Review Sheet 3
Barbara Ericson

Look over the previous review sheets and tests and also review the material on javabat.com for (conditionals, loops, and arrays) http://www.javabat.com/doc/ifboolean.html , http://www.javabat.com/doc/loop.html, and http://www.javabat.com/doc/array.html. You should do Warmup-1, Logic-1, and Array-1 problems on http://www.javabat.com.
1. Overloading a method means to declare more than one method with the same name but with different parameter lists. The method that is called during execution is determined by the type and order of the arguments to the parameters. For example it is okay in Java to have
public void copy(Picture p) as well as public void copy(Picture source, int targetX, int targetY) both as methods in the Picture class.
pictureObj.copy(picture) will call the first and pictureObj.copy(picture,100,100) calls the second one.
2. A one-dimensional array has consecutive storage for data of the same type and you can use an index to access the data. The first element in an array is at index 0. The length of an array can be found using arrayRef.length as length is a public field. The last element in a one-dimensional array is at index (length – 1). The array below has a length of 5 and the last element is at index 4. To declare a reference to an array use:
int[] nums = null;

int[] nums = {3, -20, 500, 60, -1032}; // declares the nums array and creates it
You can access an element of an array using (arrayName[index]). To access the first element of the following array use (nums[0]). To access the last use (nums[nums.length-1].
0
1
 2
 3
 4

	3
	-20
	500
	60
	-1032

3. With a two-dimensional array you can use two indices to access the data. For example, you can use a given x and y pair to access a particular pixel in a picture (x,y). The array below has 3 rows and 5 columns. The value stored at location (x=2,y=0) is 500. If there is a reference to this array called matrix then to access this element use (matrix[2][0]). The value stored at (x=0,y=1) is -50. In a picture the x values start at 0 at the top left and increase to the right. The y values start at 0 at the top left and increase going top to bottom.
0
1
 2
 3
 4

	3
	-20
	500
	60
	-1032

	-50
	8
	3
	-2
	12

	1000
	24
	32
	46
	79

4. There are many ways to loop or repeat a block of statements in Java. A for-each loop is used to loop through all the elements of a collection (like all the elements of an array or a list). A while loop is used to repeat a block of code as long as a Boolean expression is true like as long as the distance from the goldfish to the shark is greater than some value. A general for loop is usually used to loop a known number of times like looping through half the values in a sound. A nested for loop is used when you need to loop through a two-dimensional array and keep track of the x and y values in the array like when you want to mirror a picture from left to right. An infinite loop is one that never ends.
5. A complex conditional is at least two Boolean expressions connected with logical "and" (&&), "or" (||), or exclusive or (^). A logical not (!) is used to negate a Boolean expression. Adding ! in front of a Boolean expression that is true gives a false result and adding ! in front of a Boolean expression that is false gives a true result.
> !false

true

> !true

false

6. Two Boolean expressions are that joined by a logical "and" (&&) will be true only when both of the Boolean expressions are true. We can't write a numerical range in Java the way we do in math (0 < x <= 10). We have to write it with a logical "and" (0 < x && x <= 10). A nested conditional can also be written using a logical "and".
if (0 < x)

// same as

if (0 < x && x <= 10)
{

{
 if (x <= 10)

 // do something
{

 // do something

}
}

 }

7. Two Boolean expressions that are joined by a logical "or" (||) will be true if either of the Boolean expressions is true. Two separate conditionals that return the same value can be written using a logical "or" instead.
if (!weekend) return true; // same as if (!weekend || vacation) return true;

if (vacation) return true;

8. Two Boolean expressions that are joined by a logical "exclusive or" (^) will be true only if one and only one of the Boolean expressions is true. It will be false when they are both true.
9. You can execute a statement or a block of statements when a Booelan expression is true using an if statement
> double temp = 101.9;

> if (temp > 101.0) System.out.println("you have a fever");

you have a fever
10. You can execute one statement or a block of statements when a Boolean expression is true and another when it is false using an if and else.

