
1

Discrete Event Simulation

CS1316: Representing
Structure and Behavior

Motivation: a simulation…

 There are three Trucks that bring product from the
Factory.
• On average, they take 3 days to arrive.
• Each truck brings somewhere between 10 and 20

products—all equally likely.
 We’ve got five Distributors who pick up product from the

Factory with orders.
• Usually they want from 5 to 25 products, all equally likely.

 It takes the Distributors an average of 2 days to get back
to the market, and an average of 5 days to deliver the
products.

 Question we might wonder: How much product gets sold
like this?

Don’t use a Continuous
Simulation

 We don’t want to wait that number of days in real time.
 We don’t even care about every day.

• There will certainly be timesteps (days) when nothing
happens of interest.

 We’re dealing with different probability distributions.
• Some uniform, some normally distributed.

 Things can get out of synch
• A Truck may go back to the factory and get more product

before a Distributor gets back.
• A Distributor may have to wait for multiple trucks to fulfill

orders (and other Distributors might end up waiting in line)

Running a DESimulation

Welcome to DrJava.
> FactorySimulation fs = new

FactorySimulation();
> fs.openFrames("D:/temp/");
> fs.run(25.0)

2

Story

 Discrete event simulation
• Simulation time != real time

 Key ideas:
• Queues

• What makes a queue a queue is its behavior not its code.
• Priority queues allow objects to cut in line (if they are high

enough priority)
• Different kinds of randomness

• Uniformity
• Normally distributed populations of events

• Straightening time
• Inserting it into the right place
• Sorting it afterwards

Discrete vs. Continuous:
No time loop

 In a discrete event simulation: There is
no time loop.
• There are events that are scheduled.
• At each run step in the event loop, the next

scheduled event with the lowest time gets
processed.
• The current time is then that time, the time that that

event is supposed to occur.

 Key idea: We have to keep the list of
scheduled events sorted (in order)

DES Agents don’t act()

 In a discrete event simulations, agents
don’t act().
• Instead, they wait for events to occur.
• They schedule new events to correspond to

the next thing that they’re going to do.
 Key idea: Events get scheduled

“stochastically” (at times that depend on
probabilities).

DES Agents get blocked

 Agents can’t do everything that they want to do.
 If they want product (for example) and there isn’t

any, they get blocked.
• They can’t schedule any new events until they get

unblocked.
 Many agents may get blocked awaiting the same

resource.
• More than one Distributor may be awaiting arrival

of Trucks
 Key: We have to keep track of the Distributors

waiting in line (in the queue)

3

Story

 Discrete event simulation
• Simulation time != real time

 Key ideas:
• Queues

• What makes a queue a queue is its behavior not its code.
• Priority queues allow objects to cut in line (if they are high

enough priority)
• Different kinds of randomness

• Uniformity
• Normally distributed populations of events

• Straightening time
• Inserting it into the right place
• Sorting it afterwards

Key idea #1:
Queues again (contrast stacks)

 First-In-First-Out List
• First person in line is first person served

I got here
first!

I got here
second!

I got here
third!

This is the
front or head
of the queue

This is the tail
of the queue

First-in-First-out

 New items only get added to the tail.
• Never in the middle

 Items only get removed from the head.

I got here
first!

I got here
second!

I got here
third!

This is the
front or head
of the queue

This is the tail
of the queue

As items leave, the head shifts

I got here
first! AND
NOW I’M UP!

I got here
second!

I got here
third!

Now, this is
the front or
head of the
queue

This is the tail
of the queue

Served!

4

As new items come in, the tail
shifts

I got here
second!

I got here
third!

Now, this is
the front or
head of the
queue

Now, this is
the tail of the
queue

I got here
fourth!

What can we do with queues?

 push(anObject): Tack a new object onto
the tail of the queue

 pop(): Pull the end (head) object off the
queue.

 peek(): Get the head of the queue, but
don’t remove it from the queue.

 size(): Return the size of the queue

A queue is a queue, no matter
what lies beneath.

