
“MAIN”
2005/1/3
page i

i

i

i

i

i

i

i

i

Course Notes for
Representing Structure and
Behavior: Multimedia Data

Structures in Java

Mark Guzdial
College of Computing/GVU

Georgia Institute of Technology

PRENTICE HALL, Upper Saddle River, New Jersey 07458

“MAIN”
2005/1/3
page ii

i

i

i

i

i

i

i

i

ii

Copyright held by Mark Guzdial, 2005.

“MAIN”
2005/1/3
page iii

i

i

i

i

i

i

i

i

iii

Dedicated to TBD.

“MAIN”
2005/1/3
page iv

i

i

i

i

i

i

i

i

Contents

Contents iv

I Introducing Modelling 1

1 Constructing the World 2
1.1 Things to do to get started . 4

2 Introduction to Java 7
2.1 Basic (Syntax) Rules of Java . 7

2.1.1 Declarations and Types . 7
2.1.2 Assignment . 8
2.1.3 Conditionals . 9
2.1.4 Iteration . 9
2.1.5 Arrays . 10

2.2 Manipulating Pictures in Java . 10
2.3 Drawing with Turtles . 21
2.4 Sampled Sounds . 22
2.5 JMusic and Imports . 26

II Structuring Media 35

3 Structuring Music 36
3.1 Starting out with JMusic . 36
3.2 Making a Simple Song Object . 37
3.3 Simple structuring of notes with an array 38
3.4 Making the Song Something to Explore 40
3.5 Making Any Song Something to Explore 46

3.5.1 Adding More Phrases . 53
3.5.2 Computing phrases . 56

3.6 Structuring Music . 60
3.6.1 Now Let’s Play! . 63
3.6.2 Creating a Music Tree . 66

4 Structuring Images 72
4.1 Simple arrays of pictures . 72
4.2 Listing the Pictures, Left-to-Right 72

4.2.1 Generalizing moving the element 76
4.3 Listing the Pictures, layering . 78

4.3.1 Reversing a List . 83
4.4 Representing scenes with trees . 84

iv

“MAIN”
2005/1/3
page v

i

i

i

i

i

i

i

i

v

5 Structuring Sounds 85

6 Generalizing Lists and Trees 86

7 User Interface Structures 87

8 Objects in Graphics: Animation 88
8.1 Basic FrameSequence . 88

III Simulations 89

9 Continuous Simulation 90

10 Discrete Event Simulation 91
10.1 Distributions and Events . 91

APPENDICES

A Utility Classes 92

“MAIN”
2005/1/3
page vi

i

i

i

i

i

i

i

i

List of Figures

1.1 Katie’s list of treasure hunt clues . 3
1.2 An organization chart . 3
1.3 A map of a town . 4
1.4 Opening the DrJava Preferences . 5
1.5 Adding the JMusic libraries to DrJava in Preferences 5
1.6 Adding book classes to DrJava . 6
2.1 Parts of DrJava window . 7
2.2 Showing a picture . 11
2.3 Doubling the amount of red in a picture 12
2.4 Doubling the amount of red using our increaseRed method 14
2.5 Flipping our guy character–original (left) and flipped (right) 15
2.6 Using the explore method to see the sizes of the guy and the jungle 17
2.7 Composing the guy into the jungle 18
2.8 Chromakeying the monster into the jungle using different levels of

bluescreening . 19
2.9 A drawing with a turtle . 21
2.10 Dropping the monster character . 22
2.11 Dropping the monster character after a rotation 23
2.12 An iterated turtle drop of a monster 23
2.13 Playing all the notes in a score . 26
2.14 Frequencies, keys, and MIDI notes 27
2.15 Viewing a multipart score . 30
2.16 JMusic documention for the class Phrase 34
3.1 Playing all the notes in a score . 36
3.2 Trying the Amazing Grace song object 39
3.3 A hundred random notes . 39
3.4 Multi-voice Amazing Grace notation 42
3.5 AmazingGraceSongElements with 3 pieces 45
3.6 AmazingGraceSongElements with 3 pieces 46
3.7 Playing some different riffs in patterns 57
3.8 Sax line in the top part, rhythm in the bottom 59
3.9 We now have layers of software, where we deal with only one at a time 59
3.10 First score generated from ordered linked list 63
3.11 Javadoc for the class SongNode . 64
3.12 Repeating a node several times . 66
3.13 Weaving a new node among the old 66
3.14 Multi-part song using our classes . 70
4.1 Array of pictures composed into a background 73
4.2 Elements to be used in our scenes . 73
4.3 Our first scene . 76

vi

“MAIN”
2005/1/3
page vii

i

i

i

i

i

i

i

i

LIST OF FIGURES vii

4.4 Our second scene . 76
4.5 Removing the doggy from the scene 78
4.6 Inserting the doggy into the scene 79
4.7 First rendering of the layered sene 82
4.8 Second rendering of the layered sene 83
8.1 Three frames from the simple FrameSequence example 88

