
Structuring Music

CS1316: Representing
Structure and Behavior

Story
Using JMusic
• With multiple Parts and Phrases

Creating music objects for exploring composition
• Version 1: Using an array for Notes, then scooping them

up into Phrases.
• Version 2: Using a linked list of song elements.
• Version 3: General song elements and song phrases

• Computing phrases
• Repeating and weaving

• Version 4: Creating a tree of song parts, each with its
own instrument.

JMusic: Java Music library

JMusic knows about WAV files and many other
formats, too (e.g., QuickTime)
We’ll use it for manipulating MIDI
• Musical Instrument Digital Interface, an industry-

standard interface used on electronic musical
keyboards and PCs for computer control of musical
instruments and devices.

MIDI is about recording music, not sound.

Creating Notes
Welcome to DrJava.
> import jm.music.data.*
> import jm.JMC;
> import jm.util.*;
> Note n = new Note(JMC.C4,JMC.QUARTER_NOTE);
> n
jMusic NOTE: [Pitch = 60][RhythmValue = 1.0][Dynamic = 85][Pan = 0.5][Duration = 0.9]
> JMC.C4
60
> JMC.QUARTER_NOTE
1.0
> JMC.QN
1.0
> Note n2 = new Note(64,2.0);
> n2
jMusic NOTE: [Pitch = 64][RhythmValue = 2.0][Dynamic = 85][Pan = 0.5][Duration = 1.8]

JMC=JMusic Constants

Makes code easier to
read from a music
perspective

Creating Phrases

> Phrase phr = new Phrase();
> phr.addNote(n);
> phr.addNote(n2);
> double [] notes1 = {67, 0.25, 64, 0.5, 60, 1.0}
> phr.addNoteList(notes1)
> double [] notes2 = {JMC.G4,JMC.QN, JMC.E4,

JMC.EN, JMC.C4, JMC.WN}
> phr.addNoteList(notes2)

Using notes, or an
array of note pieces.

Viewing Phrases

> View.notate(phr)

From Viewer: Manipulate and
MIDI

Can save or open
MIDI files
Can change key or
time signature.
Other tools allow
changing other
characteristics, like
tempo.

Different ways of creating
Phrases
> Phrase phr2 = new

Phrase("Phrase
2",4.0,JMC.FLUTE);

> phr2.addNoteList(notes2)

A Phrase that starts later

> Phrase phr2 = new Phrase("Phrase
2",4.0,JMC.FLUTE);

> phr2.addNoteList(notes2)
> View.notate(phr2)

Adding parts into phrases
(Wrong way first)

> Part part1 = new Part();
> part1.addPhrase(phr);
> part1.addPhrase(phr2);
> View.notate(part1);

Kinda lost the
phrase
distinctions.

Building Parts and Scores

> Part partA = new Part("Part A",JMC.PIANO,1)
> partA.addPhrase(phr);
> Part partB = new Part("Part B",JMC.SAX,2)
> partB.addPhrase(phr2);
> Score score1 = new Score("My Two Part

Score");
> score1.addPart(partA);
> score1.addPart(partB);

Viewing the Score

> View.notate(score1);

Amazing
Grace

import jm.music.data.*;
import jm.JMC;
import jm.util.*;
import jm.music.tools.*;

public class AmazingGraceSong {
private Score myScore = new Score("Amazing Grace");

public void fillMeUp(){
myScore.setTimeSignature(3,4);

double[] phrase1data =
{JMC.G4, JMC.QN,
JMC.C5, JMC.HN, JMC.E5,JMC.EN, JMC.C5,JMC.EN,
JMC.E5,JMC.HN,JMC.D5,JMC.QN,
JMC.C5,JMC.HN,JMC.A4,JMC.QN,
JMC.G4,JMC.HN,JMC.G4,JMC.EN,JMC.A4,JMC.EN,
JMC.C5,JMC.HN,JMC.E5,JMC.EN,JMC.C5,JMC.EN,
JMC.E5,JMC.HN,JMC.D5,JMC.EN,JMC.E5,JMC.EN,
JMC.G5,JMC.DHN};

double[] phrase2data =
{JMC.G5,JMC.HN,JMC.E5,JMC.EN,JMC.G5,JMC.EN,
JMC.G5,JMC.HN,JMC.E5,JMC.EN,JMC.C5,JMC.EN,
JMC.E5,JMC.HN,JMC.D5,JMC.QN,
JMC.C5,JMC.HN,JMC.A4,JMC.QN,
JMC.G4,JMC.HN,JMC.G4,JMC.EN,JMC.A4,JMC.EN,
JMC.C5,JMC.HN,JMC.E5,JMC.EN,JMC.C5,JMC.EN,
JMC.E5,JMC.HN,JMC.D5,JMC.QN,
JMC.C5,JMC.DHN

