
1

Manipulating Pictures

CS1316: Representing
Structure and Behavior

Contents

 Miscellaneous Java details
 Writing a method
 Method parameters

• Giving a method varying input values
 Function methods

• Returning a value or object from a method
 Running a program

• The static main method

Assignment

 <Class> <variable> = <expression>;
 <variable> = <expression>;

• If the variable has already been declared.
• You can’t declare a variable twice.

• Note: In DrJava Interactions pane, variables will be
declared for you.

 Style:
• Capitalize your classnames
• Lowercase everything else

• But can use mixed case to breakUpCombinedWords

Java: Expressions and
Indentation

 In Java, statements end with “;”
• You can use as many lines as you want,

insert spaces and returns almost whenever
you want. The semicolon is the end of the
statement.

 Indentation doesn’t matter at all.
• DrJava will indent for you, but just to make it

easier to read.

Declaring a variable

 <Classname> <variable>;
 <Classname> [] <variable>;
 <Classname> <variable> [];

• With the square brackets notation, you’re
declaring an array. (Turns out either way
works.)

• To access part of an array, you’ll use square
brackets, e.g.,
myPicturesArray[5]

Expressions

 new <Classname>(<maybe inputs>)
• Makes a new instance of the class

 *, /, +, -
 A shortcut:

• x = x + 1 is so common that it can be
shortened to x++

• x=x+y is so common that it can be shortened
to x += y

Conditionals

 if (<logical-expression>)
then-statement;

 Logical expressions are like you’d expect: <, >,
<=, >=, ==
• Logical “and” is &&
• Logical “or” is ||

 BUT then-statement can be a single statement
OR any number of statements {in curly
braces}.

Conditional examples

 if (thisColor == myColor)
 setColor(thisPixel,newColor);

 if (thisColor == myColor)
 {setColor(thisPixel,newColor);};

 if (thisColor == myColor)
 {x = 12;
 setColor(thisPixel,newColor);};

You do
not need
these
semi-
colons to
end the
if, but
they’re
not
wrong

Need this one to end the statement
inside the curly braces

A “Block”

 We call the curly braces and the code
within it a block.
• A block is considered a single statement.

 A Java statement (think “sentence”) can
end in a semi-colon or a right-curly-brace
(think “----.” or “¡---!” or “¿---?”)

2

Iteration: While

 while (<logical-expression>)
while-statement;

 You rarely will have only a single
statement in a while, though.

 You’ll almost always have a bunch of
statements in a block.

Example while

> p
Picture, filename D:/cs1316/MediaSources/Swan.jpg height

360 width 480
> Pixel [] mypixels = p.getPixels();
> int index = 0;
> while (index < mypixels.length)
 {mypixels[index].setRed(0);
 index++ };
Error: Invalid block statement
> while (index < mypixels.length)
 {mypixels[index].setRed(0);
 index++;};

Declaring an array of
pixels

Need to have a semi-colon
on the statements inside
the block, too!

Side note: .length?

 Why .length not .length()?
• length is an instance variable or field (different

terms for same thing)
• It’s a variable that’s known to the instances of

the class.
• Just as a method is a function known only to

instances of the class.

Iteration: For

 for (<initialization>; <continuing-condition>;
<iterating-todo>)
 statement;

 The for loop is unusual. It’s very flexible, but
that means it has lots of pieces to it:
• <initialization> is a statement that gets executed once

before the loop starts.
• <continuing-condition> is a logical expression (e.g., <,

>, ==) that is tested prior to each loop execution. The
loop iterates only if the <continuing-condition is true>.

• <iterating-todo> is a statement that gets executed at
the end of each loop. It usually increments a variable.

Example: for

> for (int i=0; i < mypixels.length ; i++)
 { mypixels[i].setRed(0);};
 This is the same as the earlier while example,

but shorter.
• It sets up i equal to 0 to start.
• It keeps going as long as i is less than the length of

the pixels.
• Each time through, it increments i by 1.
• (Java oddity: i doesn’t exist after the loop!)

