
1

Structuring Images

CS1316: Representing
Structure and Behavior

Story

 Structuring images into scenes
• Version 1: Representing linearity through elements order.

• Animation through rendering and data structure tweaking
• Version 2: Representing layering through order.
• Version 3: Allowing both in a single list

• Introducing subclasses and superclasses
• Including abstract classes

• Passing a turtle along for processing.
• Version 4: Creating trees of images

• Making the branches do something

Building a Scene

 Computer graphics professionals work at two
levels:
• They define individual characters and effects on

characters in terms of pixels.
• But then most of their work is in terms of the scene:

Combinations of images (characters, effects on
characters).

 To describe scenes, they often use linked lists
and trees in order to assemble the pieces.

Use an array?

> Picture [] myarray = new Picture[5];
> myarray[0]=new Picture(FileChooser.getMediaPath("katie.jpg"));
> myarray[1]=new Picture(FileChooser.getMediaPath("barbara.jpg"));
> myarray[2]=new Picture(FileChooser.getMediaPath("flower1.jpg"));
> myarray[3]=new Picture(FileChooser.getMediaPath("flower2.jpg"));
> myarray[4]=new Picture(FileChooser.getMediaPath("butterfly.jpg"));
> Picture background = new Picture(400,400)
> for (int i = 0; i < 5; i++)
 {myarray[i].scale(0.5).compose(background,i*10,i*10);}
> background.show();

Yeah, we could. But:

• Inflexible

• Hard to insert, delete.

Using a linked list

 Okay, so we’ll use a linked list.
 But what should the ordering represent?

• Version 1: Linearity
• The order that things get drawn left-to-right.

• Version 2: Layering
• The order that things get drawn bottom-to-top

> PositionedSceneElement tree1 = new PositionedSceneElement(new
Picture(FileChooser.getMediaPath("tree-blue.jpg")));

> PositionedSceneElement tree2 = new PositionedSceneElement(new
Picture(FileChooser.getMediaPath("tree-blue.jpg")));

> PositionedSceneElement tree3 = new PositionedSceneElement(new
Picture(FileChooser.getMediaPath("tree-blue.jpg")));

> PositionedSceneElement doggy = new PositionedSceneElement(new
Picture(FileChooser.getMediaPath("dog-blue.jpg")));

> PositionedSceneElement house = new PositionedSceneElement(new
Picture(FileChooser.getMediaPath("house-blue.jpg")));

> Picture bg = new Picture(FileChooser.getMediaPath("jungle.jpg"));
> tree1.setNext(tree2); tree2.setNext(tree3); tree3.setNext(doggy);

doggy.setNext(house);
> tree1.drawFromMeOn(bg);
> bg.show();

Version 1:
PositionedSceneElement

In this example, using
chromakey to compose..just
for the fun of it.

2

What this looks like:

Slightly different ordering:
Put the doggy between tree2 and
tree3

> tree3.setNext(house);
tree2.setNext(doggy);
doggy.setNext(tree3);

> bg = new
Picture(FileChooser.getMediaPath("jungl
e.jpg"));

> tree1.drawFromMeOn(bg);
> bg.show();

Yes, we can put
multiple
statements in
one line.

Slightly different picture PositionedSceneElement

public class PositionedSceneElement {

 /**
 * the picture that this element holds
 **/
 private Picture myPic;

 /**
 * the next element in the list
 **/
 private PositionedSceneElement next;

Pretty darn
similar to our
music linked lists!

Constructor

 /**
 * Make a new element with a picture as input, and
 * next as null.
 * @param heldPic Picture for element to hold
 **/
 public PositionedSceneElement(Picture heldPic){
 myPic = heldPic;
 next = null;
 }

Linked list methods

 /**
 * Methods to set and get next elements
 * @param nextOne next element in list
 **/
 public void setNext(PositionedSceneElement nextOne){
 this.next = nextOne;
 }

 public PositionedSceneElement getNext(){
 return this.next;
 }

Again, darn
similar!

3

Traverse
the list

 /**
 * Method to draw from this node on in the list, using

bluescreen.
 * Each new element has it's lower-left corner at the

lower-right
 * of the previous node. Starts drawing from left-

bottom
 * @param bg Picture to draw drawing on
 **/
 public void drawFromMeOn(Picture bg) {
 PositionedSceneElement current;
 int currentX=0, currentY = bg.getHeight()-1;

 current = this;
 while (current != null)
 {
 current.drawMeOn(bg,currentX, currentY);
 currentX = currentX +

current.getPicture().getWidth();
 current = current.getNext();
 }
 }

Traversing the
list in order to
draw the scene
is called
rendering the
scene: Realizing
the picture
described by the
data structure.

