Teacher Notes for Design Question

An abstract class is a class with at least one method that is not implemented, i.e. it has no body.

public abstract void soneMethod(); //note the senmicolon at the end of the method heading
Since the class has at least one method that is not implemented, it must itself be declared abstract.

Here are the rules for creating an abstract class:
1. Anabstract class can have private instance variables and constructors
2. An abstract class can have non-abstract methods
3. Abstract methods have no body, the heading ends in a semicolon, and must be declared abstract
4. Anabstract class cannot be used to instantiate an object
5. Other classes can extend an abstract class. These classes must implement the abstract methods, or
be declared abstract themselves.

Consider the following problem. A company employs two kinds of employees - hourly wage employees and
salaried employees. All employees have a name and id, can change their name, receive a raise and get a pay
check every week. Hourly employees have their paycheck computed by multiplying the number of hours
worked by their hourly pay rate. If they have worked overtime, all hours over 40 are paid 1.5 * hourly rate.
Salaried employees receive 1/52 of their salary every week.

Obviously these two types of employees have a lot in common. Apply the "IS-A" relationship.
An hourly employee "IS-A" salaried employee?

A salaried employee "IS-A" hourly employee?

Neither of these is frue. What about:

an hourly employee "IS-A" employee?
a salaried employee "IS-A" employee?

These relationships are true. So the hierarchy should be:

Enpl oyee

N

Hour | yEnpl oyee Sal ari ed Enpl oyee

But what is a plain old employee? How do you calculate an employee's pay? You can't until you know what
kind of employee you have. This problem can be solved by creating Enpl oyee as an abstract class. In this
class, the programmer will include all of the properties that the two subclasses have in common. A
constructor is created to initialize those properties. The subclasses will super to that constructor. The
abstract class will define and implement all of the methods that both classes have in common and that can

Desigh Question Teacher Notes -1- Judith Hromcik 4/28/2004
Copyright © 2004

be completed. The methods that the subclasses have in common, but cannot be completed, will be defined as
abstract. The subclasses MUST implement these methods or be defined as abstract themselves. The

completed abstract class Enpl oyee is shown below.

public abstract class Enpl oyee

{
private String nane;
private String id;
public Enpl oyee(String nm String enplD)
{
name = nm
id = enmpl D
}
public String getName()
return name;
}
public String getlX)
{
return id;
}
public void changeNane(String newNane)
{
name = newNane;
}
public String toString()
{
String result = "Nanme: " + nane;
result += "\nEnployee ID: " + id;
return result;
}
public abstract void raisePay(doubl e anount);
public abstract doubl e get PayCheck();
}

know how to do this

know how to do this

The methods for which the Enpl oyee class doesn't have enough information to complete are defined as

abstract. These abstract methods must be completed by the subclasses.

The SalariedEmployee class adds one private instance variable, salary, and one accessor method, getSalary.
The constructor for this class calls the Employee class constructor and then initializes the added field. The
salary field is necessary to complete the getPayCheck method. The completed SalariedEmployee method is

found on the next page.

Desigh Question Teacher Notes -2- Judith Hromcik
Copyright © 2004

4/28/2004

public class Sal ari edEnpl oyee extends Enpl oyee

{
private doubl e sal ary;
public Sal ari edEnpl oyee(String nm String enpl D, double sal)
{
super (nmenpl D);//al ways call super first
salary = sal;
}
public void rai sePay(doubl e anount) [/ conpl eted nmet hod from Enpl oyee
sal ary += anount;
}
publ i c doubl e get PayCheck() [/ conpl et ed nmet hod from Enpl oyee
{
return sal ary/52;
}
public doubl e getSal ary() /I new nmet hod for Sal ari edEnpl oyees only
{
return sal ary;
}
public String toString() //overridden toString nethod
{
return super.toString() + "\nYearly Salary: " + salary
+ "\ nCurrent Paycheck: " + getPayCheck();
}
}

While you cannot instantiate an Enpl oyee object, Enpl oyee variables (references) can refer to
Sal ar i edEnpl oyee and Hour | yEnpl oyee (when this class is created) objects.

