
Recitation Guide for April 7th, 2008

I. Housing Keeping

a. Homework 7 – due Wednesday April 9th

b. Exam 2 – in class Friday April 11th

c. Quiz 4 – in class Friday April 18th

d. Quiz 3 solution posted to T-square. Grades and papers should be returned the latest on

Wednesday. Two weeks from Wednesday for regrades. Regrades to Dawn.

II. UML (Unified Modeling Language)

a. Individual diagram

Person

-int dateOfBirth
-String sex

+eat()
+work()
+play()

b. Specialization/Inheritance relationship

Person

-int dateOfBirth
-String sex

+eat()
+work()
+play()

Doctor

-degree
-specialization

+doDoctorStuff()

Doctor is a subclass of Person. Therefore Doctor is a specialization of Person.

Name of the class
Instance
variable,
attributes
or fields:
What the
class knows

Methods or
operations: What
the instance
knows how to do

c. Visiblity

Visibility Table

Mark Visibility

+ Public

Protected

- Private

d. Bi-directional relationship

Flight

-int flightNumber
-Date departureTime
-Minute flightDuration
-String departingAirport
-String arrivingAirport

+delayFlight (Minute
numberofMinutes)
+getArrivalTime()

A bi-directional association is indicated by a solid line (or a line ending in arrows on
either side) between the two classes. At either end of the line, you place a role name
and a multiplicity value. The Flight is associated with a specific Plane, and the Flight class
knows about this association. The Plane takes on the role of "assignedPlane" in this
association because the role name next to the Plane class says so. The multiplicity value
next to the Plane class of 0..1 means that when an instance of a Flight exists, it can
either have one instance of a Plane associated with it or no Planes associated with it
(i.e., maybe a plane has not yet been assigned). The figure also shows that a Plane
knows about its association with the Flight class. In this association, the Flight takes on
the role of "assignedFlights"; the diagram tells us that the Plane instance can be
associated either with no flights (e.g., it's a brand new plane) or with up to an infinite
number of flights (e.g., the plane has been in commission for the last five years).

Plane

-String airPlaneType
-MPH maximumSpeed
-Mile maximumDistance
-String tailId

0..*
assignedFlights

assignedPlane
0..1

e. Multiplicity

Multiplicity Table

Multiplicity value Meaning

0..1 Zero or one

1 One only

0..* Zero or more

* Zero or more

1..* One or more

3 Three only

0..5 Zero to Five

5..15 Five to Fifteen

f. Uni-directional relationship

In a uni-directional association, two classes are related, but only one class knows that

the relationship exists.

OverndrawnAccountsReport

-Date generatedOn

+refresh()

A uni-directional association is drawn as a solid line with an open arrowhead (not the

closed arrowhead, or triangle, used to indicate inheritance) pointing to the known class.

Like standard associations, the uni-directional association includes a role name and a

multiplicity value, but unlike the standard bi-directional association, the uni-directional

association only contains the role name and multiplicity value for the known class. In

our example in the figure, the OverdrawnAccountsReport knows about the BankAccount

class, and the BankAccount class plays the role of "overdrawnAccounts." However,

unlike a standard association, the BankAccount class has no idea that it is associated

with the OverdrawnAccountsReport.

g. For more information see:

http://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bel

l/

BankAccount

-String owner
-Dollar balance

+deposit(Dollar
amount)
+withdrawal(Dollar
amount)

overdrawnAccounts
0..*

http://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/

III. DES (Discrete Event Simulations)

a. Remember that:

i. In discrete simulations not every moment in time is simulated.

ii. Queues are FIFO (First in, First out) structures.

b. The EventQueue

i. Because there is no time loop, time events need to be placed in the

EventQueue, where the first one removed (processed) is the event that occurs

the earliest in time. At each run step, the next scheduled event with the lowest

time gets processed. The current time is then that time, the time that that event

is supposed to occur.

c. Agents

i. In discrete event simulations, agents do not just act. Instead, the agents wait for

events to occur and schedule new events to correspond to the next thing that

they are going to do. Events also get scheduled according to different

probabilities.

ii. However, agents cannot always do what they want to do because of limited

resources. An agent is blocked until more resource is available.

IV. Continuous Simulations

a. Remember that:

i. Continuous simulations are driven by time.

b. Each time step, the agents are told to act. The interactions between agents and the

environment are based on their coded behaviors.

V. Go over Homework 7.

VI. Go over Quiz 3.