Writing Programs in Java is
Making Classes

 In Java, it’s the objects
that do and know things.

 So, the programming is
all about defining what
these objects do and
know.
• We define the variables

that all objects of that
class know at the top of
the class file.

• We define the methods
for what the objects do
inside the class file.

Picture.java

public class Picture {

}

Definitions for data in
each Picture object go
here.

Each method goes
inside here.

Public?

 In Java, we can control what pieces of our programs
other people have access to.

 Think about running a large organization.
• You want those outside your organization accessing your

company through pre-defined mechanisms: Press-releases,
switchboard, technical support, salespeople.

• You don’t want them accessing your internal intercom,
internal memoranda, boardroom meetings.

 In Java, you can declare what is public and what is
private (or protected for just related classes)

 For now, we’ll make all classes and method public, and
it’s probably best to make all data private.

Contents

 Miscellaneous Java details
 Writing a method
 Method parameters

• Giving a method varying input values
 Function methods

• Returning a value or object from a method
 Running a program

• The static main method

Example 1:
DecreaseRed
Our first picture
method

 /**
 * Method to decrease the red by half in the current picture
 */
 public void decreaseRed()
 {
 Pixel pixel = null; // the current pixel
 int redValue; // the amount of red

 // get the array of pixels for this picture object
 Pixel[] pixels = this.getPixels();
 // start the index at 0
 int index = 0;

 // loop while the index is less than the length of the pixels array
 while (index < pixels.length)
 {
 // get the current pixel at this index
 pixel = pixels[index];
 // get the red value at the pixel
 redValue = pixel.getRed();
 // set the red value to half what it was
 redValue = (int) (redValue * 0.5);
 // set the red for this pixel to the new value
 pixel.setRed(redValue);
 // increment the index
 index++;
 }
 }

What’s this (int)
stuff? It’s called
a cast. Try it
without it and
see what
happens.

3

Using this method

> Picture mypicture = new
Picture(FileChooser.pickA
File());

> mypicture.decreaseRed();
> mypicture.show();
> mypicture.write("D:/cs1316/

less-red-bridge.jpg");

More ways to comment

/**
 * Method to decrease the red by half in

the current picture
 */
 Anything between /* and */ is ignored by

Java.
 Just like //, but crossing multiple lines.

A method definition

public void decreaseRed()
 {

// Skipping the insides for a minute.
}
 Void? We have to declare the type of

whatever the method returns.
• If nothing, we say that it returns void

Variables we’ll need in this
method
 public void decreaseRed()
 {
 Pixel pixel = null; // the current pixel
 int redValue; // the amount of red
 pixel and redValue are variables that are local to this

method.
• They don’t exist anywhere else in the object or other

method.
 null literally means “nothing.”

• If you want to put a blank value in an object variable, that’s
the value to use.

 Java is case sensitive
• So you can have a variable pixel that holds an instance of

class Pixel.
 int means “integer”

More data for the method

 // get the array of pixels
for this picture object

 Pixel[] pixels =
this.getPixels();

 // start the index at 0
 int index = 0;

 this? this is how we
refer to the picture
(object) that is
executing the method.
• mypicture in the

example
 getPixels() returns all

the pixels in the object.

The loop for decreasing red
// loop while the index is less than the

length of the pixels array
 while (index < pixels.length)
 {
 // get the current pixel at this index
 pixel = pixels[index];
 // get the red value at the pixel
 redValue = pixel.getRed();
 // set the red value to half what it

was
 redValue = (int) (redValue * 0.5);
 // set the red for this pixel to the new

value
 pixel.setRed(redValue);
 // increment the index
 index++;
 }

 All arrays know their length
• This is a reference to a variable

known only to the object
 We get the pixel, then get the

pixel’s red value.
 When we multiply by 0.5, we

create a float
• We say (int) to turn the value

back into an integer to put in
redValue.

