

Copyright © 2004 by College Entrance Examination Board. All rights reserved.

Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for AP students and parents).

Student Performance Q&A:
2004 AP® Computer Science AB Free-Response Questions

The following comments on the 2004 free-response questions for AP® Computer Science AB were
written by the Chief Reader, Chris Nevison of Colgate University. They give an overview of each
free-response question and of how students performed on the question, including typical student
errors. General comments regarding the skills and content that students frequently have the most
problems with are included. Some suggestions for improving student performance in these areas are
also provided. Teachers are encouraged to attend a College Board workshop, to learn strategies for
improving student performance in specific areas.

General Comments

The new exam introduced several new ideas. With Java as the programming language, an object-oriented
approach to programming was expected. Most questions involved writing code within the context of class
definitions for interacting objects. Students had to understand how to call methods for interacting objects
from different classes. The use of methods is fundamental, so students were expected to call the
appropriate method and not rewrite equivalent code.

A new type of question involving the design of classes was introduced on this exam (question 1).
Students needed to understand inheritance and polymorphism to answer these questions correctly. For full
credit students had to create a good design that followed the specification given in the problem, including
choosing data structures that met time-complexity (big-O) requirements.

This exam also required familiarity with several data structures implemented by classes in the java.util
library and defined by interfaces for the AP Computer Science program. Question 2 involved Sets and
Maps from the java.util library, and question 4 involved an implementation of the PriorityQueue
interface.

Although new types of questions were added, the exam did not have a question that required students to
work with a linked list created from the ListNode class; it did have a question working with a binary
tree using the TreeNode class. It is likely that future exams will have one or the other of these
dynamic structures, but not necessarily both.

Some general scoring principles are described on the “General Usage” sheet. Students were writing a
draft solution under time constraints, so we did not penalize minor errors that did not reflect on the
students’ understanding. For example, confusion about the use of length, length(), and size()

Copyright © 2004 by College Entrance Examination Board. All rights reserved.

Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for AP students and parents).

for accessing the length of a String, array, List, Set, or Map were not penalized. Other errors
on the usage sheet indicate penalties taken if the error was not covered specifically in the grading rubric.
Some minor errors were not penalized, because a newer version of the language (Java 1.5) that allows
different syntax is now available. These non-penalized errors include failure to downcast when removing
objects from a List, Set, or Map and failure to correctly convert between primitive types and their
wrapper classes (e.g., int and Integer).

Question 1

What was the intent of this question?

This was a design question. Part (a) required students to define an interface, LibraryItem, given a
description of its specification. Part (b) required students to define a class, LibraryBook, which
extends the given class Book and implements the LibraryItem interface. This required students to
recognize those methods that needed to be defined to implement the interface and those that did not need
to be defined because they were inherited. Part (c) required students to select a data structure for storing
LibraryItem objects so that three methods could be implemented efficiently. Students had to
understand the time-complexity for adding items to, or accessing items in, different structures, so that an
appropriate choice (a Map) could be made. Students were also required to state the time-complexity for
the methods in big-O terms.

How well did students perform on this question?

Very few students gave no response to this question, and the scores were spread evenly over the nine-
point range, with a bias toward the top end. Students seemed to have a good understanding of what was
needed. In a design question of this nature, there are no algorithmic complexities where students lose
points in the details of the implementation, so students who understood how to define the interface and
class scored well. The mean score was 5.2 out of 9.

What were common student errors or omissions?

In Part (a) students often erred by putting instance variables, constructors, or implementations of methods
into the interface. Sometimes they included a method that could change the ID, thus violating the
specification; they lost points for putting things into their code that did not belong. Students also
sometimes failed to include one or more of the methods needed to satisfy the specification, particularly
the accessor methods.

In Part (b) students would often fail to call super in the constructor to set the Book instance
variables. In fact, students would sometimes declare their own local variables for the book author and
title, as well as those needed to implement the LibraryItem interface. They would then override the
methods getAuthor and getTitle inherited from the Book class. Although this could work in
terms of returning the right values, it creates an inheritance hierarchy that may fail if changes are made in
the base class; therefore, it’s not a good design. Sometimes students would lose points for declaring
instance variables as public rather than private or for not providing the needed instance variables (one for
ID, one for holder) and the methods to implement their LibraryItem interface.

