
1

Structuring Music

CS1316: Representing
Structure and Behavior

Story

 Using JMusic
• With multiple Parts and Phrases

 Creating music objects for exploring composition
• Version 1: Using an array for Notes, then scooping them

up into Phrases.
• Version 2: Using a linked list of song elements.
• Version 3: General song elements and song phrases

• Computing phrases
• Repeating and weaving

• Version 4: Creating a tree of song parts, each with its
own instrument.

Version 3:
SongNode and SongPhrase

 SongNode instances will hold pieces
(phrases) from SongPhrase.

 SongNode instances will be the nodes in
the linked list
• Each one will know its next.

 Ordering will encode the order in the
Part.
• Each one will get appended after the last.

Using SongNode and
SongPhrase

Welcome to DrJava.
> import jm.JMC;
> SongNode node1 = new SongNode();
> node1.setPhrase(SongPhrase.riff1());
> SongNode node2 = new SongNode();
> node2.setPhrase(SongPhrase.riff2());
> SongNode node3 = new SongNode();
> node3.setPhrase(SongPhrase.riff1());
> node1.setNext(node2);
> node2.setNext(node3);
> node1.showFromMeOn(JMC.SAX);

All three SongNodes in one Part How to think about it

node1

myPhrase: riff1

next: node2

node2

myPhrase: riff2

next: node3

node3

myPhrase: riff1

next: null

2

Declarations for SongNode

import jm.music.data.*;
import jm.JMC;
import jm.util.*;
import jm.music.tools.*;

public class SongNode {
 /**
 * the next SongNode in the list
 */
 private SongNode next;
 /**
 * the Phrase containing the notes and durations associated with this

node
 */
 private Phrase myPhrase;

SongNode’s know their
Phrase and the next
node in the list

Constructor for SongNode

 /**
 * When we make a new element, the next part

is empty, and ours is a blank new part
 */
 public SongNode(){
 this.next = null;
 this.myPhrase = new Phrase();
 }

Setting the phrase

 /**
 * setPhrase takes a Phrase and makes it the

one for this node
 * @param thisPhrase the phrase for this node
 */
 public void setPhrase(Phrase thisPhrase){
 this.myPhrase = thisPhrase;
 }

Linked list methods

 /**
 * Creates a link between the current node and the input node
 * @param nextOne the node to link to
 */
 public void setNext(SongNode nextOne){
 this.next = nextOne;
 }
 /**
 * Provides public access to the next node.
 * @return a SongNode instance (or null)
 */
 public SongNode next(){
 return this.next;
 }

insertAfter

 /**
 * Insert the input SongNode AFTER this node,
 * and make whatever node comes NEXT become the next of the

input node.
 * @param nextOne SongNode to insert after this one
 */
 public void insertAfter(SongNode nextOne)
 {
 SongNode oldNext = this.next(); // Save its next
 this.setNext(nextOne); // Insert the copy
 nextOne.setNext(oldNext); // Make the copy point on to the

rest

 }

Using and tracing insertAfter()

> SongNode nodeA = new SongNode();
> SongNode nodeB = new SongNode();
> nodeA.setNext(nodeB);
> SongNode nodeC = new SongNode()
> nodeA.insertAfter(nodeC);

public void insertAfter(SongNode nextOne)
 {
 SongNode oldNext = this.next(); // Save
its next
 this.setNext(nextOne); // Insert the copy
 nextOne.setNext(oldNext); // Make the
copy point on to the rest

 }

3

Traversing
the list

 /**
 * Collect all the notes from this node on
 * in an part (then a score) and open it up for viewing.
 * @param instrument MIDI instrument (program) to be used in playing this list
 */
 public void showFromMeOn(int instrument){
 // Make the Score that we'll assemble the elements into
 // We'll set it up with a default time signature and tempo we like
 // (Should probably make it possible to change these -- maybe with inputs?)
 Score myScore = new Score("My Song");
 myScore.setTimeSignature(3,4);
 myScore.setTempo(120.0);