Core of the Traversal

current = this;
 while (current != null)
 {
 //Treat the next two lines as “blah blah blah”

 current.drawMeOn(bg,currentX, currentY);
 currentX = currentX +

current.getPicture().getWidth();

 current = current.getNext();
 }

Drawing the individual element

 /**
 * Method to draw from this picture, using bluescreen.
 * @param bg Picture to draw drawing on
 * @param left x position to draw from
 * @param bottom y position to draw from
 **/

 private void drawMeOn(Picture bg, int left, int bottom) {
 // Bluescreen takes an upper left corner
 this.getPicture().bluescreen(bg,left,
 bottom-this.getPicture().getHeight());
 }

Generalizing

 Reconsider these lines:

 This is actually a general case of:
• Removing the doggy from the list
• Inserting it after tree2

> tree3.setNext(house);
tree2.setNext(doggy);
doggy.setNext(tree3);

Removing the doggy

> tree1.setNext(tree2);
tree2.setNext(tree3);
tree3.setNext(doggy);
doggy.setNext(house);

> tree1.remove(doggy);
> tree1.drawFromMeOn(bg);

Putting the mutt back

> bg = new
Picture(FileChooser.getMe
diaPath("jungle.jpg"));

> tree1.insertAfter(doggy);
> tree1.drawFromMeOn(bg);

4

Removing an
element
from the list

 /** Method to remove node from list, fixing links
appropriately.

 * @param node element to remove from list.
 **/
 public void remove(PositionedSceneElement node){
 if (node==this)
 {
 System.out.println("I can't remove the first node from

the list.");
 return;
 };

 PositionedSceneElement current = this;
 // While there are more nodes to consider
 while (current.getNext() != null)
 {
 if (current.getNext() == node){
 // Simply make node's next be this next
 current.setNext(node.getNext());
 // Make this node point to nothing
 node.setNext(null);
 return;
 }
 current = current.getNext();
 }
 }

Note: How would
you remove the
first element from
the list?

Error checking and printing

 /** Method to remove node from list, fixing links
appropriately.

 * @param node element to remove from list.
 **/
 public void remove(PositionedSceneElement node){
 if (node==this)
 {
 System.out.println("I can't remove the first node

from the list.");
 return;
 };

The Removal Loop

 PositionedSceneElement current = this;
 // While there are more nodes to consider
 while (current.getNext() != null)
 { // Is this it?
 if (current.getNext() == node){
 // Simply make node's next be this next
 current.setNext(node.getNext());
 // Make this node point to nothing
 node.setNext(null);
 return;
 }
 current = current.getNext(); // If not, keep searching
 }

We’re checking
getNext() because we
need to stop the step
before.

insertAfter

 /**
 * Insert the input node after this

node.
 * @param node element to insert

after this.
 **/
 public void

insertAfter(PositionedSceneElement
node){

 // Save what "this" currently points at
 PositionedSceneElement oldNext =

this.getNext();
 this.setNext(node);
 node.setNext(oldNext);
 }

Think about what’s
involved in creating
insertBefore()…

Animation = (Changing a
structure + rendering) * n

 We can use what we just did to create
animation.

 Rather than think about animation as “a
series of frames,”

 Think about it as:
• Repeatedly:

• Change a data structure
• Render (draw while traversing) the data structure to

create a frame

AnimatedPositionedScene

public class AnimatedPositionedScene {

 /**
 * A FrameSequence for storing the frames
 **/
 FrameSequence frames;

 /**
 * We'll need to keep track
 * of the elements of the scene
 **/
 PositionedSceneElement tree1, tree2, tree3, house, doggy, doggyflip;

5

Setting up
 the animation

 public void setUp(){
 frames = new FrameSequence("D:/Temp/");

 Picture p = null; // Use this to fill elements

 p = new Picture(FileChooser.getMediaPath("tree-
blue.jpg"));

 tree1 = new PositionedSceneElement(p);

 p = new Picture(FileChooser.getMediaPath("tree-
blue.jpg"));

 tree2 = new PositionedSceneElement(p);

 p = new Picture(FileChooser.getMediaPath("tree-
blue.jpg"));

 tree3 = new PositionedSceneElement(p);

 p = new
Picture(FileChooser.getMediaPath("house-
blue.jpg"));

 house = new PositionedSceneElement(p);

 p = new Picture(FileChooser.getMediaPath("dog-
blue.jpg"));

 doggy = new PositionedSceneElement(p);
 doggyflip = new PositionedSceneElement(p.flip());
 }

Render the first frame

 public void make(){
 frames.show();

 // First frame
 Picture bg = new

Picture(FileChooser.getMediaPath("jungle.jpg"));
 tree1.setNext(doggy); doggy.setNext(tree2);

tree2.setNext(tree3);
 tree3.setNext(house);
 tree1.drawFromMeOn(bg);
 frames.addFrame(bg);

Render the doggy moving right
 // Dog moving right
 bg = new Picture(FileChooser.getMediaPath("jungle.jpg"));
 tree1.remove(doggy);
 tree2.insertAfter(doggy);
 tree1.drawFromMeOn(bg);
 frames.addFrame(bg);

 bg = new Picture(FileChooser.getMediaPath("jungle.jpg"));
 tree1.remove(doggy);
 tree3.insertAfter(doggy);
 tree1.drawFromMeOn(bg);
 frames.addFrame(bg);

 bg = new Picture(FileChooser.getMediaPath("jungle.jpg"));
 tree1.remove(doggy);
 house.insertAfter(doggy);
 tree1.drawFromMeOn(bg);
 frames.addFrame(bg);

