite im-
portant to them. Non-CS faculty want some measure
of quality of materials and content provided for their
students, but the non-CS faculty may not have much
background in computer science themselves. How can
they then vet a programming language for their stu-
dents? By looking at who else uses it, we discovered.

• Second, unlike a more obscure language like Squeak,
there are references to Python everywhere on the In-
ternet, always associated with terms that the faculty
members found consoling: Easy-to-use, Internet-ready,
and simple for beginners.

While the choice of language was limited by external fac-
tors, we were happy with the choice of Python because of
the opportunities it gave us to apply lessons from computer
science education research–in particular, for teaching itera-
tion and conditionals. We know that learning iteration is
hard for students [21], but we also know that if that itera-
tion is expressed as a set operation, novices find it easier to
understand [14, 15]. Because of how Python defines a for

loop, we were able to introduce pixel manipulations as a set
operation, e.g., for p in getPixels(picture):. Later, we
introduced a more traditional for loop where an index vari-
able varies across a range of integers, but only after students
were successfully programming and dealing with iteration at
an easier stage.

Once we had chosen our language, we needed to provide
tools for this language. We decided to build two sets of
tools. The first would be a development environment for
the students, JES (Jython Environment for Students) be-
cause no such simple development environment existed for
Jython. Second, we developed a set of media tools (called
MediaTools, implemented in Squeak) to enable students to
look at sounds at the sample level, record new sounds, play-
back movies, and look at individual pixels in pictures. We
viewed the MediaTools as important debugging tools for the
students.

We have found weaknesses in our original plans. Observa-
tions of students programming revealed that the MediaTools
were never used as debugging aids. Sitting in a separate
application, the MediaTools were simply ignored while stu-
dents worked on their programs. We have since implemented
some of the media exploration functionality in JES, which
do get used by the students to help them understand what
their programs are generating. The lesson we draw from this
is that the context selected for a non-majors course places
demands upon the programming environment. A program-
ming environment that works for majors may not be ade-
quate for non-majors, especially if a relevant context is cho-
sen as we advocate. The programming environment must
support both context and computing learning objectives.

2.5 Building the Course
We developed the course lectures and assignments to achieve

the objectives within the given context and infrastructure.
The syllabus2 for the course walks through each media type,
with some repetition of concepts so that conditionals and
loops can be re-visited through exploration of different me-
dia types.

We only briefly address the issue of inefficiency—it’s mostly
a distraction in a first course [1, 13]. We do, however, ad-
dress encoding issues, such as the number of bits per red,
green, and blue channel in the pixel, and the theoretical
number of colors that such an encoding provides. We con-
sider this a relevant technical detail since representations of
color are part of the communications focus of the course,
and it allowed us to address the Institute requirements of
discussing encoding and data structuring. We similarly dis-
cuss the number of bits in a sound sample and sampling
rate, and relate that to the limitations of sound recording
(e.g., the Nyquist theorem).

Student programming assignments built upon the media
in relevant communications tasks. As mentioned earlier,
one open-ended programming assignment required creation
of a collage. A later assignment on text manipulation and
HTML was to write a function to generate an HTML index
page for all sound and picture files in a given directory. The
students’ final programming assignment was to write a pro-
gram to fetch the index page of a news website, find the top
three headlines from the page, then generate a ticker-tape
movie of those headlines. The programs reached a level of
computing and domain complexity that the students seemed
to find satisfying.

3. EVALUATION: SUCCESS AND IMPACT
We identified at the start of the paper that our measures

for success were (a) improved success rates (percentage of

2The syllabus for the course is summarized in [11].

Average for CS1 (2000-2002) 72.2%
Media Computation Spring 2003 88.5%
Media Computation Fall 2003 87.5%
Media Computation Spring 2004 90.5%

Table 1: Success rates of the original CS course com-

pared with three offerings of Media Computation

course

students earning an A, B, or C) and (b) impact of the course
over time, after the class was completed. We found that the
course has had remarkable success rates and is showing signs
of having an impact on students after they leave the course.

