
1

Structuring Music

CS1316: Representing
Structure and Behavior

Story

 Using JMusic
• With multiple Parts and Phrases

 Creating music objects for exploring
composition
• Version 1: Using an array for Notes, then scooping

them up into Phrases.
• Version 2: Using a linked list of song elements.
• Version 3: General song elements and song phrases

• Computing phrases
• Repeating and weaving

• Version 4: Creating a tree of song parts, each with its
own instrument.

JMusic: Java Music library

 JMusic knows about WAV files and many other
formats, too (e.g., QuickTime)

 We’ll use it for manipulating MIDI
• Musical Instrument Digital Interface, an industry-

standard interface used on electronic musical
keyboards and PCs for computer control of musical
instruments and devices.

 MIDI is about recording music, not sound.

Creating Notes

Welcome to DrJava.
> import jm.music.data.*
> import jm.JMC;
> import jm.util.*;
> Note n = new Note(JMC.C4,JMC.QUARTER_NOTE);
> n
jMusic NOTE: [Pitch = 60][RhythmValue = 1.0][Dynamic = 85][Pan = 0.5][Duration = 0.9]
> JMC.C4
60
> JMC.QUARTER_NOTE
1.0
> JMC.QN
1.0
> Note n2 = new Note(64,2.0);
> n2
jMusic NOTE: [Pitch = 64][RhythmValue = 2.0][Dynamic = 85][Pan = 0.5][Duration = 1.8]

JMC=JMusic Constants

Makes code easier to
read from a music
perspective

Creating Phrases

> Phrase phr = new Phrase();
> phr.addNote(n);
> phr.addNote(n2);
> double [] notes1 = {67, 0.25, 64, 0.5, 60, 1.0}
> phr.addNoteList(notes1)
> double [] notes2 = {JMC.G4,JMC.QN, JMC.E4,

JMC.EN, JMC.C4, JMC.WN}
> phr.addNoteList(notes2)

Using notes, or an
array of note pieces.

Viewing Phrases

> View.notate(phr)

2

From Viewer: Manipulate and
MIDI

 Can save or open
MIDI files

 Can change key or
time signature.

 Other tools allow
changing other
characteristics, like
tempo.

Different ways of creating
Phrases

> Phrase phr2 = new
Phrase("Phrase
2",4.0,JMC.FLUTE);

> phr2.addNoteList(notes2)

A Phrase that starts later

> Phrase phr2 = new Phrase("Phrase
2",4.0,JMC.FLUTE);

> phr2.addNoteList(notes2)
> View.notate(phr2)

Adding parts into phrases
(Wrong way first)

> Part part1 = new Part();
> part1.addPhrase(phr);
> part1.addPhrase(phr2);
> View.notate(part1);

Kinda lost the
phrase
distinctions.

Building Parts and Scores

> Part partA = new Part("Part A",JMC.PIANO,1)
> partA.addPhrase(phr);
> Part partB = new Part("Part B",JMC.SAX,2)
> partB.addPhrase(phr2);
> Score score1 = new Score("My Two Part

Score");
> score1.addPart(partA);
> score1.addPart(partB);

Viewing the Score

> View.notate(score1);

3

Amazing
Grace

import jm.music.data.*;
import jm.JMC;
import jm.util.*;
import jm.music.tools.*;

public class AmazingGraceSong {
 private Score myScore = new Score("Amazing Grace");

 public void fillMeUp(){
 myScore.setTimeSignature(3,4);

 double[] phrase1data =
 {JMC.G4, JMC.QN,
 JMC.C5, JMC.HN, JMC.E5,JMC.EN, JMC.C5,JMC.EN,
 JMC.E5,JMC.HN,JMC.D5,JMC.QN,
 JMC.C5,JMC.HN,JMC.A4,JMC.QN,
 JMC.G4,JMC.HN,JMC.G4,JMC.EN,JMC.A4,JMC.EN,
 JMC.C5,JMC.HN,JMC.E5,JMC.EN,JMC.C5,JMC.EN,
 JMC.E5,JMC.HN,JMC.D5,JMC.EN,JMC.E5,JMC.EN,
 JMC.G5,JMC.DHN};
 double[] phrase2data =
 {JMC.G5,JMC.HN,JMC.E5,JMC.EN,JMC.G5,JMC.EN,
 JMC.G5,JMC.HN,JMC.E5,JMC.EN,JMC.C5,JMC.EN,
 JMC.E5,JMC.HN,JMC.D5,JMC.QN,
 JMC.C5,JMC.HN,JMC.A4,JMC.QN,
 JMC.G4,JMC.HN,JMC.G4,JMC.EN,JMC.A4,JMC.EN,
 JMC.C5,JMC.HN,JMC.E5,JMC.EN,JMC.C5,JMC.EN,
 JMC.E5,JMC.HN,JMC.D5,JMC.QN,
 JMC.C5,JMC.DHN
 };
 Phrase myPhrase = new Phrase();
 myPhrase.addNoteList(phrase1data);
 myPhrase.addNoteList(phrase2data);
 // create a new part and add the phrase to it
 Part aPart = new Part("Parts",
 JMC.FLUTE, 1);
 aPart.addPhrase(myPhrase);
 // add the part to the score
 myScore.addPart(aPart);