Moving left

 //Dog moving left
 bg = new Picture(FileChooser.getMediaPath("jungle.jpg"));
 tree1.remove(doggy);
 house.insertAfter(doggyflip);
 tree1.drawFromMeOn(bg);
 frames.addFrame(bg);

 bg = new Picture(FileChooser.getMediaPath("jungle.jpg"));
 tree1.remove(doggyflip);
 tree3.insertAfter(doggyflip);
 tree1.drawFromMeOn(bg);
 frames.addFrame(bg);

 bg = new Picture(FileChooser.getMediaPath("jungle.jpg"));
 tree1.remove(doggyflip);
 tree2.insertAfter(doggyflip);
 tree1.drawFromMeOn(bg);
 frames.addFrame(bg);

 bg = new Picture(FileChooser.getMediaPath("jungle.jpg"));
 tree1.remove(doggyflip);
 tree1.insertAfter(doggyflip);
 tree1.drawFromMeOn(bg);
 frames.addFrame(bg);

 }

Results

Version 2: Layering

> Picture bg = new Picture(400,400);
> LayeredSceneElement tree1 = new LayeredSceneElement(
new Picture(FileChooser.getMediaPath("tree-blue.jpg")),10,10);
> LayeredSceneElement tree2 = new LayeredSceneElement(
new Picture(FileChooser.getMediaPath("tree-blue.jpg")),100,10);
> LayeredSceneElement tree3 = new LayeredSceneElement(
new Picture(FileChooser.getMediaPath("tree-blue.jpg")),200,100);
> LayeredSceneElement house = new LayeredSceneElement(
new Picture(FileChooser.getMediaPath("house-blue.jpg")),175,175);
> LayeredSceneElement doggy = new LayeredSceneElement(
new Picture(FileChooser.getMediaPath("dog-blue.jpg")),150,325);
> tree1.setNext(tree2); tree2.setNext(tree3); tree3.setNext(doggy);

doggy.setNext(house);
> tree1.drawFromMeOn(bg);
> bg.show();

6

First version of Layered Scene Reordering the layering

> house.setNext(doggy);
doggy.setNext(tree3);
tree3.setNext(tree2);
tree2.setNext(tree1);

> tree1.setNext(null);
> bg = new Picture(400,400);
> house.drawFromMeOn(bg);
> bg.show();

Basically, we’re
reversing the list

Reordered (relayered) scene

Think about
what’s
involved in
creating a
method to
reverse() a
list…

These commands are
actually changing the
ordering of the layers in the
list of things to be redrawn.

• Change the ordering in the
list.

• Render the scene

• Now it’s a different layering!

 If we were in PowerPoint or Visio, you’d
say that we changed the layering.
• “Bring to front”
• “Send to back”
• “Bring forward”
• “Send backward”

What’s the difference?

LayeredSceneElement

public class LayeredSceneElement {

 /**
 * the picture that this element holds
 **/
 private Picture myPic;

 /**
 * the next element in the list
 **/
 private LayeredSceneElement next;

 /**
 * The coordinates for this element
 **/
 private int x, y;

Constructor

 /**
 * Make a new element with a picture as input, and
 * next as null, to be drawn at given x,y
 * @param heldPic Picture for element to hold
 * @param xpos x position desired for element
 * @param ypos y position desired for element
 **/
 public LayeredSceneElement(Picture heldPic, int xpos, int ypos){
 myPic = heldPic;
 next = null;
 x = xpos;
 y = ypos;
 }

7

Linked List methods
(We can sort of assume these now,
right?)

 /**
 * Methods to set and get next elements
 * @param nextOne next element in list
 **/
 public void setNext(LayeredSceneElement nextOne){
 this.next = nextOne;
 }

 public LayeredSceneElement getNext(){
 return this.next;
 }

Traversing

 /**
 * Method to draw from this node on in the list, using

bluescreen.
 * Each new element has it's lower-left corner at the

lower-right
 * of the previous node. Starts drawing from left-bottom
 * @param bg Picture to draw drawing on
 **/
 public void drawFromMeOn(Picture bg) {
 LayeredSceneElement current;

 current = this;
 while (current != null)
 {
 current.drawMeOn(bg);
 current = current.getNext();
 }
 }

 /**
 * Method to draw from this picture, using bluescreen.
 * @param bg Picture to draw drawing on
 **/

 private void drawMeOn(Picture bg) {
 this.getPicture().bluescreen(bg,x,y);
 }

Linked list traversals are all the
same

 current = this;
 while (current != null)
 {
 current.drawMeOn(bg);
 current = current.getNext();
 }

Doing a
reverse()

