Structuring Music

CS1316: Representing
Structure and Behavior

4 N

Story

Using JMusic

With multiple Parts and Phrases
Creating music objects for exploring
composition

Version 1: Using an array for Notes, then scooping
them up into Phrases.

Version 2: Using a linked list of song elements.

.

- /

/

~

JMusic: Java Music library

JMusic knows about WAV files and many other
formats, too (e.g., QuickTime)

We'll use it for manipulating MID/

Musical Instrument Digital Interface, an industry-
standard interface used on electronic musical
keyboards and PCs for computer control of musical
instruments and devices.

MIDI is about recording music, not sound.

/

4 N

Creating Notes

Welcome to DrJava. JMC=JMusic Constants
> import jm.music.data.*

> import jm.JMC;

> import jm.util.*;

> Note n = new Note(JMC.C4,JMC.QUARTER_NOTE);
>n

jMusic NOTE: [Pitch = 60][RhythmValue = 1.0][Dynamic = 85][Pan = 0.5][Duration = 0.9]
>JMC.C4

60

> JMC.QUARTER_NOTE

1.0

> JMC.QN

1.0

> Note n2 = new Note(64,2.0);

>n2

jMusic NOTE: [Pitch = 64][RhythmValue = 2.0][Dynamic = 85][Pan = 0.5][Duration = 1.8]

Makes code easier to
read from a music
perspective

Creating Phrases

> Phrase phr = new Phrase();
> phr.addNote(n);

> phr.addNote(n2);

> double [] notes1 = {67, 0.25, 64, 0.5, 60, 1.0}
> phr.addNoteList(notes1)

> double [] notes2 = {JMC.G4,JMC.QN, JMC.E4,
JMC.EN, JMC.C4, JMC.WN}

> phr.addNoteList(notes2)

Using notes, or an
array of note pieces.

4 N

Viewing Phrases

‘ > View.notate(phr) ‘

£ CPN: Untitled Phrase. LEX

File Tools Play View
. :
. o ‘
o e = S B— S p— 5
D) - - & - o = -
. :

/

From Viewer: Manipulate and

Can save or open
MIDI files

Can change key or
time signature.

Other tools allow
changing other
characteristics, like
tempo.

£ CPN: Untitled Phrase.

W
Open HIDI file.

Open jMusic XU file
Open jmfile.

Close

Delete last note
Clear all notes

Key Signature
Time Signature

Save 3s 3 DI file.

Save 33 a jllusic XL file
Save as ajmfile.

~

ctis
Ctri+Shifts3

/

Phrases

Different ways of creating

~

> Phrase phr2 = new
Phrase("Phrase
2"4.0,JMC.FLUTE);

> phr2.addNoteList(notes2)| -

Stave »

Quit cti-a

/

A Phrase that starts later

> Phrase phr2 = new Phrase("Phrase
2",4.0,JMC.FLUTE);

> phr2.addNoteList(notes2)
> View.notate(phr2)

.

[o e BEE

File Tools Play View

/

Adding parts into phrases
(Wrong way first)

~

> Part part1 = new Part();
> part1.addPhrase(phr);
> part1.addPhrase(phr2);
> View.notate(part1);

Kinda lost the
phrase
distinctions.

File Tools Play View

Building Parts and Scores

~

> Part partA = new Part("Part A",JMC.PIANO,1)
> partA.addPhrase(phr);

> Part partB = new Part("Part B",JMC.SAX,2)

> partB.addPhrase(phr2);

> Score score1 = new Score("My Two Part
Score");

> score1.addPart(partA);
> score1.addPart(partB);

/

Viewing the Score

‘ > View.notate(score1);

£ CPN: My Two Part Score
File Tools Play View

/ T
A . o SN
mazing ey

prive Score myScore = new Score(’Amazing Grace");

Grace ot

myScore setTimeSignature(3.4);

‘ouble[phrasetdata =
{IMC.G, JMC.QN,
JMC.CS, JMC.HN, JMC E5,JMC EN, JMC.C5 JMCEN,
N,

JMC.E5,IMC.HN,JMC.D5 JMC.GN,
JMC.C5,JMC.HN JMC A4 JMC.QN,
JMC.G4,IMC.HN,JMC. G4 JMC.EN,JMC.A4 JMCEN,
JMC.C5,JMCHN.IMCE5 IMC.EN,JMC.C5 JMC.EN,

> AmazingGraceSong song1 = MG ES JMC HN.JMG. DS IMC.EN.JMC.E5 MG EN,
§ IMC G5 MG DHN):
new AmazingGraceSong(); ‘doublef] phrasezdata =
(MC.GS,JMC.HN.JMC.E5 JMC.EN.JNC.G5 JMC.EN.
> song1 fillMeUp(); MC.G8 MG HN JMC.ES JMC,EN JMC.CS JMC.EN,
' JMC.E5.JMC.HN JMC D5 JMC.QN,
> song1.showMe(); JMIC.C5 JMG.HN IMC A% IMC.QN

