
1

Manipulating Turtles

CS1316: Representing
Structure and Behavior

Story

 Introduction to the Turtle
• Historical: A Child’s First Object
• Modern day: Traffic, Ants, and Termites

 A Java Turtle
• On Worlds and Pictures
• Moving and rotating and composing pictures

 Using the Java Turtle to create
animations

The Logo Turtle

 A robot with pen
• For children to program

graphics, in a day before
graphics terminals.

• Literally, a pen would
drop down (with the
command penDown) and
would draw on the paper
below it, as the turtle
moved with commands
like forward and right.

 Nowadays, replaced
with a graphical
representation.

Turtles can go forward and turn;
they know heading and position

> fred.forward(100);
> fred.turn(90);
> fred.getHeading()
90
> fred.getXPos()
320
> fred.getYPos()
140

Obviously: Turtles are objects

 Turtles can do:
• forward(pixels)
• turn(degrees)

 Turtles know:
• Heading
• Position

2

Drawing with Turtles

> for (int sides=0; sides
<= 4 ; sides++)

 {fred.forward(100);
fred.turn(90);}

// Actually did five sides
here...

Can we cascade?

 Will this work?
turtle.forward(100).turn(90)

 Hint: Think about the returns!

Modern turtles:
Turtle Geometry and StarLogo

 diSessa and Abelson’s Turtle Geometry
showed that simple turtle geometry could
explore complex math, including
Einstein’s Theory of Relativity

 Mitchel Resnick’s StarLogo used
thousands of turtles to explore behavior
of traffic, ants, and termites.

Exploring ants with turtles

Each turtle:

-Move randomly

- If you find food:
Grab it, go home,
dropping scent.

- If you find
scent, turn
towards the
direction of the
scent.

100
Turtles

public class LotsOfTurtles {

 public static void main(String[] args){
 // Create a world
 World myWorld = new World();
 // A flotilla of turtles
 Turtle [] myTurtles = new Turtle[100];

 // Make a hundred turtles
 for (int i=0; i < 100; i++) {
 myTurtles[i] = new Turtle(myWorld);
 }

 //Tell them all what to do
 for (int i=0; i < 100; i++) {
 // Turn a random amount between 0 and 360
 myTurtles[i].turn((int) (360 * Math.random()));
 // Go 100 pixels
 myTurtles[i].forward(100);
 }
 }
}

Making a circle

3

Thought Experiment

 What’s the difference between this:
Turtle [] myTurtles = new Turtle[100];
 And this?
for (int i=0; i < 100; i++) {
 myTurtles[i] = new Turtle(myWorld);
 }
 What are each doing?

More than one
Turtle at once

Putting Turtles on Pictures

> Picture canvas = new
Picture(400,400);

> Turtle mabel = new
Turtle(canvas);

> for (int sides=1; sides
<= 4 ; sides++)

 {mabel.forward(100);
mabel.turn(90);}

> canvas.show();

Using Turtles to compose
Pictures

> Picture t = new
Picture("D:/cs1316/Medi
aSources/Turtle.jpg");

> mabel.drop(t)
> canvas.repaint();

Adding new methods to Turtle

Testing
our new
method

4

Thought Experiment

 We can have two methods with the
same name?

 How did Java know which one to use?

Making more
complex
pictures:
Using main()

public class MyTurtlePicture {

 public static void main(String [] args) {
Picture canvas = new Picture(600,600);

 Turtle jenny = new Turtle(canvas);
 Picture lilTurtle = new

Picture(FileChooser.getMediaPath("Turtle.jpg"));

 for (int i=0; i <=40; i++)
 {
 if (i < 20)
 {jenny.turn(20);}
 else
 {jenny.turn(-20);}
 jenny.forward(40);
 jenny.drop(lilTurtle.scale(0.5));
 }

 canvas.show();
 }

}

Also: Note use of
getMediaPath

Result: Thought Experiments

 Is this myTurtlePicture a class? An
object?

 Can we access variables from the
Interactions Pane?

 Can we return values to the Interactions
Pane?

 When is it useful to use a main()?