 /**
 * Reverse the list starting at this,
 * and return the last element of the list.
 * The last element becomes the FIRST element
 * of the list, and THIS points to null.
 **/
 public LayeredSceneElement reverse() {
 LayeredSceneElement reversed, temp;

 // Handle the first node outside the loop
 reversed = this.last();
 this.remove(reversed);

 while (this.getNext() != null)
 {
 temp = this.last();
 this.remove(temp);
 reversed.add(temp);
 };

 // Now put the head of the old list on the end of
 // the reversed list.
 reversed.add(this);

 // At this point, reversed
 // is the head of the list
 return reversed;
 }

Getting the last()

 /**
 * Return the last element in the list
 **/
 public LayeredSceneElement last() {
 LayeredSceneElement current;

 current = this;
 while (current.getNext() != null)
 {
 current = current.getNext();
 };
 return current;
 }

Basically, it’s a
complete
traversal

Adding to the end

 /**
 * Add the input node after the last node in this list.
 * @param node element to insert after this.
 **/
 public void add(LayeredSceneElement node){
 this.last().insertAfter(node);
 } Pretty easy, huh?

Find the last(),
and insertAfter()

8

Does it work?

> Picture bg = new Picture(400,400);
> LayeredSceneElement tree1 = new LayeredSceneElement(
new Picture(FileChooser.getMediaPath("tree-blue.jpg")),10,10);
> LayeredSceneElement tree2 = new LayeredSceneElement(
new Picture(FileChooser.getMediaPath("tree-blue.jpg")),10,10);
> LayeredSceneElement house = new LayeredSceneElement(
new Picture(FileChooser.getMediaPath("house-blue.jpg")),10,10);
> tree1.setNext(tree2); tree2.setNext(house);
> LayeredSceneElement rev = tree1.reverse();
> rev.drawFromMeOn(bg);
> bg.show();
> // Hard to tell from the layering—let’s check another way
> rev == house
true
> rev == tree1
false

Let’s add this up then…

while (this.getNext() != null)
 {
 temp = this.last();
 this.remove(temp);
 reversed.add(temp);
 };

So how expensive is this loop?

• We go through this loop once
for each element in the list.

• For each node, we find the
last() (which is another traversal)

• And when we add(), we know
that we do another last() which is
another traversal

Total cost: For each of the n nodes,
reversing takes two traversals (2n)
=> O(n*2n) => O(n2)

There
is a
better
way…

Version 3: A List with Both

 Problem 1: Why should we have only layered scene
elements or positioned scene elements?

 Can we have both?
• SURE! If each element knows how to draw itself!
• But they took different parameters!

• Layered got their (x,y) passed in.
• It works if we always pass in a turtle that’s set to the right

place to draw if it’s positioned (and let the layered ones do
whatever they want!)

 Problem 2: Why is there so much duplicated code?
• Why do only layered elements know last() and add()?

Using Superclasses

 What we really want is to define a class
SceneElement
• That knows most of being a picture element.
• It would be an abstract class because we don’t

actually mean to ever create instances of THAT class.

 Then create subclasses:
SceneElementPositioned and
SceneElementLayered
• We’d actually use these.

Class Structure

Abstract Class SceneElement

It knows its Picture myPic and
its next (SceneElement).

It knows how to get/set next,
to reverse() and insertAfter(),
and to drawFromMeOn().

It defines drawWith(turtle), but
leaves it for its subclasses do
complete.

An abstract
class defines
structure
and behavior
that
subclasses
will inherit.

Class Structure
Abstract Class SceneElement

It knows its Picture myPic and its
next.

It knows how to get/set next, to
reverse() and insertAfter(), and to
drawFromMeOn() and
drawWith(turtle)

Class SceneElementPositioned

It knows how to drawWith(turtle)
Class SceneElementLayered

It knows its position (x,y).

It knows how to drawWith(turtle)
by moving to (x,y) then dropping.

We say that the
subclasses
extend the
superclass.

The subclasses
inherit data and
methods from
superclass.

An abstract
class defines
structure
and behavior
that
subclasses
will inherit.

9

Using the new structure
public class MultiElementScene {

 public static void main(String[] args){

 // We'll use this for filling the nodes
 Picture p = null;

 p = new Picture(FileChooser.getMediaPath("swan.jpg"));
 SceneElement node1 = new SceneElementPositioned(p.scale(0.25));
 p = new Picture(FileChooser.getMediaPath("horse.jpg"));
 SceneElement node2 = new SceneElementPositioned(p.scale(0.25));
 p = new Picture(FileChooser.getMediaPath("dog.jpg"));
 SceneElement node3 = new

SceneElementLayered(p.scale(0.5),10,50);
 p = new Picture(FileChooser.getMediaPath("flower1.jpg"));
 SceneElement node4 = new

SceneElementLayered(p.scale(0.5),10,30);
 p = new Picture(FileChooser.getMediaPath("graves.jpg"));
 SceneElement node5 = new SceneElementPositioned(p.scale(0.25));