Table 1 lists the success rates (defined as the proportion
of students who earn an A, B, or C in the course–the ad-
ditive inverse of those who withdraw or earn a D or F) for
our introductory computing course from 2000 to 2002, when
all students at Georgia Tech took the course; then the three
offerings of the Media Computation course. Around 90% of
the Media Computation students succeeded, compared with
72% of the students across all of campus (including CS, sci-
ence, and engineering majors). Our best-practice compari-
son is with non-CS majors in a pair-programming offering
of CS1 which had a 66.4% success rate[16]. It should also
be noted that over half of the students in the Media Com-
putation class have been women [20].

In Spring 2004, we conducted an online survey all the 425
students who took the course in Spring 2003 (n = 120) and
Fall 2003 (n = 305) semester. We sent an email invitation
to participate in the survey, which was available as a web
form. Sixteen of those students had since graduated, leaving
us 409 potential subjects. We had 59 respondents, for a
response rate of 14%–not tremendous, but not unreasonable
considering we were asking for feedback from non-majors on
what was a service course.

The results suggested that students were still engaged
with computer science since the course ended. We asked
students to report on how much they had talked about com-
puter science with their friends or relatives before and after
the course. 64% of the respondents indicated that they en-
gaged in computer science discussions more often since tak-
ing the course. Eleven of the 59 respondents (19%) indicated
that they had written programs in Python since completing
the course. We asked students whether they had edited pic-
tures, sounds, or videos before taking the course, and since.
27% of the respondents indicated that they had edited me-
dia since taking the course although they hadn’t previously.
Only one of the students had taken another CS course.

We asked for open ended responses to the question, “How
would you say that CS1315 has changed the way you interact
with technology, if at all?” 47 of the 59 students (80%)
did indicate that CS1315 had an impact on the students’
relationship with computing technology.

• That result implies that 20% did not indicate that
CS1315 had an impact on them. A typical response is,
“No, I think CS was completely irrelevant to my college
career. Python is a language I will never remember
because it is likely I will never use it again.”

• Others, however, offered a detailed explanation on how
the course had impacted them, such as “It made me
understand more how computers work so I can use

them better. Helped me use the normal programs like
email and internet better. And I know how picture edit-
ing works, which is cool.” and “I have learned more
about the big picture behind computer science and pro-
gramming. This has helped me to figure out how to
use programs that I’ve never used before, troubleshoot
problems on my own computer, use programs that I
was already familiar with in a more sophisticated way,
and given me more confidence to try to problem solve,
explore, and fix my computer.”

We realized that we phrased our last question incorrectly.
For many students, what changed after the Media Compu-
tation class was not how the students interacted with tech-
nology, but how they thought about technology–in a sense,
it served as a “computing appreciation” course. Some exam-
ple student statements include “Definitely makes me think
of what is going on behind the scenes of such programs like
Photoshop and Illustrator.”

4. CONCLUSIONS
The process that we describe in this paper is not specific to

designing a Media Computation course for non-CS majors.
Rather, we feel that this process is appropriate to follow
whenever creating a CS course for non-majors.

The media computation course has been a success at Geor-
gia Tech. There are now non-CS majors asking for more CS
courses! We are creating a follow-on course, that introduces
data structures in a media context. We have also now de-
fined a CS minor option, so that students interested in com-
puting can go into more depth without leaving their own
majors.

5. ACKNOWLEDGMENTS
This research is supported in part by grants from the

National Science Foundation (CISE EI program and DUE
CCLI program), from the Al West Fund at Georgia Tech,
and by the College of Computing and GVU Center. We wish
to thank all the students who helped create JES and the
Media Computation class, and all the students in the class
who volunteered to participate in our studies. Our thanks
to Adam Wilson who has shepherded development of JES
for the last few terms, and to Bob Amar who designed and
implemented the follow-up survey.

