
1

Continuous Simulation
(Wolf/Deer Populations)

CS1316: Representing
Structure and Behavior

WolfDeerSimulation

public class WolfDeerSimulation {

 /* Linked lists for tracking wolves and deer */
 private AgentNode wolves;
 private AgentNode deer;

 /** Accessors for wolves and deer */
 public AgentNode getWolves(){return wolves;}
 public AgentNode getDeer(){return deer;}

Why private?

Only the
simulation should
know its wolves
and deer.

The main run() method

 public void run()
 {
 World w = new World();
 w.setAutoRepaint(false);

 // Start the lists
 wolves = new AgentNode();
 deer = new AgentNode();

 // create some deer
 int numDeer = 20;
 for (int i = 0; i < numDeer; i++)
 {
 deer.add(new AgentNode(new Deer(w,this)));
 }

We want to control
when the world
updates itself.

AgentNodes
contain the
Deer

Head and Rest

 Wolves and deer are AgentNodes…but the real
content starts at getNext().

 We call this the head of the list.
• It’s a placeholder.

 We call the rest the rest or body of the list.
• This makes it possible to remove a node, even if it’s the first

one in the list.

Head

getNext:

Rest

getNext:

wolves

Rest

getNext:

Rest

getNext:

Make some wolves

 // create some wolves
 int numWolves = 5;
 for (int i = 0; i < numWolves; i++)
 {
 wolves.add(new AgentNode(new Wolf(w,this)));
 }

Start our simulation loop
 // declare a wolf and deer
 Wolf currentWolf = null;
 Deer currentDeer = null;
 AgentNode currentNode = null;

 // loop for a set number of timesteps (50 here)
 for (int t = 0; t < 50; t++)
 {
 // loop through all the wolves
 currentNode = (AgentNode) wolves.getNext();

while (currentNode != null)
 {
 currentWolf = (Wolf) currentNode.getAgent();
 currentWolf.act();
 currentNode = (AgentNode) currentNode.getNext();
 }

What’s going on
here?

It’s our AgentNodes
that are in a linked
list. Each one of
them contains
(aggregation!) a
Wolf.

Have to pull the
Wolf out to get it to
act()

2

Give the deer a chance to act

 // loop through all the deer
 currentNode = (AgentNode) deer.getNext();

 while (currentNode != null)
 {
 currentDeer = (Deer) currentNode.getAgent();
 currentDeer.act();
 currentNode = (AgentNode) currentNode.getNext();
 }

Same unpackaging going on
here.

Show us what happened

 // repaint the world to show the movement
 w.repaint();

 // Let's figure out where we stand...
 System.out.println(">>> Timestep: "+t);
 System.out.println("Wolves left: "+wolves.getNext().count());
 System.out.println("Deer left: "+deer.getNext().count());

 // Wait for one second
 //Thread.sleep(1000);
 }
 }

Does the simulation go too fast?
Make the thread of execution
sleep for 1000 milliseconds

Implementing a Wolf
import java.awt.Color;
import java.util.Random;
import java.util.Iterator;

/**
 * Class that represents a wolf. The wolf class
 * tracks all the living wolves with a linked list.
 *
 * @author Barb Ericson ericson@cc.gatech.edu
 */
public class Wolf extends Turtle
{
 /////////////// fields //////////////////////

 /** class constant for the color */
 private static final Color grey = new Color(153,153,153);

 /** class constant for probability of NOT turning */

 protected static final double PROB_OF_STAY = 1.0/10;

A final is something that
won’t change: A
constant. It’s used to
make code more
readable yet easy-to-
change.

Private vs. Protected?
Use Protected if your
subclasses will need to
access (new kinds of
wolves?)

Constants are
typically all-caps

More Wolf fields

 /** class constant for top speed (max num steps can
move in a timestep) */

 protected static final int maxSpeed = 60;

 /** My simulation */
 protected WolfDeerSimulation mySim;

 /** random number generator */
 protected static Random randNumGen = new Random();

There is more than one
kind of random. Treating
it as an object makes it
easier to have different
kinds later.

maxSpeed should
probably be all-caps
(or did you want to
make it variable? Do
wolves get slower
as they get hungry?