Rendering the scene

 node1.setNext(node2); node2.setNext(node3);
 node3.setNext(node4); node4.setNext(node5);

 // Now, let's see it!
 Picture bg = new Picture(600,600);
 node1.drawFromMeOn(bg);
 bg.show();
 }
}

Rendered scene SceneElement

/**
 * An element that knows how to draw itself in a scene with a turtle
 **/
public abstract class SceneElement{

 /**
 * the picture that this element holds
 **/
 protected Picture myPic;

 /**
 * the next element in the list -- any SceneElement
 **/
 protected SceneElement next;

Linked List methods in
SceneList

 /**
 * Methods to set and get next elements
 * @param nextOne next element in list
 **/
 public void setNext(SceneElement nextOne){
 this.next = nextOne;
 }

 public SceneElement getNext(){
 return this.next;
 }

By declaring
everything to
be
SceneElement,
it can be any
kind (subclass)
of
SceneElement.

drawFromMeOn()

 /**
 * Method to draw from this node on in the list.
 * For positioned elements, compute locations.
 * Each new element has it's lower-left corner at the lower-

right
 * of the previous node. Starts drawing from left-bottom
 * @param bg Picture to draw drawing on
 **/
 public void drawFromMeOn(Picture bg) {
 SceneElement current;

 // Start the X at the left
 // Start the Y along the bottom
 int currentX=0, currentY = bg.getHeight()-1;

 Turtle pen = new Turtle(bg);
 pen.setPenDown(false); // Pick the pen up

 current = this;
 while (current != null)
 { // Position the turtle for the next positioned element
 pen.moveTo(currentX,currentY-

current.getPicture().getHeight());
 pen.setHeading(0);

 current.drawWith(pen);
 currentX = currentX + current.getPicture().getWidth();

 current = current.getNext();
 }
 }

10

But SceneElements can’t
drawWith()

 /*
 * Use the given turtle to draw oneself
 * @param t the Turtle to draw with
 **/
 public abstract void drawWith(Turtle t);
 // No body in the superclass

SceneElementLayered

public class SceneElementLayered extends SceneElement {

 /**
 * The coordinates for this element
 **/
 private int x, y;

 /**
 * Make a new element with a picture as input, and
 * next as null, to be drawn at given x,y
 * @param heldPic Picture for element to hold
 * @param xpos x position desired for element
 * @param ypos y position desired for element
 **/
 public SceneElementLayered(Picture heldPic, int xpos, int ypos){
 myPic = heldPic;
 next = null;
 x = xpos;
 y = ypos;
 }

SceneElementLayered
drawWith()

 /**
 * Method to draw from this picture.
 * @param pen Turtle to draw with
 **/

 public void drawWith(Turtle pen) {
 // We just ignore the pen's position
 pen.moveTo(x,y);
 pen.drop(this.getPicture());
 }

SceneElementPositioned

public class SceneElementPositioned
extends SceneElement {

 /**
 * Make a new element with a picture as

input, and
 * next as null.
 * @param heldPic Picture for element to

hold
 **/
 public SceneElementPositioned(Picture

heldPic){
 myPic = heldPic;
 next = null;
 }

 /**
 * Method to draw from this picture.
 * @param pen Turtle to use for drawing
 **/
 public void drawWith(Turtle pen) {
 pen.drop(this.getPicture());
 }
}

Version 4: Trees for defining
scenes

 Not everything in a scene is a single list.
• Think about a pack of fierce doggies, er, wolves

attacking the quiet village in the forest.
• Real scenes cluster.

 Is it the responsibility of the elements to know
about layering and position?
• Is that the right place to put that know how?

 How do we structure operations to perform to
sets of nodes?
• For example, moving a set of them at once?

The Attack of the Nasty Wolvies

11

Closer… Then the Hero Appears!

And the Wolvies retreat What’s underlying this

 This scene is described by a tree
• Each picture is a BlueScreenNode in this tree.
• Groups of pictures are organized in HBranch

or VBranch (Horizontal or Vertical branches)
• The root of the tree is just a Branch.
• The branches are positioned using a

MoveBranch.

Nesting is a tree relationship!

Top (canvas)
Level 1 (vertical)

Level 1
(horizontal)

Level 2
(horizontal)

Level 2 (vertical)

Level 1
(horizontal)

Labeling the Pieces

VBranch with
BlueScreenNode
wolves

MoveBranch to
(10,50)

Branch (root)

HBranch with BSN
trees

HBranch with 3
BSN houses and a

VBranch with 3
BSN houses

MoveBranch to
(10,400)

MoveBranch to
(300,450)

12

It’s a Tree (of instances!)

VBranch with
BlueScreenNode
wolves

MoveBranch to
(10,50)

Branch (root)

HBranch with BSN
trees

HBranch with 3
BSN houses and a

VBranch with 3
BSN houses

MoveBranch to
(10,400)

MoveBranch to
(300,450)

The Class Structure
(another tree) 1. nodes

 DrawableNode knows only next, but knows
how to do everything that our picture linked
lists do (insertAfter, remove, last,
drawOn(picture)).
• Everything else is a subclass of that.