JMC.G4,JMC.HN,JMC.G4.JMC EN,JMC A4 IMCEN,
JMC.C5,IMC HN JMC ES JMC EN, JMC.C5,JMC EN,
JMG.E5 JMC HN, MG D5 JMC N,
JMC.C5,MC.DHN

B

Phraso myPhras = now Phrase():

myPhrase addNoteList(phrase’ data);

myPhrase addNoteListjphrase2data);

i create a new part and add the phrase o it
JMC FLUTE, 1),

aPartaddPhrase(myPhrase);

1/ the part o th

myScore addPart(aPart).

x
K [——

i
)

/

Imports and some private data

~

import jm.music.data.*;
import jm.JMC;
import jm.util.*;
import jm.music.tools.*;

public class AmazingGraceSong {

private Score myScore = new Score("Amazing
Grace");

-

myScore is private instance data

/

public void filMeUp(){
myScore.setTimeSignature(3.4);

double[] phrase1data =

{JMC.G4, JMC.QN,
JMC.C5, JMC.HN, JMC.E5,JMC.EN, JMC.C5,JMC.EN,
JMC.E5,JMC.HN,JMC.D5,JMC.QN,
JMC.C5,JMC.HN,JMC.A4,JMC.QN,
JMC.G4,JMC.HN,JMC.G4,JMC EN,JMC.A4,JMC EN,
JMC.C5,JMC.HN,JMC.E5,JMC.EN,JMC.C5,JMC.EN,
JMC.E5,JMC.HN,JMC.D5,JMC.EN,JMC.E5,JMC.EN,
JMC.G5,JMC.DHN};

double[] phrase2data =

{JMC.G5,JMC.HN,JMC.E5 JMC.EN,JMC.G5,JMC.EN,

Each array is note, JMC.G5,JMC.HN,JMC.E5,JMC.EN,JMC.C5,JMC.EN,
duration, note, JMC.E5,JMC.HN,JMC.D5,JMC.QN,

" JMC.C5,JMC.HN,JMC.A4,JMC.QN,
duration, note, JMC.G4,JMC.HN,JMC.G4,JMC.EN,JMC.A4,JMC.EN,
duration, etc. JMC.C5,JMC.HN,JMC.ES,JMC.EN,JMC.C5,JMC.EN,

JMC E5,JMC.HN,JMC.D5,JMC.QN,
JMC.C5,JMC.DHN

¥
| broke it roughly Phrase myPhrase = new Phrase();
into halves myPhrase.addNoteList(phrase1data);
: myPhrase.addNoteList(phrase2data);

Il create a new part and add the phrase to it
Part aPart = new Part("Parts",

JMC.FLUTE, 1);
aPart.addPhrase(myPhrase);

//'add the part to the score
myScore.addPart(aPart);

%

/

Showing the Score

public void showMe(){
View.notate(myScore);

b

4 N

The Organization of JMusic
Objects

Score: timeSignature, tempo, &

Part: Instrument & Part: Instrument &
Phrase: startingTime & Phrase: statingTme & Phrase: startingTime &
Note Note Note Note Note
(pitch duration) (pitch duration) (pitch duration) (pitch duration) (pitch duration) (pitch, duration)
P fiud Note
EEm == — (pitch duration)
Phrase: startingTime & Phrase: startingTime &
N(.’teh durati N‘?teh durati Note Note
(pilchidirzuon)y KEichidUation) (pitch,duration) (pitch,duration)
Note
(pitch,duration)

/

Thought Experiment

How are they doing that?
How can there be any number of Notes
in a Phrase, Phrases in a Part, and Parts
in a Score?

(Hint: They ain’t usin’ arrays!)

/

How do we explore composition
here?

We want to quickly and easily throw
together notes in different groupings and
see how they sound.

The current JMusic structure models
music.

Let’s try to create a structure that models
thinking about music as bunches of
riffs/SongElements that we want to combine
in different ways.

/

/

Version 1: Notes in an array

~

Let’s just put notes of interest (for now,
just random) in an array.

We'll traverse the array to gather the
notes up into a Phrase, then use View to
notate the Phrase.

Using an array to structure
Notes

~

> Note [] someNotes = new Note[100];

> for (inti = 0; i < 100; i++)
{someNotes[i]= new Note((int)
(128*Math.random()),0.25);}

> /I Now, traverse the array and gather them up.

> Phrase myphrase = new Phrase()

> for (int i=0; i<100; i++)

{myphrase.addNote(someNotes]i]);}
\ > View.notate(myphrase);

/

Critique of Version 1

So where’s the music?
100 random notes isn’t the issue.