“MAIN”
2005/1/3
page viii

i

i

i

i

i

i

i

i

viii LIST OF FIGURES

“MAIN”
2005/1/3
page 1

i

i

i

i

i

i

i

i

P A R T O N E

INTRODUCING
MODELLING
Chapter 1 Constructing the World

Chapter 2 Introduction to Java

1

“MAIN”
2005/1/3
page 2

i

i

i

i

i

i

i

i

C H A P T E R 1

Constructing the World

1.1 THINGS TO DO TO GET STARTED

What we’re doing when we model is to construct a representation of the
world. Think about our job as being the job of an artist–specifically, let’s consider
a painter. Our canvas and paints are what we make our world out of. That’s what
we’ll be using Java for. Is there more than one way to model the world? Can you
imagine two different paintings, perhaps radically different paintings, of the same
thing?

The really amazing thing about software representations is that they are
executable–they have behavior . They can move, speak, and take action within
the simulation that we can interpret as complex behavior, such as traversing a
scene and accessing resources. A computer model, then, has a structure to it (the
pieces of the model and how they relate) and a behavior to it (the actions of these
pieces and how they interact).

Are there better and worse paintings? That’s hard to say–“I don’t know what
art is, but I know what I like.”

But are there better and worse representations? That’s easier. Imagine that
you have a representation that lists all the people in your department, some 50–100
of them sorted by last names. Now imagine that you have a list of all the people in
your work or academic department, but grouped by role, e.g., teachers vs. writers
vs. administrative staff vs. artists vs. management, or whatever the roles are in
your department. Which representation is better? Depends on what you’re going
to do with it.

• If you need to look up the phone number of someone whose name you know,
the first representation is probably better.

• If the staff gets a new person, the second representation makes it easier to
write the new person’s name in.

Computer Science Idea: Better or worse structures
depend on use
A structure is better or worse depending on how it’s going
to be used – both for access (looking things up) and for
change. How will the structure be changed in the future?
The best structures are fast to use and easy to change in
the ways that you need them to change.

Structuring our data is something new to computers. There are lots of exam-

2

“MAIN”
2005/1/3
page 3

i

i

i

i

i

i

i

i

3

ples of data structuring and the use of representations in your daily life.

• My daughter, Katie, likes to create treasure hunts for the family, where she
hides notes in various rooms (Figure 1.1). Each note references the next note
in the list. This is an example of a linked list . Think about some of the
advantages of this structure: the pieces work as a structure though each piece
is physically separate from the others; and changing the order of the notes
or inserting a new note only requires changing the neighbor lists (the ones
before or after the notes affected).

FIGURE 1.1: Katie’s list of treasure hunt clues

• An organization chart (Figure 1.2) describes the relationships between roles in
an organization. It’s just a representation–there aren’t really lines extending
from the feet of the CEO into the heads of the Presidents of a company. This
particular representation is quite common–it’s called a tree. It’s a common
structure for representing hierarchy .

FIGURE 1.2: An organization chart

“MAIN”
2005/1/3
page 4

i

i

i

i

i

i

i

i

4 Chapter 1 Constructing the World

• A map (Figure 1.3) is another common representation that we use. The real
town actually doesn’t look like that map. The real streets have other build-
ings and things on them–they’re wonderfully rich and complex. When you’re
trying to get around in the town, you don’t want a satellite picture of the
town. That’s too much detail. What you really want is an abstraction of the
real town, one that just shows you what you need to know to get from one
place to another. We think about Interstate I-75 passing through Atlanta,
Chattanooga, Knoxville, Cincinnati, Toledo, and Detroit, and Interstate I-94
goes from Detroit through Chicago. We can think about a map as edges or
connections (streets) between points (or nodes) that might be cities, inter-
sections, buildings, or places of interest. This kind of a structure is called a
graph.

FIGURE 1.3: A map of a town

1.1 THINGS TO DO TO GET STARTED

• Download and install DrJava from http://www.drjava.org.

• Download and install JMusic from http://jmusic.ci.qut.edu.au/.

• You’ll need to tell DrJava about JMusic in order to access it. You use the
Preferences in DrJava (see Figure 1.4) to add in the JMusic jar file and the
instruments (Figure 1.5).

