
1

Structuring Music

CS1316: Representing
Structure and Behavior

Story

 Using JMusic
• With multiple Parts and Phrases

 Creating music objects for exploring composition
• Version 1: Using an array for Notes, then scooping them

up into Phrases.
• Version 2: Using a linked list of song elements.
• Version 3: General song elements and song phrases

• Computing phrases
• Repeating and weaving

• Version 4: Creating a tree of song parts, each with its
own instrument.

Version 3:
SongNode and SongPhrase

 SongNode instances will hold pieces
(phrases) from SongPhrase.

 SongNode instances will be the nodes in
the linked list
• Each one will know its next.

 Ordering will encode the order in the
Part.
• Each one will get appended after the last.

Using SongNode and
SongPhrase

Welcome to DrJava.
> import jm.JMC;
> SongNode node1 = new SongNode();
> node1.setPhrase(SongPhrase.riff1());
> SongNode node2 = new SongNode();
> node2.setPhrase(SongPhrase.riff2());
> SongNode node3 = new SongNode();
> node3.setPhrase(SongPhrase.riff1());
> node1.setNext(node2);
> node2.setNext(node3);
> node1.showFromMeOn(JMC.SAX);

All three SongNodes in one Part How to think about it

node1

myPhrase: riff1

next: node2

node2

myPhrase: riff2

next: node3

node3

myPhrase: riff1

next: null

2

Declarations for SongNode

import jm.music.data.*;
import jm.JMC;
import jm.util.*;
import jm.music.tools.*;

public class SongNode {
 /**
 * the next SongNode in the list
 */
 private SongNode next;
 /**
 * the Phrase containing the notes and durations associated with this

node
 */
 private Phrase myPhrase;

SongNode’s know their
Phrase and the next
node in the list

Constructor for SongNode

 /**
 * When we make a new element, the next part

is empty, and ours is a blank new part
 */
 public SongNode(){
 this.next = null;
 this.myPhrase = new Phrase();
 }

Setting the phrase

 /**
 * setPhrase takes a Phrase and makes it the

one for this node
 * @param thisPhrase the phrase for this node
 */
 public void setPhrase(Phrase thisPhrase){
 this.myPhrase = thisPhrase;
 }

Linked list methods

 /**
 * Creates a link between the current node and the input node
 * @param nextOne the node to link to
 */
 public void setNext(SongNode nextOne){
 this.next = nextOne;
 }
 /**
 * Provides public access to the next node.
 * @return a SongNode instance (or null)
 */
 public SongNode next(){
 return this.next;
 }

insertAfter

 /**
 * Insert the input SongNode AFTER this node,
 * and make whatever node comes NEXT become the next of the

input node.
 * @param nextOne SongNode to insert after this one
 */
 public void insertAfter(SongNode nextOne)
 {
 SongNode oldNext = this.next(); // Save its next
 this.setNext(nextOne); // Insert the copy
 nextOne.setNext(oldNext); // Make the copy point on to the

rest

 }

Using and tracing insertAfter()

> SongNode nodeA = new SongNode();
> SongNode nodeB = new SongNode();
> nodeA.setNext(nodeB);
> SongNode nodeC = new SongNode()
> nodeA.insertAfter(nodeC);

public void insertAfter(SongNode nextOne)
 {
 SongNode oldNext = this.next(); // Save
its next
 this.setNext(nextOne); // Insert the copy
 nextOne.setNext(oldNext); // Make the
copy point on to the rest

 }

3

Traversing
the list

 /**
 * Collect all the notes from this node on
 * in an part (then a score) and open it up for viewing.
 * @param instrument MIDI instrument (program) to be used in playing this list
 */
 public void showFromMeOn(int instrument){
 // Make the Score that we'll assemble the elements into
 // We'll set it up with a default time signature and tempo we like
 // (Should probably make it possible to change these -- maybe with inputs?)
 Score myScore = new Score("My Song");
 myScore.setTimeSignature(3,4);
 myScore.setTempo(120.0);

