
1

Java I/O and Exceptions

CS1316: Representing
Structure and Behavior

Writing to a Text File

 We have to create a stream that allows
us access to a file.

 We’re going to want to write strings to it.
 We’re going to have to handle things

going wrong—exceptional events like
the filename being wrong or the disk
failing.

 Here’s how…

Input and Output Streams -
java.io

 Java handles input and output through
sequential streams of bits

 Programs can read from a stream or write to a
stream

Source
or

Destination
Program100110

Array
String

File Byte Data
Character Data

Standard Input and Output

 We have been using System.out.println to print
output to a PrintStream (standard output).

System.out.println(“First Name: “ + firstName);

 There is also a System.err PrintStream that
can be used to write to the standard error
output.

System.err.println(“Error: no file name given”);

 You can use System.in to read a byte or bytes
from an InputStream (standard input).

int numGrades = System.in.read();

2

Chaining Input and Output
Classes

 Often input or output
classes are chained
• Passing one type of

input/output class to the
constructor for another

 One common thing is to
chain a processing class
with a data sink class
• Like a BufferedReader or

BufferedWriter and a
FileReader or FileWriter

new BufferedReader(new
FileReader(fileName));

Exceptions

 Exceptions are disruptions in the normal flow of a
program. Exception is short for exceptional event.

 The programmer is required to handle checked
exceptions in Java
• like trying to read from a file that doesn’t exist

 Run-time exceptions do not have to be handled by the
programmer
• like trying to invoke a method on a object reference that is
null

• Children of RuntimeException

Try and Catch

 Use a try & catch clause to catch an exception
try {

code that can cause exceptions
} catch (ExceptionClassName varName) {

code to handle the exception
} catch (ExceptionClassName varName) {

code to handle the exception
}

 You can catch several exceptions
• Make the most general one last
• All exceptions are children of the class Exception

Try and Catch: If the file isn’t
there…

 What if you want to know if a file isn’t found
• That you are trying to read from
• If this occurs you might want to use a JFileChooser to

let the user pick the file

 You also want to handle any other error
try {

code that can cause the exception
} catch (FileNotFoundException ex) {

code to handle when the file isn’t found
} catch (Exception ex) {

code to handle the exception
}

3

Catching Exceptions

 A catch clause will catch the given Exception class
and any subclasses of it.

 So to catch all exceptions use:
try {

code that can throw the exception
} catch (Exception e) {

System.err.println(“Exception: “ + e.getMessage());
System.err.println(“Stack Trace is:”);
e.printStackTrace();

}

 You can create your own exceptions by subclassing
Exception or a child of Exception.

You can print the
error message
and the stack
trace (the list of all
currently running
methods)

The optional finally clause

 A try and catch statement can have a finally
clause
• Which will always be executed

• Will happen if no exceptions
• Will happen even if exceptions occur

try {
code that can cause the exception

} catch (FileNotFoundException ex) {
code to handle when the file isn’t found

} finally {
code to always be executed

}

Writing to a File

 Use a try-catch clause to catch
exceptions
• Create a buffered writer from a file writer

writer = new BufferedWriter(new
FileWriter(fileName));

• Write the data
writer.write(data);

• Close the buffered writer
• writer.close();

Reading Lines of Character Data

 Enclose the code in a try and catch clause
• Catch FileNotFoundException if the file doesn’t exist

• And you may want to give the user a chance to specify a new
file

• Catch Exception to handle all other errors
 Create a buffered reader from a file reader for more

efficient reading
• File names are relative to the current directory

 Loop reading lines from the buffered reader until the
line is null
• Do something with the data

 Close the buffered reader

4

Reading from File Example
 BufferedReader reader = null;
 String line = null;

 // try to read the file
 try {

 // create the buffered reader
 reader = new BufferedReader(new FileReader(fileName));

 // loop reading lines till the line is null (end of file)
 while ((line = reader.readLine()) != null)
 {

 // do something with the line
 }

 // close the buffered reader
 reader.close();

 } catch (Exception ex) {
 // handle exception
 }

Adding an Output File to
WolfDeerSimulation

 /* A BufferedWriter for writing to */
 public BufferedWriter output;

 /**
 * Constructor to set output to null
 **/
 public WolfDeerSimulation() {
 output = null;
 }

Opening the File

 /**
 * Open the input file and set the BufferedWriter to speak to it.
 **/
 public void openFile(String filename){
 // Try to open the file
 try {

 // create a writer
 output = new BufferedWriter(new FileWriter(filename));

 } catch (Exception ex) {
 System.out.println("Trouble opening the file " + filename);
 // If any problem, make it null again
 output = null;
 }
 }

Changing the time loop
 // Let's figure out where we stand...
 System.out.println(">>> Timestep: "+t);
 System.out.println("Wolves left: "+wolves.getNext().count());
 System.out.println("Deer left: "+deer.getNext().count());

 // If we have an open file, write the counts to it
 if (output != null) {
 // Try it
 try{
 output.write(wolves.getNext().count()+"\t"+deer.getNext().count());
 output.newLine();
 } catch (Exception ex) {
 System.out.println("Couldn't write the data!");
 System.out.println(ex.getMessage());
 // Make output null so that we don't keep trying
 output = null;
 }
 }

5

After the timing loop

 // If we have an open file, close it and null the variable
 if (output != null){
 try{
 output.close();}
 catch (Exception ex)
 {System.out.println("Something went wrong closing the file");}
 finally {
 // No matter what, mark the file as not-there
 output = null;}
 }

Running the Simulation with a
File

Welcome to DrJava.
> WolfDeerSimulation wds = new WolfDeerSimulation();
> wds.openFile("D:/cs1316/wds-run1.txt")
> wds.run();

Finding the file in Excel Adding Labels for the Chart

0

5

10

15

20

25

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Wolves

Deer

