
1

Manipulating Turtles

CS1316: Representing
Structure and Behavior

Story

 Introduction to the Turtle
• Historical: A Child’s First Object
• Modern day: Traffic, Ants, and Termites

 A Java Turtle
• On Worlds and Pictures
• Moving and rotating and composing pictures

 Using the Java Turtle to create
animations

The Logo Turtle

 A robot with pen
• For children to program

graphics, in a day before
graphics terminals.

• Literally, a pen would
drop down (with the
command penDown) and
would draw on the paper
below it, as the turtle
moved with commands
like forward and right.

 Nowadays, replaced
with a graphical
representation.

Turtles can go forward and turn;
they know heading and position

> fred.forward(100);
> fred.turn(90);
> fred.getHeading()
90
> fred.getXPos()
320
> fred.getYPos()
140

Obviously: Turtles are objects

 Turtles can do:
• forward(pixels)
• turn(degrees)

 Turtles know:
• Heading
• Position

2

Drawing with Turtles

> for (int sides=0; sides
<= 4 ; sides++)

 {fred.forward(100);
fred.turn(90);}

// Actually did five sides
here...

Can we cascade?

 Will this work?
turtle.forward(100).turn(90)

 Hint: Think about the returns!

Modern turtles:
Turtle Geometry and StarLogo

 diSessa and Abelson’s Turtle Geometry
showed that simple turtle geometry could
explore complex math, including
Einstein’s Theory of Relativity

 Mitchel Resnick’s StarLogo used
thousands of turtles to explore behavior
of traffic, ants, and termites.

Exploring ants with turtles

Each turtle:

-Move randomly

- If you find food:
Grab it, go home,
dropping scent.

- If you find
scent, turn
towards the
direction of the
scent.

100
Turtles

public class LotsOfTurtles {

 public static void main(String[] args){
 // Create a world
 World myWorld = new World();
 // A flotilla of turtles
 Turtle [] myTurtles = new Turtle[100];

 // Make a hundred turtles
 for (int i=0; i < 100; i++) {
 myTurtles[i] = new Turtle(myWorld);
 }

 //Tell them all what to do
 for (int i=0; i < 100; i++) {
 // Turn a random amount between 0 and 360
 myTurtles[i].turn((int) (360 * Math.random()));
 // Go 100 pixels
 myTurtles[i].forward(100);
 }
 }
}

Making a circle

3

Thought Experiment

 What’s the difference between this:
Turtle [] myTurtles = new Turtle[100];
 And this?
for (int i=0; i < 100; i++) {
 myTurtles[i] = new Turtle(myWorld);
 }
 What are each doing?

More than one
Turtle at once

Putting Turtles on Pictures

> Picture canvas = new
Picture(400,400);

> Turtle mabel = new
Turtle(canvas);

> for (int sides=1; sides
<= 4 ; sides++)

 {mabel.forward(100);
mabel.turn(90);}

> canvas.show();

Using Turtles to compose
Pictures

> Picture t = new
Picture("D:/cs1316/Medi
aSources/Turtle.jpg");

> mabel.drop(t)
> canvas.repaint();

Adding new methods to Turtle

Testing
our new
method

4

Thought Experiment

 We can have two methods with the
same name?

 How did Java know which one to use?

Making more
complex
pictures:
Using main()

public class MyTurtlePicture {

 public static void main(String [] args) {
Picture canvas = new Picture(600,600);

 Turtle jenny = new Turtle(canvas);
 Picture lilTurtle = new

Picture(FileChooser.getMediaPath("Turtle.jpg"));

 for (int i=0; i <=40; i++)
 {
 if (i < 20)
 {jenny.turn(20);}
 else
 {jenny.turn(-20);}
 jenny.forward(40);
 jenny.drop(lilTurtle.scale(0.5));
 }

 canvas.show();
 }

}

Also: Note use of
getMediaPath

Result: Thought Experiments

 Is this myTurtlePicture a class? An
object?

 Can we access variables from the
Interactions Pane?

 Can we return values to the Interactions
Pane?

 When is it useful to use a main()?

