
1

Java I/O and Exceptions

CS1316: Representing
Structure and Behavior

Writing to a Text File

 We have to create a stream that allows
us access to a file.

 We’re going to want to write strings to it.
 We’re going to have to handle things

going wrong—exceptional events like
the filename being wrong or the disk
failing.

 Here’s how…

Input and Output Streams -
java.io

 Java handles input and output through
sequential streams of bits

 Programs can read from a stream or write to a
stream

Source
or

Destination
Program100110

Array
String

File Byte Data
Character Data

Standard Input and Output

 We have been using System.out.println to print
output to a PrintStream (standard output).

System.out.println(“First Name: “ + firstName);

 There is also a System.err PrintStream that
can be used to write to the standard error
output.

System.err.println(“Error: no file name given”);

 You can use System.in to read a byte or bytes
from an InputStream (standard input).

int numGrades = System.in.read();

2

Chaining Input and Output
Classes

 Often input or output
classes are chained
• Passing one type of

input/output class to the
constructor for another

 One common thing is to
chain a processing class
with a data sink class
• Like a BufferedReader or

BufferedWriter and a
FileReader or FileWriter

new BufferedReader(new
FileReader(fileName));

Exceptions

 Exceptions are disruptions in the normal flow of a
program. Exception is short for exceptional event.

 The programmer is required to handle checked
exceptions in Java
• like trying to read from a file that doesn’t exist

 Run-time exceptions do not have to be handled by the
programmer
• like trying to invoke a method on a object reference that is
null

• Children of RuntimeException

Try and Catch

 Use a try & catch clause to catch an exception
try {

code that can cause exceptions
} catch (ExceptionClassName varName) {

code to handle the exception
} catch (ExceptionClassName varName) {

code to handle the exception
}

 You can catch several exceptions
• Make the most general one last
• All exceptions are children of the class Exception

Try and Catch: If the file isn’t
there…

 What if you want to know if a file isn’t found
• That you are trying to read from
• If this occurs you might want to use a JFileChooser to

let the user pick the file

 You also want to handle any other error
try {

code that can cause the exception
} catch (FileNotFoundException ex) {

code to handle when the file isn’t found
} catch (Exception ex) {

code to handle the exception
}

3

Catching Exceptions

 A catch clause will catch the given Exception class
and any subclasses of it.

 So to catch all exceptions use:
try {

code that can throw the exception
} catch (Exception e) {

System.err.println(“Exception: “ + e.getMessage());
System.err.println(“Stack Trace is:”);
e.printStackTrace();

}

 You can create your own exceptions by subclassing
Exception or a child of Exception.

You can print the
error message
and the stack
trace (the list of all
currently running
methods)

The optional finally clause

 A try and catch statement can have a finally
clause
• Which will always be executed

• Will happen if no exceptions
• Will happen even if exceptions occur

try {
code that can cause the exception

} catch (FileNotFoundException ex) {
code to handle when the file isn’t found

} finally {
code to always be executed

}

Writing to a File

 Use a try-catch clause to catch
exceptions
• Create a buffered writer from a file writer

writer = new BufferedWriter(new
FileWriter(fileName));

• Write the data
writer.write(data);

• Close the buffered writer
• writer.close();

Reading Lines of Character Data

 Enclose the code in a try and catch clause
• Catch FileNotFoundException if the file doesn’t exist

• And you may want to give the user a chance to specify a new
file

• Catch Exception to handle all other errors
 Create a buffered reader from a file reader for more

efficient reading
• File names are relative to the current directory

 Loop reading lines from the buffered reader until the
line is null
• Do something with the data

 Close the buffered reader

4

Reading from File Example
 BufferedReader reader = null;
 String line = null;

 // try to read the file
 try {

 // create the buffered reader
 reader = new BufferedReader(new FileReader(fileName));

 // loop reading lines till the line is null (end of file)
 while ((line = reader.readLine()) != null)
 {

 // do something with the line
 }

 // close the buffered reader
 reader.close();

 } catch (Exception ex) {
 // handle exception
 }

Adding an Output File to
WolfDeerSimulation

 /* A BufferedWriter for writing to */
 public BufferedWriter output;

 /**
 * Constructor to set output to null
 **/
 public WolfDeerSimulation() {
 output = null;
 }

Opening the File

 /**
 * Open the input file and set the BufferedWriter to speak to it.
 **/
 public void openFile(String filename){
 // Try to open the file
 try {

 // create a writer
 output = new BufferedWriter(new FileWriter(filename));

 } catch (Exception ex) {
 System.out.println("Trouble opening the file " + filename);
 // If any problem, make it null again
 output = null;
 }
 }

Changing the time loop
 // Let's figure out where we stand...
 System.out.println(">>> Timestep: "+t);
 System.out.println("Wolves left: "+wolves.getNext().count());
 System.out.println("Deer left: "+deer.getNext().count());

 // If we have an open file, write the counts to it
 if (output != null) {
 // Try it
 try{
 output.write(wolves.getNext().count()+"\t"+deer.getNext().count());
 output.newLine();
 } catch (Exception ex) {
 System.out.println("Couldn't write the data!");
 System.out.println(ex.getMessage());
 // Make output null so that we don't keep trying
 output = null;
 }
 }

5

After the timing loop

 // If we have an open file, close it and null the variable
 if (output != null){
 try{
 output.close();}
 catch (Exception ex)
 {System.out.println("Something went wrong closing the file");}
 finally {
 // No matter what, mark the file as not-there
 output = null;}
 }

Running the Simulation with a
File

Welcome to DrJava.
> WolfDeerSimulation wds = new WolfDeerSimulation();
> wds.openFile("D:/cs1316/wds-run1.txt")
> wds.run();

Finding the file in Excel Adding Labels for the Chart

0

5

10

15

20

25

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Wolves

Deer

