
1

Discrete Event Simulation

CS1316: Representing
Structure and Behavior

Motivation: a simulation…

 There are three Trucks that bring product from the
Factory.
• On average, they take 3 days to arrive.
• Each truck brings somewhere between 10 and 20

products—all equally likely.
 We’ve got five Distributors who pick up product from the

Factory with orders.
• Usually they want from 5 to 25 products, all equally likely.

 It takes the Distributors an average of 2 days to get back
to the market, and an average of 5 days to deliver the
products.

 Question we might wonder: How much product gets sold
like this?

Don’t use a Continuous
Simulation

 We don’t want to wait that number of days in real time.
 We don’t even care about every day.

• There will certainly be timesteps (days) when nothing
happens of interest.

 We’re dealing with different probability distributions.
• Some uniform, some normally distributed.

 Things can get out of synch
• A Truck may go back to the factory and get more product

before a Distributor gets back.
• A Distributor may have to wait for multiple trucks to fulfill

orders (and other Distributors might end up waiting in line)

Running a DESimulation

Welcome to DrJava.
> FactorySimulation fs = new

FactorySimulation();
> fs.openFrames("D:/temp/");
> fs.run(25.0)



2

Story

 Discrete event simulation
• Simulation time != real time

 Key ideas:
• Queues

• What makes a queue a queue is its behavior not its code.
• Priority queues allow objects to cut in line (if they are high

enough priority)
• Different kinds of randomness

• Uniformity
• Normally distributed populations of events

• Straightening time
• Inserting it into the right place
• Sorting it afterwards

Discrete vs. Continuous:
No time loop

 In a discrete event simulation: There is
no time loop.
• There are events that are scheduled.
• At each run step in the event loop, the next

scheduled event with the lowest time gets
processed.
• The current time is then that time, the time that that

event is supposed to occur.

 Key idea: We have to keep the list of
scheduled events sorted (in order)

DES Agents don’t act()

 In a discrete event simulations, agents
don’t act().
• Instead, they wait for events to occur.
• They schedule new events to correspond to

the next thing that they’re going to do.
 Key idea: Events get scheduled

“stochastically” (at times that depend on
probabilities).

DES Agents get blocked

 Agents can’t do everything that they want to do.
 If they want product (for example) and there isn’t

any, they get blocked.
• They can’t schedule any new events until they get

unblocked.
 Many agents may get blocked awaiting the same

resource.
• More than one Distributor may be awaiting arrival

of Trucks
 Key: We have to keep track of the Distributors

waiting in line (in the queue)



3

Story

 Discrete event simulation
• Simulation time != real time

 Key ideas:
• Queues

• What makes a queue a queue is its behavior not its code.
• Priority queues allow objects to cut in line (if they are high

enough priority)
• Different kinds of randomness

• Uniformity
• Normally distributed populations of events

• Straightening time
• Inserting it into the right place
• Sorting it afterwards

Key idea #1:
Queues again (contrast stacks)

 First-In-First-Out List
• First person in line is first person served

I got here
first!

I got here
second!

I got here
third!

This is the
front or head
of the queue

This is the tail
of the queue

First-in-First-out

 New items only get added to the tail.
• Never in the middle

 Items only get removed from the head.

I got here
first!

I got here
second!

I got here
third!

This is the
front or head
of the queue

This is the tail
of the queue

As items leave, the head shifts

I got here
first! AND
NOW I’M UP!

I got here
second!

I got here
third!

Now, this is
the front or
head of the
queue

This is the tail
of the queue

Served!



4

As new items come in, the tail
shifts

I got here
second!

I got here
third!

Now, this is
the front or
head of the
queue

Now, this is
the tail of the
queue

I got here
fourth!

What can we do with queues?

 push(anObject): Tack a new object onto
the tail of the queue

 pop(): Pull the end (head) object off the
queue.

 peek(): Get the head of the queue, but
don’t remove it from the queue.

 size(): Return the size of the queue

A queue is a queue, no matter
what lies beneath.

