A Media Computation Course for Non-Majors

Mark Guzdial
College of Computing
Georgia Institute of Technology
801 Atlantic Drive
Atlanta, GA 30332-0280
guzdial@cc.gatech.edu

Abstract

Computing may well become considered an essential
part of a liberal education, but introductory program-
ming courses will not look like the way that they do
today. Current CS1 course are failing dramatically. We
are developing a new course, to be taught starting in
Spring 2003, which uses computation for communica-
tion as a guiding principle. Students learn to program
by writing Python programs for manipulating sound,
images, and movies. This paper describes the course de-
velopment and the tools developed for the course. The
talk will include the first round of assessment results.

1 Issues with Current Introductory CS Courses

Computer science departments are not currently suc-
cessful at reaching a wide range of students who are
taking introductory computer science. The evidence
for this statement includes international studies of pro-
gramming performance [10], declining retention rates
[5], and failure rates sometimes as high as 30% [17]. In
particular, participation of women in computer science
is dropping. Studies suggest that computing courses
are seen as overly-technical and avoiding relationships
to real applications [9], and are frankly boring and lack-
ing opportunity for creativity [1].

At Georgia Institute of Technology (“Georgia Tech”),
all students are required to take an introductory course
in computing, including programming skills. The cur-
rent course! is undoubtedly one of the most unpopular
courses on campus, especially among those not in ex-

YA second course for Engineering students only is at a
prototype stage.

plicitly computing-related fields. While this is certainly
a problem for the College of Computing at Georgia Tech
(where the course has its academic home), it points to-
wards a larger problem for the field.

Alan Perlis in April 1961 made perhaps the first argu-
ment that programming should be part of a liberal edu-
cation for all students. If Calculus is the study of rates,
and that’s important enough to be part of the liberal ed-
ucation, then so should computer science. Perlis argued
that computer science is the study of processes, which
is certainly relevant to even more fields than those con-
cerned with rates. The argument has been echoed and
strengthened over the intervening years—by Seymour
Papert arguing for a programming as a way of learning
about learning [13][14], to Andrea diSessa’s arguments
for “computational literacy” as a critical component of
many fields [3]. As long as non-CS-majors have such a
dislike for computing, the hope is diminished for com-
puter science as an accepted part of a liberal education
and for computing generally to meet its potential for
intellectual impact across the range of disciplines, not
just in computational science and engineering.

We are developing a new course Introduction to Media
Computation around a theme of computation for com-
munications. The premises and core concepts of the
proposed course are:

e All media are being published today in a digital for-
mat.

e Digital formats are amenable to manipulation, cre-
ation, analysis, and transformation by computer.
Text can be interpreted, numbers can be transformed
into graphs, video images can be merged, and sounds
can be created. We call these activities media com-
putation.

e Software is the tool for manipulating digital media.
Knowing how to program thus becomes a communi-
cations skill. If someone wants to say something that
her tools do not support, knowing how to program
affords the creation of the desired statement. If she

understands what her tools are doing, she may be-
come a more adept practitioner, and more capable of
transferring knowledge between tools.

e Core computer science concepts can be introduced
through media computation. For example, programs
can get large and cumbersome. Abstraction is our
tool for managing program complexity and allowing
programs to become even larger yet more flexible.
However, computing has limitations. There are some
programs that cannot complete in our lifetime, and
knowing that these limitations exist is important for
technological professionals.

This paper describes the course, its approach, and the
technological materials being developed for it. The pre-
sentation will also include results of the pilot course
evaluations.

2 Current State in Development of “Introduction
to Media Computation”

CS1315 Introduction to Media Computation will be of-
fered for the first time in Spring 2003 to a pilot class of
100 students. We will iterate on the course during Sum-
mer 2003 and implement at a full-scale in Fall 2003, with
two sections of 250-300 students. It will be offered at
a similar scale in succeeding terms. Currently, we are
planning the course and developing course materials

Our learning objectives are:

e Students will be able to read, understand, and make
functional alterations to small programs (less than 50
lines) that achieve useful communications tasks. Note
that this is a very different goal than being able to
write 50 lines from scratch. We see these students
as developing tool building skill, not software devel-
opment skill.

e Students will appreciate what computer scientists do
and the key concerns of that field that relate to stu-
dents’ professional lives.

