4 e ™\

Story

Manipulating Turtles Introduction to the Turtle

Historical: A Child’s First Object
Modern day: Traffic, Ants, and Termites

A Java Turtle

CS1316: Representing On Worlds and Pictures
Structure and Behavior

Moving and rotating and composing pictures

Using the Java Turtle to create
animations

- /

/ \ / S EEC \
The Logo Turtle

A robot with pen
For children to program
graphics, in a day before
graphics terminals.
Literally, a pen would
drop down (with the
command penDown) and
would draw on the paper
below it, as the turtle
moved with commands
like forward and right.

Nowadays, replaced
with a graphical
representation.

- /

/ Turtles can go forward and turn; \ / \
they know heading and position Obviously: Turtles are objects
> fred.forward(100); =] Turtles can do:
> fred.turn(90); forward(pixels)
> fred.getHeading() » turn(degrees)
90 Turtles know:
> fred.getXPos() % Heading
320 Position
> fred.getYPos()
N Y/ N Y,

/

Drawing with Turtles

here...

-

> for (int sides=0; sides [&2 208
<=4 ; sides++)
{fred.forward(100);
fred.turn(90);}

/I Actually did five sides %

4 N

Can we cascade?

Will this work?
turtle.forward(100).turn(90)

Hint: Think about the returns!

- /

/

Modern turtles:
Turtle Geometry and StarLogo

~

diSessa and Abelson’s Turtle Geometry
showed that simple turtle geometry could
explore complex math, including
Einstein’s Theory of Relativity

Mitchel Resnick’s StarLogo used
thousands of turtles to explore behavior
of traffic, ants, and termites.

4 N

Exploring ants with turtles

Each turtle:
-Move randomly

- If you find food:
Grab it, go home,
dropping scent.

- If you find
scent, turn
towards the
direction of the

/

scent.

100

Turtles

public class LotsOfTurtles {

public static void main(String[] args){
/I Create a world
World myWorld = new World();
/I Aflotilla of turtles
Turtle [] myTurtles = new Turtle[100];

/I Make a hundred turtles
for (int i=0; i < 100; i++) {
myTurtles[i] = new Turtle(myWorld);

/[Tell them all what to do
for (int i=0; i < 100; i++) {
/I Turn a random amount between 0 and 360

myTurtles[i].turn((int) (360 * Math.random()));

/I Go 100 pixels
myTurtles]i].forward(100);

4 N

Making a circle

/

Thought Experiment

What's the difference between this:

‘ Turtle [] myTurtles = new Turtle[100];

And this?

for (int i=0; i < 100; i++) {
myTurtles[i] = new Turtle(myWorld);
}

What are each doing?

-

/

More than one
Turtle at once

4
F
*

neors G| Conplr O

Putting Turtles on Pictures

> Picture canvas = new Jom i,
Picture(400,400);

> Turtle mabel = new
Turtle(canvas);

> for (int sides=1; sides
<=4 ; sides++)

{mabel.forward(100);

mabel.turn(90);}

> canvas.show();

-

/

Using Turtles to compose
Pictures

> Picture t = new f.tomPcore EE)

Picture("D:/cs1316/Medi
aSources/Turtle.jpg"); ’

> mabel.drop(t)
> canvas.repaint();

/

Adding new methods to Turtle

= T T T T T T

I+ ethod to draw & square vith & width and heighe B
ot 30

public void draviace (|

¢
chis. EaTRiGhS()
this. forvard () ;
chis. turmRighe();
this. Eorvard () ;
chis. EaTRighS()
this. forvard () ;
chis. turmRighe();
this. Eorvard () ;

)

public woid dravsquare (inc size)
¢

gor (int 1s1; i <= 4 iH)

{

this. forvard(size]

this, tum(90);
;)
)

} // end of class (do not zemove this and put new mechods before it)

method

Testing [-

our new

/

Thought Experiment

We can have two methods with the
same name?

How did Java know which one to use?

public class MyTurtlePicture {

/ Making more

public static void main(String [] args) {
complex Picture canvas = new Picture(600,600);
pictl Ires: Turtle jenny = new Turtle(canvas);

Picture lilTurtle = new

Usi ng mai n() Picture(FileChooser.getMediaPath("Turtle.jpg"));

for (int i=0; i <=40; i++)

if (i < 20)

{jenny.turn(20);}

else

{jenny.turn(-20);}
jenny.forward(40);
jenny.drop(lilTurtle.scale(0.5));

Also: Note use of
getMediaPath

canvas.show();

F }

/

Result:

4 N

Thought Experiments

Is this myTurtlePicture a class? An
object?