 Our description of the queue minus the
implementation is an example of an abstract
data type (ADT).
• An abstract type is a description of the methods that a

data structure knows and what the methods do.
 We can actually write programs that use the

abstract data type without specifying the
implementation.
• There are actually many implementations that will

work for the given ADT.
• Some are better than others.

Key idea #2:
Different kinds of random

 We’ve been dealing with uniform random
distributions up until now, but those are
the least likely random distribution in real
life.

 How can we generate some other
distributions, including some that are
more realistic?



5

Visualizing
a uniform
distribution

import java.util.*;  // Need this for Random
import java.io.*;  // For BufferedWriter

public class GenerateUniform {
  public static void main(String[] args) {
    Random rng = new Random(); // Random Number Generator
    BufferedWriter output=null; // file for writing

   // Try to open the file
    try {
      // create a writer
      output =
        new BufferedWriter(new FileWriter("D:/cs1316/uniform.txt"));
    } catch (Exception ex) {
      System.out.println("Trouble opening the file.");
    }
      // Fill it with 500 numbers between 0.0 and 1.0, uniformly

distributed
      for (int i=0; i < 500; i++){
        try{
        output.write("\t"+rng.nextFloat());
        output.newLine();
      } catch (Exception ex) {
        System.out.println("Couldn't write the data!");
        System.out.println(ex.getMessage());
        }
      }
      // Close the file
       try{
        output.close();}
      catch (Exception ex)
      {System.out.println("Something went wrong closing the file");}
}
}

By writing out a
tab and the
integer, we don’t
have to do the
string conversion.

How do we view a distribution?
A Histogram

Then graph the result A Uniform Distribution

Frequency

0

10

20

30

40

50

60

70

0
0.
2

0.
4

0.
6

0.
8 1

Frequency



6

A Normal
Distribution

 // Fill it with 500 numbers between -1.0 and 1.0, normally distributed
      for (int i=0; i < 500; i++){
        try{
        output.write("\t"+rng.nextGaussian());
        output.newLine();
      } catch (Exception ex) {
        System.out.println("Couldn't write the data!");
        System.out.println(ex.getMessage());
        }
      }

Graphing the normal distribution

Frequency

0

5

10

15

20

25

30

-2
-1
.6
-1
.2

-0
.8
-0
.4 0

0.
4
0.
8
1.
2
1.
6 2

Frequency

The end aren’t
actually
high—the tails
go further.

How do we shift the distribution
where we want it?

 // Fill it with 500 numbers with a mean of 5.0 and a
    //larger spread, normally distributed
      for (int i=0; i < 500; i++){
        try{
        output.write("\t"+((range * rng.nextGaussian())+mean));
        output.newLine();
      } catch (Exception ex) {
        System.out.println("Couldn't write the data!");
        System.out.println(ex.getMessage());
        }
      } Multiply the random nextGaussian()

by the range you want, then add the
mean to shift it where you want it.

A new normal distribution

Frequency

0

2

4

6

8

10

12

14

16

18

-2

-1
.5 -1

-0
.5 0

0
.5 1

1
.5 2

2
.5 3

3
.5 4

4
.5 5

5
.5 6

6
.5 7

7
.5 8

8
.5 9

9
.5 10

Frequency



7

Key idea #3: Straightening Time

 Straightening time
• Inserting it into the right place
• Sorting it afterwards

 We’ll actually do these in reverse order:
• We’ll add a new event, then sort it.
• Then we’ll insert it into the right place.

Exercising
an EventQueue

public class EventQueueExercisor {
  public static void main(String[] args){
    // Make an EventQueue
    EventQueue queue = new EventQueue();

    // Now, stuff it full of events, out of order.
    SimEvent event = new SimEvent();
    event.setTime(5.0);
    queue.add(event);

    event = new SimEvent();
    event.setTime(2.0);
    queue.add(event);

    event = new SimEvent();
    event.setTime(7.0);
    queue.add(event);

    event = new SimEvent();
    event.setTime(0.5);
    queue.add(event);

    event = new SimEvent();
    event.setTime(1.0);
    queue.add(event);

    // Get the events back, hopefull in order!
    for (int i=0; i < 5; i++) {
      event = queue.pop();
      System.out.println("Popped event

time:"+event.getTime());
    }
  }
}

We’re stuffing the EventQueue
with events whose times are out of
order.