In Part (c) many students recognized that a map, with ID as the key, was the correct choice (either
TreeMap or HashMap were acceptable). However, many students were not familiar with the
appropriate application of a map and chose another data structure. Students who chose a map usually also
got the correct complexities (all O(1) for a HashMap and all O(log n) for a TreeMap). Students who
chose another data structure had mixed results on the complexity part of the question, missing those
points more often than not.

Copyright © 2004 by College Entrance Examination Board. All rights reserved.

Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for AP students and parents).

Based on your experience of student responses at the AP Reading, what message would you like to
send to teachers that might help them to improve the performance of their students on the exam?

Teach students the difference between an interface, an abstract class, and a concrete (non-abstract) class
and what can and cannot be included in each. In particular, an interface can only specify methods and
cannot have a constructor nor any instance variables defined. The methods are automatically abstract and
cannot be implemented.

Emphasize how inheritance works and explain that a subclass should not override (redefine) a method
that is inherited unless it is intended to work differently. Teach how a constructor in a subclass should call
super appropriately in order to set instance variables defined in the super class.

Demonstrate where and when the various data structures should be used, both those from the java.util
library (Lists, Sets, Maps) and the standard stacks, queues, and priority queues. The time-complexity of
different operations for these structures is an important topic.

Question 2

What was the intent of this question?

This question asked the student to write a constructor and methods for working with a data structure that
is a Map, with String objects as keys (candidate names), and Integers as values. Students had
to put the data into the Map in the constructor by iterating over a List of Sets and then iterating over
each of those Sets. Then they had to iterate over the key set for the map to find those candidates that tied
for the maximum number of votes, placing them into a Set that was returned. Thus, students had to be
comfortable with Maps and Sets and using Iterators. Finally, students were asked to state the time-
complexity for their implementation of the candidatesWithMost method.

How well did students perform on this question?

This question was relatively difficult, as there was considerable detail for students to manage. About
1,000 students (out of 5,800) had no-response or zero scores. Still, many students who had clearly worked
with sets and maps scored well, with 30% of students scoring 7, 8, or 9. The mean score was 4.1 out of 9.

What were common student errors or omissions?

Many students left out the needed downcasts when accessing elements in a Set or Map and did not
correctly convert between int and Integer and vice-versa. However, these errors were not
penalized, so students were really tested on their understanding of the data structures and the algorithms,
not on the syntactic details.

Students would make errors on iterating through a List or Set. Some students clearly had not
worked very much with Iterators. In Part (a) they would sometimes fail to recognize the nested structure,
iterating only through the List and not the Set. Students also missed the logic of checking whether
a candidate had already been added to the Map and adding a new entry, or updating the existing entry,
accordingly.

In Part (b) some students would re-implement the code to find the maximum number of votes, the
functionality of the maxVotes method. This can work, but it is poor programming practice and did not
receive full credit. Some students would incorrectly use itr.next() within the loop, as if it returned
the same element on two different calls. Students would sometimes err by calling an iterator method for a
Map. In Part (a) students would often try to instantiate Map and in Part (b), Set, rather than one of

Copyright © 2004 by College Entrance Examination Board. All rights reserved.

Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for AP students and parents).

the implementing classes for each of these interfaces.

In Part (c) students who did not specify the type of either the Map (TreeMap or HashMap) or the
Set returned in Part (b) did not receive the point for this part, since the correct answer depended on that
choice. Sometimes students would miss this point if they selected either TreeMap or TreeSet and
incorrectly indicated a complexity of O(C). Students also missed this point if they repeatedly called
maxVotes within the loop in Part (c), making the complexity quadratic.

Based on your experience of student responses at the AP Reading, what message would you like to
send to teachers that might help them to improve the performance of their students on the exam?

Be sure that students work with the Set and Map data structures in various ways and that they learn
how to use Iterators to traverse these structures. Students should understand the time-complexity of the
different operations on these structures and how these complexities combine in an algorithm that loops
over one of these structures.

Question 3

What was the intent of this question?

This question tested the students’ knowledge of the Marine Biology Simulation case study. It also tested
understanding of inheritance, as the students were required to define a new subclass of the Fish class.
The PredatorFish class needed a new instance variable to keep track of the number of steps since it
last ate. This required students to understand how to correctly define a constructor for a subclass
(something that was modeled very well for them in the case study itself). Part (b) asked students to define
a new method for the PredatorFish, which required understanding the relationships among the
existing classes of the case study and their methods. Part (c) required the student to override the act
method and demonstrate understanding of the logic of the new act and how to access the same method
in the superclass.

