
1 communications of the acm | may 2009 | vol. 52 | no. 5

V
viewpoints

S
e v e r a l c omputing pro-

gr a m s in the U.S. are de-
veloping new kinds of
introductory computing
courses for non-comput-

ing majors, some with support from
the NSF CPATH program. At Georgia
Institute of Technology (Georgia Tech),
we are entering our 10th year of teach-
ing computing to every undergradu-
ate on campus. Our experience gained
during the last decade may be useful to
others working to understand how to
satisfy the growing interest in comput-
ing education across the academy.

computing in General education
In fall 1999, the faculty at Georgia Tech
adopted a requirement that all stu-
dents must take a course in computing.
We modified the academic year from
quarters to semesters, which gave the
campus the opportunity to rethink the
curriculum and our general education
requirements. Russ Shackelford, Rich
Leblanc, Kurt Eiselt, and the College
of Computing’s then-dean, Peter Free-
man, convinced the rest of Georgia Tech
that all students who graduated from an
Institute of Technology should know
computing. We started before publica-
tion of the National Research Council
report Being Fluent with Information
Technology,3 though that report signifi-
cantly influenced implementation.

The new requirement wasn’t a hard
sell. Faculty in the College of Engineer-
ing had wanted to implement a pro-
gramming requirement for their stu-

dents, but couldn’t decide who should
teach it. The creation of the College of
Computing in 1990 answered the ques-
tion of whose job it was to teach com-
puter science at Georgia Tech. Faculty
in the Ivan Allen College of Liberal Arts
(and in other colleges) embraced the
new requirement. Computing was in-
creasingly relevant for their disciplines,
and was a value-added requirement for
their graduates. The campus adminis-
tration was kept abreast and involved
throughout to maintain support. The
new general education requirement
was defined as an outcome—students
would be able “to make algorithmic
and data structures choices” when writ-
ing programs. That simple phrase de-
scribes a serious introductory course.

teaching everyone in one class
For the first four years of the require-
ment, only a single class met the re-
quirement: CS1321. There were sev-
eral reasons for having only a single
course. While we were already teaching
approximately two-thirds of the stu-
dents at Georgia Tech (because several
of the largest degree programs already
required computing), teaching every-
one on campus meant well over 1,200
students a semester. The immensity of
the task was daunting—splitting our
resources over several courses seemed
a bad start-up strategy. We were also
explicitly concerned about creating a
“service ghetto.” Courses just offered
as a “service” get less attention. By put-
ting all students in one class, it is in

everyone’s interest to ensure the class
is good.

The class received significant fac-
ulty interest and used innovative cur-
ricula. We started out using Shack-
elford’s pseudocode approach to
learning.6 Faculty in the other majors
complained about students not gain-
ing experience debugging programs.
We later moved to Felleisen et al.’s
How to Design Programs text using
Scheme.4 These were, and are, ap-
proaches for teaching computing that
have been successfully used at many
institutions.

By 2002, however, CS1321 may have
been the most hated course on cam-
pus. From 1999 to 2002, the overall
success rate (leaving the course with
an A, B, or C—not counting those stu-
dents who received a D, a failing grade,
or withdrew from the course) was 78%.
That’s not too bad for an introduc-
tory computing course.1 However,
this was a course with everyone in it.
When we examine those majors where
a computing requirement is atypical,
we see 46.7% of architecture students
succeeding each semester, 48.5% in
management, and 47.9% in public
policy. We failed more than half of the
students in those majors each semes-
ter; females failed at nearly twice the
rate of males. Statistics like these are a
concern for both the Georgia Tech and
the College of Computing—it hinders
our relations with the rest of campus
when computing is the gatekeeper
holding back their students.

education
teaching computing
to everyone
Studying the lessons learned from creating high-demand
computer science courses for non-computing majors.