};
Phrase myPhrase = new Phrase();
myPhrase.addNoteList(phrase1data);
myPhrase.addNoteList(phrase2data);
// create a new part and add the phrase to it
Part aPart = new Part("Parts",

JMC.FLUTE, 1);
aPart.addPhrase(myPhrase);
// add the part to the score
myScore.addPart(aPart);

};

public void showMe(){

View.notate(myScore);
};

}

> AmazingGraceSong song1 =
new AmazingGraceSong();
> song1.fillMeUp();
> song1.showMe();

Imports and some private data

import jm.music.data.*;
import jm.JMC;
import jm.util.*;
import jm.music.tools.*;

public class AmazingGraceSong {
private Score myScore = new Score("Amazing
Grace");
myScore is private instance data

Filling the
Score

public void fillMeUp(){
myScore.setTimeSignature(3,4);

double[] phrase1data =
{JMC.G4, JMC.QN,
JMC.C5, JMC.HN, JMC.E5,JMC.EN, JMC.C5,JMC.EN,
JMC.E5,JMC.HN,JMC.D5,JMC.QN,
JMC.C5,JMC.HN,JMC.A4,JMC.QN,
JMC.G4,JMC.HN,JMC.G4,JMC.EN,JMC.A4,JMC.EN,
JMC.C5,JMC.HN,JMC.E5,JMC.EN,JMC.C5,JMC.EN,
JMC.E5,JMC.HN,JMC.D5,JMC.EN,JMC.E5,JMC.EN,
JMC.G5,JMC.DHN};

double[] phrase2data =
{JMC.G5,JMC.HN,JMC.E5,JMC.EN,JMC.G5,JMC.EN,
JMC.G5,JMC.HN,JMC.E5,JMC.EN,JMC.C5,JMC.EN,
JMC.E5,JMC.HN,JMC.D5,JMC.QN,
JMC.C5,JMC.HN,JMC.A4,JMC.QN,
JMC.G4,JMC.HN,JMC.G4,JMC.EN,JMC.A4,JMC.EN,
JMC.C5,JMC.HN,JMC.E5,JMC.EN,JMC.C5,JMC.EN,
JMC.E5,JMC.HN,JMC.D5,JMC.QN,
JMC.C5,JMC.DHN

};
Phrase myPhrase = new Phrase();
myPhrase.addNoteList(phrase1data);
myPhrase.addNoteList(phrase2data);
// create a new part and add the phrase to it
Part aPart = new Part("Parts",

JMC.FLUTE, 1);
aPart.addPhrase(myPhrase);
// add the part to the score
myScore.addPart(aPart);

};

Each array is note,
duration, note,
duration, note,
duration, etc.

I broke it roughly
into halves.

Showing the Score

public void showMe(){
View.notate(myScore);
};

Part: Instrument &

Phrase: startingTime &

The Organization of JMusic
Objects

Phrase: startingTime &

Note
(pitch,duration)

Note
(pitch,duration)

Note
(pitch,duration)

Note
(pitch,duration)

Note
(pitch,duration)

Part: Instrument &

Score: timeSignature, tempo, &

Thought Experiment

How are they doing that?
How can there be any number of Notes
in a Phrase, Phrases in a Part, and Parts
in a Score?
• (Hint: They ain’t usin’ arrays!)

How do we explore composition
here?

We want to quickly and easily throw
together notes in different groupings and
see how they sound.
The current JMusic structure models
music.
• Let’s try to create a structure that models

thinking about music as bunches of
riffs/SongElements that we want to combine
in different ways.

Version 1: Notes in an array

Let’s just put notes of interest (for now,
just random) in an array.
We’ll traverse the array to gather the
notes up into a Phrase, then use View to
notate the Phrase.

Using an array to structure
Notes

> Note [] someNotes = new Note[100];
> for (int i = 0; i < 100; i++)

{someNotes[i]= new Note((int)
(128*Math.random()),0.25);}

> // Now, traverse the array and gather them up.
> Phrase myphrase = new Phrase()
> for (int i=0; i<100; i++)
{myphrase.addNote(someNotes[i]);}

> View.notate(myphrase);

Critique of Version 1

So where’s the music?
• 100 random notes isn’t the issue.
• It’s that we don’t think about notes as just one

long strand.
Where are the phrases/riffs/elements?
• We just have one long line of notes.

