Continuous Simulation
(Wolf/Deer Populations)

CS1316: Representing
Structure and Behavior

/

WolfDeerSimulation

public class WolfDeerSimulation {

/* Linked lists for tracking wolves and deer */
private AgentNode wolves; Why private?
private AgentNode deer; Only the

simulation should
know its wolves
/** Accessors for wolves and deer */ and deer.

public AgentNode getWolves(){return wolves;}
public AgentNode getDeer(){return deer;}

/

4 N

The main run() method

public void run()

World w = new World();

w.setAu int(false); < We want to control
when the world

1/ Start the lists updates itself.

wolves = new AgentNode();
deer = new AgentNode();

/I create some deer
int numDeer = 20;

for (int i = 0; i < numDeer; i++) AgentNodes
{ contain the
deer.add(new AgentNode(new Deer(w,this))); Deer

- /

/

.

Head and Rest

Wolves and deer are AgentNodes...but the real
content starts at getNext().
We call this the head of the list.
It's a placeholder.
We call the rest the rest or body of the list.

This makes it possible to remove a node, even if it's the first
one in the list.

wolves

\ Head Rest Rest Rest
getNext: — getNext: getNext: /vgstNext:

Make some wolves

/I create some wolves
int numWolves = 5;
for (inti = 0; i < numWolves; i++)
{
wolves.add(new AgentNode(new Wolf(w,this)));

}

.

Start our simulation loop

/I declare a wolf and deer
Wolf currentWolf = null;
Deer currentDeer = null;
AgentNode currentNode = null;

1 loop for a set number of timesteps (50 here) What's going on
for (int t = 0; t < 50; t++) here?

Il'oop through all the wolves
currentNode = (AgentNode) wolves.getNext();
while (currentNode != null)

{

It's our AgentNodes
that are in a linked
list. Each one of
them contains

= (Wolf) .getAgent(); "
currentWolf.act(); (aggregation!) a
= .getNext(); Wolf.

L Have to pull the

Wolf out to get it to
act()

4 N 4 N

Give the deer a chance to act Show us what happened
/I loop through all the deer
currentNode = (AgentNode) deer.getNext(); n repaipt the world to show the movement
while (currentNode != null) w.repaint();

{ /I Let'
Let's figure out where we stand...
currentDeer = (Deer) currentNode.getAgent(); System.out.printin(">>> Timestep: "+t);
currentDeer.act(); System.out.printin("Wolves left: "+wolves.getNext().count());
currentNode = (AgentNode) currentNode.getNext(); System.out.printin("Deer left: "+deer.getNext().count());
}

/I Wait for one second
/[Thread.sleep(1000); Does the simulation go too fast?
Same unpackaging going on } Make the thread of execution

K here. / K } sleep for 1000 milliseconds /

4 N 4 N

Implementing a Wolf More Wolf fields

import java.awt.Color;
import java.util. Random;

/** class constant for to;/) speed (max num steps can

H 1 *
import java.util Iterator; A final is something that move in a t"_“es_tep)‘
- won't change: A protected static final int maxSpeed = 60; maxspeed should
* Class that represents a wolf. The wolf class s e probably be all-caps

make code more

* tracks all the living wolves with a linked list.
- readable yet easy-to-

ke : : * (or did you want to
(% iy silrnu it make it variable? Do

* @author Barb Ericson ericson@cc.gatech.edu change. protected WolfDeerSimulation mySim; wolves get slower

* . ?

public class Wolf extends Turtle Private vs. Protected? . o e iy G
Use Protected if your /** random number generator */

I Sields I subclasses will need to protected static Random randNumGen = new Random();
access (new kinds of

/** class constant for the color */

There is more than one
private static final Color grey = new Color(153,153,153);

kind of random. Treating

it as an object makes it
\ /** class constant for probability of NOT turning */ / K easier to have different
protected static final double PROB_OF_STAY = 1.0/0; Constants are _

B kinds later.
typically all-caps

wolves?)

THTTTTTTIITOIiIIIIIT Constructors FIIIIIIT

o / \
/ * Constructor that takes the model display (the original

* position will be randomly assigned) Usi ng a Random:
* @param modelDisplayer thing that displays the model
Constructors :@sennmysmmysmiaon PseudoRandom Number Generator
ublic Wolf (ModelDisplay modelDisplayer, WolfDeerSimulation
3 thisSim)(piay piays Method Summary
ext (17 ice)
T — Displayer.getWidh()), Generates the next pseudorandom number.
o ; Displayer.getHeight()), et waifonnly
constructor mus! modelDisplayer); cquence -
match its superclass, init(thisSim); 5[extBytes (oyce() byoes)
if you want to use } | Gesets rndom byt sndpaes thm ko e spplied e sy
s_uper(). The§e are /** Gonstructor that takes the x and y and a model W s e s o, oy G s vl b . ud
like the ones in * display to draw it on T B
Turtle. * @param x the starting x position | Renums the next pseudorandom, uniformly disributed £1ce< value bervieen 0.0 and
* @param y the starting y position 5 from this random mumber generator's sequence.
* @param modelDisplayer the thing that displays the model [pesegesianl) Gaussian (aonmaly’ —
* @param mySim my simulation |mean 0.0 and standard deviation 1.0 from this random number generator's sequence.
What's a @ ey
P public Wolf (int x, int y, ModelDisplay modelDisplayer, Retums e waiformiy dsiribued
ModelDisplay? The WolfDeerSimulation thisSim) _|mber generaors seece
abstract superclass of = nextrat (0 o
Retums 2 psendorandon, usiformly
the World. 11 let the parent constructor handle it pe ., drawn from ‘generator's sequence.
K super(x,y,modelDisplayer); “2nextiona (1
init(thisSi \ Retunns the next pseudosandom, uniformly disribused 101g value from this random J/
umber generators sequence.
} =
= £ this random number generator using a single 2ng seed.