> double temp = 99.3;

> if (temp > 101.0) System.out.println("you have a fever");

> else System.out.println("your temperature is normal");

your temperature is normal

11. You can have three or more different results from a test using if, else if (as many as needed), and else.
if (x < 3) System.out.println("x < 3");

else if (x == 3) System.out.println("x is equal to 3");

else System.out.println("x > 3");

12. The syntax for a for-each loop is:

for (Type name : collection) which will loop through all of the items in the collection one at a time. Each time through the loop the variable name will refer to the next item in the collection. We looped through all the sound samples in a sound using:

SoundSample[] sampleArray = this.getSamples();

for (SoundSample sample : sampleArray)

We also looped through all the pixels in a Picture using:

Pixel[] pixelArray = this.getPixels();

for (Pixel pixelObj : pixelArray)

13. A while loop will continue executing as long as a Boolean expression is true. You can use a while loop to repeat a block of statement a set number of times if you declare a variable to keep track of the number of times before the while loop (a count) and then test that the count is less than the desired number in the Boolean expression and then increment the count at the end of the repeated block. The following loop will print out the numbers from 1 to 100.
int count = 1;
while (count <= 100)

{

 System.out.println(count);

 count = count + 1;

}

14. A general for loop has three parts. The first part is the initialization area. The second part is the test for continuing the loop. The third part is the change area where you can change the loop variables. The following loop will print out the numbers from 1 to 100. Before the loop starts the variable i is declared to be of type integer and initialized to 1. Then each time through the loop the value of i is checked and the loop will only occur as long as i is less than 101. The body of the loop will print out the value of i and then increment i by 1 (i++ is the same as i = i + 1).
for (int i = 1; i <= 100; i++) System.out.println(i);

You can initialize more than one value in the initialization part of the general for loop. You can use a complex conditional to combine Boolean expressions in the test area. You can also change more than one value in the change part of the general for loop.

for (int sourceX = 0, targetX = 0;

 sourceX < sourceP.getWidth() && targetX < this.getWidth();

 soundX++, targetX++)

15. The number of times a single loop executes is the ending value – starting value + 1 (as long as you change by 1 each time through the loop). So if you have the following loop: for (int i = 0; i < 5; i++) it will loop 5 times with the i value starting at 0 and the last time through the loop the i value will be 4. The loop stops when i is 5. If you have the following loop: for (int x = 32; x < 50; x++) it will loop 49 – 32 + 1 times = 18. The block of statements inside a nested loop execute the outer loop number of times multiplied by the inner loop number of times.
for (x = 3; x < 8; x++)
{

 for (y = 18; y < 25; y++)

 {

 // statements in inner loop

 }

}

The outer loop execute 7 – 3 + 1 times which is 5 times. Each time the outer loop executes the inner loop executes (24 -18 + 1 = 7) times. So the statements in the inner loop execute (5 * 7) which is 35 times.

16. System.out.print(expression) will print out the value of the expression as a string without any spaces or new lines. System.out.println(expression) will print out the value of the expression as a string followed by a new line. You can append one string to another using '+'.
int x = 3;

while (x < 5)

{

 System.out.print(x + " ");

 x++;

}

Will print out 3 followed by a space and then 4 followed by a space: "3 4 ". Using a nested loop you can print out:

for (int i = 1; i <= 5; i++)

{

 for (int j = 0; j < 5; j++)

 {

 System.out.print(i + " ");

 }

 System.out.println("");

}

This will print

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

5 5 5 5 5

You can also vary the loops to print different patterns:

for (int i = 5; i > 0; i--)

{

 for (int j = 0; j < i; j++)
 {

 System.out.print(i + " ");

 }

 System.out.println();

}

This will print

5 5 5 5 5

4 4 4 4

3 3 3

2 2

1
17. You should be able to write code for simple and complex conditionals such as those on JavaBat in warm-up 1 and logic-1. For example if you are asked to write a method isBadWeather that returns true when it is raining (isRaining) or snowing (isSnowing) you should be able to write:

public static boolean isBadWeather(boolean isRaining, booelan isSnowing)

{

 return (isRaining || isSnowing);

}

Or you could write it

public static boolean isBadWeather(boolean isRaining, booelan isSnowing)

{

 if (isRaining || isSnowing) return true;

 return false;

}

These methods are static as they are not operating on any object data so they are class (static) methods.
18. Be able to answer questions about methods that manipulate Sounds and Pictures. Like this:

What does the following method do?

public void mystery()

{

 Pixel[] pixels = this.getPixels();

 Pixel p = null;

 for (int i = 0; i < pixels.length / 3; i++)

 {

 p = pixels[i];

 p.setGreen(p.getGreen() – 100);

 }

}

It reduces the green by 100 in the top third of the picture.

19. Be familiar with the algorithms for modifying sounds such as reversing a sound, blending two sounds, changing the pitch of a sound, and increasing the volume of a sound. Be familiar with the algorithms for changing all the colors in a picture, mirroring a picture, blending two pictures, scaling a picture up or down, and removing red-eye from a picture.