How do we explore patterns like this?
• insertAfter and delete are just as hard here as

in sampled sounds!

Version 2: Using a linked list of
song elements

Let’s re-think Amazing Grace as a
collection of elements that we can
shuffle around as we’d like.
We can make any element follow any
other element.

What’s in each element?

AmazingGraceSongElement

It KNOWS: it’s Part and what comes
next

It CAN DO: filling itself from the first
or second phrase (with a given start
time and instrument), setting the next
one, getting the next one, and
showing (notating) myself and all
others.

What that would look like to use
it
Welcome to DrJava.
> import jm.JMC;
> AmazingGraceSongElement2 part1 = new

AmazingGraceSongElement2();
> part1.setPhrase(part1.phrase1(),0.0,JMC.FLUTE);
> AmazingGraceSongElement2 part2 = new

AmazingGraceSongElement2();
> part1.getEndTime()
22.0
> part2.setPhrase(part2.phrase2(),22.0,JMC.PIANO);
> part1.setNext(part2);
> part1.showFromMeOn();

Part1.showFromMeOn()

What’s going on here?

AmazingGraceSongElement part1

myPart: Filled with
phrase1(flute))

next: part2

AmazingGraceSongElement part2

myPart: Filled with
phrase2(piano)

next: null

Adding a third part

> AmazingGraceSongElement2 part3 =
new AmazingGraceSongElement2();

> part3.setPhrase(part3.phrase1(),0.0,
JMC.TRUMPET);

> part1.setNext(part3);
> part3.setNext(part2);
> part1.showFromMeOn();

part1.showFromMeOn();
Now has three parts

What’s going on here?

AmazingGraceSongElement part1

myPart: Filled with phrase1
(flute)

next: part3

AmazingGraceSongElement part2

myPart: Filled with phrase2
(piano)

next: null

AmazingGraceSongElement part3

myPart: Filled with phrase1
(trumpet)

next: part2

Introducing the Linked List

A linked list is information broken into
smaller pieces, where each piece knows
the next piece, but none other.

Another example of a linked list

Non-linear video
editing (like in iMovie)
• You have a collection

of video clips
(information)

• You drag them into a
timeline.
• Each clip still doesn’t

know all clips, but it
knows the next one.

Why use linked lists versus
arrays?

Just two reasons now, more later:
1. Can grow to any size (well, as long as

memory permits)
• Just create a new element and poke it into the

list.
2. MUCH easier to insert!

• Look at how easily we put part3 between part1
and part2.

Implementing
AmazingGraceSongElement2
import jm.music.data.*;
import jm.JMC;
import jm.util.*;
import jm.music.tools.*;

public class AmazingGraceSongElement2 {
// Every element knows its next element and its
part (of the score)

private AmazingGraceSongElement2 next;
private Part myPart; It’s considered good form to

make your object’s data private
unless you need to make it
public.

Our Constructor

// When we make a new element, the next
part is empty, and ours is a blank new
part

public AmazingGraceSongElement2(){
this.next = null;
this.myPart = new Part();

}

What setPhrase does
// setPhrase takes a phrase and makes it the one for this element
// at the desired start time with the given instrument
public void setPhrase(Phrase myPhrase, double startTime, int

instrument) {
//Phrases get returned from phrase1() and phrase2() with
default (0.0) startTime
// We can set it here with whatever setPhrase gets as input
myPhrase.setStartTime(startTime);
this.myPart.addPhrase(myPhrase);
this.myPart.setInstrument(instrument);

}
Don’t get hung up on these
details—this is just
manipulating the JMusic
classes so that we can store
the information we want.

The Phrases
static public Phrase phrase1() {

double[] phrase1data =
{JMC.G4, JMC.QN,
JMC.C5, JMC.HN, JMC.E5,JMC.EN,

JMC.C5,JMC.EN,
JMC.E5,JMC.HN,JMC.D5,JMC.QN,
JMC.C5,JMC.HN,JMC.A4,JMC.QN,
JMC.G4,JMC.HN,JMC.G4,JMC.EN,JMC.A4,JMC.EN,
JMC.C5,JMC.HN,JMC.E5,JMC.EN,JMC.C5,JMC.EN,
JMC.E5,JMC.HN,JMC.D5,JMC.EN,JMC.E5,JMC.EN,
JMC.G5,JMC.DHN};

Phrase myPhrase = new Phrase();
myPhrase.addNoteList(phrase1data);
return myPhrase;