Enpl oyee enpl = new Sal ari edEnpl oyee("Jill", "213", 50000);
Enpl oyee enp2 = new Hourl yEnpl oyee(" Tom', "123", 22.15);

These references can call only the methods defined in the Enpl oyee class or those inherited by the
Enpl oyee class. enpl. get Sal ary() would cause a compiler error - unresolved symbol - because the
Enpl oyee class does not have a get Sal ary method defined.

The completed Hour | yEnpl oyee class is shown on the next page. Notice that two fields hour | yRat e and
week| yHour s\Wor ked, are added to the class, along with a hew method, set Hour sWor ked. The fields and
the method are necessary to be able to complete the get PayCheck method correctly. A get Hour sWor ked
accessor method is also added to complete the class.

Desigh Question Teacher Notes -3- Judith Hromcik 4/28/2004
Copyright © 2004

public class Hourl yEnpl oyee ext ends Enpl oyee

{
private doubl e hourl yRat e;
private doubl e weekl yHour sWr ked;
public Hourl yEnpl oyee(String nm String enpl D, double rate)
{
super (nmenpl D);//al ways call super first
hourl yRate = rate;
}
public void rai sePay(doubl e anount) [/ conpl et ed nmet hod from Enpl oyee
hour| yRat e += anount;
}
publ i c doubl e get PayCheck() [/ conpl eted met hod from Enpl oyee
{
doubl e ot Hours = weekl yHour s\Wor ked - 40;
i f(otHours > 0)
return 1.5 * hourlyRate * otHours + 40 * hourl yRate;
el se
return hourl yRate * weekl yHour sWr ked,;
}
public void set HoursWr ked(doubl e hours) //new nmethod for Hourl yEnpl oyees only
/I needed to conpute paycheck
weekl yHour sWworked = hours;
}
publ i c doubl e get Hourl yRat e() // new nmet hod for Hourl yEnpl oyees only
{
return hourl yRat e;
}
publ i c doubl e get Hour sWr ked() /I new met hod for Hourl yEnpl oyees only
{
return hoursWrked;
}
public String toString() //overridden toString nethod
{
return super.toString() + "\nPay Rate: " + hourlyRate
+ "\'nCurrent Paycheck: " + getPayCheck();
}
}
Notes:

1. T assumed that the employee name was in the form Last, First. I am leaving this to the discretion of
the teacher and student. You could create a Name class that encapsulates the first and last name. I
chose not to do this.

2. My solutions are possible solutions. Your students' solutions may vary.

Desigh Question Teacher Notes -4- Judith Hromcik 4/28/2004

Copyright © 2004

The next task is to create a class that will handle a company's payroll. The company has two types of
employees, salaried and hourly. There is an A and AB version of this problem. The A students will most
likely implement the Payr ol | class using ArrayLi st objects. The AB version requires the student to
choose the best data structure to achieve the required Big-Oh performance, explain how the data is being
stored, and then justify their choice.

Notes:

3. Setting the number of hours worked for each hourly employee can be done several ways. The Payroll
method could iterate through the hourly employees and read the information in from a file. It could
accept a data structure with employee id's and hours worked paired together. This is really up to
the students and/or the teacher.

4. You might consider giving your students the Ti neCar ds and Ti meCar d class.

The completed code for the A version of the Payrol | class is found below.

i mport java.util.*;

public class Payroll

{
private ArrayList hourlyEnp; //TreeMap for Hourly Enpl oyees - key is nane
private ArraylList sal ariedEnp; //TreeMap for Sal ari ed Enpl oyees - key is nane
private ArrayList allEnmp; //HashMap for all enployees - key is id

public Payroll ()
{

hourl yEnp = new ArraylList();
sal ari edEnp = new Arraylist ();
all Enp = new ArrayList ();

}

/1 enp has been added to hourl yEnp and al | Enp
public void addEnp(Hourl| yEnpl oyee enp)

hour | yEnp. add(enp) ;
al | Enp. add(enp) ;
}

/lenp has been added to sal ari edEnp and al | Enp
public void addEnp(Sal ari edEnpl oyee enp)

sal ari edEnp. add(enp) ;
al | Enp. add(enp) ;