— Students will recognize that all digital data is an
encoding or representation, and that the encoding
is itself a choice.

— Students will understand that all algorithms consist
of manipulating data, iteration (looping), and mak-
ing choices — at the lowest level, these are choices
about numbers, but we can encode more meaning-
ful data in terms of those numbers.

— Students will recognize that some algorithms can-
not complete in reasonable time or at all.

— Students will appreciate some differences between
imperative, functional, and object-oriented ap-
proaches to programming.

— Students will appreciate the value of a program-
ming vs. direct-manipulation interface approach to
computer use and will be able to describe situations
where the former is preferable to the latter.

e Students will be able to identify the key components
of computer hardware and how that relates to soft-
ware speed (e.g., interpretation vs. compilation)

e Students will develop a set of usable computing skills,
including the ability to write small scripts, build
graphs, and manipulate databases — not necessarily
using the common tools, but in a manner that ex-
poses concepts and enables future learning.

We have developed (and are continuing to develop) a
set of course notes and lecture slides that support the
course. Overall, the course is designed to meet the “Im-
perative First” CS1 general structure and requirements
in the new ACM/IEEE Computing Curriculum 2001 [2].
The order of media covered in the course is arranged to
correspond to an increasing level of complexity in data
structures.

e A sound is an array of samples.

e A picture is a matriz (two-dimensional array) of piz-
els.

e A directory structure (of media files, to process many
files with a single recipe) is a tree of files.

e A movie is an array of matrices (frames, as pictures).

The media thus serve as a way of visualizing and mak-
ing concrete (and interesting, we believe) the programs
that the students are writing. Once the students are
writing programs of increasing complexity, we introduce
the ideas of algorithm complexity, object-oriented pro-
gramming, and recursion as techniques for managing
that complexity. Java is introduced only briefly at the
end as a means for accessing the lowest levels of these
data representations. The plan is neither to teach the
students Java nor to introduce all the features of Java.
Rather, only those aspects of Java that directly corre-
spond to language elements they’re familiar with will be
introduced. The points are to emphasize the existence
of alternative notations and that what the students have
learned is applicable in other contexts.

We have been developing the course in a collabora-
tive process with a board of faculty advisors from
across campus and a team of undergraduate and grad-
uate students developing materials. We have been
using both on-line and face-to-face forums to gather
input on the course (http://coweb.cc.gatech.edu/
mediaComp-plan). Both student and faculty feedback
has been very positive.

3 Technological Support for the Course

The language for the course will be Python (http:
//www.python.org). Python is a popular programming
language used today by companies including Google and
Industrial Light & Magic. It’s most often used for Web
(e.g., CGI script) programming and for media manip-
ulation. Python was specifically developed to be easy-
to-use, especially for non-traditional programmers.

The specific version of Python that we’ll be using is
Jython (http://www.jython.org). Jython is an im-
plementation of Python in the popular programming
language Java. Anything that one can do in Java (e.g.,
servlets, database programming via JDBC, GUI pro-
gramming via Swing) can be done in Jython. Jython is
Python—Ilearning one is the same as learning the other.

We chose Jython in order to enable cross-platform mul-
timedia manipulation. We have written a set of Java
classes that encapsulate the kind of multimedia func-
tionality that our examples will require, as well as a set
of Jython classes that provide a simple and useful API
to those functionalities. The API was designed based
on existing literature on challenges that students find
in learning to program, e.g., we allow set-based manip-
ulation of samples and pixels before more complex and
general iteration structures are learned [11][12].