Explaining public, and static, and
void, and main, and String [] args

public static void main(String [] args);
 Public: This method can be accessed by any

other class.
 Static: This is a method that can be accessed

through the class, even if no instances of the
class exist.

 Void: This method doesn’t return anything.
 String [] args: If called from the Command Line

(outside DrJava), inputs could be provided.
• They’d show up as strings in this array.

Creating an animation with
FrameSequence

 FrameSequence stores out Pictures to a
directory, and can show/replay the
sequence.
• new FrameSequence(dir): dir where the

Pictures should be stored as JPEG frames
• .addFrame(aPicture): Adds this Picture as a

frame
• .show(): Show the frames as they get added
• .replay(wait): Replay the sequence, with wait

milliseconds between frames.

5

Using FrameSequence

Welcome to DrJava.
> FrameSequence f = new FrameSequence("D:/Temp");
> f.show()
There are no frames to show yet. When you add a frame it will be shown
> Picture t = new Picture("D:/cs1316/MediaSources/Turtle.jpg");
> f.addFrame(t);
> Picture barb = new Picture("D:/cs1316/MediaSources/Barbara.jpg");
> f.addFrame(barb);
> Picture katie = new Picture("D:/cs1316/MediaSources/Katie.jpg");
> f.addFrame(katie);
> f.replay(1000);

Making a turtle drawing animate

Welcome to DrJava.
> MyTurtleAnimation anim = new

MyTurtleAnimation();
> anim.next(20);
> anim.replay(500);

Animated
turtle

public class MyTurtleAnimation {

 Picture canvas;
 Turtle jenny;
 FrameSequence f;

 public MyTurtleAnimation() {

 canvas = new Picture(600,600);
 jenny = new Turtle(canvas);
 f = new FrameSequence("D:/Temp/");
 }

 public void next(){
 Picture lilTurtle = new Picture(FileChooser.getMediaPath("Turtle.jpg"));

 jenny.turn(-20);
 jenny.forward(30);
 jenny.turn(30);
 jenny.forward(-5);
 jenny.drop(lilTurtle.scale(0.5));
 f.addFrame(canvas.copy());
 }

 public void next(int numTimes){
 for (int i=0; i < numTimes; i++)
 {this.next();}
 }

 public void show(){
 f.show();
 }

 public void replay(int delay){
 f.show();
 f.replay(delay);
 }
}

Declarations

public class MyTurtleAnimation {

 Picture canvas;
 Turtle jenny;
 FrameSequence f;

 We’re going to need a canvas, a Turtle, and a
FrameSequence for each instance of
MyTurtleAnimation.
• That’s what the instances know
• These are called instance variables

A constructor

public MyTurtleAnimation() {

 canvas = new Picture(600,600);
 jenny = new Turtle(canvas);
 f = new FrameSequence("D:/Temp/");
 }

 A method with the same name of the class is called to
initialize (or construct) the new instance.

 We don’t need to declare canvas, jenny, or f—the
instance knows those already

Each step of the animation

public void next(){
 Picture lilTurtle = new

Picture(FileChooser.getMediaPath("Turtle.jpg"));

 jenny.turn(-20);
 jenny.forward(30);
 jenny.turn(30);
 jenny.forward(-5);
 jenny.drop(lilTurtle.scale(0.5));
 f.addFrame(canvas.copy());
 }
 Do one stage of the drawing.

6

Try it!

 Why do we call .copy on the canvas?
 Try it without it!
 What does the result suggest to you

about how FrameSequence instances
store their frames internally?

Being able to replay and see it

public void next(int numTimes){
 for (int i=0; i < numTimes; i++)
 {this.next();}
 }

 public void show(){
 f.show();
 }

 public void replay(int delay){
 f.show();
 f.replay(delay);
 }

JavaDoc on SimpleTurtle Thought Experiment

 Why SimpleTurtle (and SimplePicture)?
 Hint:

• Think about information hiding

Other useful methods known to
Turtles

 getPicture() – returns the picture that the
turtle was opened on.

 turnToFace(aTurtle) – turns to face a
particular turtle.

 getDistance(x,y) – returns the number of
turtle steps (roughly, pixels) from this
turtle to the (x,y) location.

We’ll use these later, in simulations