 // Make the Part that we'll assemble things into
 Part myPart = new Part(instrument);

 // Make a new Phrase that will contain the notes from all the phrases
 Phrase collector = new Phrase();

 // Start from this element (this)
 SongNode current = this;
 // While we're not through...
 while (current != null)
 {
 collector.addNoteList(current.getNotes());

 // Now, move on to the next element
 current = current.next();
 };

 // Now, construct the part and the score.
 myPart.addPhrase(collector);
 myScore.addPart(myPart);

 // At the end, let's see it!
 View.notate(myScore);

 }

The Core of the Traversal

// Make a new Phrase that will contain the notes from all the phrases
 Phrase collector = new Phrase();

 // Start from this element (this)
 SongNode current = this;
 // While we're not through...
 while (current != null)
 {
 collector.addNoteList(current.getNotes());

 // Now, move on to the next element
 current = current.next();
 };

Then return what you collected

// Now, construct the part and the score.
 myPart.addPhrase(collector);
 myScore.addPart(myPart);

 // At the end, let's see it!
 View.notate(myScore);

 }

getNotes() just pulls the notes
back out

 /**
 * Accessor for the notes inside the node's

phrase
 * @return array of notes and durations inside

the phrase
 */
 private Note [] getNotes(){
 return this.myPhrase.getNoteArray();
 }

SongPhrase

 SongPhrase is a collection of static
methods.

 We don’t ever need an instance of
SongPhrase.

 Instead, we use it to store methods that
return phrases.
• It’s not very object-oriented, but it’s useful

here.

SongPhrase.riff1()

import jm.music.data.*;
import jm.JMC;
import jm.util.*;
import jm.music.tools.*;

public class SongPhrase {
 //Little Riff1
 static public Phrase riff1() {
 double[] phrasedata =
 {JMC.G3,JMC.EN,JMC.B3,JMC.EN,JMC.C4,JMC.EN,JMC.D4,JMC.EN};

 Phrase myPhrase = new Phrase();
 myPhrase.addNoteList(phrasedata);
 return myPhrase;

4

SongPhrase.riff2()

 //Little Riff2
 static public Phrase riff2() {
 double[] phrasedata =

{JMC.D4,JMC.EN,JMC.C4,JMC.EN,JMC.E4,JMC.EN,JM
C.G4,JMC.EN};

 Phrase myPhrase = new Phrase();
 myPhrase.addNoteList(phrasedata);
 return myPhrase;
 }

Computing a phrase

 //Larger Riff1
 static public Phrase pattern1() {
 double[] riff1data =
 {JMC.G3,JMC.EN,JMC.B3,JMC.EN,JMC.C4,JMC.EN,JMC.D4,JMC.EN};
 double[] riff2data =
 {JMC.D4,JMC.EN,JMC.C4,JMC.EN,JMC.E4,JMC.EN,JMC.G4,JMC.EN};

 Phrase myPhrase = new Phrase();
 // 3 of riff1, 1 of riff2, and repeat all of it 3 times
 for (int counter1 = 1; counter1 <= 3; counter1++)
 {for (int counter2 = 1; counter2 <= 3; counter2++)
 myPhrase.addNoteList(riff1data);
 myPhrase.addNoteList(riff2data);
 };
 return myPhrase;
 }

As long as it’s a phrase…

 The way that we use SongNote and
SongPhrase, any method that returns a
phrase is perfectly valid SongPhrase
method.