 };

 public void showMe(){

 View.notate(myScore);
 };

}

> AmazingGraceSong song1 =
new AmazingGraceSong();
> song1.fillMeUp();
> song1.showMe();

Imports and some private data

import jm.music.data.*;
import jm.JMC;
import jm.util.*;
import jm.music.tools.*;

public class AmazingGraceSong {
 private Score myScore = new Score("Amazing

Grace");
 myScore is private instance data

Filling the
Score

 public void fillMeUp(){
 myScore.setTimeSignature(3,4);

 double[] phrase1data =
 {JMC.G4, JMC.QN,
 JMC.C5, JMC.HN, JMC.E5,JMC.EN, JMC.C5,JMC.EN,
 JMC.E5,JMC.HN,JMC.D5,JMC.QN,
 JMC.C5,JMC.HN,JMC.A4,JMC.QN,
 JMC.G4,JMC.HN,JMC.G4,JMC.EN,JMC.A4,JMC.EN,
 JMC.C5,JMC.HN,JMC.E5,JMC.EN,JMC.C5,JMC.EN,
 JMC.E5,JMC.HN,JMC.D5,JMC.EN,JMC.E5,JMC.EN,
 JMC.G5,JMC.DHN};
 double[] phrase2data =
 {JMC.G5,JMC.HN,JMC.E5,JMC.EN,JMC.G5,JMC.EN,
 JMC.G5,JMC.HN,JMC.E5,JMC.EN,JMC.C5,JMC.EN,
 JMC.E5,JMC.HN,JMC.D5,JMC.QN,
 JMC.C5,JMC.HN,JMC.A4,JMC.QN,
 JMC.G4,JMC.HN,JMC.G4,JMC.EN,JMC.A4,JMC.EN,
 JMC.C5,JMC.HN,JMC.E5,JMC.EN,JMC.C5,JMC.EN,
 JMC.E5,JMC.HN,JMC.D5,JMC.QN,
 JMC.C5,JMC.DHN
 };
 Phrase myPhrase = new Phrase();
 myPhrase.addNoteList(phrase1data);
 myPhrase.addNoteList(phrase2data);
 // create a new part and add the phrase to it
 Part aPart = new Part("Parts",
 JMC.FLUTE, 1);
 aPart.addPhrase(myPhrase);
 // add the part to the score
 myScore.addPart(aPart);

 };

Each array is note,
duration, note,
duration, note,
duration, etc.

I broke it roughly
into halves.

Showing the Score

 public void showMe(){
 View.notate(myScore);
 };

Part: Instrument &

Phrase: startingTime &

The Organization of JMusic
Objects

Phrase: startingTime &

Note
(pitch,duration)

Note
(pitch,duration)

Note
(pitch,duration)

Note
(pitch,duration)

Note
(pitch,duration)

Part: Instrument &

Score: timeSignature, tempo, &

Thought Experiment

 How are they doing that?
 How can there be any number of Notes

in a Phrase, Phrases in a Part, and Parts
in a Score?
• (Hint: They ain’t usin’ arrays!)

4

How do we explore composition
here?

 We want to quickly and easily throw
together notes in different groupings and
see how they sound.

 The current JMusic structure models
music.
• Let’s try to create a structure that models

thinking about music as bunches of
riffs/SongElements that we want to combine
in different ways.

Version 1: Notes in an array

 Let’s just put notes of interest (for now,
just random) in an array.

 We’ll traverse the array to gather the
notes up into a Phrase, then use View to
notate the Phrase.