Our API allows for access to the samples that make up
sounds and the pixels that make up pictures.

e Figure 1 is an example program using our API that
converts a picture object to greyscale. It computes
the intensity of a given pixel by averaging the red,
green, and blue components, and then replaces the
color of that pixel with a gray pixel (red, green, and
blue components the same) with the same intensity.
Notice that the loop in this example is phrased as a set
operation—essentially, “for every pixel p in the pixels
of the given picture, do....” Some research on novice
programming suggests that this is a simpler concept
to begin with, as a way of easing into iteration [11].

e Figure 2 is a program that normalizes sounds to a
maximum volume, by searching for the largest sam-
ple, computing a multiplier so that that sample would
reach the maximum amplitude, and then multiplies
all samples in the sound to raise the amplitude of the
overall sound. We continue to use the simpler form of
iteration here, but using multiple loops—an increase
in complexity.

e Figure 3 takes a filename, then returns the sound in
that file in reverse. Here, we use a more conventional
for loop, with explicit indices in order to copy the
array elements correctly.

We have also created a set of tools to support the stu-
dents’ tasks in this course. Our first and immediate
need was for some kind of development environment.
Jython is a new language [15], so most developers sim-
ply use plain text editors, or make do with Python or
Java development environments. We believe that non-
CS major freshmen will require more support. A team
of undergraduate senior design students created our tool
for students, JES (Jython Environment for Students) as
a simple editor and program execution IDE (Figure 4).
JES runs identically on Windows, Macintosh OS X, and
Linux systems. Further JES development is occurring
with undergraduates (mostly programming) and grad-
uate students (developing documentation).

oo

1 JES = Jython Environment for Students — pickAndShow.py

File Edit Help

def pickAndShow():
myfile = pickAFile()
mypict = makePicture(myfile)
show(mypict)

0 © © /users/guzdial/medi

|5:1 y.

Figure 4: JES: Jython Environment for Students, with
a graphics example running

We also realized that our students would have a need to
visualize and explore media and to prepare media for use
in their programs. For example, we would like to be able
to look at sounds using a variety of visualizations, record
their own sounds, investigate the RGB values in pictures
of their choosing, and burst MPEG movies into folders
of JPEG frames for ease in manipulation. By using their
own media, we hope to make the student programming
assignments into a creative activity, and thus, make it
more attractive to women and others dissuaded by the
stereotype of computer science as non-creative [9][16].
Another team of undergraduate students have modified
the media tools in Squeak [4][6] to create cross-platform
media exploration and manipulation tools (Figure 5).

Finally, we plan to use our CoWeb collaboration tool

def greyScale(picture):
for p in getPixels(picture):

intensity = (getRed(p)+getGreen(p)+getBlue(p))/3
setColor(p,makeColor(intensity,intensity,intensity))

Figure 1: An example Jython program using our API to convert a picture to greyscale

def normalize(sound):
largest = 0
for s in getSamples(sound):

largest = max(largest,getSample(s))

multiplier = 32767.0 / largest

print "Largest sample value in original sound was",

print "Multiplier is", multiplier

for s in getSamples(sound):
louder = multiplier * getSample(s)
setSample(s,louder)

largest

Figure 2: An example Jython program using our API to normalize sounds to a maximum volume

GoemiaAge G0 0 1oz ww om0

Opet) Mt Rewind Play Stop < »

sof1 loud

start end

[turn on repeat (now o) B
set 1

create Eolder of Erames from MPEG X
oreate JPEG movie Trom folder of frames

Figure 5: MediaTools: Movie tools (ul), image tools
(ur), sound editing (1), and sound views such as a sono-
gram (Ir)

to support a collaborative experience for students in
the Media Computation course. The CoWeb has been
used successfully in a variety of classes, including com-
puter science. By encouraging students to share their
creative artifacts via the CoWeb, we further erode the
perspective of computer science as a loner, non-creative
activity. Further, we plan to use the CoWeb to sup-
port student, e.g. asking questions about the multime-
dia assignments. Such support may be critical to the
success of the project. A factor analysis considering a
range of variables influencing CS1 success, with comple-
tion as an outcome variable, suggests that comfort ask-

ing questions is the most critical factor for succeeding
in CS1 [18]. Findings suggest that Web-based collabo-
ration tools encourage much greater participation and
comfort than in-class questions [7][8].

4 Summary and Future Directions

We believe that programming and computation will be-
come part of a general, liberal education, but computing
courses will have to change to make this happen. We are
exploring a media computation approach that we feel
will appeal to a liberal arts major, while still retaining
a focus on programming. Our assessment will explore
how well these students learn, but also how motivated
they are. A key question for us is whether these stu-
dents will have a continuing interest in learning about
computation, a critical goal of any introductory course.