How well did students perform on this question?

In the past, a significant number of students did not attempt the case study question, indicating that they
hadn’t studied it adequately in their school course. This year there were fewer no-response and zero
scores on this question than on either question 2 or 4, indicating that only those students who were poorly
prepared for the exam did not attempt the question. It seems that teachers are teaching the case study
much better than they did in the past.

Students did very well on this question, showing a good understanding of the case study and how to
extend the Fish class. It was the easiest question on the exam and could have appeared on the Computer
Science A exam. The mean score was 5.6 out of 9.

What were common student errors or omissions?

In Part (a) students would sometimes fail to call super correctly in the constructor.

In Part (b) students would use the Environment isEmpty method to check whether food was in the
location ahead; that was incorrect, since isEmpty returns false for a location outside the
environment, as well as for a location where there is a fish. Sometimes students would fail to return the
correct Boolean in all cases.

Some students updated the variable checking steps since it last ate within the eat method rather than in
the act method, but either way earned credit if the update was correct. Students often updated one case

Copyright © 2004 by College Entrance Examination Board. All rights reserved.

Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for AP students and parents).

and not the other.

In Part (c), many students failed to include the check "if(isInEnv()) return;" which was
necessary to prevent a PredatorFish that was eaten by another from being resurrected. Students
also made errors in the logic of the conditionals for determining when super.act() should be called.
Finally, some students re-implemented the code for super.act() rather than making the method
call. Although this could work, it would violate the intended inheritance relationship.

Based on your experience of student responses at the AP Reading, what message would you like to
send to teachers that might help them to improve the performance of their students on the exam?

Teach the MBS case study thoroughly (most teachers have been doing this). The case study is a good
opportunity to demonstrate the interactions of objects of different classes in a large program. It is also a
good opportunity to teach inheritance using the Fish class as an example. The relationship of the
subclass to the superclass (in particular, the use of super) are important elements of this. Students
must be taught not to reimplement code when a method is already provided with the same functionality.

Question 4

What was the intent of this question?

This question asked the student to implement a priority queue with data objects stored multiple times by
building a binary search tree containing Item objects containing the data objects and number of
repetitions. The binary search tree was built using TreeNode objects. Students were required to write
the peekMin method that must traverse to the leftmost node in the tree and return the data stored there.
They were also required to write the method addHelper that added an object to the priority queue;
addHelper was set up so that it could be done recursively, but it also could be done iteratively. In
either case, it required a standard search of a binary tree, then attaching a new node or updating a node
that already contained the object. The binary tree involved two layers of abstraction for storing the data;
the TreeNode objects contained Item objects that contained the data object and a count.

How well did students perform on this question?

This was the hardest question on this exam: 1,200 students (out of 5,800) had no-response or zero scores.
Among other students the scores were spread quite evenly across the nine-point range, with somewhat
fewer at the top end. The mean score was 3.7 out of 9.

What were common student errors or omissions?

In Part (a) students simply needed to traverse to the leftmost node. However, many students tried to do
some other traversal of the tree structure. Both in Part (a) and Part (b), students sometimes did not
understand the two-level access (node.getValue().getData()) needed to access an object in
the priority queue.

In Part (b) students would often forget the base case or empty tree case in the recursion. The general case
included three cases: data equal required an increment of the count, and data greater or less required
recursion or traversal to the right or left. In either case, the recursive calls were often made but not
accompanied by the needed setLeft or setRight to attach the returned node back into the tree.
(Note: A simple recursive call could work if there were a “look-ahead” where the new node was attached
using setLeft or setRight only when getLeft or getRight returned null; this
approach usually failed to handle the empty-tree case.)

Copyright © 2004 by College Entrance Examination Board. All rights reserved.

Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for AP students and parents).

Based on your experience of student responses at the AP Reading, what message would you like to
send to teachers that might help them to improve the performance of their students on the exam?

Show students how to build dynamic structures such as binary trees (using TreeNode) or linked lists
(using ListNode). The fact that all parameters are passed by value means that the logic for recursively
adding to a dynamic structure is different from languages such as C++ and Pascal that have reference
parameters; explain this logic to students. In the future, some of the manipulation of binary trees is likely
to be handled with polymorphism, and teachers should be aware of this new approach with the object-
oriented paradigm. Traversals of, insertions into, and deletions from these structures are important topics
in the AB curriculum.

