

AP® Computer Science AB
2004 Scoring Guidelines

The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity.
Founded in 1900, the association is composed of more than 4,500 schools, colleges, universities, and other educational organizations. Each year, the
College Board serves over three million students and their parents, 23,000 high schools, and 3,500 colleges through major programs and services in
college admissions, guidance, assessment, financial aid, enrollment, and teaching and learning. Among its best-known programs are the SAT®, the

PSAT/NMSQT®, and the Advanced Placement Program® (AP®). The College Board is committed to the principles of
excellence and equity, and that commitment is embodied in all of its programs, services, activities, and concerns.

For further information, visit www.collegeboard.com

Copyright © 2004 College Entrance Examination Board. All rights reserved. College Board, Advanced Placement Program, AP, AP Central,

AP Vertical Teams, APCD, Pacesetter, Pre-AP, SAT, Student Search Service, and the acorn logo are registered trademarks of the
College Entrance Examination Board. PSAT/NMSQT is a registered trademark of the

College Entrance Examination Board and National Merit Scholarship Corporation.
Educational Testing Service and ETS are registered trademarks of Educational Testing Service.

Other products and services may be trademarks of their respective owners.

For the College Board’s online home for AP professionals, visit AP Central at apcentral.collegeboard.com.

The materials included in these files are intended for noncommercial use by
AP teachers for course and exam preparation; permission for any other use

must be sought from the Advanced Placement Program®. Teachers may
reproduce them, in whole or in part, in limited quantities, for face-to-face

teaching purposes but may not mass distribute the materials,
electronically or otherwise. This permission does not apply to any

third-party copyrights contained herein. These materials and any copies
made of them may not be resold, and the copyright notices

must be retained as they appear here.

AP® Computer Science AB
2004 SCORING GUIDELINES

Copyright © 2004 by College Entrance Examination Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for AP students and parents).

2

Question 1

Part A: LibraryItem 2 pts

 +1/2 public interface LibraryItem (missing public ok but private loses the point)
 +1/2 String id()
 +1/2 String holder()
 +1/2 void setHolder(String holder)
Note: No penalty for extra methods, except set id loses ½ usage
Note: Method identifiers must be appropriate or lose the ½ point.
 Single character identifier ok for parameter only.
Note: ½ point usage each, for including data fields or constructors or implementing methods

(taken only once for each of these three, max 1 ½)

Part B: LibraryBook 4 pts

 +1 public class LibraryBook extends Book implements LibraryItem

+1/2 attempt (must extend Book or implement LibraryItem)
 +1/2 correct

+1/2 private String instance variables with appropriate identifiers for id and holder

+1 Constructor

+1/2 attempt (must use super or correctly set ID)
 +1/2 correct

 +1 1/2 methods, identifiers must match identifiers in part a, bodies must be correct
 +1/2 providing functionality for id
 +1/2 providing functionality for holder
 +1/2 providing functionality for setHolder

 Note: ½ point usage if full interface from part A is not implemented.

Part C: data structure 3 pts

+1 1/2 Specify data structure
 +1 choose HashMap or TreeMap

+1/2 key is ID (must be Map)

 +1 1/2 complexity (eligible for these points for any data structure choice, as in table below)
 +1/2 add
 +1/2 checkOut
 +1/2 getHolder

 unsorted AL/ LL sorted AL sorted LL HashSet TreeSet HashMap TreeMap
add O(1) O(N) O(N) O(1) O(logN) O(1) O(logN)
checkOut O(N) O(logN) O(N) O(N) O(N) O(1) O(logN)
getHolder O(N) O(logN) O(N) O(N) O(N) O(1) O(logN)

AP® Computer Science AB
2004 SCORING GUIDELINES

Copyright © 2004 by College Entrance Examination Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for AP students and parents).

3

Question 2

Part A: VoterBallots constructor 4 pts

 +1/2 create Map
 +1 loop through ballotList

+1/2 attempt
 +1/2 correct

 +1 iterate through each ballot Set (in context of ballotList loop)

+1/2 attempt (must have 2 of decl/retrieval, hasNext, next)
 +1/2 correct

 +1 1/2 create or update entry (eligible for these points even if item from ballotList is

used for candidate)
 +1/2 check if candidate is in Map as a key (lose this if options are reversed)
 +1/2 conditionally, increment count
 +1/2 conditionally, create entry with count of one

Part B: candidatesWithMost 4 pts

 +1/2 create and return result Set

 +1/2 call maxVotes (must store or use returned value)

+1 Iterate through Map key set
+1/2 attempt

 +1/2 correct

 +1 check if count from Map equals max

+1/2 attempt (must test equality of something from Map to some max)
 +1/2 correct (must be in context of loop)

 +1 Adjust result set appropriately

Part C: complexity 1 pt

 +1 correct complexity

 for HashMap and HashSet, O(C)
 for HashMap and TreeSet, O(C log C)
 for TreeMap and HashSet, O(C log C)
 for TreeMap and TreeSet, O(C log C)

 Note: cannot get this point if type of Map or Set is not clear or if illegal operation on Map or Set.
 Note: if call to maxVotes inside loop, possible O(C2)

Note: no points off for unnecessary constant (e.g. O(2C) instead of O(C))
 Note: no points off for failure to convert from Integer to int and vice-versa.

AP® Computer Science AB
2004 SCORING GUIDELINES

Copyright © 2004 by College Entrance Examination Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for AP students and parents).