References

[1] AAUW. Tech-Savvy: Educating Girls in the New
Computer Age. American Association of University
Women Education Foundation, New York, 2000.

[2] ACM/IEEE. Computing curriculum 2001. http:
//wuww. acm. org/sigese/ cc2001 (2001).

[3] diSessa, A. Changing Minds. MIT Press, Cam-
bridge, MA, 2001.

[4] Guzdial, M. Squeak: Object-oriented design with
Multimedia Applications. Prentice-Hall, Engle-
wood, NJ, 2001.

def backwards(filename):
source = makeSound(filename)
target = makeSound(filename)

sourceIndex = getLength(source)

for targetIndex in range(1l,getLength(target)+1):
sourceValue = getSampleValueAt (source,sourcelndex)
setSampleValueAt (target,targetIndex,sourceValue)

sourceIndex = sourcelndex - 1

return target

Figure 3: Return the sound in the file backwards

[5] Guzdial, M. Summary: Retention rates in cs vs. in-
stitution. Message posted on acm sigcse moderated
members list, Georgia Tech, April 23 2002.

[6] Guzdial, M., and Rose, K., Eds. Squeak, Open
Personal Computing for Multimedia. Prentice-Hall,
Englewood, NJ, 2001.

[7] Guzdial, M., and Turns, J. Effective discus-
sion through a computer-mediated anchored fo-
rum. Journal of the Learning Sciences 9, 4 (2000),
437-470.

[8] Hudson, J. M., and Bruckman, A. Irc francais:
The creation of an internet-based sla community.
Computer Assisted Language Learning (CALL) 15,
2 (2002), 109-134.

[9] Margolis, J., and Fisher, A. Unlocking the Club-
house: Women in Computing. MIT Press, Cam-
bridge, MA, 2002.

[10] McCracken, M., Almstrum, V., Diaz, D., Guz-
dial, M., Hagan, D., Kolikant, Y. B.-D., Laxer, C.,
Thomas, L., Utting, I., and Wilusz, T. A multi-
national, multi-institutional study of assessment of
programming skills of first-year cs students. ACM
SIGCSE Bulletin 33, 4 (2001), 125-140.

[11] Miller, L. A. Programming by non-programmers.
International Journal of Man-Machine Studies 6
(1974), 237-260. Participants strongly preferred to
use set and subset expressions to specify the oper-
ations in aggregate.

[12] Miller, L. A. Natural language programming:
Styles, strategies, and contrasts. IBM Systems
Journal 20, 2 (1981), 184-215. Languages require
iteration where aggregate operations are much eas-
ier for novices.

[13] Papert, S. Teaching children to be mathematicians
versus teaching about mathematics. Ai memo no.
249 and logo memo no. 4, MIT, 1971.

[14] Papert, S. Mindstorms: Children, computers, and
powerful ideas. Basic Books, New York, NY, 1980.

[15] Pedroni, S., and Rappin, N. Jython Essentials.
O’Reilly and Associates, 2002.

[16] Pfleeger, S. L., Teller, P., Castaneda, S. E., Wil-
son, M., and Lindley, R. Increasing the enrollment
of women in computer science. In The Proceedings
of the Thirty-second SIGCSE Technical Symposium
on Computer Science Education, R. McCauley and
J. Gersting, Eds. ACM Press, New York, 2001,
pp. 386-387.

[17] Roumani, H. Design guidelines for the lab com-
ponent of objects-first csl. In The Proceedings
of the Thirty-third SIGCSE Technical Symposium
on Computer Science Education, 2002, D. Knox,
Ed. ACM, New York, 2002, pp. 222-226. WFD
(Withdrawl-Failure-D) rates in CS1 in excess of 30

[18] Wilson, B. C., and Shrock, S. Contributing to suc-
cess in an introductory computer science course:
A study of twelve factors. In The Proceedings of
the Thirty-second SIGCSE Technical Symposium
on Computer Science Education, R. McCauley and
J. Gersting, Eds. ACM, New York, 2001, pp. 184—
188.