/private hel per nethod - used to search the all Enp ArraylList for an
/enmpl oyee with a given id.
rivate int find(String id)

~T —

for(int j =0; j < allEnp.size(); j++)
Enpl oyee enp = (Enpl oyee) all Enp. get(j);
i f(emp.getlD).equals(id))
return j;

return -1;

Desigh Question Teacher Notes -5- Judith Hromcik 4/28/2004
Copyright © 2004

/Il precondition: if an enployee with id enployee id
/lexists, that enployee is either in hourlyEmp or
/Il sal ari edEnp, not both.
public void renmoveEnp(String id)
{
int index = find(id);
if(index !'= -1)
{
Enpl oyee enp = (Enpl oyee) all Enp.renove(find(id));
i f(!hourl yEnp. renove(enp))
sal ari edEnp. r enove(enp);

/precondition: t holds all the tinecards for all hourly
/ enmpl oyees.

/postcondition: all hourly enpl oyees' weekly hours

/wor ked has been updat ed

ublic void updat eWekl yHour s(Ti neCards t)

~—~T S~~~ —

for(int | = 0; j < hourlyEnp.size(); j++)
{

Hour | yEnpl oyee enp = (Hourl yEnpl oyee) hourl yEnmp. get(j);
enp. set Hour sWor ked(t . get Hour sWor ked(enp. getl IX)));

}

[lreturns the total anpbunt of all enployee's paychecks
publ i c doubl e get Tot al Payrol | ()
{

doubl e total = O;
for(int j =0; j < allEnp.size(); j++)

Enpl oyee enp = (Enpl oyee)al | Enp. get(j);
total += enp. get PayCheck();

return total;

}
publ i c Enpl oyee get Enpl oyee(String id)
{

int index = find(id);

if(index !'= -1)
return (Enmpl oyee) all Enp. get (i ndex);

el se
return null;

}
public void printHourl yEnpl oyees()
{

print (hourl yEnp, "Hourly");
}
public void printSalari edEnpl oyees()
{

print(sal ari edeEnp, "Salaried");
}

Desigh Question Teacher Notes -6- Judith Hromcik 4/28/2004

Copyright © 2004

private void print(ArraylList list, String type)

{

Syst em out . pr intl n(" :::") :

Systemout.println("Listing of all " + type + " Enployees");

for(int j =0; j < list.size(); j++)

Systemout.printin(list.get(j) + "\n");

}

Syst em out . pr intl n(" —====—==—=—==—=—=—=—=—=—=—=—=—=—=—=—==—=—==—=—==—=—===—============\ n")
}

}

The Ti meCar d and Ti meCar ds classes are listed below. These classes can be given to the students instead
of having them write them.

public class TineCard

{
private String id;
private doubl e hours;
public TimeCard(String enpl D, double hrsWrked)
{
id = enpl D
hours = hrsWr ked;
}
publ i c doubl e get Hours()
{
return hours;
public String getlX)
{
return id;
}
}

i nport java.util.*;

public class TineCards

{
private Map ti neMap;
public TimeCards()
{
ti meMap = new HashMap();
}
public void add(TineCard t)
ti meMap. put (t.getlID(), t);
}
publ i c doubl e get Hour sWorked(String id)
{
TinmeCard card = (TineCard)ti neMap. get (i d);
return card. get Hours();
}
}
Desigh Question Teacher Notes -7- Judith Hromcik 4/28/2004

Copyright © 2004

The AB version of this problem asks students to choose data structures that will satisfy Big-Oh
requirements. The specifications are repeated below.

Now that you have designed and implemented classes for the employees of a company, consider designing a
class that will manage the payroll for this company. The operations for this class must include the following:

e The payroll class must be able to add hourly employees and salaried employees to the payroll.

e The payroll class must be able to delete hourly employees and salaried employees from the payroll.

e Each week, the records for each hourly employee must be updated to reflect the number of hours
that were worked during that weekly pay period. You will need to resolve how this information
(weekly hours worked) is transferred to each employee object.

e Each week, a total payroll for the company must be computed.