 Our description of the queue minus the
implementation is an example of an abstract
data type (ADT).
• An abstract type is a description of the methods that a

data structure knows and what the methods do.
 We can actually write programs that use the

abstract data type without specifying the
implementation.
• There are actually many implementations that will

work for the given ADT.
• Some are better than others.

Key idea #2:
Different kinds of random

 We’ve been dealing with uniform random
distributions up until now, but those are
the least likely random distribution in real
life.

 How can we generate some other
distributions, including some that are
more realistic?

5

Visualizing
a uniform
distribution

import java.util.*; // Need this for Random
import java.io.*; // For BufferedWriter

public class GenerateUniform {
 public static void main(String[] args) {
 Random rng = new Random(); // Random Number Generator
 BufferedWriter output=null; // file for writing

 // Try to open the file
 try {
 // create a writer
 output =
 new BufferedWriter(new FileWriter("D:/cs1316/uniform.txt"));
 } catch (Exception ex) {
 System.out.println("Trouble opening the file.");
 }
 // Fill it with 500 numbers between 0.0 and 1.0, uniformly

distributed
 for (int i=0; i < 500; i++){
 try{
 output.write("\t"+rng.nextFloat());
 output.newLine();
 } catch (Exception ex) {
 System.out.println("Couldn't write the data!");
 System.out.println(ex.getMessage());
 }
 }
 // Close the file
 try{
 output.close();}
 catch (Exception ex)
 {System.out.println("Something went wrong closing the file");}
}
}

By writing out a
tab and the
integer, we don’t
have to do the
string conversion.

How do we view a distribution?
A Histogram

Then graph the result A Uniform Distribution

Frequency

0

10

20

30

40

50

60

70

0
0.
2

0.
4

0.
6

0.
8 1

Frequency

6

A Normal
Distribution

 // Fill it with 500 numbers between -1.0 and 1.0, normally distributed
 for (int i=0; i < 500; i++){
 try{
 output.write("\t"+rng.nextGaussian());
 output.newLine();
 } catch (Exception ex) {
 System.out.println("Couldn't write the data!");
 System.out.println(ex.getMessage());
 }
 }

Graphing the normal distribution

Frequency

0

5

10

15

20

25

30

-2
-1
.6
-1
.2

-0
.8
-0
.4 0

0.
4
0.
8
1.
2
1.
6 2

Frequency

The end aren’t
actually
high—the tails
go further.

How do we shift the distribution
where we want it?

 // Fill it with 500 numbers with a mean of 5.0 and a
 //larger spread, normally distributed
 for (int i=0; i < 500; i++){
 try{
 output.write("\t"+((range * rng.nextGaussian())+mean));
 output.newLine();
 } catch (Exception ex) {
 System.out.println("Couldn't write the data!");
 System.out.println(ex.getMessage());
 }
 } Multiply the random nextGaussian()

by the range you want, then add the
mean to shift it where you want it.

A new normal distribution

Frequency

0

2

4

6

8

10

12

14

16

18

-2

-1
.5 -1

-0
.5 0

0
.5 1

1
.5 2

2
.5 3

3
.5 4

4
.5 5

5
.5 6

6
.5 7

7
.5 8

8
.5 9

9
.5 10

Frequency

7

Key idea #3: Straightening Time

 Straightening time
• Inserting it into the right place
• Sorting it afterwards

 We’ll actually do these in reverse order:
• We’ll add a new event, then sort it.
• Then we’ll insert it into the right place.

Exercising
an EventQueue

public class EventQueueExercisor {
 public static void main(String[] args){
 // Make an EventQueue
 EventQueue queue = new EventQueue();

 // Now, stuff it full of events, out of order.
 SimEvent event = new SimEvent();
 event.setTime(5.0);
 queue.add(event);

 event = new SimEvent();
 event.setTime(2.0);
 queue.add(event);

 event = new SimEvent();
 event.setTime(7.0);
 queue.add(event);

 event = new SimEvent();
 event.setTime(0.5);
 queue.add(event);

 event = new SimEvent();
 event.setTime(1.0);
 queue.add(event);

 // Get the events back, hopefull in order!
 for (int i=0; i < 5; i++) {
 event = queue.pop();
 System.out.println("Popped event

time:"+event.getTime());
 }
 }
}

We’re stuffing the EventQueue
with events whose times are out of
order.

