
1

Introduction to
Simulations

CS1316: Representing
Structure and Behavior

Story

 What’s a simulation? Why do we simulate?
• Discrete vs. Continuous
• Resources

 Building software to be modifiable: Software Engineering
• Building models out of objects: aggregation, generalizing and

specializing
 Continuous Simulations

• Predatory-prey: Wolves and Deer
• Changing our simulation
• Creating hungry wolves
• Other options: Hungry deer? Deer sex? Wolf sex?

 How do we compare simulations?
• Creating text files

Wildebeests as Simulations Simulations

 “A simulation is a representation of a system of objects in
a real or fantasy world.
The purpose of creating a computer simulation is to
provide a framework in which to understand the simulated
situation, for example, to understand the behavior of a
waiting line, the workload of clerks, or the timeliness of
service to customers.
A computer simulation makes it possible to collect
statistics about these situations, and to test out new ideas
about their organization.”
• Adele Goldberg & David Robson, Smalltalk-80: The

Language and Its Implementation (Addison-Wesley, 1989)



2

Simulations and Objects

 Object-oriented programming was invented, in
part, to make simulations easier to build!

 The characteristics of objects make them more
like real world objects, e.g.,
• Each thing knows some stuff and knows how to do

some stuff.
• Objects get things done by asking each other to do

things.
• Your internals are private, unless you want to make

them otherwise.

Continuous vs. Discrete
Simulations

 Two main kinds of simulations in the
world.

 Continuous: Each moment of time is
simulated.
• When every moment counts.

 Discrete: Skip to the important moments.
• Want to simulate 100 years?

Resources

 Resources are points of coordination in a
simulation.
• Examples: A cashier, a library book, a parking space

on a ferry, a jelly bean.
 Some resources are fixed and others are

produced and consumed.
 Some resources are renewable and shared.
 Others are coordinated.

• Example: For a surgeon to do a surgery, the patient
must meet the surgeon at the operating table (the
resource)

When an object has to wait…

 What happens if you (or your proxy
object) need a resource and it’s not
available?
• You wait in a queue
• A list that is first-in-first-out (FIFO)



3

A simulation is an executed
model

 Setting up a simulation is a process of
modeling the world (real or fantasy) to be
simulated.

 That model is realized in terms of objects.
 We want our model to:

• Reflect the world.
• Be easy to extend and change.

 Some of our modeling techniques:
• Aggregation
• Generalization and specialization

Aggregation

 Some objects are made up of other
objects.
• Cars have engines
• People have livers and lungs

• These internal things are objects, too!
• Livers don’t directly mess with the innards of lungs!

 We call this aggregation
• Putting references to some objects inside of

other objects.

Generalization and
Specialization

 There are general and specialized forms of
real world objects.
• Cells are biological objects that have membranes and

a nucleus and mitochondria and…
• Blood, lung, and liver cells are all cells but have

specialized functions.

 The superclass-subclass relationship is a way
of modeling general forms of objects and
specialized forms of objects

Making it concrete:
Wolves eating deer



4

Running the simulation
Welcome to DrJava.
> WolfDeerSimulation wds = new WolfDeerSimulation()
> wds.run()
>>> Timestep: 0
Wolves left: 5
Deer left: 20
>>> Timestep: 1
Wolves left: 5
Deer left: 20
<SIGH!> A deer died...
>>> Timestep: 2
Wolves left: 5
Deer left: 19
>>> Timestep: 3
Wolves left: 5
Deer left: 19
<SIGH!> A deer died...
>>> Timestep: 4
Wolves left: 5
Deer left: 18

An Example Simulation

 The WolfDeerSimulation is a continuous
simulation.
• Each moment in time is simulated.

 It has no resources.
 It is a predator-prey simulation

• A common real world (ecological) situation.
• There are parameters to change to explore

under what conditions predators and prey
survive and in what numbers.

The Model of this Simulation
WolfDeerSimulation

Knows the list of
wolves and deer

KnowsHow to run()
each moment in time

AgentNode

Knows its turtle
(agent)

KnowsHow to
get/set agent, to
remove an agent

Wolf

KnowsHow to
act(), and to
find the closest
deer.

Deer

KnowsHow to
act() and die

Turtle
LLNode

Complicated Set of
Relationships in this Model

 Wolf and Deer are kinds of Turtle
• Specializations of Turtle

 AgentNode is a kind of LLNode
 AgentNodes each have one Turtle (Wolf or

Deer) inside it.
 WolfDeerSimulation has two AgentNodes for

the lists of live wolves and deer.
 Each Wolf and Deer knows what simulation its

in.



5

A UML Class Diagram

+run()

-wolves

-deer

WolfDeerSimulation

+setAgent()
+getAgent()

-myTurtle

AgentNode

+getNext()

+remove()
+count()

+add()

-next

LLNode

+act()

+getClosest()

Wolf

Turtle

+act()

+die()

Deer

*
-myTurtle1

*

-wolves1

*

-deer

1

-mySim

1

*

-mySim1

*

Unified Modeling Language
(UML)

 This is a UML class diagram.
• A graphical notation for describing the

relationships between classes in a model.
 UML is a standard that describes several

different kinds of diagrams.
• Collaboration diagrams: How objects work

together and how they call on one another.
• Sequence diagrams: What the order of events

are in an object system.

A class in a UML class diagram

Name of the
class Instance variables

or fields: What the
class instances
know

Operations
or methods:
What the
instances
know how

+run()

-wolves

-deer

WolfDeerSimulation

Generalization-specialization
relationships

Turtle

+act()

+die()

Deer

A Deer is a subclass of
Turtle: It’s a
specialization of Turtle



6

Associations

WolfDeerSimulation has two
AgentNodes in it: One to
represent wolves and one to
represent deer.

AgentNodes don’t know their
simulation

+run()

-wolves
-deer

WolfDeerSimulation

+setAgent()

+getAgent()

-myTurtle

AgentNode

*

-wolves1

*

-deer

1

A Class Diagram describes the
Model, without the Code

+run()

-wolves

-deer

WolfDeerSimulation

+setAgent()
+getAgent()

-myTurtle

AgentNode

+getNext()

+remove()
+count()

+add()

-next

LLNode

+act()

+getClosest()

Wolf

Turtle

+act()

+die()

Deer

*
-myTurtle1

*

-wolves1

*

-deer

1

-mySim

1

*

-mySim1

*