doi:10.1145/1506409.1506420 Mark Guzdial

V
viewpoints

month 2009 | vol. 00 | no. 00 | communications of the acm 2

Developing contextualized
computing education
Around this time, several studies
were published critiquing computing
courses, including the AAUW’s Tech-
Savvy report2 and Unlocking the Club-
house by Margolis and Fisher.5 These
reports describe students’ experiences
in computing as “tedious,” “asocial,”
and surprisingly, “irrelevant.” A 2002
task force, chaired by Jim Foley, found
similar issues at Georgia Tech. How
could computing be “irrelevant” when
it pervades so much of our world? Per-
haps the problem was that our course
had little connection to the computing
in our students’ world. While students
are amazed at the Web, handheld video
games, and smartphones, most intro-
ductory courses introduce students to
the computing concepts behind these
wonders with Fibonacci numbers and
the Tower of Hanoi. What students saw
as computing was disconnected from
what we showed them in our comput-
ing class.

We adopted an approach that we call
contextualized computing education.
We chose to teach computing in terms
of practical domains (a “context”) that
students recognize as important. The
context permeates the course, from
examples in lecture, to homework as-
signments, and even to the textbooks
specially written for the courses. We
decided to teach multiple courses, to
match majors to relevant contexts.

In spring 2003, the College of Com-
puting began offering three different
introductory computing courses. The
first was a continuation of CS1321,
aimed at computing and sciences ma-
jors. The second was a new course for
students in the College of Engineer-
ing, with much the same content, but
in MATLAB and using an engineering
context. The third was a new course for

students in the colleges of liberal arts,
architecture, and management using a
context of manipulating digital media.

The engineering course was de-
veloped jointly with faculty from the
schools of aerospace, civil, mechani-
cal, and chemical engineering. Several
faculty members in these schools had
already started developing an alterna-
tive to CS1321, using MATLAB, a com-
mon programming language in engi-
neering. Their model involved small
classes in a closed lab working on real
engineering problems. That course
was prohibitively expensive to ramp
up to over 1,000 engineering students
each semester. The engineering faculty
worked with David Smith of the College
of Computing to create a course that
used their examples and MATLAB, but
taught the same computing concepts
as CS1321.

The course around “media compu-
tation” was built with an advisory board
of faculty from the colleges of liberal
arts, architecture, and management.
The board’s awareness and support
for the course was important in getting
the course approved as fulfilling the
computing requirement in programs
of those colleges. The advisory board
favored a programming language that
was perceived as being easy to learn
but was not associated with “serious”
computer science. We chose the Py-
thon implementation, over concerns
about both Scheme and Java.

Media computation is the context of
how digital media tools like Photoshop
and GIMP work. We created cross-plat-
form libraries to manipulate pixels in
a picture and samples in a sound. We
taught, for example, iterating across
an array by generating grayscale and
negative versions of an image and array

concatenation by splicing sounds. We
were able to cover all the introductory
computing concepts using media ex-
amples. In their homework, students
created pictures, sounds, HTML pages,
and animations. We created an inte-
grated development environment that
provided the media functions as well
as tools for inspecting pictures and
sounds.

impact of contextualized
computing education
Faculty and students are happier with
the new courses. The success rates rose
above 80% in both the engineering and
media courses. When comparing suc-
cess rates to those same majors men-
tioned previously, we found the average
success rate in the first two years for ar-
chitecture students rose to 85.7%, man-
agement to 87.8%, and public policy to
85.4% per semester. The media com-
putation course has been majority fe-
male, and women succeed at the same
or better rates than the male students.
Similar improvements in success rates
in media computation courses have
been seen among underrepresented
groups at other campuses.7

New opportunities appear on cam-
pus when all students succeed at com-
puting. We have introduced a minor
in computer science. We had enough
students interested in computing after
the media course that we now offer a
second course, on data structures with-
in a media context. A second course
was also developed for engineering
students, so we now teach three second
computing courses, as well as three in-
troductory courses.

Faculty in the School of Interactive
Computing and the School of Litera-
ture, Culture, and Communication (in
the College of Liberal Arts) now offer
a new joint undergraduate degree, a
bachelor of science degree in com-
putational media. The course was de-
veloped because of growing common
interest in areas like video games,
augmented reality, and computer ani-
mations. While the common research
interests were clearly the motivating
factor in deciding to create the new de-
gree program, having a media compu-
tation course that could draw students
into the new program from liberal arts,
as well as from computing, facilitated
the joint effort.

