Blackjack Worksheet Discussion and Answer Key

The students should be familiar with the following concepts to be able to complete this worksheet:

· Classes and objects

· Inheritance

· Reusability

· Methods to compare strings

· Some GUI experience

Answers:

Details:

1. Two. The Player and the Dealer each have a CardPile that represents their hand.

2. The Player starts with 2 cards. The Dealer also starts with 2 cards. In Blackjack both players start with two cards but their hands can expand to any number of cards.

3. Blackjack. The Blackjack class is responsible for executing the dealCards() method

4. 16. Each of the number cards is evaluated according to its rank and the face cards, except the Ace, are given a value of 10. Thus: 4+10+2 = 16.

5. 18. Because the rank of an Ace can be either 11 or 1, the calculateHand() method checks which Ace rank will give the Player’s hand the maximum value without busting. The students must show that they understand that the calculateHand() method will first evaluate each Ace with the rank of 1, and will only add the 10 points for the higher rank if the value of the hand will not exceed 21.
6. In order to allow for different types of name and rank value inputs when creating the Rank object. Most cards only have one value, thus a Rank can be created by simply inputting the string name of the rank and an integer value. Cards like Aces have two values, therefore requiring a Rank to be created by inputting the string name of the rank and an ArrayList of integers containing all the possible values for the Rank. Finally you can create a rank with a string name only. Overloading the constructor allows the user to create multiple ways of creating the same object.

Concepts:

7. In standard Blackjack, Aces have two possible Rank values, but in other variations of the game there may be other cards that also have multiple values. In a game that is based on comparing ranks it is better to have the Rank object separate and then write specific instructions on how to compare Ranks of various Cards. The students must show that they understand that when the Rank object is separate and not a simple integer attribute, it is easier to create rules to handle multiple Rank values in Cards and to compare the Ranks of cards.

Questions 8-10 are there to help the students understand the usefulness of reusing existing code and how to perform simple modifications using a given architecture. These questions do not necessarily have one right answer because each student will have their own interpretation of how to make them work. The answers to these questions should serve as preliminary design to be later implemented by the students and integrated with the code. The methods the students are designing are simply suggestions for further coding exercises. The following answers list one possible way of tackling the problem and contain which classes and methods would need to be modified to implement the solution.

8. First of all it is important to note that these are players not other dealers. These computer players are there to draw from the deck and provide some competition for the human player. They are there also to give the human player an idea of what could come out of the deck next. If the computer players are all holding aces and face cards, there is a higher chance that the human player will be dealt a lower ranking card from the deck.
In order to add a computer player, one must declare an instance of the Player class called computerPlayer (or something similar) in the Blackjack class. This computerPlayer will now have a Hand, score and even a name; the same as a humanPlayer and therefore must be initialized the same way.
The computerPlayer will then need to be included in the dealCards() method in the Blackjack class and be dealt cards the same way as if he is a humanPlayer. Finally the computerPlayer will need to have some sort of logic implemented in order to know when to hit and when to stand. They may have a separate method called computerPlayerLogic() (or something similar) or integrate the computerPlayer behavior into the existing code. The students can of course write their own logic, but they should be told that they are not required to write artificial intelligence to handle human-like play. It is perfectly sufficient to have the computerPlayer follow the same rules as the dealer: hit on 16, stand on 17. The logic for the dealer play is included in the Blackjack class.
The only class that would need modification is the Blackjack class but it is important to understand that the Player class is also involved.
9. The doubleDown() method has a simple implementation. When the dealCards() method has completed, the player will be given the option to hit, stand or double down. If double down is selected the students must call the doubleDown() method.
In the doubleDown() method first the students must double the value of the bet and update the bet variable in humanPlayer.bet. Then one and only one card should be dealt to the player and the player status must immediately be changed to Stand, leaving the Player holding three and only three cards. Then the game should continue as normal with the dealer evaluating his hand.

The only class modified is Blackjack. But in order to use this feature in the game, the students will have to modify the graphical user interface by adding ONE button next to the Hit and Stand buttons. With time given to look around the GUI code, a student can make this simple modification. Of course this can be left as a coding exercise to be implemented and tested but not included in the GUI.

10. The splitHand() method is more complicated than the doubleDown() method listed above and requires heavy modification of the graphical user interface in order to make it playable. We suggest that this method be used as a coding exercise to be implemented and tested but not included in the GUI.
When the dealCards() method has completed, the players hand should be evaluated to see if they are holding a pair of cards. In order to do that, both cards in the hand must have their rank AND the string value of their name compared. Since all face cards have the same rank the students must compare if their names are equal as well. If a pair is found, the splitHand() method can be called.

First a second bet integer must be created and given the same value as the humanPlayer.bet. Then a new Hand must be created and one of the cards moved into it. At this point the player must be holding two hands of ONE card each, and two bets of equal value. Each Hand must be then dealt a second card by the dealCards() method. The splitHand() method must return two distinct Hands with equal bet values.
The class modified will be Blackjack, but Player and Hand classes will be used to assist the student. The method needed to implement this change is dealCards().