Explaining public, and static, and
void, and main, and String [] args

public static void main(String [] args);
 Public: This method can be accessed by any

other class.
 Static: This is a method that can be accessed

through the class, even if no instances of the
class exist.

 Void: This method doesn’t return anything.
 String [] args: If called from the Command Line

(outside DrJava), inputs could be provided.
• They’d show up as strings in this array.

Creating an animation with
FrameSequence

 FrameSequence stores out Pictures to a
directory, and can show/replay the
sequence.
• new FrameSequence(dir): dir where the

Pictures should be stored as JPEG frames
• .addFrame(aPicture): Adds this Picture as a

frame
• .show(): Show the frames as they get added
• .replay(wait): Replay the sequence, with wait

milliseconds between frames.

5

Using FrameSequence

Welcome to DrJava.
> FrameSequence f = new FrameSequence("D:/Temp");
> f.show()
There are no frames to show yet. When you add a frame it will be shown
> Picture t = new Picture("D:/cs1316/MediaSources/Turtle.jpg");
> f.addFrame(t);
> Picture barb = new Picture("D:/cs1316/MediaSources/Barbara.jpg");
> f.addFrame(barb);
> Picture katie = new Picture("D:/cs1316/MediaSources/Katie.jpg");
> f.addFrame(katie);
> f.replay(1000);

Making a turtle drawing animate

Welcome to DrJava.
> MyTurtleAnimation anim = new

MyTurtleAnimation();
> anim.next(20);
> anim.replay(500);

Animated
turtle

public class MyTurtleAnimation {

 Picture canvas;
 Turtle jenny;
 FrameSequence f;

 public MyTurtleAnimation() {

 canvas = new Picture(600,600);
 jenny = new Turtle(canvas);
 f = new FrameSequence("D:/Temp/");
 }

 public void next(){
 Picture lilTurtle = new Picture(FileChooser.getMediaPath("Turtle.jpg"));

 jenny.turn(-20);
 jenny.forward(30);
 jenny.turn(30);
 jenny.forward(-5);
 jenny.drop(lilTurtle.scale(0.5));
 f.addFrame(canvas.copy());
 }

 public void next(int numTimes){
 for (int i=0; i < numTimes; i++)
 {this.next();}
 }

 public void show(){
 f.show();
 }

 public void replay(int delay){
 f.show();
 f.replay(delay);
 }
}

Declarations

public class MyTurtleAnimation {

 Picture canvas;
 Turtle jenny;
 FrameSequence f;

 We’re going to need a canvas, a Turtle, and a
FrameSequence for each instance of
MyTurtleAnimation.
• That’s what the instances know
• These are called instance variables

A constructor

public MyTurtleAnimation() {

 canvas = new Picture(600,600);
 jenny = new Turtle(canvas);
 f = new FrameSequence("D:/Temp/");
 }

 A method with the same name of the class is called to
initialize (or construct) the new instance.

 We don’t need to declare canvas, jenny, or f—the
instance knows those already

Each step of the animation

public void next(){
 Picture lilTurtle = new

Picture(FileChooser.getMediaPath("Turtle.jpg"));

 jenny.turn(-20);
 jenny.forward(30);
 jenny.turn(30);
 jenny.forward(-5);
 jenny.drop(lilTurtle.scale(0.5));
 f.addFrame(canvas.copy());
 }
 Do one stage of the drawing.

6

Try it!

 Why do we call .copy on the canvas?
 Try it without it!
 What does the result suggest to you

about how FrameSequence instances
store their frames internally?

Being able to replay and see it

public void next(int numTimes){
 for (int i=0; i < numTimes; i++)
 {this.next();}
 }

 public void show(){
 f.show();
 }

 public void replay(int delay){
 f.show();
 f.replay(delay);
 }

JavaDoc on SimpleTurtle Thought Experiment

 Why SimpleTurtle (and SimplePicture)?
 Hint:

• Think about information hiding

Other useful methods known to
Turtles

 getPicture() – returns the picture that the
turtle was opened on.

 turnToFace(aTurtle) – turns to face a
particular turtle.

 getDistance(x,y) – returns the number of
turtle steps (roughly, pixels) from this
turtle to the (x,y) location.

We’ll use these later, in simulations