Using an array to structure
Notes

> Note [] someNotes = new Note[100];
> for (int i = 0; i < 100; i++)

{someNotes[i]= new Note((int)
(128*Math.random()),0.25);}

> // Now, traverse the array and gather them up.
> Phrase myphrase = new Phrase()
> for (int i=0; i<100; i++)
 {myphrase.addNote(someNotes[i]);}
> View.notate(myphrase);

Critique of Version 1

 So where’s the music?
• 100 random notes isn’t the issue.
• It’s that we don’t think about notes as just one

long strand.
 Where are the phrases/riffs/elements?

• We just have one long line of notes.
 How do we explore patterns like this?

• insertAfter and delete are just as hard here as
in sampled sounds!

Version 2: Using a linked list of
song elements

 Let’s re-think Amazing Grace as a
collection of elements that we can
shuffle around as we’d like.

 We can make any element follow any
other element.

What’s in each element?

AmazingGraceSongElement

It KNOWS: it’s Part and what comes
next

It CAN DO: filling itself from the first
or second phrase (with a given start
time and instrument), setting the next
one, getting the next one, and
showing (notating) myself and all
others.

5

What that would look like to use
it

Welcome to DrJava.
> import jm.JMC;
> AmazingGraceSongElement2 part1 = new

AmazingGraceSongElement2();
> part1.setPhrase(part1.phrase1(),0.0,JMC.FLUTE);
> AmazingGraceSongElement2 part2 = new

AmazingGraceSongElement2();
> part1.getEndTime()
22.0
> part2.setPhrase(part2.phrase2(),22.0,JMC.PIANO);
> part1.setNext(part2);
> part1.showFromMeOn();

Part1.showFromMeOn()

What’s going on here?

AmazingGraceSongElement part1

myPart: Filled with
phrase1(flute))

next: part2

AmazingGraceSongElement part2

myPart: Filled with
phrase2(piano)

next: null

Adding a third part

> AmazingGraceSongElement2 part3 =
new AmazingGraceSongElement2();

> part3.setPhrase(part3.phrase1(),0.0,
JMC.TRUMPET);

> part1.setNext(part3);
> part3.setNext(part2);
> part1.showFromMeOn();

part1.showFromMeOn();
Now has three parts What’s going on here?

AmazingGraceSongElement part1

myPart: Filled with phrase1
(flute)

next: part3

AmazingGraceSongElement part2

myPart: Filled with phrase2
(piano)

next: null

AmazingGraceSongElement part3

myPart: Filled with phrase1
(trumpet)

next: part2

6

Introducing the Linked List

 A linked list is information broken into
smaller pieces, where each piece knows
the next piece, but none other.

Another example of a linked list

 Non-linear video
editing (like in iMovie)
• You have a collection

of video clips
(information)

• You drag them into a
timeline.
• Each clip still doesn’t

know all clips, but it
knows the next one.

Why use linked lists versus
arrays?

 Just two reasons now, more later:
1. Can grow to any size (well, as long as

memory permits)
• Just create a new element and poke it into the

list.
2. MUCH easier to insert!

• Look at how easily we put part3 between part1
and part2.

Implementing
AmazingGraceSongElement2

import jm.music.data.*;
import jm.JMC;
import jm.util.*;
import jm.music.tools.*;

public class AmazingGraceSongElement2 {
 // Every element knows its next element and its

part (of the score)
 private AmazingGraceSongElement2 next;
 private Part myPart; It’s considered good form to

make your object’s data private
unless you need to make it
public.

Our Constructor

 // When we make a new element, the next
part is empty, and ours is a blank new
part

 public AmazingGraceSongElement2(){
 this.next = null;
 this.myPart = new Part();
 }

What setPhrase does

 // setPhrase takes a phrase and makes it the one for this element
 // at the desired start time with the given instrument
 public void setPhrase(Phrase myPhrase, double startTime, int

instrument) {
 //Phrases get returned from phrase1() and phrase2() with

default (0.0) startTime
 // We can set it here with whatever setPhrase gets as input
 myPhrase.setStartTime(startTime);
 this.myPart.addPhrase(myPhrase);

this.myPart.setInstrument(instrument);
 }

Don’t get hung up on these
details—this is just
manipulating the JMusic
classes so that we can store
the information we want.

