Structuring Music

CS1316: Representing
Structure and Behavior

Story

Version 3: General song elements and song phrases
* Computing phrases
* Repeating and weaving
Version 4: Creating a tree of song parts, each with its
own instrument.

/

/

Version 3:
SongNode and SongPhrase

SongNode instances will hold pieces
(phrases) from SongPhrase.
SongNode instances will be the nodes in
the linked list

Each one will know its next.
Ordering will encode the order in the
Part.

Each one will get appended after the last.

- /

/

Using SongNode and
SongPhrase

Welcome to DrJava.

> import jm.JMC;

> SongNode node1 = new SongNode();
> node1.setPhrase(SongPhrase.riff1());
> SongNode node2 = new SongNode();
> node2.setPhrase(SongPhrase.riff2());
> SongNode node3 = new SongNode();
> node3.setPhrase(SongPhrase.riff1());
> node1.setNext(node2);

> node2.setNext(node3);

> node1.showFromMeOn(JMC.SAX);

~

All three SongNodes in one Part

£ CPN: My Song

File Tools Play View

How to think about it

-

node1 node2
myPhrase: riff1 myPhrase: riff2
next: node2

next: node3

node3

myPhrase: riff1

next: null

-

Declarations for SongNode

-

Constructor for SongNode

-

Setting the phrase

-

Linked list methods

-

insertAfter

-

Using and tracing insertAfter()

-

Traversing
the list

-

The Core of the Traversal

-

Then return what you collected

~

-

getNotes() just pulls the notes
back out

-

SongPhrase

N

« SongPhrase is a collection of static
methods.

-~ We don’t ever need an instance of
SongPhrase.

« Instead, we use it to store methods that
return phrases.

“ It's not very object-oriented, but it's useful
here.

)

-

SongPhrase.riff1()

/

SongPhrase.riff2()

/ILittle Riff2
static public Phrase riff2() {
double[] phrasedata =

{JMC.D4,JMC.EN,JMC.C4,JMC.EN,JMC.E4,JMC.EN,JM
C.G4,JMC.EN};

Phrase myPhrase = new Phrase();
myPhrase.addNoteList(phrasedata);
return myPhrase;

}

-

As long as it’s a phrase...

The way that we use SongNote and
SongPhrase, any method that returns a

phrase is perfectly valid SongPhrase
method.

4 N

10 Slightly Less Random Notes
”

* 10 random notes above middle C

vy

static public Phrase randomAboveC() {

Phrase ranPhrase = new Phrase();
Note n = null;

for (inti=0; i < 10; i++) {
n = new Note((int) (60+(5*Math.random())),0.25);
ranPhrase.addNote(n);

}

return ranPhrase;

4 N

\})

/

Computing a phrase

/ILarger Riff1
static public Phrase pattern1() {
double[] riffidata =

{JMC.G3,JMC.EN,JMC.B3,JMC.EN,JMC.C4,JMC.EN,JMC.D4,JMC.EN};
doublef] riff2data =

{UJMC.D4,JMC.EN,JMC.C4,JMC.EN,JMC.E4,JMC.EN,JMC.G4,JMC.EN};

Phrase myPhrase = new Phrase();

11 3 of riff1, 1 of riff2, and repeat all of it 3 times

for (int counter1 = 1; counter1 <= 3; counter1++)

{for (int counter2 = 1; counter2 <= 3; counter2++)
myPhrase.addNoteList(riff1data);

myPhrase.addNoteList(riff2data);

b
\ return myPhrase;
}

/ 10 Random Notes \
(Could be less random...)

I
*10 random notes
)
static public Phrase random() {

Phrase ranPhrase = new Phrase();
Note n = null;

for (int i=0; i < 10; i++) {
n = new Note((int) (128*Math.random()),0.1);
ranPhrase.addNote(n);

}

return ranPhrase;

N)

4 N

Going beyond connecting nodes

So far, we’ve just created nodes and
connected them up.

What else can we do?

Well, music is about repetition and
interleaving of themes.

Let's create those abilities for SongNodes.

Repeating a Phrase

Welcome to DrJava.

> SongNode node = new SongNode();

> node.setPhrase(SongPhrase.randomAboveC());
> SongNode node1 = new SongNode();

> node1.setPhrase(SongPhrase.riff1());

> node.repeatNext(node1,10);

> import jm.JMC;

> node.showFromMeOn(JMC.PIANO);

/

/

What it looks like

~

Flle Tiols Play View

£ Co iy Song. EER

£<s ole T oo gete T wie e v

node node1 node1 node1

-

I \
* Repeat the input phrase for the number of
times specified.
* It always appends to the current node, NOT
e,

Repeating | i

* @param nextOne node to be copied in to list
* @param count number of times to copy it in.
*

public void repeatNext(SongNode nextOne,int

:otel Whtatth') count){
appens fo this's SongNode current = this; // Start from here
next? How

would you create
a looong repeat
chain of several
types of phrases
with this?

