Discrete Event Simulation

CS1316: Representing
Structure and Behavior

-

Story

Discrete event simulation
Simulation time != real time
Key ideas:
A Queue
* A Queue is a queue, no matter how implemented.
Different kinds of random
Straightening time
® Inserting it into the right place
* Sorting it afterwards
Building a discrete event simulation

Graphics as the representation, not the real thing: The
Model and the View

/

4 N

Finally: A Discrete Event
Simulation

Now, we can assemble queues, different
kinds of random, and a sorted
EventQueue to create a discrete event
simulation.

Running a DESimulation

Welcome to DrJava.

> FactorySimulation fs = new
FactorySimulation();

> fs.openFrames("D:/temp/");
> fs.run(25.0)

4 N

The detail tells the story

Time: 1.7078547183397625 Distributor: 0 Arrived at warehouse
Time: 1.7078547183397625 Distributor: 0 is blocking
>>> Timestep: 1

Time: 1.727166341118611 Distributor: 3 Arrived at warehouse

Time: 1.727166341118611 Distributor: 3 is blocking

>>> Timestep: 1 i

Time: 1.8778754913001443 Distributor: 4 Arrived at warehouse Notlce it
Time: 1.8778754913001443 Distributor: 4 is blocking time 2 never
>>> Timestep: 1 occurs!

Time: 1.889475045031698 Distributor: 2 Arrived at warehouse

Time: 1.889475045031698 Distributor: 2 is blocking

>>> Timestep: 1

Time: 3.064560375192933 Distributor:
Time: 3.064560375192933 Distributor:
>>> Timestep: 3

Time: 3.444420374970288 Truck:2 Arrived at warehouse with load 13
Time: 3.444420374970288 Distributor: 0 unblocked!

Arrived at warehouse
is blocking

Time: 3.444420374970288 Distributor: 0 Gathered product for orders of 11
>>> Timestep: 3

Time: 3.8869697922832698 Truck: 0 Arrived at warehouse with load 18

Time: 3.8869697922832698 Distributor: 3 unblocked!

Time: 3.8869697922832698 Distributor: 3 Gathered product for orders of 12
>>> Timestep: 3

4 N

What questions we can answer

How long do distributors wait?

Subtract the time that they unblock from the time that
they block

How much product sits in the warehouse?

At each time a distributor leaves, figure out how much
is left in the warehouse.

How long does the line get at the warehouse?
At each block, count the size of the queue.
Can we move more product by having more
distributors or more trucks?
Try it!

- /

4 N

How DESimulation works

Turtle

osing i
xPos 1
|~vpos
Horward()
+um() Hagents
+setColor() A
\gent Simulation
Y #speed [foutput
o0 getAgenis()
» #simulation (2090
getClosest() " frremove) Pov——
ract0 1 [rsetUp)
lvopenFie() p Fpeek
Queue frung events bk
[+endStep() |+
m— T N =
e [rcoseFile) rempty()
port) [#insertinOrder(
empty()
DEAgent [+size)
[oiocked Resource
[+isBlocked() [-amount
lvisReady()
[wvalidTime() »
[waitFor) om0 row
[+unblocked () +addToList() +getTime() :

+addevent()
+og()

run()

4 N

FactorySimulation: Extend a few
classes

Turte
Teadng
Xos

LinkeaList

remoro ()

et ()
[ropenie ()
om0 lraco)

g o
Sors i =
o [Feoerie o
o s
iy s et
S
[aicTime () amount [DEsemuiation
pereiy g
[+unblogeed () [+consume () [row.
[+processEvent () |+add() [+getlime ()
s ety
om 1 [
T [amounordersd 1| cproavet
b
i |+6meToDelner ()
ooy i
e e
[t cans 0 —
IR S oy - S
2

-

DESimulation: Sets the Stage

DESimulation calls setUp to create
agents and schedule the first events.

It provides log for writing things out to
the console and a text file.

When it run()’s, it processes each event
in the event queue and tells the
corresponding agent to process a
particular message.

/

-

What a DESimulation does:

/I While we're not yet at the stop time,
//'and there are more events to process
while ((now < stopTime) && (levents.empty())) {
topEvent = events.pop();

/I Whatever event is next, that time is now

now = topEvent.getTime();

/I Let the agent now that its event has occurred
topAgent = topEvent.getAgent();

topAgent.p!)

As long as there are
events in the queue,
and we're not at the
stopTime:

Il repaint the world to show the movement Grab an event.

II'F there is a world
if (world != null) {
world.repaint();}

Make it's time “now”
Process the event.

/I Do the end of step processing
this.endStep((int) now);

/

What’s an Event (SimEvent)?

~

* SimulationEvent (SimEvent) -- an event that occurs in a simulation,

* like a truck arriving at a factory, or a salesperson leaving the It's a time, an
"',"arke‘ Agent, and an
public class SimEvent{ integer t‘hat the
11l Fields /I Agent will
/** When does this event occur? */ understand as a
public double time; message

/** To whom does it occur? Who should be informed when it occurred? */
public DEAgent whom;

/** What is the event? We'll use integers to represent the meaning
* of the event -- the "message” of the event.