7

The Phrases
static public Phrase phrase1() {
 double[] phrase1data =
 {JMC.G4, JMC.QN,
 JMC.C5, JMC.HN, JMC.E5,JMC.EN,

JMC.C5,JMC.EN,
 JMC.E5,JMC.HN,JMC.D5,JMC.QN,
 JMC.C5,JMC.HN,JMC.A4,JMC.QN,
 JMC.G4,JMC.HN,JMC.G4,JMC.EN,JMC.A4,JMC.EN,
 JMC.C5,JMC.HN,JMC.E5,JMC.EN,JMC.C5,JMC.EN,
 JMC.E5,JMC.HN,JMC.D5,JMC.EN,JMC.E5,JMC.EN,
 JMC.G5,JMC.DHN};

 Phrase myPhrase = new Phrase();
 myPhrase.addNoteList(phrase1data);
 return myPhrase;
 }

 static public Phrase phrase2() {
 double[] phrase2data =
 {JMC.G5,JMC.HN,JMC.E5,JMC.EN,JMC.G5,JMC.EN,
 JMC.G5,JMC.HN,JMC.E5,JMC.EN,JMC.C5,JMC.EN,
 JMC.E5,JMC.HN,JMC.D5,JMC.QN,
 JMC.C5,JMC.HN,JMC.A4,JMC.QN,
 JMC.G4,JMC.HN,JMC.G4,JMC.EN,JMC.A4,JMC.EN,
 JMC.C5,JMC.HN,JMC.E5,JMC.EN,JMC.C5,JMC.EN,
 JMC.E5,JMC.HN,JMC.D5,JMC.QN,
 JMC.C5,JMC.DHN
 };

 Phrase myPhrase = new Phrase();
 myPhrase.addNoteList(phrase2data);
 return myPhrase;
 }

Static? This means that we can
actually access them without any
instances. Is that useful here?
Well, not yet…

Handling the linked list

 // Here are the two methods needed to make a linked list of
elements

 public void setNext(AmazingGraceSongElement2
nextOne){

 this.next = nextOne;
 }

 public AmazingGraceSongElement2 next(){
 return this.next;
 }

Controlling access:
An accessor method

 // We could just access myPart directly
 // but we can CONTROL access by using

a method
 // (called an accessor)
 private Part part(){
 return this.myPart;
 }

A little object manipulation

 // Why do we need this?
 // If we want one piece to start after another, we need
 // to know when the last one ends.
 // Notice: It's the phrase that knows the end time.
 // We have to ask the part for its phrase (assuming only

one)
 // to get the end time.
 public double getEndTime(){
 return this.myPart.getPhrase(0).getEndTime();
 }

showFromMeOn()

 public void showFromMeOn(){
 // Make the score that we'll assemble the elements into
 // We'll set it up with the time signature and tempo we like
 Score myScore = new Score("Amazing Grace");
 myScore.setTimeSignature(3,4);
 myScore.setTempo(120.0);

 // Each element will be in its own channel
 int channelCount = 1;

 // Start from this element (this)
 AmazingGraceSongElement2 current = this;
 // While we're not through...
 while (current != null)
 {
 // Set the channel, increment the channel, then add it in.
 current.setChannel(channelCount);
 channelCount = channelCount + 1;
 myScore.addPart(current.part());

 // Now, move on to the next element
current = current.next();

 };

 // At the end, let's see it!
 View.notate(myScore);

 }

This is called traversing
the linked list.

The Key Part

// Start from this element (this)
 AmazingGraceSongElement2 current = this;
 // While we're not through...
 while (current != null)
 {
 // Set the channel, increment the channel, then add it in.
//BLAH BLAH BLAH (Ignore this part for now)

 // Now, move on to the next element
current = current.next();

 };

 // At the end, let's see it!
 View.notate(myScore);

8

Step 1:
 // Start from this element (this)
 AmazingGraceSongElement2 current = this;

AmazingGraceSongElement part1

myPart: Filled with phrase1
(flute)

next: part3

AmazingGraceSongElement part2

myPart: Filled with phrase2
(piano)

next: null

AmazingGraceSongElement part3

myPart: Filled with phrase1
(trumpet)

next: part2

current

Step 2:
 // While we're not through...
 while (current != null)

{ //BLAH BLAH BLAH – PROCESS THIS PART

AmazingGraceSongElement part1

myPart: Filled with phrase1
(flute)

next: part3

AmazingGraceSongElement part2

myPart: Filled with phrase2
(piano)

next: null

AmazingGraceSongElement part3

myPart: Filled with phrase1
(trumpet)

next: part2

current

Step 3:
 // Now, move on to the next element
 current = current.next();
 };

AmazingGraceSongElement part1

myPart: Filled with phrase1
(flute)

next: part3

AmazingGraceSongElement part2

myPart: Filled with phrase2
(piano)

next: null

AmazingGraceSongElement part3

myPart: Filled with phrase1
(trumpet)

next: part2

current

Step 4:
 // While we're not through...
 while (current != null)

