Design Decisions
Team Twelve of a Kind
The Problem: War

So we want to build a series of card games from scratch using Java. First of all, which card games? We started with something simple, like War. If you aren’t familiar with the game, here’s a quick rundown of how it is normally played.

There is one standard 52 card deck (take the Jokers out) and two players. The goal of the game is to wind up with more cards than the other player. Each player is dealt half of the cards face down. The game takes place as a series of rounds. Each player draws the top card from their pile, and whoever draws the higher card gets to keep both cards that were played. If the cards are equal rank, this is a war (hence the name). The next three cards from each player’s pile are drawn and added face down to the cards already in play. The next card in each player’s pile is drawn face up and compared, and whoever has the high card gets to keep all the cards that were drawn (so 10 cards total). If those cards are equal rank then you just war again, and just keep adding cards to the pile in the center. Play normally stops after each player’s draw pile runs out, but this is really up to the players to decide. You can keep going until one player runs out of cards completely but this takes a very long time.

For our game, we decided to alter the rules slightly to make it a bit more interactive. First of all, there is only one human player in our game, and they play against the computer. Since the player would never have to make any decisions using the above rules, the game wouldn’t be much fun to play. In our game, the player has a hand. After the cards are dealt, the player takes the top five cards from the draw pile and lays them out face down as their hand. In each round, the player picks a card from the hand to play (thus allowing them to make a decision). The empty slot in the hand is replaced by the next card in the draw pile. In the event of a war, the player simply picks another card from his or her hand to turn face up and places the rest of the cards in the hand at stake. After each round the hand is refilled to five cards. We decided to let the player play three times through his or her draw pile. So the first time the draw pile runs out, the cards that the player has won are shuffled and become the new draw pile. The third time the draw pile runs out the game is over and whichever player has more total cards is the winner.
Now that you know the rules of the game, let’s look at how we can create it using Java.
Bad Solution (Single Class)

We never actually tried to design War with one class, but this might be a typical solution for someone who isn’t very familiar with object oriented design and programming. Needless to say, even thinking about solving the problem this way gives anyone with object oriented design experience a headache. Assume we did though: how would we keep track of each player’s cards?

We could probably set up two 52-element arrays: one holding integers representing suit and the other holding integers representing rank. The cards would be identified by their integer index into the arrays. There could be two Vectors to represent the cards in each player’s pile. Each of these Vectors would contain as its elements the integer indexes representing the cards, but this solution is unwieldy and unintuitive.

There are many problems with trying to throw everything into one class. The biggest one is that it is much harder to program without any abstraction (take the example of the cards above). The code is much harder to maintain because it is very hard to find where certain things are happening in the code, because everything happens in one class. Another big problem is that nothing you write is reusable. If we want to create another card game (which we will later), we would have to start from scratch, even though all card games have certain things in common (like decks, piles, and cards) and we have already coded a lot of that functionality.
Object Oriented Basics

What’s the point of using Java in the first place if we don’t take advantage of its best feature: namely, that it is an object oriented language? Classes and the objects that belong to them are the fundamental component of all Java programs. Why do we use objects, and what are the important features of a language like Java that support their use?
Inheritance

Inheritance is the idea that one class can be a specific subclass of another. For a card example, take a card pile and a deck. A card pile is a pretty general type of thing: it can be defined as an unordered bunch of cards of any type that are grouped together in one place. It can be shuffled, added to, drawn from, and moved. A deck is a lot like a card pile, but it has some more specific characteristics, such as the number of cards and the order of the cards within it. Assume that we wrote a class called CardPile that had all the attributes and functions of a card pile, such as a set of cards, a shuffle method, a draw method, etc. Now say we wanted to use decks in our game: the easiest way to implement that feature would be to treat a Deck class as a specific type of CardPile that does all the things a CardPile can do and more, like maintain number of cards and order. This is what inheritance allows us to do. We don’t have to recreate the code from CardPile in the Deck class; instead we can simply extend from the CardPile class and add the extra functionality on top of the functionality given by CardPile. Now a Deck can be treated as both a Deck and a CardPile, since it really belongs to both classes. Just like how a dog can be a pet, but a pet isn’t necessarily a dog.
Encapsulation

Another feature of object oriented programming that Java gives us is encapsulation. This means that each object is a self-contained unit of data and functions that implements a well-defined interface with other objects. The inner workings of the object’s functionality are hidden, and as long as the interface stays the same and does what it says it does, other components of the system shouldn’t need to know what goes on inside the object. The main goal of encapsulation is the development of individual modules that can be “plugged’ in to and out of other modules without any side effects. One way this design ideal is referred to is low coupling: none of the components of a system are concerned with the internal operations of the other components, so long as their interface with those components remains the same. In short, encapsulation allows us to modify the implementation of one part of a system without needing to modify other parts of the system that integrate with it. This is a very important tool, especially when building complex systems that may need to be modified later.
Distribution of responsibility

Distribution of responsibility is a basic rule to follow when designing. Java doesn’t necessarily do anything special to allow us to do it. Distribution of responsibility means that you don’t want one class (or one set of classes in a large system) controlling the entire system. The idea of a “god” class that tells all the other classes what to do and has access to every bit of data in the system is what we don’t want. When designing object oriented programs, it is important to create classes that correspond to real-world objects and design the classes with attributes and functionality based on what they can really do. This is the first step to a good program, because you’ll find yourself designing autonomous objects that can be encapsulated and provide services to the rest of the program.
A Better Solution

So, using our knowledge of object oriented programming, we came up with a better solution for designing War. It may not be the best solution, and there is never one right way to design, but it was a good start. The first thing we knew we wanted to do was eventually develop other card games, so it was important that the classes we created for War would be reusable for later games. Classes like Card and CardPile are generic and can be used for any type of card game. We didn’t limit ourselves to just traditional cards when designing these classes either. We could make up our own card game with a completely different set of cards and still use the same classes.