If it works right, should look like
this:

Welcome to DrJava.
> java EventQueueExercisor
Popped event time:0.5
Popped event time:1.0
Popped event time:2.0
Popped event time:5.0
Popped event time:7.0

Implementing an EventQueue
import java.util.*;

/**
 * EventQueue
 * It's called an event "queue," but it's not really.
 * Instead, it's a list (could be an array, could be a linked list)
 * that always keeps its elements in time sorted order.
 * When you get the nextEvent, you KNOW that it's the one
 * with the lowest time in the EventQueue
 **/
public class EventQueue {
 private LinkedList elements;

 /// Constructor
 public EventQueue(){
 elements = new LinkedList();
 }

8

Mostly, it’s a queue

 public SimEvent peek(){
 return (SimEvent) elements.getFirst();}

 public SimEvent pop(){
 SimEvent toReturn = this.peek();
 elements.removeFirst();
 return toReturn;}

 public int size(){return elements.size();}

 public boolean empty(){return this.size()==0;}

Two options for add()

 /**
 * Add the event.
 * The Queue MUST remain in order, from lowest time to

highest.
 **/
 public void add(SimEvent myEvent){
 // Option one: Add then sort
 elements.add(myEvent);
 this.sort();
 //Option two: Insert into order
 //this.insertInOrder(myEvent);
 }

There are lots of sorts!

 Lots of ways to keep things in order.
• Some are faster – best are O(n log n)
• Some are slower – they’re always O(n2)
• Some are O(n2) in the worst case, but on

average, they’re better than that.

 We’re going to try an insertion sort

Useful Link on Sorting

 http://www.cs.ubc.ca/spider/harrison/Jav
a/sorting-demo.html

Includes animations to
show how sorting
algorithms differ in
behavior and
performance

9

How an insertion sort works

 Consider the event at some position (1..n)
 Compare it to all the events before that

position backwards—towards 0.
• If the comparison event time is LESS THAN the

considered event time, then shift the comparison
event down to make room.

• Wherever we stop, that’s where the considered event
goes.

 Consider the next event…until done

Option #2: Put it in the right
place

 /**
 * Add the event.
 * The Queue MUST remain in order, from lowest time to

highest.
 **/
 public void add(SimEvent myEvent){
 // Option one: Add then sort
 //elements.add(myEvent);
 //this.sort();
 //Option two: Insert into order
 this.insertInOrder(myEvent);
 }

insertInOrder()
 /**
 * Put thisEvent into elements, assuming
 * that it's already in order.
 **/
 public void insertInOrder(SimEvent

thisEvent){
 SimEvent comparison = null;

 // Have we inserted yet?
 boolean inserted = false;
 for (int i=0; i < elements.size(); i++){
 comparison = (SimEvent)

elements.get(i);

// Assume elements from 0..i are less than
thisEvent

 // If the element time is GREATER,
insert here and

 // shift the rest down
 if (thisEvent.getTime() <

comparison.getTime()) {
 //Insert it here
 inserted = true;
 elements.add(i,thisEvent);
 break; // We can stop the search loop
 }
 } // end for

 // Did we get through the list without
finding something

 // greater? Must be greater than any
currently there!

 if (!inserted) {
 // Insert it at the end
 elements.addLast(thisEvent);}
 }

Again, trace it out to convince
yourself that it works! Finally: A Discrete Event

Simulation

 Now, we can assemble queues, different
kinds of random, and a sorted
EventQueue to create a discrete event
simulation.

10

Running a DESimulation

Welcome to DrJava.
> FactorySimulation fs = new

FactorySimulation();
> fs.openFrames("D:/temp/");
> fs.run(25.0)

What we see (not much)