 // Make the Part that we'll assemble things into
 Part myPart = new Part(instrument);

 // Make a new Phrase that will contain the notes from all the phrases
 Phrase collector = new Phrase();

 // Start from this element (this)
 SongNode current = this;
 // While we're not through...
 while (current != null)
 {
 collector.addNoteList(current.getNotes());

 // Now, move on to the next element
 current = current.next();
 };

 // Now, construct the part and the score.
 myPart.addPhrase(collector);
 myScore.addPart(myPart);

 // At the end, let's see it!
 View.notate(myScore);

 }

The Core of the Traversal

// Make a new Phrase that will contain the notes from all the phrases
 Phrase collector = new Phrase();

 // Start from this element (this)
 SongNode current = this;
 // While we're not through...
 while (current != null)
 {
 collector.addNoteList(current.getNotes());

 // Now, move on to the next element
 current = current.next();
 };

Then return what you collected

// Now, construct the part and the score.
 myPart.addPhrase(collector);
 myScore.addPart(myPart);

 // At the end, let's see it!
 View.notate(myScore);

 }

getNotes() just pulls the notes
back out

 /**
 * Accessor for the notes inside the node's

phrase
 * @return array of notes and durations inside

the phrase
 */
 private Note [] getNotes(){
 return this.myPhrase.getNoteArray();
 }

SongPhrase

 SongPhrase is a collection of static
methods.

 We don’t ever need an instance of
SongPhrase.

 Instead, we use it to store methods that
return phrases.
• It’s not very object-oriented, but it’s useful

here.

SongPhrase.riff1()

import jm.music.data.*;
import jm.JMC;
import jm.util.*;
import jm.music.tools.*;

public class SongPhrase {
 //Little Riff1
 static public Phrase riff1() {
 double[] phrasedata =
 {JMC.G3,JMC.EN,JMC.B3,JMC.EN,JMC.C4,JMC.EN,JMC.D4,JMC.EN};

 Phrase myPhrase = new Phrase();
 myPhrase.addNoteList(phrasedata);
 return myPhrase;

4

SongPhrase.riff2()

 //Little Riff2
 static public Phrase riff2() {
 double[] phrasedata =

{JMC.D4,JMC.EN,JMC.C4,JMC.EN,JMC.E4,JMC.EN,JM
C.G4,JMC.EN};

 Phrase myPhrase = new Phrase();
 myPhrase.addNoteList(phrasedata);
 return myPhrase;
 }

Computing a phrase

 //Larger Riff1
 static public Phrase pattern1() {
 double[] riff1data =
 {JMC.G3,JMC.EN,JMC.B3,JMC.EN,JMC.C4,JMC.EN,JMC.D4,JMC.EN};
 double[] riff2data =
 {JMC.D4,JMC.EN,JMC.C4,JMC.EN,JMC.E4,JMC.EN,JMC.G4,JMC.EN};

 Phrase myPhrase = new Phrase();
 // 3 of riff1, 1 of riff2, and repeat all of it 3 times
 for (int counter1 = 1; counter1 <= 3; counter1++)
 {for (int counter2 = 1; counter2 <= 3; counter2++)
 myPhrase.addNoteList(riff1data);
 myPhrase.addNoteList(riff2data);
 };
 return myPhrase;
 }

As long as it’s a phrase…

 The way that we use SongNote and
SongPhrase, any method that returns a
phrase is perfectly valid SongPhrase
method.