The next step we had to take before designing our game was deciding on the rules for the game. So we got out a deck of playing cards and played through a couple hands of war, to make sure that we all understood the rules and how the game is played. This was a good way to start, because it allowed us to see all the components of the game working together before we started deciding how to program it. We made the decision to create the idea of the player’s “hand” because we realized that playing the game normally against the computer would be pretty boring. How much fun would it be to sit there and draw the first card repeatedly?

Once we had decided on what the game was, we started listing all the components. So, there’s two players, a deck of cards, two hands, and a pile in the center that contains all the cards being played. We already decided on the Card and CardPile classes, so now we add on the Player class, which will represent a Player that will actually maintain the CardPile representing the player’s hand. The Player would also have a name and a score.

You can see our final design for war here:
[image: image1.jpg]

The War class might look like the controlling class I warned against in the previous section. But it’s not as bad as it looks. When designing a game, you need a class to maintain the state of the game, and run a loop that will allow the user to play multiple rounds of the game. That is what our War class does, and to do so it communicates with the user interface about what cards have been selected and drawn so that the user interface knows what to show the user. We decided to design the War class to be our pluggable component into the model: that is, when we want to make a new type of card game, we should really only have to write a new game logic class like War. It turns out that we also have to modify Player, because players of different games have to maintain different attributes. A way to make this design better would be to create a more general Player class that contains the basic attributes that all card players have (like a name, or maybe a hand), and then to extend that class to create a specific class like WarPlayer for each game.
A New Problem: Blackjack

Now that we have a War game, we want to make something a little cooler. A game that most people know how to play is blackjack, and it’s about a step up in complexity over War. We take the same approach to starting our design as with War: we play the game and decide how all the rules work. After doing this, we have to decide which of the rules we actually want to implement. We chose not to include in our design the split and double-down rules in blackjack, which means the only options for the player in each round are to hit or stand. In traditional blackjack the player can also split. That is, if the player has two cards of the same rank they can be divided into two separate hands that can be played independently of each other. They can also double down, which means their original bet at the beginning of the round is doubled and they draw only one card to complete their turn. We decided not to implement these rules because we feel like we’re partly designing a framework for students to look at and work with, and that adding these rules to the game might actually be a good design challenge for them.
An Easy Solution

Reuse classes from War

So how do we go about our design? Because we were smart and designed some reusable classes for War, we don’t have to worry about Card or CardPile. We get those for free. But there is a bit more complexity to blackjack that the War classes can’t quite handle. One interesting rule in blackjack is that aces can count as either a 1 or an 11 depending on which helps the player’s hand more. Obviously our idea of a Card with one rank isn’t sophisticated enough to handle this problem. We decided to actually make Rank its own class, and give it an array of possible values. We felt that this would make rank comparisons easier, because for different games there are different ways of comparing ranks, and instead of rewriting the Card class over and over, we can simply add new types of Ranks that can handle comparisons with other Ranks in a game-specific manner.

Another addition we made to the design is the Deck class. Because blackjack allows for play with multiple decks, we decided it was important to have a more well-defined deck than just a CardPile. So now the Deck class is responsible for defining what types of cards go in it, how many cards it has, and how they are ordered. Before, War was keeping track of the rules of the deck, and now that Blackjack isn’t concerned with those details, we could technically play blackjack with a completely made up type of card with all kinds of different ranks. It is this sort of flexibility that we want to design into our classes so that we don’t limit ourselves later to what kinds of games we can write. Generalization and reusability are two of the most important advantages of using object oriented programming, so we should make use of them wherever possible.

We also added a Hand class this time around. In War we introduced the concept of a hand, but we included it in the Player class. For Blackjack, we decided it was time to generalize once again and make a separate class for it. Hand extends from CardPile the same way Deck does, so it has all the attributes and functions (such as shuffle) that CardPile does. The real difference with a Hand is that it can calculate the value of the cards it contains, based on rank and suit. This is our final design for Blackjack:
[image: image2.jpg]

As we stated before, the two classes that would have to be added would be Player and Blackjack. These are still fairly simple classes that take advantage of our design to play the game. Blackjack does little more than run a loop and query the player for a decision on whether they want to hit or stand. The user player is able to make this decision when the user interface prompts them to make it, which the Blackjack class can tell the interface to do. The Player class has to implement the logic of whether a player hits or stands. Either the Player is a computer player and calculates this based on the value of its current hand (such as the dealer), or it is a human player and makes a decision for itself and tells Blackjack directly what it wants to do.

One possible modification is to design a Player class that could automate the human player’s decisions. When you’ve played the actual game of blackjack for a while you start to realize that you play the game like a computer: you make the same decisions over and over based on the value of the hand you currently have. Different players might play the game a little differently, especially with rules like split and double down, and betting is always a subjective task that depends on how your luck is going and how many points you have left. Why not write a Player that makes these decisions the same way you would in real life, so that the computer player actually plays like you? If only you could do something like that in Vegas, you could put computer players at hundreds of different tables and lose money even faster.

Our final design for both games side by side is on the next page. You could imagine a lot more games all sharing the same classes. How many classes are actually unique to War and Blackjack? You can see how allowing Blackjack to reuse classes from War makes the design much simpler and reduces the number of classes we have to write. With the reusable classes we’ve provided, it could be a good challenge for students to design their own card games, or to add new features to the ones we’ve already provided.
Our Final Design:

[image: image3.jpg]