• Make sure that you grab the MediaSources and bookClasses from the CD
or the website.

“MAIN”
2005/1/3
page 5

i

i

i

i

i

i

i

i

Section 1.1 Things to do to get started 5

FIGURE 1.4: Opening the DrJava Preferences

FIGURE 1.5: Adding the JMusic libraries to DrJava in Preferences

• Just as you added JMusic to your DrJava preferences, add the bookClasses
folder to your preferences, too. That way, you’ll be able to access the classes
there immediately. As you create additional classes, store them in the same
folder, so that you’ll have easy access to your new classes, too. (Figure 1.6).

“MAIN”
2005/1/3
page 6

i

i

i

i

i

i

i

i

6 Chapter 1 Constructing the World

FIGURE 1.6: Adding book classes to DrJava

“MAIN”
2005/1/3
page 7

i

i

i

i

i

i

i

i

C H A P T E R 2

Introduction to Java

2.1 BASIC (SYNTAX) RULES OF JAVA

2.2 MANIPULATING PICTURES IN JAVA

2.3 DRAWING WITH TURTLES

2.4 SAMPLED SOUNDS

2.5 JMUSIC AND IMPORTS

Once you start DrJava, you’ll have a screen that looks like Figure 2.1.

Definitions Pane

Where you type
your programs

Interactions Pane

Where you work
with your programs

Document List

Files that you have
open at once, for

use and
compilation

FIGURE 2.1: Parts of DrJava window

2.1 BASIC (SYNTAX) RULES OF JAVA

Here are the basic rules for doing things in Java. We’ll not say much about classes
and methods here–we’ll introduce the syntax for those as we need them. These are
the things that you’ve probably already seen in other languages.

2.1.1 Declarations and Types

If your past experience programming was in a language like Python, Visual Basic, or
Scheme, the trickiest part of learning Java will probably be its types. All variables
and values (including what you get back from functions–except that there are no
functions, only methods) are typed. We must declare the type of a variable before
we use it. The types Picture, Sound, and Sample are already created in the base
classes for this course for you. Other types are built-in for Java.

7

‘‘MAIN’’
2005/1/3
page 8

i

i

i

i

i

i

i

i

8 Chapter 2 Introduction to Java

Java, unlike those other languages, is compiled . The Java compiler actu-
ally takes your Java program code and turns it into another program in another
language–something close to machine language, the bytes that the computer under-
stands natively. It does that to make the program run faster and more efficiently.

Part of that efficiency is making it run in as little memory as possible–as few
bytes, or to use a popular metaphor for memory, mailboxes. If the compiler knows
just how many bytes each variable will need, it can make sure that everything
runs as tightly packed into memory as possible. How will the compiler know which
variables are integers and which are floating point numbers and which are pictures
and which are sounds? We’ll tell it by declaring the type of the variable.

> int a = 5;
> a + 7
12

In the below java, we’ll see that we can only declare a variable once, and a
floating point number must have an “f” after it.

> float f;
> f = 13.2;
Error: Bad types in assignment
> float f = 13.2f;
Error: Redefinition of ’f’
> f = 13.2f
13.2

The type double is also a floating point number, but doesn’t require anything
special.

> double d;
> d = 13.231;
> d
13.231
> d + f
26.43099980926514

There are strings, too.

> String s = "This is a test";
> s
"This is a test"

2.1.2 Assignment

VARIABLE = EXPRESSION

The equals sign (=) is assignment. The left VARIABLE should be replaced
with a declared variable, or (if this is the first time you’re using the variable) you
can declare it in the same assignment, e.g., int a = 12;. If you want to create an
object (not a literal like the numbers and strings in the last section, you use the
term new with the name of the class (maybe with an input for use in constructing
the object).

“MAIN”
2005/1/3
page 9

i

i

i

i

i

i

i

i

Section 2.1 Basic (Syntax) Rules of Java 9

> Picture p = new Picture(FileChooser.pickAFile());
> p.show();

All statements are separated by semi-colons. If you have only one statement
in a block (the body of a conditional or a loop or a method), you don’t have to end
the statement with a semi-colon.

2.1.3 Conditionals

if (EXPRESSION)
STATEMENT

An expression in Java is pretty similar to a logical expression in any other
language. One difference is that a logical and is written as &&, and an or is written
as ||.

STATEMENT above can be replaced with a single statement (like a=12;) or
it can be any number of statements set up inside of curly braces–{ and }.

if (EXPRESSION)
THEN-STATEMENT

else
ELSE-STATEMENT

2.1.4 Iteration

while (EXPRESSION)
STATEMENT

There is a break statement for ending loops.
Probably the most confusing iteration structure in Java is the for loop. It

really combines a specialized form of a while loop into a single statement.

for (INITIAL-EXPRESSION ; CONTINUING-CONDITION;
ITERATION-EXPRESSION)

STATEMENT

A concrete example will help to make this structure make sense.