10 Random Notes
(Could be less random…)

 /*
 * 10 random notes
 **/
 static public Phrase random() {
 Phrase ranPhrase = new Phrase();
 Note n = null;

 for (int i=0; i < 10; i++) {
 n = new Note((int) (128*Math.random()),0.1);
 ranPhrase.addNote(n);
 }
 return ranPhrase;
 }

10 Slightly Less Random Notes

 /*
 * 10 random notes above middle C
 **/
 static public Phrase randomAboveC() {
 Phrase ranPhrase = new Phrase();
 Note n = null;

 for (int i=0; i < 10; i++) {
 n = new Note((int) (60+(5*Math.random())),0.25);
 ranPhrase.addNote(n);
 }
 return ranPhrase;
 }

Going beyond connecting nodes

 So far, we’ve just created nodes and
connected them up.

 What else can we do?
 Well, music is about repetition and

interleaving of themes.
• Let’s create those abilities for SongNodes.

5

Repeating a Phrase

Welcome to DrJava.
> SongNode node = new SongNode();
> node.setPhrase(SongPhrase.randomAboveC());
> SongNode node1 = new SongNode();
> node1.setPhrase(SongPhrase.riff1());
> node.repeatNext(node1,10);
> import jm.JMC;
> node.showFromMeOn(JMC.PIANO);

What it looks like

node node1 node1 node1 …

Repeating

 /**
 * Repeat the input phrase for the number of

times specified.
 * It always appends to the current node, NOT

insert.
 * @param nextOne node to be copied in to list
 * @param count number of times to copy it in.
 */
 public void repeatNext(SongNode nextOne,int

count) {
 SongNode current = this; // Start from here
 SongNode copy; // Where we keep the current

copy

 for (int i=1; i <= count; i++)
 {
 copy = nextOne.copyNode(); // Make a copy
 current.setNext(copy); // Set as next
 current = copy; // Now append to copy
 }
 }

Note! What
happens to this’s
next? How
would you create
a looong repeat
chain of several
types of phrases
with this?

Here’s making a copy

 /**
 * copyNode returns a copy of this node
 * @return another song node with the same

notes
 */
 public SongNode copyNode(){
 SongNode returnMe = new SongNode();
 returnMe.setPhrase(this.getPhrase());
 return returnMe;
 }

Step 1:
public void repeatNext(SongNode nextOne,int count) {
 SongNode current = this; // Start from here
 SongNode copy; // Where we keep the current copy

node

phrase:
10
random
notes

next: null

current

node1

phrase:
riff1()

next: null

nextOne

Step 2:
copy = nextOne.copyNode(); // Make a copy

node

phrase:
10
random
notes

next: null

current

node1

phrase:
riff1()

next: null

phrase:
riff1()

next: null

copy nextOne

6

Step 3:
current.setNext(copy); // Set as next

node

phrase:
10
random
notes

next:

current

node1

phrase:
riff1()

next: null

phrase:
riff1()

next: null

copy nextOne

Step 4:
 current = copy; // Now append to copy

node

phrase:
10
random
notes

next:

current

node1

phrase:
riff1()

next: null

phrase:
riff1()

next: null

copy nextOne

Step 5 & 6:
 copy = nextOne.copyNode(); // Make a copy
 current.setNext(copy); // Set as next

node

phrase:
10
random
notes

next:

current

node1

phrase:
riff1()

next: null

phrase:
riff1()

next:

copy

phrase:
riff1()

next: null

nextOne

Step 7 (and so on):
 current = copy; // Now append to copy

node

phrase:
10
random
notes

next:

current

node1

phrase:
riff1()

next: null

phrase:
riff1()

next:

copy

phrase:
riff1()

next: null

nextOne

What happens if the node
already points to something?

 Consider repeatNext and how it inserts:
It simply sets the next value.