Constructors

 ////////////////////////////// Constructors ////////////////////////

 /**
 * Constructor that takes the model display (the original
 * position will be randomly assigned)
 * @param modelDisplayer thing that displays the model
 * @param mySim my simulation
 */
 public Wolf (ModelDisplay modelDisplayer,WolfDeerSimulation

thisSim)
 {
 super(randNumGen.nextInt(modelDisplayer.getWidth()),
 randNumGen.nextInt(modelDisplayer.getHeight()),
 modelDisplayer);
 init(thisSim);
 }

 /** Constructor that takes the x and y and a model
 * display to draw it on
 * @param x the starting x position
 * @param y the starting y position
 * @param modelDisplayer the thing that displays the model
 * @param mySim my simulation
 */
 public Wolf (int x, int y, ModelDisplay modelDisplayer,
 WolfDeerSimulation thisSim)
 {
 // let the parent constructor handle it
 super(x,y,modelDisplayer);
 init(thisSim);
 }

Remember that a
constructor must
match its superclass,
if you want to use
super(). These are
like the ones in
Turtle.

What’s a
ModelDisplay? The
abstract superclass of
the World.

Using a Random:
PseudoRandom Number Generator

3

Initialize a Wolf
 ////////////////// methods //

 /**
 * Method to initialize the new wolf object
 */
 public void init(WolfDeerSimulation thisSim)
 {
 // set the color of this wolf
 setColor(grey);

 // turn some random direction
 this.turn(randNumGen.nextInt(360));

 // set my simulation
 mySim = thisSim;
 }

Get an integer
at most 360

Is there a
Deer to eat?

public AgentNode getClosest(double distance,AgentNode list)
 {
 // get the head of the deer linked list
 AgentNode head = list;
 AgentNode curr = head;
 AgentNode closest = null;
 Deer thisDeer;
 double closestDistance = 0;
 double currDistance = 0;

 // loop through the linked list looking for the closest deer
 while (curr != null)
 {
 thisDeer = (Deer) curr.getAgent();
 currDistance = thisDeer.getDistance(

this.getXPos(),this.getYPos());
 if (currDistance < distance)
 {
 if (closest == null || currDistance < closestDistance)
 {
 closest = curr;
 closestDistance = currDistance;
 }
 }
 curr = (AgentNode) curr.getNext();
 }
 return closest;
 }

|| is “OR”

Walk this through in
English to see that it’s
doing what you think it
should.

Modeling what a Wolf does
 /**
 * Method to act during a time step
 * pick a random direction and move some random amount up to top speed
 */
 public void act()
 {

 // get the closest deer within some specified distance
 AgentNode closeDeer = getClosest(30,
 (AgentNode) mySim.getDeer().getNext());

 if (closeDeer != null)
 {
 Deer thisDeer = (Deer) closeDeer.getAgent();
 this.moveTo(thisDeer.getXPos(),
 thisDeer.getYPos());
 thisDeer.die();
 }

getClosest returns an
AgentNode, so we have to get
the Deer out of it with
getAgent()

Why getNext()?
Because we
need the body of
the list, and
that’s after the
head.

If can’t eat, then move

 else
 {

 // if the random number is > prob of NOT turning then turn
 if (randNumGen.nextFloat() > PROB_OF_STAY)
 {
 this.turn(randNumGen.nextInt(360));
 }

 // go forward some random amount
 forward(randNumGen.nextInt(maxSpeed));
 }
 }

Get an integer
at most 360, or
at most
maxSpeed

Deer
import java.awt.Color;
import java.util.Random;

/**
 * Class that represents a deer. The deer class
 * tracks all living deer with a linked list.
 *
 * @author Barb Ericson ericson@cc.gatech.edu
 */
public class Deer extends Turtle
{

 /////////////// fields //////////////////////

 /** class constant for the color */
 private static final Color brown = new Color(116,64,35);

 /** class constant for probability of NOT turning */
 private static final double PROB_OF_STAY = 1.0/5;

Deer fields (instance variables)

 /** class constant for top speed (max num steps
can move in a timestep) */

 private static final int maxSpeed = 50;

 /** random number generator */
 private static Random randNumGen = new

Random();

 /** the simulation I'm in */
 private WolfDeerSimulation mySim;