}

static public Phrase phrase2() {
double[] phrase2data =

{JMC.G5,JMC.HN,JMC.E5,JMC.EN,JMC.G5,JMC.EN,
JMC.G5,JMC.HN,JMC.E5,JMC.EN,JMC.C5,JMC.EN,
JMC.E5,JMC.HN,JMC.D5,JMC.QN,
JMC.C5,JMC.HN,JMC.A4,JMC.QN,
JMC.G4,JMC.HN,JMC.G4,JMC.EN,JMC.A4,JMC.EN,
JMC.C5,JMC.HN,JMC.E5,JMC.EN,JMC.C5,JMC.EN,
JMC.E5,JMC.HN,JMC.D5,JMC.QN,
JMC.C5,JMC.DHN

};

Phrase myPhrase = new Phrase();
myPhrase.addNoteList(phrase2data);
return myPhrase;

}

Static? This means that we can
actually access them without any
instances. Is that useful here?
Well, not yet…

Handling the linked list
// Here are the two methods needed to make a linked list of

elements
public void setNext(AmazingGraceSongElement2

nextOne){
this.next = nextOne;

}

public AmazingGraceSongElement2 next(){
return this.next;

}

Controlling access:
An accessor method

// We could just access myPart directly
// but we can CONTROL access by using
a method

// (called an accessor)
private Part part(){

return this.myPart;
}

A little object manipulation
// Why do we need this?
// If we want one piece to start after another, we need
// to know when the last one ends.
// Notice: It's the phrase that knows the end time.
// We have to ask the part for its phrase (assuming only

one)
// to get the end time.
public double getEndTime(){
return this.myPart.getPhrase(0).getEndTime();

}

showFromMeOn()

public void showFromMeOn(){
// Make the score that we'll assemble the elements into
// We'll set it up with the time signature and tempo we like
Score myScore = new Score("Amazing Grace");
myScore.setTimeSignature(3,4);
myScore.setTempo(120.0);

// Each element will be in its own channel
int channelCount = 1;

// Start from this element (this)
AmazingGraceSongElement2 current = this;
// While we're not through...
while (current != null)
{
// Set the channel, increment the channel, then add it in.
current.setChannel(channelCount);
channelCount = channelCount + 1;
myScore.addPart(current.part());

// Now, move on to the next element
current = current.next();

};

// At the end, let's see it!
View.notate(myScore);

}

This is called traversing
the linked list.

The Key Part
// Start from this element (this)
AmazingGraceSongElement2 current = this;
// While we're not through...
while (current != null)
{

// Set the channel, increment the channel, then add it in.
//BLAH BLAH BLAH (Ignore this part for now)

// Now, move on to the next element
current = current.next();
};

// At the end, let's see it!
View.notate(myScore);

Step 1:
// Start from this element (this)
AmazingGraceSongElement2 current = this;

AmazingGraceSongElement part1

myPart: Filled with phrase1
(flute)

next: part3

AmazingGraceSongElement part2

myPart: Filled with phrase2
(piano)

next: null

AmazingGraceSongElement part3

myPart: Filled with phrase1
(trumpet)

next: part2

current

Step 2:
// While we're not through...
while (current != null)

{ //BLAH BLAH BLAH – PROCESS THIS PART

AmazingGraceSongElement part1

myPart: Filled with phrase1
(flute)

next: part3

AmazingGraceSongElement part2

myPart: Filled with phrase2
(piano)

next: null

AmazingGraceSongElement part3

myPart: Filled with phrase1
(trumpet)

next: part2

current

Step 3:
// Now, move on to the next element

current = current.next();
};

AmazingGraceSongElement part1

myPart: Filled with phrase1
(flute)

next: part3

AmazingGraceSongElement part2

myPart: Filled with phrase2
(piano)

next: null

AmazingGraceSongElement part3

myPart: Filled with phrase1
(trumpet)

next: part2

current

Step 4:
// While we're not through...

while (current != null)
{ //BLAH BLAH BLAH – PROCESS THIS PART

AmazingGraceSongElement part1

myPart: Filled with phrase1
(flute)

next: part3

AmazingGraceSongElement part2

myPart: Filled with phrase2
(piano)

next: null

AmazingGraceSongElement part3

myPart: Filled with phrase1
(trumpet)

next: part2

current

Step 5:
// Now, move on to the next element
current = current.next();

};

AmazingGraceSongElement part1

myPart: Filled with phrase1
(flute)

next: part3

AmazingGraceSongElement part2

myPart: Filled with phrase2
(piano)

next: null

AmazingGraceSongElement part3

myPart: Filled with phrase1
(trumpet)

next: part2

current

Step 6:
// While we're not through...