If it works right, should look like
this:

Welcome to DrJava.
> java EventQueueExercisor
Popped event time:0.5
Popped event time:1.0
Popped event time:2.0
Popped event time:5.0
Popped event time:7.0

Implementing an EventQueue
import java.util.*;

/**
 * EventQueue
 * It's called an event "queue," but it's not really.
 * Instead, it's a list (could be an array, could be a linked list)
 * that always keeps its elements in time sorted order.
 * When you get the nextEvent, you KNOW that it's the one
 * with the lowest time in the EventQueue
 **/
public class EventQueue {
  private LinkedList elements;

  /// Constructor
  public EventQueue(){
    elements = new LinkedList();
  }



8

Mostly, it’s a queue

 public SimEvent peek(){
    return (SimEvent) elements.getFirst();}

  public SimEvent pop(){
    SimEvent toReturn = this.peek();
    elements.removeFirst();
    return toReturn;}

  public int size(){return elements.size();}

  public boolean empty(){return this.size()==0;}

Two options for add()

 /**
   * Add the event.
   * The Queue MUST remain in order, from lowest time to

highest.
   **/
  public void add(SimEvent myEvent){
  // Option one: Add then sort
  elements.add(myEvent);
  this.sort();
  //Option two: Insert into order
  //this.insertInOrder(myEvent);
  }

There are lots of sorts!

 Lots of ways to keep things in order.
• Some are faster – best are O(n log n)
• Some are slower – they’re always O(n2)
• Some are O(n2) in the worst case, but on

average, they’re better than that.

 We’re going to try an insertion sort

Useful Link on Sorting

 http://www.cs.ubc.ca/spider/harrison/Jav
a/sorting-demo.html

Includes animations to
show how sorting
algorithms differ in
behavior and
performance



9

How an insertion sort works

 Consider the event at some position (1..n)
 Compare it to all the events before that

position backwards—towards 0.
• If the comparison event time is LESS THAN the

considered event time, then shift the comparison
event down to make room.

• Wherever we stop, that’s where the considered event
goes.

 Consider the next event…until done

Option #2: Put it in the right
place

 /**
   * Add the event.
   * The Queue MUST remain in order, from lowest time to

highest.
   **/
  public void add(SimEvent myEvent){
  // Option one: Add then sort
  //elements.add(myEvent);
  //this.sort();
  //Option two: Insert into order
  this.insertInOrder(myEvent);
  }

insertInOrder()
 /**
   * Put thisEvent into elements, assuming
   * that it's already in order.
   **/
  public void insertInOrder(SimEvent

thisEvent){
    SimEvent comparison = null;

    // Have we inserted yet?
    boolean inserted = false;
    for (int i=0; i < elements.size(); i++){
      comparison = (SimEvent)

elements.get(i);

// Assume elements from 0..i are less than
thisEvent

      // If the element time is GREATER,
insert here and

      // shift the rest down
      if (thisEvent.getTime() <

comparison.getTime()) {
        //Insert it here
        inserted = true;
        elements.add(i,thisEvent);
        break; // We can stop the search loop
      }
    } // end for

    // Did we get through the list without
finding something

    // greater?  Must be greater than any
currently there!

    if (!inserted) {
      // Insert it at the end
      elements.addLast(thisEvent);}
  }

Again, trace it out to convince
yourself that it works! Finally: A Discrete Event

Simulation

 Now, we can assemble queues, different
kinds of random, and a sorted
EventQueue to create a discrete event
simulation.



10

Running a DESimulation

Welcome to DrJava.
> FactorySimulation fs = new

FactorySimulation();
> fs.openFrames("D:/temp/");
> fs.run(25.0)

What we see (not much)