SongNode copy; // Where we keep the current
copy

for (inti=1; i <= count; i++)

copy = nextOne.copyNode(); // Make a copy
current.setNext(copy); // Set as next
current = copy; // Now append to copy

%

/

Here’s making a copy

/**
* copyNode returns a copy of this node

* @return another song node with the same
notes

*/

public SongNode copyNode(){
SongNode returnMe = new SongNode();
returnMe.setPhrase(this.getPhrase());
return returnMe;

_ }

/

Step 1:

public void repeatNext(SongNode nextOne,int count) {
SongNode current = this; // Start from here
SongNode copy; // Where we keep the current copy

node
node1
phrase:
10 phrase:
random riff1()
rotes next: null
next: null
current nextOne

-

/

~

-

Step 2:
copy = nextOne.copyNode(); // Make a copy
node
node1
phrase: e
10 B hrase:
random riff1() gﬁﬁ)se
notes next: null il
next: null
current copy nextOne

/

Step 3:
current.setNext(copy); / Set as next
node
node1
phrase: e
10 B hrase:
random riff1() gff;??e
Lz L) next: null
next:
current copy nextOne

- /

4 N

Step 4:
current = copy; // Now append to copy
node
node1
phrase: e
10 : hrase:
random riff1() gﬁ'ﬁ;"e
notes next: null il
next:
current copy nextOne

- /

/StepS & 6: \

copy = nextOne.copyNode(); // Make a copy
current.setNext(copy); // Set as next
node
node1
phrase: phrase: phrase:
10 B B hrase:
e i) () RO
notes next: —>| next:null GG
next:
current copy nextOne

- /

~

Step 7 (and so on):
current = copy; // Now append to copy
node
node1
phrase: phrase: phrase:
10 8 8 hrase:
random riff1() riff1() gﬁ'ﬁ;"e
notes next: —>| next:null il
next:
current copy nextOne

- /

4 N

What happens if the node
already points to something?

Consider repeatNext and how it inserts:
It simply sets the next value.

What if the node already had a next?

repeatNext will erase whatever used to
come next.

How can we fix it?

repeatNextinserting

*

* Repeat the input phrase for the number of times specified.
* But do an insertion, to save the rest of the list.

* @param nextOne node to be copied into the list

* @param count number of times to copy it in.

ey

public void repeatNextInserting(SongNode nextOne, int count){
SongNode current = this; // Start from here
SongNode copy; // Where we keep the current copy

for (inti=1; i <= count; i++)
{
copy = nextOne.copyNode(); // Make a copy

current.insertAfter(copy); // INSERT after current
current = copy; // Now append to copy

N /

o
/ * Weave the input phrase count times every skipAmount nodes.
* @param nextOne node to be copied into the st

* @param count how many times to copy

. * @param skipAmount how many nodes to skip per weave

9
Weavin 9 public void weave(SongNode nextOne, int count, int skipAmount)

- {

SongNode current = this; // Start from here

SongNode copy; // Where we keep the one to be weaved in

SongNode oldNext; // Need this to insert properly

int skipped; // Number skipped currently

for (int i=1; i <= count; i++)

{
copy = nextOne.copyNode(); // Make a copy
/iSkip skipAmount nodes

skipped = 1;
while ((current.next() = null) && (skipped < skipAmount))
{

Should we current = current.next();
skipped++;
break before " Ppe
the last
insert (when oldNext = current.next(); / Save its next
we get to the current.insertAfter(copy); // Insert the copy after this one

ond) or current = oldNext; // Continue on with the rest
) if (current.next() == null) / Did we actually get to the end early?
after? break; // Leave the loop

}
}

Doing a weave

> node.weave(node2,4,2);
> node.showFromMeOn(JMC.PIANO);

4 N

Creating a node to weave

> SongNode node2 = new SongNode();
> node2.setPhrase(SongPhrase.riff2());
> node2.showFromMeOn(JMC.PIANO);

£ cot: y Song EEK

File Tools Play View

S

4 N

Weave Results

B e —————)

€ gele o viete D e e e T ge T hge o

fter [S O S —)

&u’n‘¢ww;,:ﬂ'v et v < B

4 N

Walking the Weave

public void weave(SongNode nextOne, int count,
int skipAmount)

{
SongNode current = this; // Start from here

SongNode copy; // Where we keep the one to be
weaved in

SongNode oldNext; / Need this to insert
properly
int skipped; // Number skipped currently

- /

4 N

Skip forward

for (inti=1; i <= count; i++)
copy = nextOne.copyNode(); // Make a copy

/ISkip skipAmount nodes

skipped = 1;

while ((current.next() != null) && (skipped < skipAmount))
{

current = current.next();

skipped++;

K

Then do an insert

if ﬁcurrent.next() == null) // Did we actually get to the end
early?
break; // Leave the loop

oldNext = current.next(); // Save its next

current.insertAfter(copy); // Insert the copy after this one
current = oldNext; // Continue on with the rest

}

4 N

- /

4 N

The Structure We’re Creating

SongPart ~—* SongNode — SongNode X

SongNode
Song
SongPart / KSongNode/ i)ngNode
SongNode SongNode

\Starting to look like a tree... /

Version 4: Creating a tree of song
parts, each with its own instrument

~

SongNode and SongPhrase offer us

enormous flexibility in exploring musical
patterns.

But it's only one part!

We’'ve lost the ability of having different
parts starting at different time!

Let’s get that back.

/

import jm.music.data.;
import jm.JMC;

Example e
so n g public class MyFirstSong {

public static void main(String [] args) {
Song songroot = new Song();

SongNode node1 = new SongNode();

SongNode riff3 = new SongNode();
1iff3.setPhrase(SongPhrase.fiff3());
nodef.repeatNext(riff3,16);

SongNode riff1 = new SongNode();
1iff1.setPhrase(SongPhrase.fiff1 ();
node.weave(iff1,7,1);

SongPart part1 = new SongPart(JMC.PIANO, node1);

songroot.setFirst(part1);

SongNode node2 = new SongNode();

SongNode riff4 = new SongNode();
1iff4.setPhrase(SongPhrase.fiff4();

node2.repeatNext(riff4,20);

node2.weave(iff1,4,5);

SongPart part2 = new SongPart(JMC.STEEL_DRUMS, node2);

songroot.setSecond(part2);
songroot.show();
}
}