 PictNode knows it’s Picture myPict and
knows how to drawWith(turtle) (by dropping a
picture)

 BlueScreenNode knows how to
drawWith(turtle) by using bluescreen.

The Class Structure
(another tree) 2. branches

 Branch knows its children—a linked list of
other nodes to draw. It knows how to
drawWith by:
• (1) telling all its children to draw.
• (2) then telling its next to draw.

 A HBranch draws its children by spacing them
out horizontally.

 A VBranch draws its children by spacing them
out vertically.

The Class Structure Diagram
DrawableNode

Knows: next

Branch

Knows: children

HBranch

Knows how
to drawWith
horizontally

VBranch

Knows how to
drawWith
vertically

PictNode

Knows: myPict

Knows how to
drawWith

BlueScreenNode

Knows how to
drawWith as
bluescreen

Note: This is not
the same as the
scene (object)
structure!

MoveBranch

Knows: x,y

Knows how to
position then
drawWIth

The arrows
represent Java
“extends”, so go
up the page!

Using these Classes:
When doggies go bad!

public class WolfAttackMovie {
 /**
 * The root of the scene data structure
 **/
 Branch sceneRoot;

 /**
 * FrameSequence where the animation
 * is created
 **/
 FrameSequence frames;

 /**
 * The nodes we need to track between methods
 **/
 MoveBranch wolfentry, wolfretreat, hero;

These are the nodes
that change during the
animation, so must be
available outside the
local method context

Setting up the pieces

 /**
 * Set up all the pieces of the tree.
 **/
 public void setUp(){
 Picture wolf = new Picture(FileChooser.getMediaPath("dog-

blue.jpg"));
 Picture house = new Picture(FileChooser.getMediaPath("house-

blue.jpg"));
 Picture tree = new Picture(FileChooser.getMediaPath("tree-

blue.jpg"));
 Picture monster = new

Picture(FileChooser.getMediaPath("monster-face3.jpg"));

13

Making a Forest

 //Make the forest
 MoveBranch forest = new MoveBranch(10,400); // forest

on the bottom
 HBranch trees = new HBranch(50); // Spaced out 50

pixels between
 BlueScreenNode treenode;
 for (int i=0; i < 8; i++) // insert 8 trees
 {treenode = new BlueScreenNode(tree.scale(0.5));
 trees.addChild(treenode);}
 forest.addChild(trees);

Make attacking wolves

 // Make the cluster of attacking "wolves"
 wolfentry = new MoveBranch(10,50); // starting position
 VBranch wolves = new VBranch(20); // space out by 20 pixels

between
 BlueScreenNode wolf1 = new BlueScreenNode(wolf.scale(0.5));
 BlueScreenNode wolf2 = new BlueScreenNode(wolf.scale(0.5));
 BlueScreenNode wolf3 = new BlueScreenNode(wolf.scale(0.5));
 wolves.addChild(wolf1);wolves.addChild(wolf2);

wolves.addChild(wolf3);
 wolfentry.addChild(wolves);

Make retreating wolves

 // Make the cluster of retreating "wolves"
 wolfretreat = new MoveBranch(400,50); // starting position
 wolves = new VBranch(20); // space them out by 20 pixels

between
 wolf1 = new BlueScreenNode(wolf.scale(0.5).flip());
 wolf2 = new BlueScreenNode(wolf.scale(0.5).flip());
 wolf3 = new BlueScreenNode(wolf.scale(0.5).flip());
 wolves.addChild(wolf1);wolves.addChild(wolf2);

wolves.addChild(wolf3);
 wolfretreat.addChild(wolves);

It takes a Village…
 // Make the village
 MoveBranch village = new MoveBranch(300,450); // Village on bottom
 HBranch hhouses = new HBranch(40); // Houses are 40 pixels apart

across
 BlueScreenNode house1 = new BlueScreenNode(house.scale(0.25));
 BlueScreenNode house2 = new BlueScreenNode(house.scale(0.25));
 BlueScreenNode house3 = new BlueScreenNode(house.scale(0.25));
 VBranch vhouses = new VBranch(-50); // Houses move UP, 50 pixels

apart
 BlueScreenNode house4 = new BlueScreenNode(house.scale(0.25));
 BlueScreenNode house5 = new BlueScreenNode(house.scale(0.25));
 BlueScreenNode house6 = new BlueScreenNode(house.scale(0.25));
 vhouses.addChild(house4); vhouses.addChild(house5);

vhouses.addChild(house6);
 hhouses.addChild(house1); hhouses.addChild(house2);

hhouses.addChild(house3);
 hhouses.addChild(vhouses); // Yes, a VBranch can be a child of an

HBranch!
 village.addChild(hhouses);

Making the village’s hero

 // Make the monster
 hero = new MoveBranch(400,300);
 BlueScreenNode heronode = new

BlueScreenNode(monster.scale(0.75).fli
p());

 hero.addChild(heronode);

Assembling the Scene

 //Assemble the base scene
 sceneRoot = new Branch();
 sceneRoot.addChild(forest);
 sceneRoot.addChild(village);
 sceneRoot.addChild(wolfentry);
 }

Want the forest on top
of the village? Put the
village in BEFORE the
forest! Then it will get
rendered first

Where’s the wolfretreat and monster?
They’ll get inserted into the scene in
the middle of the movie

14

Trying out one scene:
Very important for testing!