 What if the node already had a next?
 repeatNext will erase whatever used to

come next.
 How can we fix it?

repeatNextInserting

 /**
 * Repeat the input phrase for the number of times specified.
 * But do an insertion, to save the rest of the list.
 * @param nextOne node to be copied into the list
 * @param count number of times to copy it in.
 **/
 public void repeatNextInserting(SongNode nextOne, int count){
 SongNode current = this; // Start from here
 SongNode copy; // Where we keep the current copy

 for (int i=1; i <= count; i++)
 {
 copy = nextOne.copyNode(); // Make a copy
 current.insertAfter(copy); // INSERT after current
 current = copy; // Now append to copy
 }
 }

7

Weaving

 /**
 * Weave the input phrase count times every skipAmount nodes
 * @param nextOne node to be copied into the list
 * @param count how many times to copy
 * @param skipAmount how many nodes to skip per weave
 */
 public void weave(SongNode nextOne, int count, int skipAmount)
 {
 SongNode current = this; // Start from here
 SongNode copy; // Where we keep the one to be weaved in
 SongNode oldNext; // Need this to insert properly
 int skipped; // Number skipped currently

 for (int i=1; i <= count; i++)
 {
 copy = nextOne.copyNode(); // Make a copy

 //Skip skipAmount nodes
 skipped = 1;
 while ((current.next() != null) && (skipped < skipAmount))
 {
 current = current.next();
 skipped++;
 };

 oldNext = current.next(); // Save its next
 current.insertAfter(copy); // Insert the copy after this one
 current = oldNext; // Continue on with the rest
 if (current.next() == null) // Did we actually get to the end early?
 break; // Leave the loop

 }
 }

Should we
break before
the last
insert (when
we get to the
end) or
after?

Creating a node to weave

> SongNode node2 = new SongNode();
> node2.setPhrase(SongPhrase.riff2());
> node2.showFromMeOn(JMC.PIANO);

Doing a weave

> node.weave(node2,4,2);
> node.showFromMeOn(JMC.PIANO);

Weave Results
Before:

After

Walking the Weave

public void weave(SongNode nextOne, int count,
int skipAmount)

 {
 SongNode current = this; // Start from here
 SongNode copy; // Where we keep the one to be

weaved in
 SongNode oldNext; // Need this to insert

properly
 int skipped; // Number skipped currently

Skip forward

for (int i=1; i <= count; i++)
 {
 copy = nextOne.copyNode(); // Make a copy

 //Skip skipAmount nodes
 skipped = 1;
 while ((current.next() != null) && (skipped < skipAmount))
 {
 current = current.next();
 skipped++;
 };

8

Then do an insert

 if (current.next() == null) // Did we actually get to the end
early?

 break; // Leave the loop

 oldNext = current.next(); // Save its next
 current.insertAfter(copy); // Insert the copy after this one
 current = oldNext; // Continue on with the rest
 }

Version 4: Creating a tree of song
parts, each with its own instrument

 SongNode and SongPhrase offer us
enormous flexibility in exploring musical
patterns.

 But it’s only one part!
 We’ve lost the ability of having different

parts starting at different time!
 Let’s get that back.

The Structure We’re Creating

Song

SongPart

SongPart

SongNode SongNode

SongNode

SongNode

SongNode

SongNode

SongNode

Starting to look like a tree…

Example
Song

import jm.music.data.*;
import jm.JMC;
import jm.util.*;
import jm.JMC;

public class MyFirstSong {
 public static void main(String [] args) {
 Song songroot = new Song();

 SongNode node1 = new SongNode();
 SongNode riff3 = new SongNode();
 riff3.setPhrase(SongPhrase.riff3());
 node1.repeatNext(riff3,16);
 SongNode riff1 = new SongNode();
 riff1.setPhrase(SongPhrase.riff1());
 node1.weave(riff1,7,1);
 SongPart part1 = new SongPart(JMC.PIANO, node1);

 songroot.setFirst(part1);

 SongNode node2 = new SongNode();
 SongNode riff4 = new SongNode();
 riff4.setPhrase(SongPhrase.riff4());
 node2.repeatNext(riff4,20);
 node2.weave(riff1,4,5);
 SongPart part2 = new SongPart(JMC.STEEL_DRUMS, node2);

 songroot.setSecond(part2);
 songroot.show();
 }
}