while (current != null)
{ //BLAH BLAH BLAH – PROCESS THIS PART

AmazingGraceSongElement part1

myPart: Filled with phrase1
(flute)

next: part3

AmazingGraceSongElement part2

myPart: Filled with phrase2
(piano)

next: null

AmazingGraceSongElement part3

myPart: Filled with phrase1
(trumpet)

next: part2

current

Step 7:
// Now, move on to the next element
current = current.next();

};

AmazingGraceSongElement part1

myPart: Filled with phrase1
(flute)

next: part3

AmazingGraceSongElement part2

myPart: Filled with phrase2
(piano)

next: null

AmazingGraceSongElement part3

myPart: Filled with phrase1
(trumpet)

next: part2

current

NULL

Step 8:
// While we're not through...

while (current != null)

AmazingGraceSongElement part1

myPart: Filled with phrase1
(flute)

next: part3

AmazingGraceSongElement part2

myPart: Filled with phrase2
(piano)

next: null

AmazingGraceSongElement part3

myPart: Filled with phrase1
(trumpet)

next: part2

current

NULL

STOP
THE

LOOP!

Traversing arrays vs. lists
//TRAVERSING A LIST

// Start from this element (this)
AmazingGraceSongElement2
current = this;

// While we're not through...
while (current != null)
{

// Set the channel, increment the
channel, then add it in.

//BLAH BLAH BLAH (Ignore this part
for now)

// Now, move on to the next
element
current = current.next();

};

> // Now, traverse the array
and gather them up.

> Phrase myphrase = new
Phrase()

> for (int i=0; i<100; i++)
{myphrase.addNote(

someNotes[i]);}

Inserting into lists
// Here are the two methods

needed to make a linked list
of elements

public void
setNext(AmazingGraceSong
Element2 nextOne){
this.next = nextOne;

}

public
AmazingGraceSongElement
2 next(){
return this.next;

}

> part1.setNext(part3);
> part3.setNext(part2);
> part1.showFromMeOn();

Inserting into arrays
public void insertAfter(Sound inSound, int start){

SoundSample current=null;
// Find how long insound is
int amtToCopy = inSound.getLength();
int endOfThis = this.getLength()-1;
// If too long, copy only as much as will fit
if (start + amtToCopy > endOfThis)
{amtToCopy = endOfThis-start-1;};

// ** First, clear out room.
// Copy from endOfThis-amtToCopy up to endOfThis
for (int i=endOfThis-amtToCopy; i > start ; i--)
{
current = this.getSample(i);
current.setValue(this.getSampleValueAt(i+amtToCopy));

}

//** Second, copy in inSound up to amtToCopy
for (int target=start,source=0;

source < amtToCopy;
target++, source++) {

current = this.getSample(target);
current.setValue(inSound.getSampleValueAt(source));

}
}

> Sound test2 = new
Sound(
"D:/cs1316/MediaSourc
es/thisisatest.wav");

> test.insertAfter(test2,
40000)

> test.play()

More on Arrays vs. Lists
Arrays
• Much easier to traverse
• Very fast to access a specific (nth) element
• But really a pain to insert and delete.

• Hard to write the code
• Can take a long time if it’s a big array

Lists
• More complex to traverse
• Slower to access a specific element
• Very easy to insert (and later we’ll see, delete)

• Simple code
• Takes no time at all to run

Critique of Version 2

Lovely structuring of data, but just how much
can one do with two parts of Amazing Grace?
• We need the ability to have a library of phrases

But what does the ordering mean? What if we
had gone part1->part2->part3 instead?
• What should the order encode?
• Right now, it encodes nothing.

When we’re exploring music, do we really want
to worry about instruments and start times for
every phrase?

Version 3:
SongNode and SongPhrase

SongNode instances will hold pieces
(phrases) from SongPhrase.
SongNode instances will be the nodes in
the linked list
• Each one will know its next.

Ordering will encode the order in the
Part.
• Each one will get appended after the last.

Using SongNode and
SongPhrase
Welcome to DrJava.
> import jm.JMC;
> SongNode node1 = new SongNode();
> node1.setPhrase(SongPhrase.riff1());
> SongNode node2 = new SongNode();
> node2.setPhrase(SongPhrase.riff2());
> SongNode node3 = new SongNode();
> node3.setPhrase(SongPhrase.riff1());
> node1.setNext(node2);
> node2.setNext(node3);
> node1.showFromMeOn(JMC.SAX);

All three SongNodes in one Part

How to think about it

node1

myPhrase: riff1

next: node2

node2

myPhrase: riff2

next: node3

node3

myPhrase: riff1

next: null

Declarations for SongNode
import jm.music.data.*;
import jm.JMC;
import jm.util.*;
import jm.music.tools.*;

public class SongNode {
/**
* the next SongNode in the list
*/
private SongNode next;
/**
* the Phrase containing the notes and durations associated with this

node
*/
private Phrase myPhrase;

SongNode’s know their
Phrase and the next
node in the list

Constructor for SongNode

/**
* When we make a new element, the next part
is empty, and ours is a blank new part
*/
public SongNode(){
this.next = null;
this.myPhrase = new Phrase();

}

Setting the phrase

/**
* setPhrase takes a Phrase and makes it the

one for this node
* @param thisPhrase the phrase for this node
*/
public void setPhrase(Phrase thisPhrase){

this.myPhrase = thisPhrase;
}

Linked list methods
/**
* Creates a link between the current node and the input node
* @param nextOne the node to link to
*/
public void setNext(SongNode nextOne){

this.next = nextOne;
}
/**
* Provides public access to the next node.
* @return a SongNode instance (or null)
*/
public SongNode next(){
return this.next;

}

insertAfter
/**
* Insert the input SongNode AFTER this node,
* and make whatever node comes NEXT become the next of the
input node.

* @param nextOne SongNode to insert after this one
*/
public void insertAfter(SongNode nextOne)
{

SongNode oldNext = this.next(); // Save its next
this.setNext(nextOne); // Insert the copy
nextOne.setNext(oldNext); // Make the copy point on to the rest

}

Using and tracing insertAfter()
> SongNode nodeA = new SongNode();
> SongNode nodeB = new SongNode();
> nodeA.setNext(nodeB);
> SongNode nodeC = new SongNode()
> nodeA.insertAfter(nodeC);

public void insertAfter(SongNode nextOne)
{

SongNode oldNext = this.next(); // Save
its next

this.setNext(nextOne); // Insert the copy
nextOne.setNext(oldNext); // Make the

copy point on to the rest

}

Traversing
the list

/**
* Collect all the notes from this node on
* in an part (then a score) and open it up for viewing.
* @param instrument MIDI instrument (program) to be used in playing this list
*/

public void showFromMeOn(int instrument){
// Make the Score that we'll assemble the elements into
// We'll set it up with a default time signature and tempo we like
// (Should probably make it possible to change these -- maybe with inputs?)
Score myScore = new Score("My Song");
myScore.setTimeSignature(3,4);
myScore.setTempo(120.0);

// Make the Part that we'll assemble things into
Part myPart = new Part(instrument);

// Make a new Phrase that will contain the notes from all the phrases
Phrase collector = new Phrase();

// Start from this element (this)
SongNode current = this;
// While we're not through...
while (current != null)
{
collector.addNoteList(current.getNotes());

// Now, move on to the next element
current = current.next();

};

// Now, construct the part and the score.
myPart.addPhrase(collector);
myScore.addPart(myPart);

// At the end, let's see it!
View.notate(myScore);

}

The Core of the Traversal
// Make a new Phrase that will contain the notes from all the phrases
Phrase collector = new Phrase();

// Start from this element (this)
SongNode current = this;
// While we're not through...
while (current != null)
{
collector.addNoteList(current.getNotes());

// Now, move on to the next element
current = current.next();

};

Then return what you collected

// Now, construct the part and the score.
myPart.addPhrase(collector);
myScore.addPart(myPart);

// At the end, let's see it!
View.notate(myScore);

}

getNotes() just pulls the notes
back out

/**
* Accessor for the notes inside the node's
phrase
* @return array of notes and durations inside
the phrase
*/
private Note [] getNotes(){
return this.myPhrase.getNoteArray();

}

SongPhrase

SongPhrase is a collection of static
methods.
We don’t ever need an instance of
SongPhrase.
Instead, we use it to store methods that
return phrases.
• It’s not very object-oriented, but it’s useful

here.

SongPhrase.riff1()
import jm.music.data.*;
import jm.JMC;
import jm.util.*;
import jm.music.tools.*;

public class SongPhrase {
//Little Riff1

static public Phrase riff1() {
double[] phrasedata =
{JMC.G3,JMC.EN,JMC.B3,JMC.EN,JMC.C4,JMC.EN,JMC.D4,JMC.EN};

Phrase myPhrase = new Phrase();
myPhrase.addNoteList(phrasedata);
return myPhrase;

SongPhrase.riff2()
//Little Riff2
static public Phrase riff2() {
double[] phrasedata =

{JMC.D4,JMC.EN,JMC.C4,JMC.EN,JMC.E4,JMC.EN,JM
C.G4,JMC.EN};

Phrase myPhrase = new Phrase();
myPhrase.addNoteList(phrasedata);
return myPhrase;

}

Computing a phrase

//Larger Riff1
static public Phrase pattern1() {

double[] riff1data =
{JMC.G3,JMC.EN,JMC.B3,JMC.EN,JMC.C4,JMC.EN,JMC.D4,JMC.EN};
double[] riff2data =
{JMC.D4,JMC.EN,JMC.C4,JMC.EN,JMC.E4,JMC.EN,JMC.G4,JMC.EN};

Phrase myPhrase = new Phrase();
// 3 of riff1, 1 of riff2, and repeat all of it 3 times
for (int counter1 = 1; counter1 <= 3; counter1++)
{for (int counter2 = 1; counter2 <= 3; counter2++)

myPhrase.addNoteList(riff1data);
myPhrase.addNoteList(riff2data);
};

return myPhrase;
}

As long as it’s a phrase…

The way that we use SongNote and
SongPhrase, any method that returns a
phrase is perfectly valid SongPhrase
method.

10 Random Notes
(Could be less random…)
/*

* 10 random notes
**/
static public Phrase random() {
Phrase ranPhrase = new Phrase();
Note n = null;

for (int i=0; i < 10; i++) {
n = new Note((int) (128*Math.random()),0.1);
ranPhrase.addNote(n);

}
return ranPhrase;

}

10 Slightly Less Random Notes
/*

* 10 random notes above middle C
**/
static public Phrase randomAboveC() {
Phrase ranPhrase = new Phrase();
Note n = null;

for (int i=0; i < 10; i++) {
n = new Note((int) (60+(5*Math.random())),0.25);
ranPhrase.addNote(n);

}
return ranPhrase;

}

Going beyond connecting nodes

So far, we’ve just created nodes and
connected them up.
What else can we do?
Well, music is about repetition and
interleaving of themes.
• Let’s create those abilities for SongNodes.

Repeating a Phrase

Welcome to DrJava.
> SongNode node = new SongNode();
> node.setPhrase(SongPhrase.randomAboveC());
> SongNode node1 = new SongNode();
> node1.setPhrase(SongPhrase.riff1());
> node.repeatNext(node1,10);
> import jm.JMC;
> node.showFromMeOn(JMC.PIANO);

What it looks like

node node1 node1 node1 …

Repeating

/**
* Repeat the input phrase for the number of

times specified.
* It always appends to the current node, NOT

insert.
* @param nextOne node to be copied in to list
* @param count number of times to copy it in.
*/
public void repeatNext(SongNode nextOne,int

count) {
SongNode current = this; // Start from here
SongNode copy; // Where we keep the current
copy

for (int i=1; i <= count; i++)
{

copy = nextOne.copyNode(); // Make a copy
current.setNext(copy); // Set as next
current = copy; // Now append to copy

}
}

Note! What
happens to this’s
next? How
would you create
a looong repeat
chain of several
types of phrases
with this?

Here’s making a copy
/**
* copyNode returns a copy of this node
* @return another song node with the same
notes
*/
public SongNode copyNode(){
SongNode returnMe = new SongNode();
returnMe.setPhrase(this.getPhrase());
return returnMe;

}

Step 1:
public void repeatNext(SongNode nextOne,int count) {

SongNode current = this; // Start from here
SongNode copy; // Where we keep the current copy

node

phrase:
10
random
notes

next: null

current

node1

phrase:
riff1()

next: null

nextOne

Step 2:
copy = nextOne.copyNode(); // Make a copy

node

phrase:
10
random
notes

next: null

current

node1

phrase:
riff1()

next: null

phrase:
riff1()

next: null

copy nextOne

Step 3:
current.setNext(copy); // Set as next

node

phrase:
10
random
notes

next:

current

node1

phrase:
riff1()

next: null

phrase:
riff1()

next: null

copy nextOne

Step 4:
current = copy; // Now append to copy

node

phrase:
10
random
notes

next:

current

node1

phrase:
riff1()

next: null

phrase:
riff1()

next: null

copy nextOne

Step 5 & 6:
copy = nextOne.copyNode(); // Make a copy
current.setNext(copy); // Set as next

node

phrase:
10
random
notes

next:

current

node1

phrase:
riff1()

next: null

phrase:
riff1()

next:

copy

phrase:
riff1()

next: null

nextOne

Step 7 (and so on):
current = copy; // Now append to copy

node

phrase:
10
random
notes

next:

current

node1

phrase:
riff1()

next: null

phrase:
riff1()

next:

copy

phrase:
riff1()

next: null

nextOne

What happens if the node
already points to something?

Consider repeatNext and how it inserts:
It simply sets the next value.
What if the node already had a next?
repeatNext will erase whatever used to
come next.
How can we fix it?

repeatNextInserting

/**
* Repeat the input phrase for the number of times specified.
* But do an insertion, to save the rest of the list.
* @param nextOne node to be copied into the list
* @param count number of times to copy it in.
**/
public void repeatNextInserting(SongNode nextOne, int count){
SongNode current = this; // Start from here
SongNode copy; // Where we keep the current copy

for (int i=1; i <= count; i++)
{

copy = nextOne.copyNode(); // Make a copy
current.insertAfter(copy); // INSERT after current
current = copy; // Now append to copy

}
}

Weaving

/**
* Weave the input phrase count times every skipAmount nodes
* @param nextOne node to be copied into the list
* @param count how many times to copy
* @param skipAmount how many nodes to skip per weave
*/
public void weave(SongNode nextOne, int count, int skipAmount)
{
SongNode current = this; // Start from here
SongNode copy; // Where we keep the one to be weaved in
SongNode oldNext; // Need this to insert properly
int skipped; // Number skipped currently

for (int i=1; i <= count; i++)
{
copy = nextOne.copyNode(); // Make a copy

//Skip skipAmount nodes
skipped = 1;
while ((current.next() != null) && (skipped < skipAmount))
{
current = current.next();
skipped++;

};

oldNext = current.next(); // Save its next
current.insertAfter(copy); // Insert the copy after this one
current = oldNext; // Continue on with the rest
if (current.next() == null) // Did we actually get to the end early?

break; // Leave the loop

}
}

Should we
break before
the last
insert (when
we get to the
end) or
after?

Creating a node to weave
> SongNode node2 = new SongNode();
> node2.setPhrase(SongPhrase.riff2());
> node2.showFromMeOn(JMC.PIANO);

Doing a weave

> node.weave(node2,4,2);
> node.showFromMeOn(JMC.PIANO);

Weave Results
Before:

After

Walking the Weave
public void weave(SongNode nextOne, int count,

int skipAmount)
{

SongNode current = this; // Start from here
SongNode copy; // Where we keep the one to be
weaved in
SongNode oldNext; // Need this to insert
properly
int skipped; // Number skipped currently

Skip forward
for (int i=1; i <= count; i++)

{
copy = nextOne.copyNode(); // Make a copy

//Skip skipAmount nodes
skipped = 1;
while ((current.next() != null) && (skipped < skipAmount))
{
current = current.next();
skipped++;

};

Then do an insert

if (current.next() == null) // Did we actually get to the end
early?

break; // Leave the loop

oldNext = current.next(); // Save its next
current.insertAfter(copy); // Insert the copy after this one
current = oldNext; // Continue on with the rest

}

Version 4: Creating a tree of song
parts, each with its own instrument

SongNode and SongPhrase offer us
enormous flexibility in exploring musical
patterns.
But it’s only one part!
We’ve lost the ability of having different
parts starting at different time!
Let’s get that back.

The Structure We’re Creating

Song

SongPart

SongPart

SongNode SongNode

SongNode

SongNode

SongNode

SongNode

SongNode

Starting to look like a tree…

Example
Song

import jm.music.data.*;
import jm.JMC;
import jm.util.*;
import jm.JMC;

public class MyFirstSong {
public static void main(String [] args) {

Song songroot = new Song();

SongNode node1 = new SongNode();
SongNode riff3 = new SongNode();
riff3.setPhrase(SongPhrase.riff3());
node1.repeatNext(riff3,16);
SongNode riff1 = new SongNode();
riff1.setPhrase(SongPhrase.riff1());
node1.weave(riff1,7,1);
SongPart part1 = new SongPart(JMC.PIANO, node1);

songroot.setFirst(part1);

SongNode node2 = new SongNode();
SongNode riff4 = new SongNode();
riff4.setPhrase(SongPhrase.riff4());
node2.repeatNext(riff4,20);
node2.weave(riff1,4,5);
SongPart part2 = new SongPart(JMC.STEEL_DRUMS, node2);

songroot.setSecond(part2);
songroot.show();

}
}