4

Question 3

Part A: class declaration 2 pts

 +1/2 public class PredatorFish extends Fish

 +1/2 private int instance variable (with appropriate identifier like turnsNotEating)

 +1 constructor
 +1/2 attempt (two of these three must be present:

 two parameters, call to super, initialize int instance variable in body)
 +1/2 correct (int instance variable need not be set – defaults to zero)

Part B: eat 3 pts

 +1/2 get location in front

 +1/2 get object from that location

+1 test and remove locatable object from environment
+1/2 attempt (to remove an object that has a location, not the location itself)

 +1/2 correct (call to isEmpty must be accompanied by call to isValid
including (Fish) cast for die)

 +1 return correct boolean (in context of a test for eating)

 Note: -1 usage for missing declaration & initialization (using env, theEnv for environment())
 and/or using private data when not accessible (myLoc, myDir)

Part C: act 4 pts

 +1 update turnsNotEating (reset to zero or increment/decrement)

+1/2 attempt (one correct or both with reversed condition)
 +1/2 correct
 Note: can get the point if this is done correctly within eat method in Part B

+1/2 correctly test isInEnv()

+1/2 call eat()

+1/2 correctly test turnsNotEating

+1/2 call die correctly (in context of test for starvation)

+1 call super.act()

+1/2 attempt (must have super.act())
 +1/2 correct (lose this for wrong placement)

AP® Computer Science AB
2004 SCORING GUIDELINES

Copyright © 2004 by College Entrance Examination Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for AP students and parents).

5

Question 4

Part A: peekMin 3 pts

 +1/2 start at root – root cannot be modified; if an iterative method is used, it must use local

 +1 traverse to leftmost node

+1/2 attempt – must arrive at left most node (on purpose) at some point in the code
 +1/2 correct

 +1 1/2 return data (must get traverse attempt point to get any of the following points)

+1/2 attempt to return something from node, including node itself
 +1/2 return node.getValue() or node.getData()
 +1/2 correct (no deduction for missing downcast)

Part B: addHelper 6 pts

 +1 1/2 base case

+1/2 check if t == null
 +1 return new TreeNode with new Item(obj)

+1/2 attempt (must create new TreeNode with some reference to obj)
 +1/2 correct

Note: If base case is not checked properly, or does not exist, and look-ahead check is done on t.getLeft()
and t.getRight()then new node occurs within setLeft and setRight. Can get new TreeNode point
if t is correctly returned.

 +4 1/2 recursive case

+1 get data from item at node
+1/2 attempt (must have t.getValue() or t.getData())

 +1/2 correct
 +1 if equal, increment count

+1/2 attempt – must show an equality test and use incrementCount()
 +1/2 correct

 +1/2 traverse correct side – requires correct inequality test and correct direction selected
 +1 1/2 recursive/repeated calls (eligible for these points even if traverse point is lost)

+1/2 attempt
- must attempt recursive calls to each side, or
- some iteration involving each side

 +1 correct setting of each side with setLeft() and setRight()
 +1/2 return t (separate from base case)

- must return unchanged t
- return addHelper(…) does not work

 Note: After deduction on get data point, treat t.getValue()or t.getData()as correct data

2004 General Usage/Java

Most common usage errors are addressed specifically in rubrics with points deducted in a manner other than indicated on this sheet.
The rubric takes precedence.

Usage points can only be deducted if the part where it occurs has earned credit.

A usage error that occurs once on a part when the same usage is correct two or more times can be regarded as an oversight and not
penalized. If the usage error is the only instance, one of two, or occurs two or more times, then it should be penalized.

A particular usage error should be penalized only once in a problem, even if it occurs on different parts of a problem.

Non-penalized Errors Minor Errors (1/2 point) Major Errors (1 point)

case discrepancies misspelled/ confused identifier (e.g., len read new values for parameters or
 for length or left() for getLeft()) or instance variables
variable not declared when others are (prompts part of this point)
declared in some part of question no variables declared
 extraneous code which causes side-effect,
missing “new” for constructor call once, new never used for constructor calls for example, information written to output.
when others are present in question
 use interface or class name instead of
default constructor called without parens void method returns a value variable identifier, for example
for example, new Fish; Simulation.step() instead of sim.step()
 modifying a constant (final)
missing { } where indentation clearly aMethod(obj) instead of obj.aMethod()
conveys intent
 use equals or compareTo method on use of object reference that is incorrect,
obj.method instead of obj.method() primitives, for example for example, use of f.move() inside
 int x; …x.equals(val) method of Fish class
loop variables used outside loop
 use value 0 for null use private data or method when not accessible
[r,c], (r)(c)or(r,c)instead of [r][c]
 use values 0, 1 for false, true destruction of data structure (e.g. by using root
= instead of == (and vice versa) reference to a TreeNode for traversal of the tree;
 this is often handled in the rubric)
missing () around if/while conditions use of itr.next() more than once as
 same value within loop
length - size confusion for array, String,
and ArrayList, with or without () use keyword as identifier

missing downcast from collection or map [] – get confusion

unnecessary construction of object whose assignment dyslexia, for example,
reference is reassigned, for example x + 3 = y; for y = x + 3;
Direction dir = new Direction();
dir = f.Direction;

private qualifier on local variable

use “,” instead of “+” for String in
System.out.print(str1, str2))

missing ;s or missing public

extraneous code with no side-effect, for
example a check for precondition

automatic conversion of Integer to int
and vice-versa (this is legal in Java 1.5,
called auto(un)boxing)

Note: Case discrepancies for identifiers fall under the "not penalized"
category. However, if they result in another error, they must be penalized.
Sometimes students bring this on themselves with their definition of
variables. For example, if a student declares "Fish fish;", then uses
Fish.move() instead of fish.move(), the one point deduction applies.
Interpret writing to give benefit of the doubt to the student.