It's that we don’t think about notes as just one
long strand.

Where are the phrases/riffs/elements?
We just have one long line of notes.
How do we explore patterns like this?

insertAfter and delete are just as hard here as
in sampled sounds!

-

/

Version 2: Using a linked list of
song elements

~

Let's re-think Amazing Grace as a
collection of elements that we can
shuffle around as we’d like.

We can make any element follow any
other element.

/

What’s in each element?

AmazingGraceSongElement

It KNOWS: it's Part and what comes
next

It CAN DO: filling itself from the first
or second phrase (with a given start
time and instrument), setting the next
one, getting the next one, and
showing (notating) myself and all
others.

/

What that would look like to use

it

Welcome to DrJava.

> import jm.JMC;

> AmazingGraceSongElement2 part1 = new
AmazingGraceSongElement2();

> part1.setPhrase(part1.phrase1(),0.0,JMC.FLUTE);

> AmazingGraceSongElement2 part2 = new
AmazingGraceSongElement2();

> part1.getEndTime()

22.0

> part2.setPhrase(part2.phrase2(),22.0,JMC.PIANO);
> part1.setNext(part2);

> part1.showFromMeOn();

Part1.showFromMeOn()

N>
eld

/

What’s going on here?

~

AmazingGraceSongElement part1

myPart: Filled with
phrase1(flute))

next: part2 |

myPart: Filled with
| phrase2(piano)
next: null

AmazingGraceSongElement part2

.

Adding a third part

> AmazingGraceSongElement2 part3 =
new AmazingGraceSongElement2();

> part3.setPhrase(part3.phrase1(),0.0,
JMC.TRUMPET);

> part1.setNext(part3);
> part3.setNext(part2);
> part1.showFromMeOn();

/

part1.showFromMeOn();
Now has three parts

/

What’s going on here?

~

AmazingGraceSongElement part1

myPart: Filled with phrase1
(flute)

next: part3

(piano)
next: null

myPart: Filled with phrase2

AmazingGraceSongElement part3

myPart: Filled with phrase1
(trumpet)

next: part2

AmazingGraceSongElement part2

/

~

Introducing the Linked List

A linked list is information broken into
smaller pieces, where each piece knows
the next piece, but none other.

Ge ¥

4 N

Another example of a linked list

Non-linear video
editing (like in iMovie) g
You have a collection
of video clips
(information)
You drag them into a
timeline. -
® Each clip still doesn't T
know all clips, butit == =
knows the next one.

- /

/

Why use linked lists versus
arrays?

Just two reasons now, more later:
Can grow to any size (well, as long as
memory permits)

® Just create a new element and poke it into the
list.

MUCH easier to insert!

® Look at how easily we put part3 between part1
and part2.

4 N

Implementing
AmazingGraceSongElement2

import jm.music.data.*;
import jm.JMC;
import jm.util.*;
import jm.music.tools.*;

public class AmazingGraceSongElement2 {

/I Every element knows its next element and its
part (of the score)

private AmazingGraceSongElement2 next;

prlvate Part myPart; It's considered good form to
make your object’s data private

unless you need to make it
public.

~

Our Constructor

/I When we make a new element, the next
part is empty, and ours is a blank new
part

public AmazingGraceSongElement2(){
this.next = null;
this.myPart = new Part();

}

4 N

What setPhrase does

/] setPhrase takes a phrase and makes it the one for this element

/I at the desired start time with the given instrument

public void setPhrase(Phrase myPhrase, double startTime, int
instrument) {
//Phrases get returned from phrase1() and phrase2() with
default (0.0) startTime

/I We can set it here with whatever setPhrase gets as input
myPhrase.setStartTime(startTime);
this.myPart.addPhrase(myPhrase);
this.myPart.setInstrument(instrument);

}

Don't get hung up on these

details—this is just
K manipulating the JMusic
classes so that we can store

the information we want.

-

The Phrases

-

Handling the linked list

-

Controlling access:
An accessor method

/

-

A little object manipulation

-

showFromMeOn()

-

The Key Part

Step 1: \

I/l Start from this element (this)
AmazingGraceSongElement2 current = this;

AmazingGraceSongElement part1 AmazingGraceSongElement part2

myPart: Filled with phrase1 myPart: Filled with phrase2
(flute) (piano)
next: part3 next: null
current AmazingGraceSongElement part3
myPart: Filled with phrase1
(trumpet)
next: part2

/ Step 2: \

/I While we're not through...
while (current != null)
{ //BLAH BLAH BLAH - PROCESS THIS PART

AmazingGraceSongElement part1 AmazingGraceSongElement part2

myPart: Filled with phrase1 myPart: Filled with phrase2
(flute) (piano)
next: part3 next: null
current AmazingGraceSongElement part3
myPart: Filled with phrase1
(trumpet)
next: part2