4

Deer
Constructors

 ////////////////////////////// Constructors ////////////////////////

 /**
 * Constructor that takes the model display (the original
 * position will be randomally assigned
 * @param modelDisplayer thing which will display the model
 */
 public Deer (ModelDisplay modelDisplayer,WolfDeerSimulation

thisSim)
 {
 super(randNumGen.nextInt(modelDisplayer.getWidth()),
 randNumGen.nextInt(modelDisplayer.getHeight()),
 modelDisplayer);
 init(thisSim);
 }

 /** Constructor that takes the x and y and a model
 * display to draw it on
 * @param x the starting x position
 * @param y the starting y position
 * @param modelDisplayer the thing that displays the model
 */
 public Deer (int x, int y, ModelDisplay modelDisplayer,
 WolfDeerSimulation thisSim)
 {
 // let the parent constructor handle it
 super(x,y,modelDisplayer);
 init(thisSim);
 }

Nothing new
here…

Initializing a Deer

 /**
 * Method to initialize the new deer object
 */
 public void init(WolfDeerSimulation thisSim)
 {
 // set the color of this deer
 setColor(brown);

 // turn some random direction
 this.turn(randNumGen.nextInt(360));

 // know my simulation
 mySim = thisSim;
 }

Nothing new
here…

What Deer Do

 /**
 * Method to act during a time step
 * pick a random direction and move some random amount up to top speed
 */
 public void act()
 {
 // if the random number is > prob of NOT turning then turn
 if (randNumGen.nextFloat() > PROB_OF_STAY)
 {
 this.turn(randNumGen.nextInt(360));
 }

 // go forward some random amount
 forward(randNumGen.nextInt(maxSpeed));
 }

Nothing new
here…

When Deer Die

 /**
 * Method that handles when a deer dies
 */
 public void die()
 {
 // Leave a mark on the world where I died...
 this.setBodyColor(Color.red);

 // Remove me from the "live" list
 mySim.getDeer().remove(this);

 // ask the model display to remove this
 // Think of this as "ask the viewable world to remove this turtle"
 //getModelDisplay().remove(this);

 System.out.println("<SIGH!> A deer died...");
 }

If you want the
body and its trail
to disappear…

Why don’t we
have to say
getNext() before
the remove()?

AgentNodes

 AgentNodes contain Turtles
• That’s aggregation

 It’s a subclass of LLNode
• It’s a specialization of LLNode

AgentNode implementation

/**
 * Class to implement a linked list of Turtle-like characters.
 * (Maybe "agents"?)
 **/
public class AgentNode extends LLNode {
 /**
 * The Turtle being held
 **/
 private Turtle myTurtle;

5

AgentNode constructors

 /** Two constructors: One for creating the head of the list
 * , with no agent
 **/
 public AgentNode() {super();}

 /**
 * One constructor for creating a node with an agent
 **/
 public AgentNode(Turtle agent){
 super();
 this.setAgent(agent);
 }

AgentNode getter/setter

 /**
 * Setter for the turtle
 **/
 public void setAgent(Turtle agent){
 myTurtle = agent;
 }

 /**
 * Getter for the turtle
 **/
 public Turtle getAgent(){return myTurtle;}

AgentNode: Remove node where
Turtle is found

 /**
 * Remove the node where this turtle is found.
 **/
 public void remove(Turtle myTurtle) {
 // Assume we're calling on the head
 AgentNode head = this;
 AgentNode current = (AgentNode) this.getNext();

 while (current != null) {
 if (current.getAgent() == myTurtle)
 {// If found the turtle, remove that node
 head.remove(current);
 }

 current = (AgentNode) current.getNext();
 }
 }

It’s just like other
linked list removes, but
now we’re looking for
the node that contains
the input turtle.

Think about it…

 What if AgentNodes contained
Objects?
• Object is a class that is the superclass of all

classes (even if not explicitly extended).
• AgentNodes that contain Objects could be

general linked lists that contain anything
• Just cast things as you need them as you pull

them out.

Back to the simulation:
What might we change?

 Wolves that aren’t always hungry?
 Having wolves that chase deer?

Have deer run from wolves?
 And how do we look at the results?

We’ll deal with hunger first, then
with comparing, then with
running towards/away.

