
1

Introduction to Java

CS1316: Representing
Structure and Behavior

Story

 Getting started with Java
• Installing it
• Using DrJava

 Basics of Java
• It’s about objects and classes,

modeling and simulation,
what things know and what they can do.

• Examples from Pictures, Sounds, and music.

Things to do to get started

 Download and install JDK (Java
Development Kit)

 Download and install DrJava
 Download JMusic
 Download the Java source files for class
 Then, tell Java where to find the JMusic

and Java source files.

Telling DrJava where to find
files

Parts of DrJava

Text of
your
class file
(.java)

Where you
interact
with Java

List of
class
files that
you have
open

Java is object-oriented

 95% of everything in Java is an object.
 In object-oriented programming, you

care about more than just specifying the
process.
• You care about who (or what) does the

process,
• And how the overall process emerges from

the interaction of different objects.

2

Object-oriented programming is
about modeling and simulation

 The whole idea of object-oriented
programming is to create a model of the part of
the world (real or imaginary).

 Creates constraints:
• The real world doesn’t have one set of rules/steps. (

• You don’t write one big program.
• In the real world, no one knows everything, no one

can do everything.
• Each object has it’s own things it knows and things it

can do.

Variables in Java know their
types

 Variables in Java know the kinds of things
(values) they can hold.

 Objects in Java are organized into classes.
• A class specifies what all the objects of that class

know and can do.
• All pictures can show themselves, even though each

picture is different.
 Variables in Java are specific to particular

classes.
• We declare a variable to only hold objects of particular

classes.

Did you get an error?

 If you got an error as soon as you typed
Picture p; there are several possibilities.
• All the Java files we provide you are in source

form.
• You need to compile them to use them.
• Open Picture.java and click Compile All

• You might not have your Preferences set up
correctly. If Java can’t find Picture, you can’t
use it.

Explaining what’s going on

> Picture p;
> p = new

Picture("D:/cs1316/
MediaSources/Swa
n.jpg");

> p.show();

• Every line ends with a
semi-colon in Java.

•(DrJava doesn’t always
require it.)

• Picture is the name of a
class in Java.

• p is the variable that we’re
declaring

In Java programs, You can only use declared variables!

And you can only declare them once!

Explaining what’s going on

> Picture p;
> p = new

Picture("D:/cs1316/
MediaSources/Swa
n.jpg");

> p.show();

• new Picture() creates a
new picture.

• The pathname
provided as an argument
tells it which picture.

• You can always use “/”
and it’ll always work (on
any platform)

• p now refers to the new
object (instance of class
Picture)

3

Explaining what’s going on

> Picture p;
> p = new

Picture("D:/cs1316/
MediaSources/Swa
n.jpg");

> p.show();

• Instances of the class
Picture (objects created
from the class Picture) know
how to show themselves.

• We access what the object
knows and can do with the
dot operator.

• p.show() says “Object that
p refers to, would you
please execute your show()
method?”

Semicolons or not in
DrJava Interactions Pane

 No semi-colon says “Evaluate this, and show
me the result.”

 Semi-colon says “Treat this like a line of code,
just as if it were in the Code Pane.”

> p
Picture, filename

D:/cs1316/MediaSources/Swan.jpg height 360
width 480

> p;
>

Summarizing the terms so-far

 Just about everything in Java is an object
 Objects know specific things and can do specific things

• Things they know are stored in variables (data)
• Things they can do are grouped into methods

• Think of methods as “functions known only to instances of that
class.”

 Objects are instances of a given class in Java.
• All the instances know the same things and can do the

same things.
 Variables are specific to a given class, and can only refer

to objects of that type.

Let’s create a sound

Explaining what’s going on

> Sound s = new
Sound(FileChooser.pickAFile());

> s.play();
 We can create an object as we declare the

variable.
 FileChooser is an object that knows how to

pickAFile() which puts up a file picker and
returns a string.

 Instances of the class Sound know how to
play, thus s.play()

What if we get it wrong?

4

An example with Music

> import jm.util.*;
> import jm.music.data.*;
> Note n1;
> n1 = new Note(60,0.5);
> // Create an eighth note

at C octave 4

• JMusic pieces
need to be
imported first to
use them.

An example with Music

> import jm.util.*;
> import jm.music.data.*;
> Note n1;
> n1 = new Note(60,0.5);
> // Create an eighth note

at C octave 4

• Declare a Note
variable.

An example with Music

> import jm.util.*;
> import jm.music.data.*;
> Note n1;
> n1 = new Note(60,0.5);
> // Create an eighth note

at C octave 4

• Note instances
have nothing to do
with filenames.

• To create a note,
you need to know
which note, and a
duration

Starting a line with // creates a
comment—ignored by Java

MIDI notes

Making more notes

> Note n2=new Note(64,0.5);
> View.notate(n1);
Error: No 'notate' method in

'jm.util.View' with arguments:
(jm.music.data.Note)

> Phrase phr = new Phrase();
> phr.addNote(n1);
> phr.addNote(n2);
> View.notate(phr);
-- Constructing MIDI file

from'Untitled Score'...
Playing with JavaSound ...
Completed MIDI playback ---

What’s going on here?

> Note n2=new Note(64,0.5);
> View.notate(n1);
Error: No 'notate' method in
'jm.util.View' with arguments:
(jm.music.data.Note)

• We’ll make another Note (at E4,
another eighth note)

• There is an object named View
that knows how to notate parts of
music, but not an individual note.

5

What’s going on here?

> Phrase phr = new Phrase();
> phr.addNote(n1);
> phr.addNote(n2);
> View.notate(phr);
-- Constructing MIDI file
from'Untitled Score'... Playing
with JavaSound ... Completed
MIDI playback --------

• We’ll create a new Phrase
instance and make a variable phr to
refer to it. (phr has to be declared
to be a Phrase.)

• Phrase instances know how to
addNote notes to them. These are
methods that take an argument—a
Note instance.

• The View object does know how
to notate an input Phrase instance.
It generates this cool window where
you see the notes and can play
them (or save them as MIDI.)

Playing a different Phrase

> import jm.JMC;
> Phrase nuphr = new

Phrase(0.0,JMC.FLUTE);
> nuphr.addNote(n2);
> nuphr.addNote(n1);
> View.notate(nuphr);

• We can specify when a phrase starts and with what
instrument.

• We can add notes (even the same notes!) in different
orders

Modeling Music

 The JMusic package is really modeling
music.
• Notes have tones and durations.
• Musical Phrases are collections of notes in a

sequence.
• We can play (and View) a musical phrase.

• A phrase doesn’t have to start when other phrases
do, and a phrase can have its own instrument.

Objects know things and can do
things

addNote(aNote)The notes in the
phrase

Phrase

<Nothing we’ve
seen yet>

A musical note
and a duration

Note

What
instances of
this class can
do

What
instances of
this class
know