 /**
 * Render just the first scene
 **/
 public void renderScene() {
 Picture bg = new Picture(500,500);
 sceneRoot.drawOn(bg);
 bg.show();
 }

Okay that works

Rendering the whole movie

 /**
 * Render the whole animation
 **/
 public void renderAnimation() {
 frames = new FrameSequence("D:/Temp/");
 frames.show();
 Picture bg;

Wolvies attack! (for 25 frames)

 // First, the nasty wolvies come closer to the poor village
 // Cue the scary music
 for (int i=0; i<25; i++)
 {
 // Render the frame
 bg = new Picture(500,500);
 sceneRoot.drawOn(bg);
 frames.addFrame(bg);

 // Tweak the data structure
 wolfentry.moveTo(wolfentry.getXPos()+5,wolfentry.getYPos()+10);
 }

Inch-by-inch, er, 5-pixels by 10
pixels, they creep closer.

Our hero arrives! (In frame 26)

 // Now, our hero arrives!
 this.root().addChild(hero);
 // Render the frame
 bg = new Picture(500,500);
 sceneRoot.drawOn(bg);
 frames.addFrame(bg);

Exit the threatening wolves,
enter the retreating wolves

 // Remove the wolves entering, and insert the wolves
retreating

 this.root().children.remove(wolfentry);
 this.root().addChild(wolfretreat);
 // Make sure that they retreat from the same place that

they were at
 wolfretreat.moveTo(wolfentry.getXPos(),

wolfentry.getYPos());
 // Render the frame
 bg = new Picture(500,500);
 sceneRoot.drawOn(bg);
 frames.addFrame(bg);

15

The wolves retreat
(more quickly)

 // Now, the cowardly wolves hightail it out of there!
 // Cue the triumphant music
 for (int i=0; i<10; i++)
 {
 // Render the frame
 bg = new Picture(500,500);
 sceneRoot.drawOn(bg);
 frames.addFrame(bg);

 // Tweak the data structure
 wolfretreat.moveTo(wolfretreat.getXPos()-10,

wolfretreat.getYPos()-20);
 }
 }

Making the Movie

Welcome to DrJava.
> WolfAttackMovie wam = new WolfAttackMovie();

wam.setUp(); wam.renderScene();

> wam.renderAnimation();

There are no frames to show yet. When you add a frame it
will be shown

> wam.replay();

The Completed Movie Okay, how’d we do that?

 This part is important!
 Remember: You have to do this for your

animation with sound!
• You need to understand how this actually

works!
• And, by the way, there’s a lot of important

Java in here!

DrawableNode: The root of the
class structure
/**
 * Stuff that all nodes and branches in the
 * scene tree know.
 **/
abstract public class DrawableNode {
 /**
 * The next branch/node/whatever to process
 **/
 public DrawableNode next;

 /**
 * Constructor for DrawableNode just sets
 * next to null
 **/
 public DrawableNode(){
 next = null;
 }

DrawableNodes know how to be
(chained into) linked lists

 /**
 * Methods to set and get next elements
 * @param nextOne next element in list
 **/
 public void setNext(DrawableNode nextOne){
 this.next = nextOne;
 }

 public DrawableNode getNext(){
 return this.next;
 }

16

DrawableNodes know how to
draw themselves (and list)

 /**
 * Use the given turtle to draw oneself
 * @param t the Turtle to draw with
 **/
 abstract public void drawWith(Turtle t);
 // No body in the superclass

 /**
 * Draw on the given picture
 **/
 public void drawOn(Picture bg){
 Turtle t = new Turtle(bg);
 t.setPenDown(false);
 this.drawWith(t);
 }

An abstract method is
one that superclasses
MUST override—they
have to provide their own
implementation of it.

DrawableNodes know all that
linked list stuff
 /** Method to remove node from list, fixing links appropriately.
 * @param node element to remove from list.
 **/
 public void remove(DrawableNode node){
…
 /**
 * Insert the input node after this node.
 * @param node element to insert after this.
 **/
 public void insertAfter(DrawableNode node){
…

 /**
 * Return the last element in the list
 **/
 public DrawableNode last() {
…

 /**
 * Add the input node after the last node in this list.
 * @param node element to insert after this.
 **/
 public void add(DrawableNode node){
 this.last().insertAfter(node);
 }

PictNode is a kind of
DrawableNode

/*
 * PictNode is a class representing a drawn picture
 * node in a scene tree.
 **/
public class PictNode extends DrawableNode {
 /**
 * The picture I'm associated with
 **/
 Picture myPict;

To construct a PictNode,
first, construct a DrawableNode

 /*
 * Make me with this picture
 * @param pict the Picture I'm associated with
 **/
 public PictNode(Picture pict){
 super(); // Call superclass constructor
 myPict = pict;
 } If you want to call the

superclass’s constructor,
you must do it first.

