
1

Discrete Event Simulation

CS1316: Representing
Structure and Behavior

Story

 Discrete event simulation
• Simulation time != real time

 Key ideas:
• A Queue

• A Queue is a queue, no matter how implemented.
• Different kinds of random
• Straightening time

• Inserting it into the right place
• Sorting it afterwards

 Building a discrete event simulation
• Graphics as the representation, not the real thing: The

Model and the View

Finally: A Discrete Event
Simulation

 Now, we can assemble queues, different
kinds of random, and a sorted
EventQueue to create a discrete event
simulation.

Running a DESimulation

Welcome to DrJava.
> FactorySimulation fs = new

FactorySimulation();
> fs.openFrames("D:/temp/");
> fs.run(25.0)

2

The detail tells the story
Time: 1.7078547183397625 Distributor: 0 Arrived at warehouse
Time: 1.7078547183397625 Distributor: 0 is blocking
>>> Timestep: 1
Time: 1.727166341118611 Distributor: 3 Arrived at warehouse
Time: 1.727166341118611 Distributor: 3 is blocking
>>> Timestep: 1
Time: 1.8778754913001443 Distributor: 4 Arrived at warehouse
Time: 1.8778754913001443 Distributor: 4 is blocking
>>> Timestep: 1
Time: 1.889475045031698 Distributor: 2 Arrived at warehouse
Time: 1.889475045031698 Distributor: 2 is blocking
>>> Timestep: 1
Time: 3.064560375192933 Distributor: 1 Arrived at warehouse
Time: 3.064560375192933 Distributor: 1 is blocking
>>> Timestep: 3
Time: 3.444420374970288 Truck: 2 Arrived at warehouse with load 13
Time: 3.444420374970288 Distributor: 0 unblocked!
Time: 3.444420374970288 Distributor: 0 Gathered product for orders of 11
>>> Timestep: 3
Time: 3.8869697922832698 Truck: 0 Arrived at warehouse with load 18
Time: 3.8869697922832698 Distributor: 3 unblocked!
Time: 3.8869697922832698 Distributor: 3 Gathered product for orders of 12
>>> Timestep: 3
Time: 4.095930381479024 Distributor: 0 Arrived at market
>>> Timestep: 4
Time: 4.572840072576855 Truck: 1 Arrived at warehouse with load 20
Time: 4.572840072576855 Distributor: 4 unblocked!
Time: 4.572840072576855 Distributor: 4 Gathered product for orders of 19

Notice that
time 2 never
occurs!

What questions we can answer

 How long do distributors wait?
• Subtract the time that they unblock from the time that

they block
 How much product sits in the warehouse?

• At each time a distributor leaves, figure out how much
is left in the warehouse.

 How long does the line get at the warehouse?
• At each block, count the size of the queue.

 Can we move more product by having more
distributors or more trucks?
• Try it!

How DESimulation works

+getAgents()

+add()

+remove()

+openFrames()

+setUp()
+openFile()

+run()

+endStep()

+lineForFile()

+closeFile()

#output

Simulation

+show()

+replay()

FrameSequence

1

+frames

1

+init()

+die()

+getClosest()
+countInRange()

+act()

#speed

Agent

LinkedList

#agents1

*

*

1

+forward()

+turn()

+setColor()
+setPenDown()

-heading

-XPos

-YPos

Turtle

*

#simulation

1

+setPicture()

World

*

-world

1

+isBlocked()

+isReady()

+validTime()

+waitFor()

+unblocked()
+processEvent()

-blocked

DEAgent

+amountAvailable()
+consume()

+add()

+addToList()

-amount

Resource

+push()

+peek()

+pop()

+empty()

+size()

Queue

-blocked

1
*

+getTime()

+addEvent()

+log()

+run()

-now

DESimluation

+peek()

+add()

+pop()

+size()

+empty()
+insertInOrder()

+sort()

EventQueue

*

-events

1

FactorySimulation: Extend a few
classes

+getAgents ()

+add()

+remove ()

+openFrames()

+setUp ()

