Java I/0 and Exceptions

CS1316: Representing
Structure and Behavior

-

Writing to a Text File

~

We have to create a stream that allows
us access to a file.

We’'re going to want to write strings to it.
We’re going to have to handle things
going wrong—exceptional events like
the filename being wrong or the disk
failing.

Here's how...

4 N

Input and Output Streams -
java.io

Java handles input and output through
sequential streams of bits

Programs can read from a stream or write to a

stream
Source
or 100110 Program
Destination

Byte Data
Character Data

File \

\ String Array

-

-

Standard Input and Output

~

We have been using System.out.printin to print
output to a PrintStream (standard output).

System.out.printin(“First Name: “ + firstName);
There is also a System.err PrintStream that
can be used to write to the standard error
output.

System.err.printin(“Error: no file name given”);

You can use System.in to read a byte or bytes
from an InputStream (standard input).

int numGrades = System.in.read();

/

~

Chaining Input and Output
Classes

-

Often input or output
classes are chained
Passing one type of
input/output class to the
constructor for another
One common thing is to
chain a processing class
with a data sink class
Like a BufferedReader or
BufferedWriter and a
FileReader or FileWriter

new BufferedReader(new
FileReader(fileName));

-

Exceptions

-

Exceptions are disruptions in the normal flow of a
program. Exception is short for exceptional event.
The programmer is required to handle checked
exceptions in Java

like trying to read from a file that doesn’t exist
Run-time exceptions do not have to be handled by the
programmer

like trying to invoke a method on a object reference that is
null

Children of RuntimeException

/

-

-

~

Try and Catch

Use a try & catch clause to catch an exception
{

code that can cause exceptions

} (ExceptionClassName varName) {
code to handle the exception
} (ExceptionClassName varName) {

code to handle the exception
}
You can catch several exceptions
Make the most general one last

All exceptions are children of the class Exception

-

-

Try and Catch: If the file isn’t
there...

~

What if you want to know if a file isn’t found
That you are trying to read from
If this occurs you might want to use a JFileChooser to
let the user pick the file

You also want to handle any other error
{

code that can cause the exception

} (FileNotFoundException ex) {
code to handle when the file isn’t found
} (Exception ex) {

code to handle the exception
}

4 N

Catching Exceptions

A catch clause will catch the given Exception class
and any subclasses of it.

So to catch all exceptions use: :

try { You can print the
error message
and the stack
trace (the list of all
currently running
methods)

code that can throw the exception

} catch (Exception e) {
System.err.printin(“Exception: “ + e.getMessage());
System.err.printin(“Stack Trace is:");
e.printStackTrace();

}

You can create your own exceptions by subclassing
\ Exception or a child of Exception. /

-

-

The optional finally clause

A try and catch statement can have a finally
clause
Which will always be executed
* Will happen if no exceptions
* Will happen even if exceptions occur
{
code that can cause the exception
} (FileNotFoundException ex) {
code to handle when the file isn’t found
} {

code to always be executed
}

Writing to a File

Use a try-catch clause to catch
exceptions

Create a buffered writer from a file writer

writer = new BufferedWriter(new
FileWriter(fileName));

Write the data
writer.write(data);
Close the buffered writer

* writer.close();
- /

-

Reading Lines of Character Data

Enclose the code in a try and catch clause
Catch FileNotFoundException if the file doesn’t exist

* And you may want to give the user a chance to specify a new
file

Catch Exception to handle all other errors

Create a buffered reader from a file reader for more
efficient reading

File names are relative to the current directory

Loop reading lines from the buffered reader until the
line is null

Do something with the data
Close the buffered reader

-

Reading from File Example

~

-

Adding an Output File to
WolfDeerSimulation

-

Opening the File

%

-

Changing the time loop

-

After the timing loop

-

Running the Simulation with a \
File

Finding the file in Excel

ok [Seni 7] @ @ X C4 B - Toos-
B wds-runt.txt Chjava-source
X z
| wourtest g
CopatricaHws
CoMariasHWe CibookClasses
o B —
My Documents Cjavasourcesi. £ Summary of MIDI Note Numbers_files
ChswikiPages CIMIDI Program Table_fies
A [Coshortsoncs 2 General MIDI Drum Kt Numbers_ies
M e Sound, Graphics,ouse, and Fies n ava_§
Deskiop | Sntrorogiava ShScenecraphs
Cotarbis medasources Cosdedocs
E} Cosides
Cobjects-bock.
Favortes | Cyedasources
@ I Il
Fle pame: =
[- [o= [
Places Fiesof type: =

-

~

Adding Labels for the Chart

—Wolwes
= Door

14 7 1013 16 19 22 25 28 31 34 37 40 43 46 49

