

Spring 2008 CS 1316: Representing Structure and Behavior John Munro

1 Introduction to Graphical User Interfaces (GUIs)

Introduction to Graphical User Interfaces (GUIs)

A graphical user interface, typically shortened to GUI (pronounced G-U-I or G-OO-E), is a simple
form of user interface that allows people to interact with a computer. Usually a GUI in Java is
composed of the window itself, a JFrame, which contains various panels, JPanels. The
JPanels in turn can contain any number of components such as buttons and text fields.

The relationship between the parts of a GUI where a JFrame contains JPanels. A JPanel contains components such as JButtons
and JTextFields.

Arranging the Components: Layout Managers
You can control the layout of a JPanel by using the LayoutManagers. There are numerous
layouts but the following are the primary ones we would like you to focus on:

FlowLayout, typically just called flow when discussing LayoutManagers, is the default layout
that simply adds content from left to right and centering the row within the panel.

BorderLayout, or just border for short, allows you to specify what region of the panel NORTH,
SOUTH, EAST, WEST, and CENTER to add the component. Remember each region can only
contain one component.

GridLayout, or simply grid, allows you to add components in a grid or table-like fashion,
specifying the number of rows and columns when creating it.

You can specify the layout of the panel in one of two ways:

1. Using the setLayout method.
JPanel myFlowPanel = new JPanel();

JPanel myBorderPanel = new JPanel();

JPanel myGridPanel = new JPanel();

JFrame

JPanel JPanel JPanel

JButton JTextField

Spring 2008 CS 1316: Representing Structure and Behavior John Munro

2 Introduction to Graphical User Interfaces (GUIs)

//Unnecessary step because default layout is flow

myFlowPanel.setLayout(new FlowLayout());

myBorderPanel.setLayout(new BorderLayout());

//3 is the number of rows, 4 the columns

myGridPanel.setLayout(new GridLayout(3, 4));

2. Passing in a layout into the constructor of JPanel

JPanel myFlowPanel = new JPanel(new FlowLayout());

JPanel myBorderPanel = new JPanel(new BorderLayout());

JPanel myGridPanel = new JPanel(new GridLayout(3, 4));

Look here for more information on layout managers:

http://java.sun.com/docs/books/tutorial/uiswing/layout/using.html

All the little parts: GUI Components

Now that you have some understanding about how GUIs are laid out, you are probably wondering
how we put labels, buttons, and text fields into a JPanel. When you declare a JLabel, all you
need to give it is the text you want to show on it.

 JLabel theLabel = new JLabel("Some Text");

Once you have a Jlabel you can add it to the JPanel like this:

 myPanel.add(theLabel);

Or if you are using a BorderLayout, you must specify the position:

 myPanel.add(theLabel, BorderLayout.NORTH);

JButtons are again very similar in declaration, because they take in text that will be on the
button.

 JButton theButton = new JButton("Some Text");

JTextFields are small text boxes where the user can enter input. When creating a
JTextField, it takes not only an initial string to display but also the desired width of the field.

JTextField aTextField = new JTextField("Initial Text", 20);

Making Components Function with the User: Listeners
If you have tried adding buttons and text fields to your GUI, you may have noticed that it does
not really do a whole lot at this point. This is because you must add an ActionListener to it.
An ActionListener is what sits around waiting for something to happen, such as a button
being pressed or a text field being used. You must create your own classes that implements

http://java.sun.com/docs/books/tutorial/uiswing/layout/using.html

Spring 2008 CS 1316: Representing Structure and Behavior John Munro

3 Introduction to Graphical User Interfaces (GUIs)

ActionListener. Although you can create a separate listener class for each button and each
text field, this seems to be quite inefficient and messy when you have lots of buttons or fields.
Luckily there is a way to distinguish the source of the action listener calls and thus you can
specify what to do for each component within the same action listener.

MyButtonListener

The first listener class we will call MyButtonListener which implements ActionListener
and overwrites the method called actionPerformed from the ActionListener class. As
mentioned above, you can use the getSource() method from the ActionEvent to learn
what the component with an ActionListener is being used of the user.

private class MyButtonListener implements ActionListener {

 public void actionPerformed (ActionEvent event){

 Object source = event.getSource();

Now, within this method you can use a series of if else statements, testing to see which button
called it.

 if(source.equals(buttonA))

 //do something

 else if(source.equals(button))

 //do something else

A very similar approach can be used for the class MyTextListener.

Now that we have created our listeners, you can add them to the corresponding buttons and
text fields by the addActionListener() method like so:

buttonA.addActionListener(new MyButtonListener());

MyKeyListener

MyKeyListener will take input from the keyboard and perform specified functions. The
constructor is given to you:

 private class myKeyListener extends KeyAdapter {

 public void keyPressed (KeyEvent event){

KeyEvent has a method similar to getSource() from earlier called getKeyCode() which
returns an integer corresponding to which key was pressed. Some integer values you may find
helpful are:

Integer value Corresponds with

KeyEvent.VK_UP Up arrow key

KeyEvent.VK_DOWN Down arrow key

Spring 2008 CS 1316: Representing Structure and Behavior John Munro

4 Introduction to Graphical User Interfaces (GUIs)

KeyEvent.VK_LEFT Left arrow key

KeyEvent.VK_RIGHT Right arrow key

Creating GUIs with Style: Model-View-Controller (MVC)
Model-View-Controller is a style of creating GUIs that can make a developer’s job much simpler
in the long run. The general idea is that you should split up your GUI into three parts: the
model, the view and the controller.

The Model
The model is what we call the “back end” of the program. It is only responsible for the behind-
the-scenes jobs. In our Etch-A-Sketch, it will maintain an instance of our World and the Turtles
on it. This is where we will directly manipulate properties such as where the turtles are on the
screen, pen width, pen color, speed of drawing, or exporting/importing to/from a file. In
general, the model should be a stand-alone program that can be “hooked up” to any interface
without being changed.

The View
The view is the part that displays information to the user. The panels in the GUI are an example
of this.

The Controller
The controller refers to the part that takes in information from the user and often times
coupled with the View. Action Listeners are in this category because they take mouse clicks and
text from the user and pass it along to the Model.

The primary advantage of MVC is reusability of code. You should be able to take the Model and
put any number of “front ends” on it to display the information in different ways.