10 Random Notes
(Could be less random…)

 /*
 * 10 random notes
 **/
 static public Phrase random() {
 Phrase ranPhrase = new Phrase();
 Note n = null;

 for (int i=0; i < 10; i++) {
 n = new Note((int) (128*Math.random()),0.1);
 ranPhrase.addNote(n);
 }
 return ranPhrase;
 }

10 Slightly Less Random Notes

 /*
 * 10 random notes above middle C
 **/
 static public Phrase randomAboveC() {
 Phrase ranPhrase = new Phrase();
 Note n = null;

 for (int i=0; i < 10; i++) {
 n = new Note((int) (60+(5*Math.random())),0.25);
 ranPhrase.addNote(n);
 }
 return ranPhrase;
 }

Going beyond connecting nodes

 So far, we’ve just created nodes and
connected them up.

 What else can we do?
 Well, music is about repetition and

interleaving of themes.
• Let’s create those abilities for SongNodes.

5

Repeating a Phrase

Welcome to DrJava.
> SongNode node = new SongNode();
> node.setPhrase(SongPhrase.randomAboveC());
> SongNode node1 = new SongNode();
> node1.setPhrase(SongPhrase.riff1());
> node.repeatNext(node1,10);
> import jm.JMC;
> node.showFromMeOn(JMC.PIANO);

What it looks like

node node1 node1 node1 …

Repeating

 /**
 * Repeat the input phrase for the number of

times specified.
 * It always appends to the current node, NOT

insert.
 * @param nextOne node to be copied in to list
 * @param count number of times to copy it in.
 */
 public void repeatNext(SongNode nextOne,int

count) {
 SongNode current = this; // Start from here
 SongNode copy; // Where we keep the current

copy

 for (int i=1; i <= count; i++)
 {
 copy = nextOne.copyNode(); // Make a copy
 current.setNext(copy); // Set as next
 current = copy; // Now append to copy
 }
 }

Note! What
happens to this’s
next? How
would you create
a looong repeat
chain of several
types of phrases
with this?

Here’s making a copy

 /**
 * copyNode returns a copy of this node
 * @return another song node with the same

notes
 */
 public SongNode copyNode(){
 SongNode returnMe = new SongNode();
 returnMe.setPhrase(this.getPhrase());
 return returnMe;
 }

Step 1:
public void repeatNext(SongNode nextOne,int count) {
 SongNode current = this; // Start from here
 SongNode copy; // Where we keep the current copy

node

phrase:
10
random
notes

next: null

current

node1

phrase:
riff1()

next: null

nextOne

Step 2:
copy = nextOne.copyNode(); // Make a copy

node

phrase:
10
random
notes

next: null

current

node1

phrase:
riff1()

next: null

phrase:
riff1()

next: null

copy nextOne

6

Step 3:
current.setNext(copy); // Set as next

node

phrase:
10
random
notes

next:

current

node1

phrase:
riff1()

next: null

phrase:
riff1()

next: null

copy nextOne

Step 4:
 current = copy; // Now append to copy

node

phrase:
10
random
notes

next:

current

node1

phrase:
riff1()

next: null

phrase:
riff1()

next: null

copy nextOne

Step 5 & 6:
 copy = nextOne.copyNode(); // Make a copy
 current.setNext(copy); // Set as next

node

phrase:
10
random
notes

next:

current

node1

phrase:
riff1()

next: null

phrase:
riff1()

next:

copy

phrase:
riff1()

next: null

nextOne

Step 7 (and so on):
 current = copy; // Now append to copy

node

phrase:
10
random
notes

next:

current

node1

phrase:
riff1()

next: null

phrase:
riff1()

next:

copy

phrase:
riff1()

next: null

nextOne

What happens if the node
already points to something?

 Consider repeatNext and how it inserts:
It simply sets the next value.