- /

Step 3: \

/I Now, move on to the next element
current = current.next();

%

AmazingGraceSongElement part1 AmazingGraceSongElement part2

myPart: Filled with phrase1 myPart: Filled with phrase2
(flute) (piano)
next: part3 next: null

AmazingGraceSongElement part3

myPart: Filled with phrase1
(trumpet)

next: part2

current

/ Step 4: \

/I While we're not through...
while (current != null)
{ //BLAH BLAH BLAH - PROCESS THIS PART

AmazingGraceSongElement part1 AmazingGraceSongElement part2

myPart: Filled with phrase1 myPart: Filled with phrase2
(flute) (piano)

next: part3 next: null

AmazingGraceSongElement part3

myPart: Filled with phrase1
(trumpet)

next: part2

current

Step 5: \

/I Now, move on to the next element
current = current.next();

%

AmazingGraceSongElement part1 AmazingGraceSongElement part2

myPart: Filled with phrase1 myPart: Filled with phrase2
(flute) (piano)
next: part3 next: null

AmazingGraceSongElement part3 current

myPart: Filled with phrase1
(trumpet)

next: part2

[seps N

/I While we're not through...
while (current != null)
{ //BLAH BLAH BLAH - PROCESS THIS PART

AmazingGraceSongElement part1 AmazingGraceSongElement part2

myPart: Filled with phrase1 myPart: Filled with phrase2
(flute) (piano)

next: part3 next: null

AmazingGraceSongElement part3 current

myPart: Filled with phrase1
(trumpet)

next: part2

Step 7: \

/I Now, move on to the next element
current = current.next();

%

AmazingGraceSongElement part1 AmazingGraceSongElement part2

myPart: Filled with phrase1
(flute)

next: part3

myPart: Filled with phrase2
(piano)

next: null

AmazingGraceSongElement part3

myPart: Filled with phrase1
(trumpet)
NULL
next: part2 ﬁ
current

/

Step 5 STOP N
/I While we're not through... THE
while (current != null) LOOP!

AmazingGraceSongElement part1 AmazingGraceSongElement part2

myPart: Filled with phrase1
(flute)

next: part3

myPart: Filled with phrase2
(piano)
next: null

AmazingGraceSongElement part3

myPart: Filled with phrase1
(trumpet)
NULL
next: part2 ﬁ
current

/

-

~

Traversing arrays vs. lists

/ITRAVERSING A LIST
/1 Start from this element (this)

AmazingGraceSongElement2
current = this;

/I While we're not through...
while (current != null)

> // Now, traverse the array
and gather them up.
> Phrase myphrase = new
Phrase()
> for (int i=0; i<100; i++)
{myphrase.addNote(

/I Set the channel, |ncrement the someNotesli]);}
dd it

channel, then a
//BLAH BLAH BLAH (Ignore this part
for now)

1/ Now, move on to the next
element

current = current.next();

/

-

Inserting into lists

/I Here are the two methods
needed to make a linked list
of elements

public void
setNext(AmazingGraceSong
Element2 nextOne){
this.next = nextOne;

}

public
AmazingGraceSongElement
2 next()?
return this.next;

}

> part1.setNext(part3);
> part3.setNext(part2);
> part1.showFromMeOn();

/

~

Inserting into arrays

public void insertAfter(Sound inSound, int start) > Sound test2 = new

SoundSample current=null; Sound

 Find o g natuncle (
ot "D:/cs1316/MediaSourc
es/thisisatest.wav");

I cndOMT = i g engh
> test.insertAfter(test2,
40000)

(0-1;
itloojong!ctpy o s micn s
LB B o)
mtToCopy = endOfThis-start-1;);

11°*First, clear out room.
1/ Copy from endOfThis-amtToCopy up to endOfThis
for(nti=endOfThis-amiToCopy; i > start ;i) > test.pla ()
{ .

current = tis.getSample(i): [PIEEN
b

) e pk amtToCopy
for (nt target=start sou

current = this. getSample(
current setValue(inSound. ws:mp\evalnem(wwun
i

/

-

More on Arrays vs. Lists

Arrays
Much easier to traverse
Very fast to access a specific (n'") element
But really a pain to insert and delete.
* Hard to write the code
® Can take a long time if it's a big array
Lists
More complex to traverse
Slower to access a specific element
Very easy to insert (and later we’ll see, delete)
* Simple code
* Takes no time at all to run

/

Critique of Version 2

~

Lovely structuring of data, but just how much
can one do with two parts of Amazing Grace?
We need the ability to have a library of phrases
But what does the ordering mean? What if we
had gone part1->part2->part3 instead?
What should the order encode?
Right now, it encodes nothing.
When we’re exploring music, do we really want
to worry about instruments and start times for
every phrase?

/

10