 Then we set the pixel’s red to
the new redValue.

 Finally, we move to the next
pixel by incrementing the
index.

Contents

 Miscellaneous Java details
 Writing a method
 Method parameters

• Giving a method varying input values
 Function methods

• Returning a value or object from a method
 Running a program

• The static main method

Example 2: Decreasing red by
an amount

 /**
 * Method to decrease the red by an amount
 * @param amount the amount to change the red by
 */
 public void decreaseRed(double amount)
 {
 Pixel[] pixels = this.getPixels();
 Pixel p = null;
 int value = 0;

 // loop through all the pixels
 for (int i = 0; i < pixels.length; i++)
 {
 // get the current pixel
 p = pixels[i];
 // get the value
 value = p.getRed();
 // set the red value the passed amount time what it was
 p.setRed((int) (value * amount));
 }
 }

A lot shorter with a for
loop!

Use it like this:

> mypicture.decreaseRed(0.5);

A double is a floating
point number.

What do Pictures and Pixels
know?

 That’s what the
JavaDoc
documentation tells
you.

4

JavaDoc

 When comments are inserted in a particular
format in Java classes and methods,
documentation for that class and method can be
automatically generated.

 This is called JavaDoc: Java Documentation.
 It’s how Java users figure out what’s available

for them to use in other classes.
• The API: Application Programming Interface

 “What is that format?” More on JavaDoc later.
 Not all of Picture, Sound, etc. are in JavaDoc.

• You do need to read the Picture and Sound classes,
too.

Inheritance

 “But hang on a minute! The class Picture
doesn’t actually know much at all!!”

 Right. Picture inherits from SimplePicture.
public class Picture extends SimplePicture
 That means that much of what Picture knows

and can do comes form SimplePicture.
 We’ll talk more about “Why would you want to

do that?” later

Making our own methods

 Edit the .java file
 Stick your method at

the bottom of the file.
• Inside the final close

curly brace “}” for the
class.

• Being sure to declare
the method correctly.

 Save
 Click Compile All

• Fix errors when they
come up.

Yes, it’s scary, but change
Picture.java

 If you change some other file, Pictures won’t
know about your method.

 If you rename the file, it will no longer be a
Picture class.

 You actually have to change the file we give
you.
• Don’t worry. If you screw up, you can copy down a

new one.
• Also don’t worry. The stuff that is easiest to screw up

has been hidden away in SimplePicture.

Contents

 Miscellaneous Java details
 Writing a method
 Method parameters

• Giving a method varying input values
 Function methods

• Returning a value or object from a method
 Running a program

• The static main method

Example 3: Returning something
 /**
 * Method to scale the picture by a factor, and return the result
 * @param scale factor to scale by (1.0 stays the same, 0.5 decreases each side by 0.5, 2.0 doubles each

side)
 * @return the scaled picture
 */
 public Picture scale(double factor)
 {
 Pixel sourcePixel, targetPixel;
 Picture canvas = new Picture((int) (factor*this.getWidth())+1,
 (int) (factor*this.getHeight())+1);
 // loop through the columns
 for (double sourceX = 0, targetX=0;
 sourceX < this.getWidth();
 sourceX+=(1/factor), targetX++)
 {
 // loop through the rows
 for (double sourceY=0, targetY=0;
 sourceY < this.getHeight();
 sourceY+=(1/factor), targetY++)
 {
 sourcePixel = this.getPixel((int) sourceX,(int) sourceY);
 targetPixel = canvas.getPixel((int) targetX, (int) targetY);
 targetPixel.setColor(sourcePixel.getColor());
 }
 }
 return canvas;
 }

Returning a picture

public Picture scale(double factor)
 This scaling method returns a new

instance of Picture.
• It doesn’t change the original!
• That will turn out to be an advantage.