-

Initialize a Wolf

-

Is there a
Deer to eat?

B
llisToR"
-

-

Modeling what a Wolf does

If can’t eat, then move

Deer

Deer fields (instance variables)

-

Deer
Constructors

-

Initializing a Deer

-

What Deer Do

-

When Deer Die

-

AgentNodes

« AgentNodes contain Turtles
© That's aggregation

« It's a subclass of LLNode
“ It's a specialization of LLNode

-

~

AgentNode implementation

/

-

AgentNode constructors

/** Two constructors: One for creating the head of the list
*, with no agent

)/

public AgentNode() {super();}

o
* One constructor for creating a node with an agent
wx
public AgentNode(Turtle agent){

super();

this.setAgent(agent);

/

AgentNode getter/setter

Jo
* Setter for the turtle
Iy

public void setAgent(Turtle agent){
myTurtle = agent;

}

o>
* Getter for the turtle

*x)

public Turtle getAgent(){return myTurtle;}

/

~

AgentNode: Remove node where
Turtle is found

I
* Remove the node where this turtle is found.
)

public void remove(Turtle myTurtle) {
/I Assume we're calling on the head
AgentNode head = this;
AgentNode current = (AgentNode) this.getNext();

It's just like other
linked list removes, but
now we're looking for
the node that contains
the input turtle.

while (current != null) {
if (current.getAgent() == myTurtle)
{/l If found the turtle, remove that node
head.remove(current);

current = (AgentNode) current.getNext();

L /

/

Think about it...

-

What if AgentNodes contained
Objects?
Object is a class that is the superclass of all
classes (even if not explicitly extended).
AgentNodes that contain Objects could be
general linked lists that contain anything

¢ Just cast things as you need them as you pull
them out.

/

/

Back to the simulation:
What might we change?

Wolves that aren’t always hungry?

Having wolves that chase deer?
Have deer run from wolves?

And how do we look at the results?

We'll deal with hunger first, then
with comparing, then with
running towards/away.

/

Creating a Hungry Wolf

I
* A class that extends the Wolf to have a Hunger level.
* Wolves only eat when they're hungry
)

public class HungryWolf extends Wolf {

* Number of cycles before I'll eat again
o
private int satisfied;

/** class constant for number of turns before hungry */
private static final int MAX_SATISFIED = 3;

Need to
match

-

Initializing a HungryWolf

4 N

What a HungryWolf does

-

And if no Deer are near...

4 N

Changing the Simulation to
make HungryWolves (in run())

k-_/

Making Wolves and Deer Run

« What we do:

“ In Deer, if there is a Wolf within our smelling range,
run in the opposite direction (turn towards, turn 180,
move)

“ In Wolf, if there is a Deer within our smelling range,
run towards it.

© (Stays the same) If the Wolf gets close enough,
gobble up the Deer.

© (Stays the same) For both, otherwise, wander
aimlessly.

N

)

-

New constants for Deer

/

- J

-

Deer-finding
closest Wolf

f Deer new
act()

-

Wolf Constants

-

How Wolf’s smell deer

/

The rest of
normal
Wolf actions

/

Changes to
WolfDeerSimulation...NOTHING!

We have the same interface as we used
to have, so nothing changes in
WolfDeerSimulation.

Very powerful idea:

If changes to a class keep the interface the
same, then all users of the class don’t have
to change at all.

Running the new simulation

~

Welcome to DrJava.

> WolfDeerSimulation wds = new
WolfDeerSimulation();

> wds.openFile("D:/cs1316/wds-
chase.txt")

> wds.run();

14 71013 16 19 22 25 28 31 34 37 40 43 46 49

/

Explorations

What does the relative speed of Deer and
Wolves matter?

Does it matter if Deer go faster? Wolves?
What if Deer and Wolves can smell farther
away?

What if one can smell better than the other?
What'’s the effect of having more Deer or more
Wolves?
What if HungryWolves could starve (say at -10
satisfaction)? Do more deer live?

/

Doing More Simulations

~

How much code would be in common in
every simulation we’d build?
We already have lots of duplication, e.g.,
getClosest.
Goal: Can we make an Agent/Actor
class and Simulation class that we’'d
subclass with very little additional code
to create new simulations?

/