* Each agent will know the meaning of the integer for themselves.
ey

\ public int message;

L/

-

DEAgent: Process events, block
if needed

~

-

DEAgents define the constants for messages:
What will be the main events for this agent?

If the agent needs a resource, it asks to see if
it's available, and if not, it blocks itself.

It will be told to unblock when it's ready.

Agents are responsible for scheduling their
OWN next event!

/

-

An Example: A Truck

-

How Trucks start

-

tripTime() uses the normal
distribution

-

newlLoad() uses uniform

How a Truck processes Events

Joe
* Process an event.
* Default is to do nothing with it.
o
!

public void processEvent(int message){
switch(message){
case FACTORY_ARRIVE:
1 Show the truck at the factory
((DESimulation) simulation).log(this.getName()+"\t Arrived at factory");
this.moveTo(30,350);
/' Load up at the factory, and set off for the warehouse
load = this.newLoad();
((DESimulation) simulation).addEvent(
new SimEvent(this, tripTime(), WAREHOUSE_ARRIVE));
break;

-

Truck Arriving at the Warehouse

case WAREHOUSE_ARRIVE:
/I Show the truck at the warehouse

((DESimulation) simulation).log(this.getName()+"\t Arrived at
warehouse with load \t"+load

this.moveTo(50,50);
/' Unload product -- takes zero time (unrealistic!)
((FactorySimulation) simulation).getProduct().add(load);
load = 0;
/I Head back to factory
((DESimulation) simulation).addEvent(

new SimEvent(this,tripTime(),FACTORY_ARRIVE));
break;

-

What Resources do

-

They keep track of what amount they have
available (of whatever the resource is).

They keep a queue of agents that are blocked
on this resource.

They can add to the resource, or have it
consume(d).

When more resource comes in, the head of the queue
gets asked if it's enough. If so, it can unblock.

/

-

How Resources alert agents

* Add more produced resource.

* Is there enough to unblock the first
* Agent in the Queue?

)

public void add(int production) {
amount = amount + production;

if ('blocked.empty()){
1 Ask the next Agent in the queue if it can be unblocked
DEAgent topOne = (DEAgent) blocked.peek();
Il's it ready to run given this resource?
if (topOne.isReady(this)) {
/I Remove it from the queue
topOne = (DEAgent) blocked.pop();
/I And tell it it's unblocked
topOne.unblocked(this);

N J

An example blocking agent:
Distributor

o
* Distributor -- takes orders from Market to Warehouse,
*fills them, and returns with product.

)
public class Distributor extends DEAgent {

Il Constants for Messages

public static final int MARKET_ARRIVE = 0;
public static final int MARKET_LEAVE = 1;
public static final int WAREHOUSE_ARRIVE = 2;

/** AmountOrdered so-far */
int amountOrdered;

-

Distributors start in the Market

public void init(Simulation thisSim){
/[First, do the normal stuff
super.init(thisSim);
this.setPenDown(false); / Pen up
this.setBodyColor(Color.blue); // Go Blue!

/I Show the distributor in the market
this.moveTo(600,460); // At far right
/I Get the orders, and set off for the warehouse
amountOrdered = this.newOrders();
((DESimulation) thisSim).addEvent(
new SimEvent(this,tripTime(), WAREHOUSE_ARRIVE));

\ }

/

-

Distributors have 3 events

Arrive in Market: Schedule how long it'll
take to deliver.

Leave Market: Schedule arrive at the
Factory

Arrive at Warehouse: Is there enough
product available? If not, block and wait
for trucks to bring enough product.

-

Processing Distributor Events

o
* Process an event.
* Default is to do nothing with it.
wxy
public void processEvent(int message){
switch(message){
case MARKET_ARRIVE:
/I Show the distributor at the market, far left
(&DItE".)Simulation) simulation).log(this.getName()+"\t Arrived at
arket");

this.moveTo(210,460);
/I Schedule time to deliver
((DESimulation) simulation).addEvent(

new SimEvent(this,timeToDeliver(), MARKET_LEAVE));

\ break;

-

Leaving the Market

-

Arriving at the Warehouse

-

Is there enough product?

-

If so, we’ll be unblocked

The Overall Factory Simulation

e

* FactorySimulation -- set up the whole simulation,

* including creation of the Trucks and Distributors.

)

public class FactorySimulation extends DESimulation {

private Resource product;

o
* Accessor for factory

)

public FactoryProduct getFactory(){return factory;}

/ public void setUp(){

- /I Let the world be setup
Settmg up super.setUp();

1/ Give the world a reasonable background

FileChooser. 'D:/cs13 ;
t h e ™ world.setPicture(new Picm‘re(’
F a Cto ry FjleChoossr (ipg"))
Simulation ’

/I Create a warehouse resource
product = new Resource(); //Track product

1l Create three trucks

Truck myTruck = null;

for (int i=0; i<3; i++){
myTruck = new Truck(world this);
myTruck.setName("Truck: "+i);}

1l Create five Distributors
Distributor sales = null;
for (int i=0; i<5; i++)}{
sales = new Distributor(world,this);
sales.setName("Distributor: "+i);}

; }

-

The Master Data Structure List:
We use almost everything here!

Queues: For storing the agents waiting
in line.

EventQueues: For storing the events
scheduled to occur.

LinkedList: For storing all the agents.