6. REFERENCES
[1] AAUW. Tech-Savvy: Educating Girls in the New

Computer Age. American Association of University
Women Education Foundation, New York, 2000.

[2] ACM/IEEE. Computing Curriculum 2001.
http: // www. acm. org/ sigcse/ cc2001 , 2001.

[3] B. Adelson and E. Soloway. The role of domain
experience in software design. IEEE Transactions on
Software Engineering, SE-11(11):1351–1360, 1985.

[4] J. D. Bransford, A. L. Brown, and R. R. Cocking,
editors. How People Learn: Brain, Mind, Experience,
and School. National Academy Press, Washington,
D.C., 2000.

[5] J. T. Bruer. Schools for Thought: A Science of
Learning in the Classroom. MIT Press, Cambridge,
MA, 1993.

[6] E. Chabrow. Declining computer-science enrollments
should worry anyone interested in the future of the
u.s. it industry. InformationWeek, 2004.

[7] M. Felleisen, R. B. Findler, M. Flatt, and
S. Krishnamurthi. How to Design Programs: An
Introduction to Programming and Computing. MIT
Press, Cambridge, MA, 2001.

[8] M. Greenberger. Computers and the World of the
Future. Transcribed recordings of lectures held at the
Sloan School of Business Administration, April, 1961.
MIT Press, Cambridge, MA, 1962.

[9] M. Guzdial. Squeak: Object-oriented design with
Multimedia Applications. Prentice-Hall, Englewood,
NJ, 2001.

[10] M. Guzdial. Use of collaborative multimedia in
computer science classes. In Proceedings of the 2001
Integrating Technology into Computer Science
Education Conference. ACM, Canterbury, UK, 2001.

[11] M. Guzdial. A media computation course for
non-majors. In Proceedings of the Innovation and
Technology in Computer Science Education (ITiCSE)
2003 Conference, New York, 2003. ACM, ACM.

[12] J. Kolodner. Case Based Reasoning. Morgan
Kaufmann Publishers, San Mateo, CA, 1993.

[13] J. Margolis and A. Fisher. Unlocking the Clubhouse:
Women in Computing. MIT Press, Cambridge, MA,
2002.

[14] L. A. Miller. Programming by non-programmers.
International Journal of Man-Machine Studies,
6:237–260, 1974.

[15] L. A. Miller. Natural language programming: Styles,
strategies, and contrasts. IBM Systems Journal,
20(2):184–215, 1981.

[16] N. Nagappan, L. Williams, M. Ferzil, E. Wiebe,
K. Yang, C. Miller, and S. Balik. Improving the CS1
experience with pair programming. In D. Joyce and
D. Knox, editors, Twenty-fourth SIGCSE Technical
Symposium on Computer Science Education, pages
359–362, New York, NY, 2003. ACM.

[17] D. B. Palumbo. Programming
language/problem-solving research: A review of
relevant issues. Review of Educational Research,
60(1):65–89, 1990.

[18] S. Pedroni and N. Rappin. Jython Essentials. O’Reilly
and Associates, 2002.

[19] S. L. Pfleeger, P. Teller, S. E. Castaneda, M. Wilson,
and R. Lindley. Increasing the enrollment of women in
computer science. In R. McCauley and J. Gersting,
editors, The Proceedings of the Thirty-second SIGCSE
Technical Symposium on Computer Science Education,
pages 386–387. ACM Press, New York, 2001.

[20] L. Rich, H. Perry, and M. Guzdial. A CS1 course
designed to address interests of women. In Proceedings
of the ACM SIGCSE Conference, pages 190–194,
Norfolk, VA, 2004.

[21] E. Soloway, J. Bonar, and K. Ehrlich. Cognitive
strategies and looping constructs: An empirical study.
Communications of the ACM, 26(11):853–860, 1983.