AB extension

If His the number of hourly employees and S is the number of salaried employees, updating the hours
worked for the hourly employees must run in at least O(H log(H)) time. Computing each employee's pay
check and the total payroll must runin O(H + S) time. Choose appropriate data structures to fulfill these
requirements.

Add the following requirements:
e Print employee information in the following manner:
o Print all of the hourly employees information alphabetically
o Print all of the salaried employees information alphabetically
This operation must be done in linear time - O(H) for hourly employees, O(S) for salaried employees
e Using an employee's id humber, access to any employee's record must be done in O(1) time.
e Adding and deleting employees must be done in O(log (H + S)) time. The employee's ID will be used
when deleting an employee.

Explain your chosen data structures for this class. Explain how the employee data is being stored in the
Payrol | class. Justify how your data structures meet the Big-Oh requirements for this problem.

The Payr ol | class needs 3 data structures, one for hourly employees, one for salaried employees, and one
for all employees. Since the hourly and salaried employees must be added or deleted in O(log (H + S)) time
and printed in O(H) or O(S) time, a Tr eeMap will satisfy the Big-Oh requirement for storing the hourly and
salaried employees. Access to a given employee, given the id number, must be achieved in O(1) time. A
HashMap will satisfy the Big-Oh requirement for storing all of the employees. Additionally, students must
consider how all hourly employee records can be updated in O(H log(H)) time. The Ti meCar ds class uses a
HashMap so that this requirement is satisfied. You may want to give this class to your students or let them
develop their own scheme - there certainly are other ways to update the hourly employees records in O(H
log(H)) time or better.

This may seem very wasteful in terms of memory. It isn't. Each data structure is really storing references
to the employee objects.

A solution to the AB version of the Payr ol | class is shown starting on the next page.

Desigh Question Teacher Notes -8- Judith Hromcik 4/28/2004
Copyright © 2004

i mport java.util.*
public class Payrol

private Map hourl yEnp; //TreeMap for Hourly Enpl oyees - key is nane
private Map sal ari edEnp; //TreeMap for Sal ari ed Enpl oyees - key is nane
private Map all Enp; //HashMap for all enployees - key is id

public Payroll ()
{

hour | yEnp = new TreeMap();
sal ari edEnp = new TreeMap();
al | Enp = new HashMap();

}

/1 enp has been added to hourl yEnp and al | Enp
public void addEnp(Hourl| yEnpl oyee enp)
{

hour | yEnp. put (enp. get Name(), enp);

al | Enp. put (enp. get1D(), enp);

/1 enp has been added to sal ari edEnp and al | Enp
public void addEnp(Sal ari edEnpl oyee enp)

{
sal ari edEnp. put (enp. get Nanme(), enp);
al | Enp. put (enp.getID(), enp);
}
/Il precondition: if an enployee with id enployee id
/lexists, that enployee is either in hourlyEnp or
// sal ari edEnp, not both.
public void renoveEnp(String id)
{

Enpl oyee enp (Enpl oyee) al | Enp. renove(id);
if(emp !'= null)

i f(enmp. equal s(hourl yEnp. get (enp. get Nanme())))
hour | yEnp. renove(enp. get Nanme()) ;

el se
sal ari edEnp. r enove(enp. get Nanme()) ;

}
}
/lprecondition: t holds all the timecards for hourly
/1 enpl oyees.
/Il postcondition: all hourly enployees' weekly hours
/I wor ked has been updat ed
public void updat eWeekl yHour s(Ti meCards t)
{
Set keys = hourl yEnp. keySet () ;
Iterator itr = keys.iterator();
whi l e(itr.hasNext())
{
Hour | yEnpl oyee enp = (Hourl yEnpl oyee) hourl yEnp.get (itr.next());
enp. set Hour sWr ked(t . get Hour sWor ked(enp. getl DX)));
}
Desigh Question Teacher Notes -9- Judith Hromcik 4/28/2004

Copyright © 2004

[lreturns the total anobunt of all enployee's paychecks
publ i c doubl e get Tot al Payrol | ()
{

Set s = all Enp. keySet ();
Iterator itr = s.iterator();
doubl e total = 0;

whi l e(itr.hasNext())

{
Enpl oyee enp = (Enpl oyee)al | Enp. get (itr.next());
total += enp. get PayCheck();

return total;

}

public Enpl oyee get Enpl oyee(String id)

{
return (Enmpl oyee) all Enp. get(id);

ublic void printHourl yEnpl oyees()
print (hourl yEnp, "Hourly");

ublic void printSal ari edEnmpl oyees()
print(sal ari edenp, "Salaried");

rivate void print(Map m String type)

~5 —~ o~ —~— ~g —

Iterator itr = mkeySet().iterator();
Systen]out_print|n("::");

Systemout.println("Listing of all " + type + " Enployees");
whi I e(itr. hasNext())
{
Systemout.printin(mget(itr.next()) + "\n");
Systen]out_print|n("::\n");
}

Explanation of the data structures:
hourl yEnp - TreeMap: contains references to only the Hour| yEnpl oyee objects

Key is the employee name, val ue is the employee object
Insertions and Deletions are done in O(log H) time
Traversals (alphabetical) are done in O(H) time

sal ari edEnp - TreeMap: contains references o only the Sal ari edEnpl oyee objects

Key is the employee name, val ue is the employee object
Insertions and Deletions are done in O(log S) time
Traversals (alphabetical) are done in O(S) time

Desigh Question Teacher Notes -10- Judith Hromcik 4/28/2004
Copyright © 2004

al | Emp - HashMap: contains references to all of the Enpl oyee objects
Key is the employee id, val ue is the employee object

Insertions and Deletions are done in O(1) time

Traversals (alphabetical) are done in O(H + S) time

Access to an Employee object is done in O(1) time

Methods of the Payrol | class:

addEnp and renoveEnp: O(log H) or O(log S)
Adding/Deleting to/from hour| yEnp or sal ari edEnp is done in at least O(log (H + S))
Adding/Deleting to/from al | Enp is done in O(1) time

O(1) + O(log (H)) is O(log H) / O(1) + O(log (S)) is O(log S): these satisfy the requirement of
O(log (H +)

updat eWeekl yHour s: O(H log(H))

This method iterates through the hour | yEmp map keyset, gets each employee, then accesses the id and
uses the id to access the employee's time card (stored in a HashMap). Traversing the keySet of hour | yEmp
is O(H). Getting each employee (to get the id) from the hourlyEmp map is O(log H). Each call to the

Ti meCar ds get Hour sWor ked is O(1), since the Ti meCar ds class uses a HashMap.

O(H log(H)) * O(1) is O(H log (H): this satisfies the requirement of O(H log (H))

get Tot al Payrol | : O(H + S)

This method iterates through the al | Enps map keySet , gets each employee and then accesses the

get PayCheck method to add this amount to the total. Tterating through the keySet is O(H + S), each get
is O(1) since al | Enps is a HashSet . Therefore, this method runs in O(H + S) time which satisfies the
requirement of O(H + S).

pri nt Hour | yEnpl oyees() and print Sal ari edEnpl oyees(): O(H) and O(S) respectively
Both method iterate through the keySet and print each employee object. Iterating through the keySet is
O(H) and O(S) respectively. This satisfies the requirement of O(H) and O(S).

get Enpl oyee: O(1)
This method uses the employee id to lookup the employee object. al | Enps is a HashMap. Lookup ona
HashMap is O(1) which satisfies the requirement of O(1).

Note: The keys in al | Enps are unique Stri ng ids. The keys in hour | yEnps and sal ari edEnps are Stri ng
names. The Stri ng class has a good hashCode method and should insure good results in a HashMap.

Desigh Question Teacher Notes -11- Judith Hromcik 4/28/2004
Copyright © 2004

