

Spring 2008 CS 1316: Representing Structure and Behavior Dawn Finney

1 Understanding complex method behaviors: A case study of weave

Understanding complex method behaviors: A case study of weave

Introduction to understanding complex method behaviors
Often in course of your education or even in industry, you will need to figure out what a
particular method or function does depending on the current situation. However rather than
tediously tracing code line-by-line, sometimes it is easier to determine the method’s behavior
based on the results of a few well-selected inputs. However, what can actually be considered
exemplary inputs and how do we go about choosing them?

A case study of weave
To better understand how to choose your inputs, we will walk through an analysis of the weave
method. Below is the actual code for the weave method:

Because weave is a linked list method, we know that it somehow operates on a linked list of
nodes. Thus it would be a good idea to have distinct nodes within the list so that any change
will be clearly reflected.

 a1 g5 c2

1 public void weave(AdvancedSongNode afterThisNode,

2 AdvancedSongNode newNode, int count,

3 int skipAmount) {

4 AdvancedSongNode current = afterThisNode;

5 for (int i = 0; i < count; i++){

6 for (int j = 0; j < skipAmount; j++){

7 if (current != null)

8 current = current.getNext();

9 }

10 if(current != null){

11 AdvancedSongNode copy = newNode.copy();

12 insertAfter(current, copy);

13 current = copy;

14 }

15 else

16 break;

17 }

18 }

Spring 2008 CS 1316: Representing Structure and Behavior Dawn Finney

2 Understanding complex method behaviors: A case study of weave

Using these three distinct nodes, we can now create a list to work with. Consider the following
list created these following lines of code:

AdvancedSongList llist = new AdvancedSongList();

AdvancedSongNode a1 = new AdvancedSongNode(AdvancedSongPhrase.a1());

AdvancedSongNode g5 = new AdvancedSongNode(AdvancedSongPhrase.g5());

AdvancedSongNode c2 = new AdvancedSongNode(AdvancedSongPhrase.c2());

llist.add(a1);

llist.repeatNextInserting(a1, g5, 3);

Analyzing the inputs
Now that we have a linked list and some nodes to work with we should analyze the inputs of
weave to properly test it.

Cases
We have to choose representative cases so as to establish a pattern of behavior for weave. The
list is reset back to the original list above after each case.

Case 1: count = 0 and skipAmount = 0
First let us consider what will happen if we did a case when count and skipAmount equal zero

llist.weave(a1, c2, 0, 0);

Spring 2008 CS 1316: Representing Structure and Behavior Dawn Finney

3 Understanding complex method behaviors: A case study of weave

The result is that there is no change in the list. This makes sense because when count equals
zero this effectively means that zero new nodes will be mixed into the list.

Case 2: count = 1 and skipAmount = 0
What will happen when count equals one and skipAmount equals zero?

 llist.weave(a1, c2, 1, 0);

We see the result is that one new node is added to the list and no nodes are skipped, but
maybe we should see another case before deciding.

Case 3: count = 2 and skipAmount = 0

What will happen when count equals two and skipAmount equals zero?

 llist.weave(a1, c2, 2, 0);

The result is that two new nodes are added to the list and again no nodes are skipped. From the

threes case seen above, it is safe to say that weave for skipAmount equals to zero functions

like the repeatNextInserting method.

Spring 2008 CS 1316: Representing Structure and Behavior Dawn Finney

4 Understanding complex method behaviors: A case study of weave

Case 4: count = 2 and skipAmount = 1

Assuming from the previous cases that the count parameter only changes the number of new

nodes that will be added to the list, what will happen when we start to vary the skipAmount?

 llist.weave(a1, c2, 2, 1);

Considering this case of skipAmount equal to one, we can conclude that one node is skipped

each time meaning that the new nodes are spaced one old node apart.

Case 5: count = 2, skipAmount = 2 and the list is too short

What will happen when skipAmount equals to two? From our previous cases, we realize that

the list will be too short to accommodate our request for this particular list. What will happen?

 llist.weave(a1, c2, 2, 2);

The method accurately skips two nodes this time, however only added one new node to the

list, because the other node’s location would lie somewhere beyond the end of the list.

Spring 2008 CS 1316: Representing Structure and Behavior Dawn Finney

5 Understanding complex method behaviors: A case study of weave

Case 6: skipAmount >= size of the list and the list is too short again

This time we will try a skipAmount greater than the size of the list and see how the method

will react.

 llist.weave(a1, c2, 2, 4);

There is no change in the list.

Case 7: the list is just long enough

Based on the previous examples, we know that the weave method will not tolerate adding

beyond its size, but will it act as expected if the list is just long enough?

 llist.weave(a1, c2, 1, 3);

The weave method seems to work in cases where the list is just long enough.

Final conclusions about the weave method

Based on the various cases tested previously, we can conclude that weave will behave like

repeatNextInserting for cases where skipAmount is equal to zero. In the general case,

the weave will skip the amount of node specified (excluding afterThisNode) and mix in the

amount of copies specified as long as their next location is not beyond the list.