How PictNodes drawWith

 /*
 * Use the given turtle to draw oneself
 * @param pen the Turtle to draw with
 **/
 public void drawWith(Turtle pen){
 pen.drop(myPict);
 }

BlueScreenNodes know nothing
new

/*
 * BlueScreenNode is a PictNode that composes the
 * picture using the bluescreen() method in Picture
 **/
public class BlueScreenNode extends PictNode {

 /*
 * Construct does nothing fancy
 **/
 public BlueScreenNode(Picture p){
 super(p); // Call superclass constructor
 }

17

BlueScreenNodes draw
differently

 /*
 * Use the given turtle to draw oneself
 * Get the turtle's picture, then bluescreen onto it
 * @param pen the Turtle to draw with
 **/
 public void drawWith(Turtle pen){
 Picture bg = pen.getPicture();
 myPict.bluescreen(bg, pen.getXPos(),

pen.getYPos());
 }

Branches add children

public class Branch extends DrawableNode {
 /*
 * A list of children to draw
 */
 public DrawableNode children;

 /*
 * Construct a branch with children and
 * next as null
 **/
 public Branch(){
 super(); // Call superclass constructor
 children = null;
 }

But because they’re
DrawableNodes, too,
they still know how to
be linked lists.
They reference things
in two directions—as
children and as next.

Hence, they branch.
Hence, a tree.

Adding children to a Branch

 /**
 * Method to add nodes to children
 **/
 public void addChild(DrawableNode child){
 if (children != null)
 {children.add(child);}
 else
 {children = child;}
 }

Drawing a Branch
 /*
 * Ask all our children to draw,
 * then let next draw.
 * @param pen Turtle to draw with
 **/
 public void drawWith(Turtle pen){
 DrawableNode current = children;

 // Tell the children to draw
 while (current != null){
 current.drawWith(pen);
 current = current.getNext();
 }

 // Tell my next to draw
 if (this.getNext() != null)
 {this.getNext().drawWith(pen);}
 }

HBranch: Horizontal Branches

public class HBranch extends Branch {

 /**
 * Horizontal gap between children
 **/
 int gap;

 /*
 * Construct a branch with children and
 * next as null
 **/
 public HBranch(int spacing){
 super(); // Call superclass constructor
 gap = spacing;
 }

HBranch draws horizontal
children
 /*
 * Ask all our children to draw,
 * then let next draw.
 * @param pen Turtle to draw with
 **/
 public void drawWith(Turtle pen){
 DrawableNode current = children;

 // Have my children draw
 while (current != null){
 current.drawWith(pen);
 pen.moveTo(pen.getXPos()+gap,pen.getYPos());
 current = current.getNext();
 }

 // Have my next draw
 if (this.getNext() != null)
 {this.getNext().drawWith(pen);}
 }

Just draws
at a
different
position

18

VBranch is exactly the same,
but vertically

 public void drawWith(Turtle pen){
 DrawableNode current = children;

 // Have my children draw
 while (current != null){
 current.drawWith(pen);
 pen.moveTo(pen.getXPos(),pen.getYPos()+gap);
 current = current.getNext();
 }

 // Have my next draw
 if (this.getNext() != null)
 {this.getNext().drawWith(pen);}
 }

MoveBranch is different

public class MoveBranch extends Branch {

 /**
 * Position where to draw at
 **/
 int x,y;

 /**
 * Construct a branch with children and
 * next as null
 **/
 public MoveBranch(int x, int y){
 super(); // Call superclass constructor
 this.x = x;
 this.y = y;
 }

MoveBranch accessors,
to make them movable

 /**
 * Accessors
 **/
 public int getXPos() {return this.x;}
 public int getYPos() {return this.y;}
 public void moveTo(int x, int y){
 this.x = x; this.y = y;}

MoveBranch passes the buck on
drawing

 /*
 * Set the location, then draw
 * @param pen Turtle to draw with
 **/
 public void drawWith(Turtle pen){
 pen.moveTo(this.x,this.y);
 super.drawWith(pen); // Do a normal branch

now
 }

Doing the Branches…backwards

 What if you processed next before the
children?

 What if you did the move after you did
the superclass drawing?

 What would the scene look like?
 Different kinds of tree traversals…

Representing Structure and
Behavior

 Think about trees
• Branches represent structure
• HBranch, VBranch, and MoveBranch represent

structure and behavior
 Think about objects

• They know things, and they know how to do things.
• They represent structure and behavior.

 Sophisticated programs represent both.
 The line between data and programs is very

thin…