+openFile ()

+run()

+endStep ()

+lineForFile ()

+closeFile ()

#output

Simulation

+show()

+replay()

FrameSequence

1

+frames

1

+init ()

+die()

+getClosest ()

+countInRange ()

+act ()

#speed

Agent

LinkedList

#agents1

*

*

1

+ forward()

+ turn()

+ setColor()

+ setPenDown ()

-heading

-XPos

-YPos

Turtle

*

#simulation

1

+setPicture ()

World

*

-world

1

+isBlocked ()

+isReady ()

+validTime ()

+waitFor ()

+unblocked ()

+processEvent ()

-blocked

DEAgent

+amountAvailable ()

+consume ()

+add()

+addToList ()

-amount

Resource

+push ()

+peek()

+pop()

+empty ()

+size ()

Queue

-blocked

1
*

+getTime ()

+addEvent ()

+log()

+run()

-now

DESimulation

+peek()

+add()

+pop()

+size ()

+empty ()

+insertInOrder ()

+sort ()

EventQueue

*

-events

1

+newLoad()

+tripTime ()

+init ()

+processEvents ()

-load

Truck

+newOrders()

+timeToDeliver ()

+tripTime ()

+init ()

+processEvents ()

+isReady()

+unblocked ()

-amountOrdered

Distributor

+setUp ()

+getFactory ()

FactorySimulation

-product1

*

3

DESimulation: Sets the Stage

 DESimulation calls setUp to create
agents and schedule the first events.

 It provides log for writing things out to
the console and a text file.

 When it run()’s, it processes each event
in the event queue and tells the
corresponding agent to process a
particular message.

What a DESimulation does:
 // While we're not yet at the stop time,
 // and there are more events to process
 while ((now < stopTime) && (!events.empty())) {
 topEvent = events.pop();

 // Whatever event is next, that time is now
 now = topEvent.getTime();
 // Let the agent now that its event has occurred
 topAgent = topEvent.getAgent();
 topAgent.processEvent(topEvent.getMessage());

 // repaint the world to show the movement
 // IF there is a world
 if (world != null) {
 world.repaint();}

 // Do the end of step processing
 this.endStep((int) now);
 }

As long as there are
events in the queue,
and we’re not at the
stopTime:

Grab an event.

Make it’s time “now”

Process the event.

What’s an Event (SimEvent)?
/**
 * SimulationEvent (SimEvent) -- an event that occurs in a simulation,
 * like a truck arriving at a factory, or a salesperson leaving the
 * market
 **/
public class SimEvent{
 /// Fields ///
 /** When does this event occur? */
 public double time;

 /** To whom does it occur? Who should be informed when it occurred? */
 public DEAgent whom;

 /** What is the event? We'll use integers to represent the meaning
 * of the event -- the "message" of the event.
 * Each agent will know the meaning of the integer for themselves.
 **/
 public int message;

It’s a time, an
Agent, and an
integer that the
Agent will
understand as a
message

DEAgent: Process events, block
if needed

 DEAgents define the constants for messages:
What will be the main events for this agent?

 If the agent needs a resource, it asks to see if
it’s available, and if not, it blocks itself.

 It will be told to unblock when it’s ready.
 Agents are responsible for scheduling their

OWN next event!

4

An Example: A Truck
/**
 * Truck -- delivers product from Factory
 * to Warehouse.
 **/
public class Truck extends DEAgent {

 /////// Constants for Messages
 public static final int FACTORY_ARRIVE = 0;
 public static final int WAREHOUSE_ARRIVE = 1;

 ////// Fields /////
 /**
 * Amount of product being carried
 **/
 public int load;

How Trucks start
 /**
 * Set up the truck
 * Start out at the factory
 **/
 public void init(Simulation thisSim){
 // Do the default init
 super.init(thisSim);
 this.setPenDown(false); // Pen up
 this.setBodyColor(Color.green); // Let green deliver!