 This version takes a factor for how much
to scale the target picture (this)

Declaring a new picture

Pixel sourcePixel, targetPixel;
 Picture canvas = new Picture((int)

(factor*this.getWidth())+1,
 (int) (factor*this.getHeight())+1);
 We need some pixels for copying things around.
 The canvas is the same size as this, but multiplied by the

scaling factor, and adding one to avoid off-by-one errors.
• The size of the Picture must be an int so we coerce it

into that form.
 Note: We can create new Picture instances by passing in

a filename OR a height and width!
• It’ll start out all-white (unlike in Python!)

Copying everything over
 // loop through the columns
 for (double sourceX = 0, targetX=0;
 sourceX < this.getWidth();
 sourceX+=(1/factor), targetX++)
 {
 // loop through the rows
 for (double sourceY=0, targetY=0;
 sourceY < this.getHeight();
 sourceY+=(1/factor), targetY++)
 {
 sourcePixel = this.getPixel((int) sourceX,(int) sourceY);
 targetPixel = canvas.getPixel((int) targetX, (int) targetY);
 targetPixel.setColor(sourcePixel.getColor());
 }
 }

We can actually
do multiple
statements in
initialization and
incrementing of
the for loop!

5

And return the new picture at
the end

 return canvas;
 Like in Python, anything you create in a

method only exists inside that method.
 If you want it to get outside the context

(or scope) of that method, you have to
return it.

Why should we want to do that?
> Picture blank = new Picture(600,600);
> Picture swan = new

Picture("D:/cs1316/MediaSources/swan.
jpg");

> Picture rose = new
Picture("D:/cs1316/MediaSources/rose.j
pg");

> rose.scale(0.5).compose(blank,10,10);
> rose.scale(0.75).compose(blank,300,300);
> swan.scale(1.25).compose(blank,0,400);
> blank.show();

Manipulation without changing
the original: Cascading methods

rose.scale(0.5).compose(blank,10,10);

This returns a
Picture—and rose is
not changed!

This is a method that’s
understood by Pictures. Why,
that’s what scale returns!

BTW, can use explore() as well as show() to see
results or plan our compositions!

Some of the methods in Picture
that are useful in cascades

 public Picture scale(double factor)
 public void chromakey(Picture target, Color

bgcolor, int threshold,
 int targetx, int targety)
 public void bluescreen(Picture target,
 int targetx, int targety)
 public void compose(Picture target, int targetx,

int targety)
 public Picture flip()

How do you use all of those?

 If you were (say) to build a collage, you’d
want to use these methods,
but probably not in a method for Picture.
• Individual picture objects shouldn’t

necessarily be responsible for assembling lots
of pictures.

 In general: How do you build a program
that simply uses other objects?

public static void main(String []
args)

 The answer isn’t very object-oriented.
 You create a class with one method,

with statements as if it were in the
Interactions Pane.
• It’s a main method, and it uses the gobbledy-

gook above.
• It can be run from DrJava with a menu item

AND from the Command prompt

Contents

 Miscellaneous Java details
 Writing a method
 Method parameters

• Giving a method varying input values
 Function methods

• Returning a value or object from a method
 Running a program

• The static main method

Example 4: MyPicture.java
public class MyPicture {

 public static void main(String args[]){

 Picture canvas = new Picture(600,600);
 Picture swan = new Picture("D:/cs1316/MediaSources/swan.jpg");
 Picture rose = new Picture("D:/cs1316/MediaSources/rose.jpg");
 Picture turtle = new Picture("D:/cs1316/MediaSources/turtle.jpg");

 swan.scale(0.5).compose(canvas,10,10);
 swan.scale(0.5).compose(canvas,350,350);
 swan.flip().scale(0.5).compose(canvas,10,350);
 swan.flip().scale(0.5).compose(canvas,350,10);
 rose.scale(0.25).compose(canvas,200,200);
 turtle.scale(2.0).compose(canvas,10,200);
 canvas.show();
 }
}

To run it

Under Tools menu:

