Discrete Event Simulation

CS1316: Representing
Structure and Behavior

-

Motivation: a simulation...

There are three Trucks that bring product from the
Factory.

On average, they take 3 days to arrive.

Each truck brings somewhere between 10 and 20

products—all equally likely.
We've got five Distributors who pick up product from the
Factory with orders.

Usually they want from 5 to 25 products, all equally likely.
It takes the Distributors an average of 2 days to get back
to the market, and an average of 5 days to deliver the
products.
Question we might wonder: How much product gets sold
like this?

-

Don’t use a Continuous
Simulation

We don’t want to wait that number of days in real time.

We don’t even care about every day.
There will certainly be timesteps (days) when nothing
happens of interest.

We're dealing with different probability distributions.
Some uniform, some normally distributed.

Things can get out of synch
A Truck may go back to the factory and get more product
before a Distributor gets back.
A Distributor may have to wait for multiple trucks to fulfill
orders (and other Distributors might end up waiting in line)

- /

-

Running a DESimulation

Welcome to DrJava.

> FactorySimulation fs = new
FactorySimulation();

> fs.openFrames("D:/temp/");
> fs.run(25.0)

-

Story

Discrete event simulation
Simulation time != real time
Key ideas:
Queues
* What makes a queue a queue is its behavior not its code.
*® Priority queues allow objects to cut in line (if they are high
enough priority)
Different kinds of randomness
® Uniformity
* Normally distributed populations of events
Straightening time
® Inserting it into the right place
® Sorting it afterwards

-

Discrete vs. Continuous:
No time loop

~

In a discrete event simulation: There is
no time loop.
There are events that are scheduled.
At each run step in the event loop, the next
scheduled event with the lowest time gets
processed.

® The current time is then that time, the time that that
event is supposed to occur.

Key idea: We have to keep the list of

\ scheduled events sorted (in order)

/

-

DES Agents don’t act()

In a discrete event simulations, agents
don’t act().
Instead, they wait for events to occur.
They schedule new events to correspond to
the next thing that they’re going to do.
Key idea: Events get scheduled
“stochastically” (at times that depend on
probabilities).

/

-

DES Agents get blocked

Agents can’t do everything that they want to do.

If they want product (for example) and there isn’t
any, they get blocked.
They can’t schedule any new events until they get
unblocked.

Many agents may get blocked awaiting the same
resource.

More than one Distributor may be awaiting arrival
of Trucks

Key: We have to keep track of the Distributors

waiting in line (in the queue)

/

-

Story

Discrete event simulation
Simulation time != real time
Key ideas:
Queues
* What makes a queue a queue is its behavior not its code.

*® Priority queues allow objects to cut in line (if they are high
enough priority)

Different kinds of randomness

® Uniformity

* Normally distributed populations of events
Straightening time

® Inserting it into the right place

¢ Sorting it afterwards

Key idea #1:
Queues again (contrast stacks)

First-In-First-Out List
First person in line is first person served

| got here | got here | got here
third! second! g ﬁf’st!

This is the tail This is the

of the queue front or head

of the queue

-

First-in-First-out

-

New items only get added to the tail.
Never in the middle

Iltems only get removed from the head.

| got here I got here | got here
third! second! > ﬁ?st!
This is the tail This is the
of the queue front or head

of the queue

-

As items leave, the head shifts

~

| got here | got here e fEe
(el second! firetl AND
NOW I'M UP!
This is the tail Now, this is
of the queue the front or

head of the m
queue

/

-

As new items come in, the tail
shifts

~

| got here | got here | got here

fourth! third! second!
Now, this is .
the tail of the Now, this is

ueue the front or
q head of the

queue

-

What can we do with queues?

~

push(anObject): Tack a new object onto
the tail of the queue

pop(): Pull the end (head) object off the
queue.

peek(): Get the head of the queue, but
don’t remove it from the queue.

size(): Return the size of the queue

/

-

A queue is a queue, no matter
what lies beneath.

~

-

Our description of the queue minus the
implementation is an example of an abstract
data type (ADT).
An abstract type is a description of the methods that a
data structure knows and what the methods do.
We can actually write pro?rams that use the
abstract data type without specifying the
implementation.
There are actually many implementations that will
work for the given ADT.
Some are better than others.

Key idea #2:
Different kinds of random

~

We’ve been dealing with uniform random
distributions up until now, but those are
the least likely random distribution in real
life.

How can we generate some other
distributions, including some that are
more realistic?

import java.util.*; // Need this for Random

/ Visualizing

import java.io."; // For BufferedWiiter

public class GenerateUniform {

H public static void main(String[] args) {
aun |f° rm Random rng = new Random(); // Random Number Generator
distribution BufferedWriter output=null; // file for writing

/1 Try to open the file

y{
/I create a writer
output =

new i FileWriter("D:/cs iform.txt"));
} catch (Exception ex) {

System.out.printin("Trouble opening the file.");
By writing out a
tab and the
integer, we don't
have to do the
string conversion.

}
11 Fill it with 500 numbers between 0.0 and 1.0, uniformly
distributed

for (int i=0; i < 500; i+-+){

ty{
outputwrite("\t"+rng.nextFloat());
output.newLine();

} catch (Exception ex) {
System.out.printin("Couldn't write the data!");
System.out.printin(ex.getMessage());

}

3
Il Close the file
{

output.close();}
catch (Exception ex)

{System.out,| went wrong closing the file");}

-

How do we view a distribution?
A Histogram

~

aralyss Tools [

[rove TwoFactor WithoutRephcaton 4]

|Correiation Cancel
e L=l

[pescrptive statstes

[Exponental Smoothi o

[F-Test Two-Sample for Variances

[Fourer Aniysis

[Moving Average

[Random Number Generaton I

Va

Then graph the result

#[glsla[elelol il

-

A Uniform Distribution

Frequency

70
60 —

40 ——
30 ——
20 ——
10 +—

-

A Normal
Distribution

/I Fill it with 500 numbers between -1.0 and 1.0, normally distributed

-

Graphing the normal distribution

Frequency
for (int i=0; i < 500; i++){
try{ 30
output.write("\t"+rng.nextGaussian());
output.newLine(); 25
} catch (Exception ex) { 20
System.out.printin("Couldn't write the data!"); 15 F
System.out.printin(ex.getMessage());
} 10
) 5][it The end aren't
TaJIIIL) 111 T
0 L Ly high—the tails
\ / \ RN N IPN S I SN NN N 4 go furthe?- /
How do we shift the distribution
where we want it? A new normal distribution
/I Fill it with 500 numbers with a mean of 5.0 and a
INarger spread, normally distributed Frequency

for (int i=0; i < 500; i++){ 18
try{ 16
output.write("\t"+((range * rng.nextGaussian())+mean)); 14
output.newLine(); 15 . .

} catch (Exception ex) { 8 I | o Frequency
System.out.printin("Couldn't write the datal"); 67 T 1
System.out.printin(ex.getMessage()); ‘2‘ 1
} 2]

} Multiply the random nextGaussian() FevgegraNgogveLgegTEeTgoge

by the range you want, then add the
mean to shift it where you want it.

/

-

Key idea #3: Straightening Time

Straightening time
Inserting it into the right place
Sorting it afterwards
We'll actually do these in reverse order:
We'll add a new event, then sort it.
Then we'll insert it into the right place.

public class EventQ {
public static void main(String[] args){
1l Make an EventQueue

- = EventQueue queue = new EventQueue();
Exercising

/ Now, stuff it full of events, out of order.

SimEvent event = new SimEvent();
an Eventqueue event.setTime(5.0);

queve :

event = new SimEvent();
n event.setTime(2.0);
W_e re stuffing the EyentQueue queve.add(event):
with events whose times are out of
event = new SimEvent();
GIElE event.setTime(7.0);
queue.add(event);

event = new SimEvent();
event.setTime(0.5);
queue.add(event);

event = new SimEvent();
event.setTime(1.0);
queue.add(event);

I/ Get the events back, hopefull in order!
for (int i=0; i < 5; i++) {

event = queue.pop();
\ System.out.printin("Popped event

time:"+event.getTime());
}

}

}

-

If it works right, should look like
this:

Welcome to DrJava.

> java EventQueueExercisor
Popped event time:0.5
Popped event time:1.0
Popped event time:2.0
Popped event time:5.0
Popped event time: 7.0

-

Implementing an EventQueue

import java.util.*;

e
* EventQueue

* It's called an event "queue," but it's not really.

* Instead, it's a list (could be an array, could be a linked list)
* that always keeps its elements in time sorted order.

* When you get the nextEvent, you KNOW that it's the one
* with the lowest time in the EventQueue

oy
public class EventQueue {

private LinkedList elements;

/Il Constructor
public EventQueue()}{

\ elements = new LinkedList();
}

Mostly, it’s a queue

public SimEvent peek()X
return (SimEvent) elements.getFirst();}

public SimEvent pop(){
SimEvent toReturn = this.peek();
elements.removeFirst();
return toReturn;}

public int size(){return elements.size();}

public boolean empty(){return this.size()==0;}

-

Two options for add()

o

* Add the event.

* The Queue MUST remain in order, from lowest time to
highest.

o

public void add(SimEvent myEvent){

/I Option one: Add then sort

elements.add(myEvent);

this.sort();

//Option two: Insert into order

[lthis.insertinOrder(myEvent);

}

-

-

There are lots of sorts!

Lots of ways to keep things in order.
Some are faster — best are O(n log n)
Some are slower — they’re always O(n?)
Some are O(n?) in the worst case, but on
average, they’re better than that.

We’'re going to try an insertion sort

-

Useful Link on Sorting

Includes animations to
show how sorting
algorithms differ in
behavior and
performance

-

How an insertion sort works

Consider the event at some position (1..n)
Compare it to all the events before that
position backwards—towards 0.

If the comparison event time is LESS THAN the
considered event time, then shift the comparison
event down to make room.

Wherever we stop, that’s where the considered event
goes.

Consider the next event...until done

Option #2: Put it in the right
place

o
* Add the event.

* The Queue MUST remain in order, from lowest time to
highest.

o

public void add(SimEvent myEvent){
/I Option one: Add then sort
/lelements.add(myEvent);
/lthis.sort();

//Option two: Insert into order
this.insertinOrder(myEvent);

}

-

Again, trace it out to convince \
yourself that it works!

insertinOrder()

/I Assume elements from 0..i are less than
* Put thisEvent into elements, assuming thisEvent

* that it's already in order.

II'If the element time is GREATER,
insert here and

i vaid i " /I shift the rest down
bl d rtinOrd Event
P e Oder(SimEven f (hisEvent gelTime() <
SimEvent comparison = null; comparison.getTime()) {
. INnsert it here

/I Have we inserted yet?

boolean inserted = false;

for (int i=0; i < elements.size(); i++){
comparison = SSimEvent)
elements.get(i);

-

inserted = true;
elements.add(i,thisEvent);
break; // We can stop the search loop

}
}/I'end for

/I Did we get through the list without
finding something

Il greater? Must be greater than any

currently there!
if (linserted) {
Il 'Insert it at the end
elements.addLast(thisEvent);}
}

/

-

~

Finally: A Discrete Event
Simulation

Now, we can assemble queues, different
kinds of random, and a sorted

EventQueue to create a discrete event
simulation.

-

Running a DESimulation

4 N

What we see (not much)

Warchouse.

\—L_—/

10