 // Show the truck at the factory
 this.moveTo(30,350);
 // Load up at the factory, and set off for the warehouse
 load = this.newLoad();
 ((DESimulation) thisSim).addEvent(
 new SimEvent(this,tripTime(),WAREHOUSE_ARRIVE));
 }

The truck gets a load,
then schedules itself
to arrive at the
Warehouse.

tripTime() uses the normal
distribution

 /** A trip distance averages 3 days */
 public double tripTime(){
 double delay = randNumGen.nextGaussian()+3;
 if (delay < 1)
 // Must take at least one day
 {return 1.0+((DESimulation) simulation).getTime();}
 else {return delay+((DESimulation) simulation).getTime();}
 }

newLoad() uses uniform

 /** A new load is between 10 and 20 on a
uniform distribution */

 public int newLoad(){
 return 10+randNumGen.nextInt(11);
 }

5

How a Truck processes Events
 /**
 * Process an event.
 * Default is to do nothing with it.
 **/
 public void processEvent(int message){
 switch(message){
 case FACTORY_ARRIVE:
 // Show the truck at the factory
 ((DESimulation) simulation).log(this.getName()+"\t Arrived at factory");
 this.moveTo(30,350);
 // Load up at the factory, and set off for the warehouse
 load = this.newLoad();
 ((DESimulation) simulation).addEvent(
 new SimEvent(this,tripTime(),WAREHOUSE_ARRIVE));
 break;

Truck Arriving at the Warehouse

 case WAREHOUSE_ARRIVE:
 // Show the truck at the warehouse
 ((DESimulation) simulation).log(this.getName()+"\t Arrived at

warehouse with load \t"+load);
 this.moveTo(50,50);
 // Unload product -- takes zero time (unrealistic!)
 ((FactorySimulation) simulation).getProduct().add(load);
 load = 0;
 // Head back to factory
 ((DESimulation) simulation).addEvent(
 new SimEvent(this,tripTime(),FACTORY_ARRIVE));
 break;

What Resources do

 They keep track of what amount they have
available (of whatever the resource is).

 They keep a queue of agents that are blocked
on this resource.

 They can add to the resource, or have it
consume(d).
• When more resource comes in, the head of the queue

gets asked if it’s enough. If so, it can unblock.

How Resources alert agents
 /**
 * Add more produced resource.
 * Is there enough to unblock the first
 * Agent in the Queue?
 **/
 public void add(int production) {
 amount = amount + production;

 if (!blocked.empty()){
 // Ask the next Agent in the queue if it can be unblocked
 DEAgent topOne = (DEAgent) blocked.peek();
 // Is it ready to run given this resource?
 if (topOne.isReady(this)) {
 // Remove it from the queue
 topOne = (DEAgent) blocked.pop();
 // And tell it it’s unblocked
 topOne.unblocked(this);
 }
 }
 }

6

An example blocking agent:
Distributor

/**
 * Distributor -- takes orders from Market to Warehouse,
 * fills them, and returns with product.
 **/
public class Distributor extends DEAgent {

 /////// Constants for Messages
 public static final int MARKET_ARRIVE = 0;
 public static final int MARKET_LEAVE = 1;
 public static final int WAREHOUSE_ARRIVE = 2;

 /** AmountOrdered so-far */
 int amountOrdered;

Distributors start in the Market

 public void init(Simulation thisSim){
 //First, do the normal stuff
 super.init(thisSim);
 this.setPenDown(false); // Pen up
 this.setBodyColor(Color.blue); // Go Blue!

 // Show the distributor in the market
 this.moveTo(600,460); // At far right
 // Get the orders, and set off for the warehouse
 amountOrdered = this.newOrders();
 ((DESimulation) thisSim).addEvent(
 new SimEvent(this,tripTime(),WAREHOUSE_ARRIVE));
 }

Distributors have 3 events

 Arrive in Market: Schedule how long it’ll
take to deliver.

 Leave Market: Schedule arrive at the
Factory

 Arrive at Warehouse: Is there enough
product available? If not, block and wait
for trucks to bring enough product.