{ //BLAH BLAH BLAH – PROCESS THIS PART

AmazingGraceSongElement part1

myPart: Filled with phrase1
(flute)

next: part3

AmazingGraceSongElement part2

myPart: Filled with phrase2
(piano)

next: null

AmazingGraceSongElement part3

myPart: Filled with phrase1
(trumpet)

next: part2

current

Step 5:
 // Now, move on to the next element
 current = current.next();
 };

AmazingGraceSongElement part1

myPart: Filled with phrase1
(flute)

next: part3

AmazingGraceSongElement part2

myPart: Filled with phrase2
(piano)

next: null

AmazingGraceSongElement part3

myPart: Filled with phrase1
(trumpet)

next: part2

current

Step 6:
 // While we're not through...
 while (current != null)

{ //BLAH BLAH BLAH – PROCESS THIS PART

AmazingGraceSongElement part1

myPart: Filled with phrase1
(flute)

next: part3

AmazingGraceSongElement part2

myPart: Filled with phrase2
(piano)

next: null

AmazingGraceSongElement part3

myPart: Filled with phrase1
(trumpet)

next: part2

current

9

Step 7:
 // Now, move on to the next element
 current = current.next();
 };

AmazingGraceSongElement part1

myPart: Filled with phrase1
(flute)

next: part3

AmazingGraceSongElement part2

myPart: Filled with phrase2
(piano)

next: null

AmazingGraceSongElement part3

myPart: Filled with phrase1
(trumpet)

next: part2

current

NULL

Step 8:
 // While we're not through...
 while (current != null)

AmazingGraceSongElement part1

myPart: Filled with phrase1
(flute)

next: part3

AmazingGraceSongElement part2

myPart: Filled with phrase2
(piano)

next: null

AmazingGraceSongElement part3

myPart: Filled with phrase1
(trumpet)

next: part2

current

NULL

STOP
THE

LOOP!

Traversing arrays vs. lists

//TRAVERSING A LIST
// Start from this element (this)

 AmazingGraceSongElement2
current = this;

 // While we're not through...
 while (current != null)
 {
 // Set the channel, increment the

channel, then add it in.
//BLAH BLAH BLAH (Ignore this part

for now)

 // Now, move on to the next
element
current = current.next();

 };

> // Now, traverse the array
and gather them up.

> Phrase myphrase = new
Phrase()

> for (int i=0; i<100; i++)
 {myphrase.addNote(

someNotes[i]);}

Inserting into lists

 // Here are the two methods
needed to make a linked list
of elements

 public void
setNext(AmazingGraceSong
Element2 nextOne){

 this.next = nextOne;
 }

 public
AmazingGraceSongElement
2 next(){

 return this.next;
 }

> part1.setNext(part3);
> part3.setNext(part2);
> part1.showFromMeOn();

Inserting into arrays
public void insertAfter(Sound inSound, int start){

 SoundSample current=null;
 // Find how long insound is
 int amtToCopy = inSound.getLength();
 int endOfThis = this.getLength()-1;
 // If too long, copy only as much as will fit
 if (start + amtToCopy > endOfThis)
 {amtToCopy = endOfThis-start-1;};

 // ** First, clear out room.
 // Copy from endOfThis-amtToCopy up to endOfThis
 for (int i=endOfThis-amtToCopy; i > start ; i--)
 {
 current = this.getSample(i);
 current.setValue(this.getSampleValueAt(i+amtToCopy));
 }

 //** Second, copy in inSound up to amtToCopy
 for (int target=start,source=0;
 source < amtToCopy;
 target++, source++) {
 current = this.getSample(target);
 current.setValue(inSound.getSampleValueAt(source));
 }
 }

> Sound test2 = new
Sound(
"D:/cs1316/MediaSourc
es/thisisatest.wav");

> test.insertAfter(test2,
40000)

> test.play()

More on Arrays vs. Lists

 Arrays
• Much easier to traverse
• Very fast to access a specific (nth) element
• But really a pain to insert and delete.

• Hard to write the code
• Can take a long time if it’s a big array

 Lists
• More complex to traverse
• Slower to access a specific element
• Very easy to insert (and later we’ll see, delete)

• Simple code
• Takes no time at all to run

10

Critique of Version 2

 Lovely structuring of data, but just how much
can one do with two parts of Amazing Grace?
• We need the ability to have a library of phrases

 But what does the ordering mean? What if we
had gone part1->part2->part3 instead?
• What should the order encode?
• Right now, it encodes nothing.

 When we’re exploring music, do we really want
to worry about instruments and start times for
every phrase?