We chose to teach
computing in terms
of practical domains
(a “context”) that
students recognize as
important.

By putting all
students in one class,
it is in everyone’s
interest to ensure the
class is good.

3 communications of the acm | may 2009 | vol. 52 | no. 5

viewpoints

in later courses and in their students’
future professions. Further, we need
them as context informants as we de-
velop courses that teach through ex-
amples from their domains.

Finally, building successful, high-de-
mand courses for non-computing ma-
jors gives us a different perspective on
the current enrollment crisis. Students
want these courses. Other schools on
campus want to collaborate with us to
build even more contextualized class-
es. Our challenge is not just in finding
more majors, but finding enough fac-
ulty time to develop and teach these
courses that bring real computing to a
wide range of students.

References
1.	 Bennedsen,	J.	and	Caspersen,	M.E.	Failure	rates	in	

introductory	programming.	ACM SIGCSE Bulletin 39,	2	
(2007),	32–36.

2.	 Commission	on	Technology,	Gender,	and	Teacher	
Education.	Tech Savvy: Educating Girls in the New
Computer Age,	American	Association	of	University	
Women,	2000.

3.	 Committee	on	Information	Technology	Literacy,	
National	Research	Council.	Being Fluent with
Information Technology.	The	National	Academies	
Press,	1999.

4.	 Felleisen,	M.,	Findler,	R.B.,	Flatt,	M.,	and	Krishnamurthi,	
S.	How to Design Programs: An Introduction to
Programming and Computing.	MIT	Press,	2001.	

5.	 Margolis,	J.	and	Fisher,	A.	Unlocking the Clubhouse:
Women in Computing.	MIT	Press,	2001.	

6.	 Shackelford,	R.L.	Introduction to Computing and
Algorithms.	Addison	Wesley,	1997.

7.	 Sloan,	R.H.	and	Troy,	P.	CS	0.5:	A	better	approach	
to	introductory	computer	science	for	majors.	ACM
SIGCSE Bulletin 40,	1	(2008),	271–275.

Mark Guzdial (guzdial@cc.gatech.edu)	is	a	professor	
in	the	College	of	Computing	at	Georgia	Institute	of	
Technology	in	Atlanta,	GA.	

Copyright	held	by	author.

We see an increasing number of
courses around campus that require
students to write programs, though
not necessarily as an outcome of the
computing requirement. Computing
is growing in importance in all fields.
Non-computing faculty request us to
include particular concepts or tools in
the introductory courses and to pro-
vide prerequisite knowledge and skills
for advanced courses. In this way, the
computing requirement has become
part of curricula across campus.

In the first years, the success rates
for the new courses were sometimes
higher than the success rate in the con-
tinuing CS1321. We realized that even
computer science majors need intro-
ductory courses that connect explicitly
to a context that students recognize as
computing. In a joint effort with Bryn
Mawr College and with funding by
Microsoft Research, we launched the
Institute for Personal Robotics in Edu-
cation (IPRE, http://www.roboteduca-
tion.org) to develop a new introductory
course that uses robotics as the context
for teaching introductory computing.

Lessons Learned
We in the College of Computing be-
lieve the use of contextualized comput-
ing education has been a significant
step in making Georgia Tech’s univer-
sal computing requirement success-
ful. Developing contextualized courses
is challenging and expensive (for ex-
ample, writing textbooks, developing
new integrated development environ-
ments), but the results can be shared.
Other campuses are adopting our con-
textualized approaches, and some are
developing their own.

We recommend involving faculty
from the other departments in build-
ing courses for non-major students.
They understand their students’ needs

Building successful,
high-demand courses
for non-computing
majors gives us a
different perspective
on the current
enrollment crisis.

Developing
contextualized
courses is
challenging and
expensive, but
the results can be
shared.