Processing Distributor Events

 /**
 * Process an event.
 * Default is to do nothing with it.
 **/
 public void processEvent(int message){
 switch(message){
 case MARKET_ARRIVE:
 // Show the distributor at the market, far left
 ((DESimulation) simulation).log(this.getName()+"\t Arrived at

market");
 this.moveTo(210,460);
 // Schedule time to deliver
 ((DESimulation) simulation).addEvent(
 new SimEvent(this,timeToDeliver(),MARKET_LEAVE));
 break;

7

Leaving the Market

 case MARKET_LEAVE:
 // Show the distributor at the market, far right
 ((DESimulation) simulation).log(this.getName()+"\t

Leaving market");
 this.moveTo(600,460);
 // Get the orders, and set off for the warehouse
 amountOrdered = this.newOrders();
 ((DESimulation) simulation).addEvent(
 new

SimEvent(this,tripTime(),WAREHOUSE_ARRIVE));
 break;

Arriving at the Warehouse
 case WAREHOUSE_ARRIVE:
 // Show the distributor at the warehouse
 ((DESimulation) simulation).log(this.getName()+"\t Arrived at warehouse");
 this.moveTo(600,50);
 // Is there enough product available?
 Resource warehouseProduct = ((FactorySimulation) simulation).getProduct();
 if (warehouseProduct.amountAvailable() >= amountOrdered)
 {
 // Consume the resource for the orders
 warehouseProduct.consume(amountOrdered); // Zero time to load?
 ((DESimulation) simulation).log(this.getName()+"\t Gathered product for orders of

\t"+amountOrdered);
 // Schedule myself to arrive at the Market
 ((DESimulation) simulation).addEvent(
 new SimEvent(this,tripTime(),MARKET_ARRIVE));
 }
 else {// We have to wait until more product arrives!
 ((DESimulation) simulation).log(this.getName()+"\t is blocking");
 waitFor(((FactorySimulation) simulation).getProduct());}
 break;

Is there enough product?

 /** Are we ready to be unlocked? */
 public boolean isReady(Resource res) {
 // Is the amount in the factory more than our orders?
 return ((FactorySimulation)

simulation).getProduct().amountAvailable() >=
amountOrdered;}

If so, we’ll be unblocked
 /**
 * I've been unblocked!
 * @param resource the desired resource
 **/
 public void unblocked(Resource resource){
 super.unblocked(resource);

 // Consume the resource for the orders
 ((DESimulation) simulation).log(this.getName()+"\t unblocked!");
 resource.consume(amountOrdered); // Zero time to load?
 ((DESimulation) simulation).log(this.getName()+"\t Gathered product for

orders of \t"+amountOrdered);
 // Schedule myself to arrive at the Market
 ((DESimulation) simulation).addEvent(
 new SimEvent(this,tripTime(),MARKET_ARRIVE));
 }

8

The Overall Factory Simulation

/**
 * FactorySimulation -- set up the whole simulation,
 * including creation of the Trucks and Distributors.
 **/
public class FactorySimulation extends DESimulation {

 private Resource product;

 /**
 * Accessor for factory
 **/
 public FactoryProduct getFactory(){return factory;}

Setting up
the
Factory
Simulation

 public void setUp(){
 // Let the world be setup
 super.setUp();
 // Give the world a reasonable background
 FileChooser.setMediaPath("D:/cs1316/MediaSources/");
 world.setPicture(new Picture(

FileChooser.getMediaPath("EconomyBackground.jpg"))
);

 // Create a warehouse resource
 product = new Resource(); //Track product

 // Create three trucks
 Truck myTruck = null;
 for (int i=0; i<3; i++){
 myTruck = new Truck(world,this);
 myTruck.setName("Truck: "+i);}

 // Create five Distributors
 Distributor sales = null;
 for (int i=0; i<5; i++){
 sales = new Distributor(world,this);
 sales.setName("Distributor: "+i);}
 }

The Master Data Structure List:
We use almost everything here!

 Queues: For storing the agents waiting
in line.

 EventQueues: For storing the events
scheduled to occur.

 LinkedList: For storing all the agents.