Can we access variables from the
Interactions Pane?

Can we return values to the Interactions
Pane?

When is it useful to use a main()?

- /

Explaining public, and static, and
void, and main, and String [] args

‘ public static void main(String [] args);

Public: This method can be accessed by any

other class.

Static: This is a method that can be accessed

through the class, even if no instances of the

class exist.

Void: This method doesn’t return anything.

String [] args: If called from the Command Line

(outside DrJava), inputs could be provided.
They'd show up as strings in this array.

.

/

4 N

Creating an animation with
FrameSequence

FrameSequence stores out Pictures to a
directory, and can show/replay the
sequence.

new FrameSequence(dir): dir where the
Pictures should be stored as JPEG frames

.addFrame(aPicture): Adds this Picture as a
frame

.show(): Show the frames as they get added
.replay(wait): Replay the sequence, with wait
\ milliseconds between frames. /

4 N

Using FrameSequence

Welcome to DrJava.

> FrameSequence f = new FrameSequence("D:/Temp");

> f.show()

There are no frames to show yet. When you add a frame it will be shown
> Picture t = new Picture("D:/cs1316/MediaSources/Turtle.jpg");

> f.addFrame(t);

> Picture barb = new Picture("D:/cs1316/MediaSources/Barbara.jpg");
> f.addFrame(barb);

> Picture katie = new Picture("D:/cs1316/MediaSources/Katie.jpg");

> f.addFrame(katie);

> f.replay(1000);

- /

Making a turtle drawing animate

~

Welcome to DrJava.

> MyTurtleAnimation anim = new
MyTurtleAnimation();

> anim.next(20);
> anim.replay(500);

public class MyTurtleAnimation {
- Picture canvas;

Animated e

t u rt I e public MyTurtieAnimation() {

canvas = new Picture(800,600);
jenny = new Turtle(canvas);
1= new FrameSequence("D:/Temp/');

1
public void next()(

Turtle pg"):
jenny um(-20)
jenny.forward{(.5)

-5);
jenny drop(iTurtle-scale(0.5));
faddFrame(canvas.copy());

public void next(int numTimes)(
for (inti=0; | < numTimes; i++)
)(mls next()}

public void show(){
f.show();
¥

public void replay(int delay)(
fshow();

)f:rwlay(;tslay):
\ ¥

/

Declarations

public class MyTurtleAnimation {

Picture canvas;
Turtle jenny;
FrameSequence f;

We're going to need a canvas, a Turtle, and a
FrameSequence for each instance of
MyTurtleAnimation.

That's what the instances know

These are called instance variables

-

A constructor

public MyTurtleAnimation() {

canvas = new Picture(600,600);
jenny = new Turtle(canvas);
f = new FrameSequence("D:/Temp/");

}

A method with the same name of the class is called to
initialize (or construct) the new instance.

We don’t need to declare canvas, jenny, or f—the

instance knows those already

/

Each step of the animation

public void next(){

Picture lilTurtle = new
Picture(FileChooser.getMediaPath("Turtle.jpg"));

jenny.turn(-20);
jenny.forward(30);
jenny.turn(30);
jenny.forward(-5);
jenny.drop(lilTurtle.scale(0.5));
f.addFrame(canvas.copy());

}

Do one stage of the drawing.

-

/

Try it!

Why do we call .copy on the canvas?
Try it without it!
What does the result suggest to you

about how FrameSequence instances
store their frames internally?

/

-
-

Being able to replay and see

public void next(int numTimes){
for (int i=0; i < numTimes; i++)
{this.next();}
}

public void show(){
f.show();
}

public void replay(int delay){
f.show();
f.replay(delay);

2

/

JavaDoc on SimpleTurtle

Method Summary

/

Thought Experiment

~

Why SimpleTurtle (and SimplePicture)?
Hint:

Think about information hiding

/

Other useful methods known to
Turtles

~

.

getPicture() — returns the picture that the
turtle was opened on.
turnToFace(aTurtle) — turns to face a
particular turtle.

getDistance(x,y) — returns the number of
turtle steps (roughly, pixels) from this
turtle to the (x,y) location.

We'll use these later, in simulations

/