 What if the node already had a next?
 repeatNext will erase whatever used to

come next.
 How can we fix it?

repeatNextInserting

 /**
 * Repeat the input phrase for the number of times specified.
 * But do an insertion, to save the rest of the list.
 * @param nextOne node to be copied into the list
 * @param count number of times to copy it in.
 **/
 public void repeatNextInserting(SongNode nextOne, int count){
 SongNode current = this; // Start from here
 SongNode copy; // Where we keep the current copy

 for (int i=1; i <= count; i++)
 {
 copy = nextOne.copyNode(); // Make a copy
 current.insertAfter(copy); // INSERT after current
 current = copy; // Now append to copy
 }
 }

7

Weaving

 /**
 * Weave the input phrase count times every skipAmount nodes
 * @param nextOne node to be copied into the list
 * @param count how many times to copy
 * @param skipAmount how many nodes to skip per weave
 */
 public void weave(SongNode nextOne, int count, int skipAmount)
 {
 SongNode current = this; // Start from here
 SongNode copy; // Where we keep the one to be weaved in
 SongNode oldNext; // Need this to insert properly
 int skipped; // Number skipped currently

 for (int i=1; i <= count; i++)
 {
 copy = nextOne.copyNode(); // Make a copy

 //Skip skipAmount nodes
 skipped = 1;
 while ((current.next() != null) && (skipped < skipAmount))
 {
 current = current.next();
 skipped++;
 };

 oldNext = current.next(); // Save its next
 current.insertAfter(copy); // Insert the copy after this one
 current = oldNext; // Continue on with the rest
 if (current.next() == null) // Did we actually get to the end early?
 break; // Leave the loop

 }
 }

Should we
break before
the last
insert (when
we get to the
end) or
after?

Creating a node to weave

> SongNode node2 = new SongNode();
> node2.setPhrase(SongPhrase.riff2());
> node2.showFromMeOn(JMC.PIANO);

Doing a weave

> node.weave(node2,4,2);
> node.showFromMeOn(JMC.PIANO);

Weave Results
Before:

After

Walking the Weave

public void weave(SongNode nextOne, int count,
int skipAmount)

 {
 SongNode current = this; // Start from here
 SongNode copy; // Where we keep the one to be

weaved in
 SongNode oldNext; // Need this to insert

properly
 int skipped; // Number skipped currently

Skip forward

for (int i=1; i <= count; i++)
 {
 copy = nextOne.copyNode(); // Make a copy

 //Skip skipAmount nodes
 skipped = 1;
 while ((current.next() != null) && (skipped < skipAmount))
 {
 current = current.next();
 skipped++;
 };

8

Then do an insert

 if (current.next() == null) // Did we actually get to the end
early?

 break; // Leave the loop

 oldNext = current.next(); // Save its next
 current.insertAfter(copy); // Insert the copy after this one
 current = oldNext; // Continue on with the rest
 }

Version 4: Creating a tree of song
parts, each with its own instrument

 SongNode and SongPhrase offer us
enormous flexibility in exploring musical
patterns.

 But it’s only one part!
 We’ve lost the ability of having different

parts starting at different time!
 Let’s get that back.

The Structure We’re Creating

Song

SongPart

SongPart

SongNode SongNode

SongNode

SongNode

SongNode

SongNode

SongNode

Starting to look like a tree…

Example
Song

import jm.music.data.*;
import jm.JMC;
import jm.util.*;
import jm.JMC;

public class MyFirstSong {
 public static void main(String [] args) {
 Song songroot = new Song();

 SongNode node1 = new SongNode();
 SongNode riff3 = new SongNode();
 riff3.setPhrase(SongPhrase.riff3());
 node1.repeatNext(riff3,16);
 SongNode riff1 = new SongNode();
 riff1.setPhrase(SongPhrase.riff1());
 node1.weave(riff1,7,1);
 SongPart part1 = new SongPart(JMC.PIANO, node1);

 songroot.setFirst(part1);

 SongNode node2 = new SongNode();
 SongNode riff4 = new SongNode();
 riff4.setPhrase(SongPhrase.riff4());
 node2.repeatNext(riff4,20);
 node2.weave(riff1,4,5);
 SongPart part2 = new SongPart(JMC.STEEL_DRUMS, node2);

 songroot.setSecond(part2);
 songroot.show();
 }
}