Creating a Hungry Wolf

/**
 * A class that extends the Wolf to have a Hunger level.
 * Wolves only eat when they're hungry
 **/
public class HungryWolf extends Wolf {
 /**
 * Number of cycles before I'll eat again
 **/
 private int satisfied;

 /** class constant for number of turns before hungry */
 private static final int MAX_SATISFIED = 3;

6

Need to
match

 /**
 * Constructor that takes the model display (the original
 * position will be randomly assigned)
 * @param modelDisplayer thing that displays the model
 * @param mySim my simulation
 */
 public HungryWolf (ModelDisplay

modelDisplayer,WolfDeerSimulation thisSim)
 {
 super(modelDisplayer,thisSim);
 }

 /** Constructor that takes the x and y and a model
 * display to draw it on
 * @param x the starting x position
 * @param y the starting y position
 * @param modelDisplayer the thing that displays the model
 * @param mySim my simulation
 */
 public HungryWolf (int x, int y, ModelDisplay

modelDisplayer,
 WolfDeerSimulation thisSim)
 {
 // let the parent constructor handle it
 super(x,y,modelDisplayer,thisSim);
 }

Initializing a HungryWolf

 /**
 * Method to initialize the hungry wolf object
 */
 public void init(WolfDeerSimulation thisSim)
 {
 super.init(thisSim);

 satisfied = MAX_SATISFIED;
 }

What a HungryWolf does
 /**
 * Method to act during a time step
 * pick a random direction and move some random amount up to top speed
 */
 public void act()
 {
 // Decrease satisfied time, until hungry again
 satisfied--;

 // get the closest deer within some specified distance
 AgentNode closeDeer = getClosest(30,
 (AgentNode) mySim.getDeer().getNext());

 if (closeDeer != null)
 { // Even if deer close, only eat it if you're hungry.
 if (satisfied <= 0)
 {Deer thisDeer = (Deer) closeDeer.getAgent();
 this.moveTo(thisDeer.getXPos(),
 thisDeer.getYPos());
 thisDeer.die();
 satisfied = MAX_SATISFIED;

 }}

If there is a Deer
near, then check if
you’re hungry, and
only then—eat and
get “full”

And if no Deer are near…

 else
 {

 // if the randome number is > prob of turning then turn
 if (randNumGen.nextFloat() > PROB_OF_TURN)
 {
 this.turn(randNumGen.nextInt(360));
 }

 // go forward some random amount
 forward(randNumGen.nextInt(maxSpeed));

 }
 }

Nothing new
here…

Changing the Simulation to
make HungryWolves (in run())

 // create some wolves
 int numWolves = 5;
 for (int i = 0; i < numWolves; i++)
 {
 wolves.add(new AgentNode(new

HungryWolf(w,this)));
 }

Everything else just
works, because
HungryWolf is a
kind of Wolf

Making Wolves and Deer Run

 What we do:
• In Deer, if there is a Wolf within our smelling range,

run in the opposite direction (turn towards, turn 180,
move)

• In Wolf, if there is a Deer within our smelling range,
run towards it.

• (Stays the same) If the Wolf gets close enough,
gobble up the Deer.

• (Stays the same) For both, otherwise, wander
aimlessly.

7

New constants for Deer

 /** class constant for probability of NOT turning */
 private static final double PROB_OF_STAY = 1.0/5;

 /** class constant for how far deer can smell */
 private static final double SMELL_RANGE = 50;

 /** class constant for top speed (max num steps can move
in a timestep) */

 private static final int maxSpeed = 30;

Deer-finding
closest Wolf

 /**
 * Method to get the closest wolf within the passed distance
 * to this deer. We'll search the input list of the kind
 * of objects to compare to.
*/
 public AgentNode getClosest(double distance,AgentNode list)
 {
 // get the head of the deer linked list
 AgentNode head = list;
 AgentNode curr = head;
 AgentNode closest = null;
 Wolf thisWolf;
 double closestDistance = 0;
 double currDistance = 0;

 // loop through the linked list looking for the closest deer
 while (curr != null)
 {
 thisWolf = (Wolf) curr.getAgent();
 currDistance =

thisWolf.getDistance(this.getXPos(),this.getYPos());
 if (currDistance < distance)
 {
 if (closest == null || currDistance < closestDistance)
 {
 closest = curr;
 closestDistance = currDistance;
 }
 }
 curr = (AgentNode) curr.getNext();
 }
 return closest;
 }

Strikingly
similar to
Wolf’s for find
Deer, no?

Deer new
act()

 /**
 * Method to act during a time step
 * pick a random direction and move some random amount up

to top speed
 */
 public void act()
 {
 // get the closest wolf within the smell range
 AgentNode closeWolf = getClosest(SMELL_RANGE,
 (AgentNode)

mySim.getWolves().getNext());

 if (closeWolf != null) {
 Wolf thisWolf = (Wolf) closeWolf.getAgent();
 // Turn to face the wolf
 this.turnToFace(thisWolf);
 // Now directly in the opposite direction
 this.turn(180);
 // How far to run? How about half of max speed??
 this.forward((int) (maxSpeed/2));
 }
 else {
 // if the random number is > prob of NOT turning then turn
 if (randNumGen.nextFloat() > PROB_OF_STAY)
 {
 this.turn(randNumGen.nextInt(360));
 }

 // go forward some random amount
 forward(randNumGen.nextInt(maxSpeed));
 }
 }

Think about this in
terms of the values
that can be changed
and their relative
values.

Does this match the
English description
we had a few slides
back?

Wolf Constants

 /** class constant for probability of NOT turning */
 protected static final double PROB_OF_STAY = 1.0/10;

 /** class constant for top speed (max num steps can move
in a timestep) */

 protected static final int maxSpeed = 40;

 /** class constant for how far wolf can smell */
 private static final double SMELL_RANGE = 50;

 /** class constant for how close before wolf can attack */
 private static final double ATTACK_RANGE = 30;

How Wolf’s smell deer
 /**
 * Method to act during a time step
 * pick a random direction and move some random amount up to top speed
 */
 public void act()
 {
 // get the closest deer within smelling range
 AgentNode closeDeer = getClosest(SMELL_RANGE,
 (AgentNode) mySim.getDeer().getNext());
 if (closeDeer != null)
 {
 Deer thisDeer = (Deer) closeDeer.getAgent();
 // Turn torward deer
 this.turnToFace(thisDeer);
 // How much to move? How about minimum of maxSpeed
 // or distance to deer?
 this.forward((int) Math.min(maxSpeed,
 thisDeer.getDistance(this.getXPos(),this.getYPos())));
 }

The rest of
normal
Wolf actions

 // get the closest deer within the attack distance
 closeDeer = getClosest(ATTACK_RANGE,
 (AgentNode) mySim.getDeer().getNext());

 if (closeDeer != null)
 {
 Deer thisDeer = (Deer) closeDeer.getAgent();
 this.moveTo(thisDeer.getXPos(),
 thisDeer.getYPos());
 thisDeer.die();
 }

 else // Otherwise, wander aimlessly
 {

 // if the randome number is > prob of NOT turning then
turn

 if (randNumGen.nextFloat() > PROB_OF_STAY)
 {
 this.turn(randNumGen.nextInt(360));
 }

 // go forward some random amount
 forward(randNumGen.nextInt(maxSpeed));
 } // end else
 } // end act()

8

Changes to
WolfDeerSimulation…NOTHING!

 We have the same interface as we used
to have, so nothing changes in
WolfDeerSimulation.

 Very powerful idea:
• If changes to a class keep the interface the

same, then all users of the class don’t have
to change at all.

Running the new simulation

Welcome to DrJava.
> WolfDeerSimulation wds = new

WolfDeerSimulation();
> wds.openFile("D:/cs1316/wds-

chase.txt")
> wds.run();

0

2

4

6

8

10

12

14

16

18

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Wolves

Deer

Explorations

 What does the relative speed of Deer and
Wolves matter?
• Does it matter if Deer go faster? Wolves?

 What if Deer and Wolves can smell farther
away?
• What if one can smell better than the other?

 What’s the effect of having more Deer or more
Wolves?

 What if HungryWolves could starve (say at -10
satisfaction)? Do more deer live?

Doing More Simulations

 How much code would be in common in
every simulation we’d build?
• We already have lots of duplication, e.g.,

getClosest.
 Goal: Can we make an Agent/Actor

class and Simulation class that we’d
subclass with very little additional code
to create new simulations?