> for (int num = 1 ; num <= 10 ; num = num + 1)
System.out.println(num);

1
2
3
4
5
6
7
8
9
10

“MAIN”
2005/1/3
page 10

i

i

i

i

i

i

i

i

10 Chapter 2 Introduction to Java

The first thing that gets executed before anything inside the loop is the
INITIAL-EXPRESSION. In our example, we’re creating an integer variable num
and setting it equal to 1. We’ll then execute the loop, testing the CONTINUING-
CONDITION before each time through the loop. In our example, we keep going
as long as the variable num is less than or equal to 10. Finally, there’s something
that happens after each time through the loop – the ITERATION-EXPRESSION.
In this example, we add one to num. The result is that we print out (using
System.out.println, which is the same as print in many languages) the numbers
1 through 10. The expressions in the for loop can actually be several statements,
separated by commas.

The phrase VARIABLE = VARIABLE + 1 is so common in Java that a short
form has been created.

> for (int num = 1 ; num <= 10 ; num++)
System.out.println(num);

2.1.5 Arrays

To declare an array, you specify the type of the elements of the array, then open
and close square brackets. (In Java. all elements of an array have the same type.)
Picture [] declares an array of type Picture. So Picture

myarray; declares myarray to be a variable that can hold an array of Pictures.
To actually create the array, we might say something like new Picture[5].

This declares an array of five pictures. This does not create the pictures, though!
Each of those have to be created separately. The indices will be 0 to 4 in this
example. Java indices start with zero, so if an array has five elements, the maximum
index is four.

> Picture [] myarray = new Picture[5];
> Picture background = new Picture(800,800);
> FileChooser.setMediaPath("D:/cs1316/mediasources/");
> //Can load in any order
> myarray[1]=new Picture(FileChooser.getMediaPath("jungle.jpg"));
> myarray[0]=new Picture(FileChooser.getMediaPath("katie.jpg"));
> myarray[2]=new Picture(FileChooser.getMediaPath("barbara.jpg"));
> myarray[3]=new Picture(FileChooser.getMediaPath("flower1.jpg"));
> myarray[4]=new Picture(FileChooser.getMediaPath("flower2.jpg"));
> myarray[5]=new Picture(FileChooser.getMediaPath("butterfly.jpg"));
ArrayIndexOutOfBoundsException:

at java.lang.reflect.Array.get(Native Method)

2.2 MANIPULATING PICTURES IN JAVA

We can get file paths using FileChooser and its method pickAFile(). FileChooser
is a class in Java. The method pickAFile() is special in that it’s known to the
class, not to objects created from that class (instances). It’s called a static or

“MAIN”
2005/1/3
page 11

i

i

i

i

i

i

i

i

Section 2.2 Manipulating Pictures in Java 11

class method . To access that method in that class, we use dot notation: Class-
name.methodname().

> FileChooser.pickAFile()
"/Users/guzdial/cs1316/MediaSources/beach-smaller.jpg"

New pictures don’t have any value – they’re null.

> Picture p;
> p
null

To make a new picture, we use the code (you’ll never guess this one) new
Picture(). Then we’ll have the picture show itself by telling it (using dot notation)
to show() (Figure 2.2).

> p = new Picture("/Users/guzdial/cs1316/MediaSources/beach-smaller.jpg");
> p
Picture, filename /Users/guzdial/cs1316/MediaSources/beach-smaller.jpg
height 360 width 480
> p.show()

FIGURE 2.2: Showing a picture

Â

Á

¿

À

Common Bug: Java may be hidden on Macintosh
When you open windows or pop-up file choosers on a Mac-
intosh, they will appear in a separate “Java” application.
You may have to find it from the Dock to see it.

The downside of types is that, if you need a variable, you need to create it.
In general, that’s not a big deal. In specific cases, it means that you have to plan
ahead. Let’s say that you want a variable to be a pixel (class Pixel) that you’re
going to assign inside a loop to each pixel in a list of pixels. In that case, the

“MAIN”
2005/1/3
page 12

i

i

i

i

i

i

i

i

12 Chapter 2 Introduction to Java

declaration of the variable has to be before the loop. If the declaration were inside
the loop, you’d be re-creating the variable, which Java doesn’t allow.

To create an array of pixels, we use the notation Pixels []. The square
brackets are used in Java to index an array. In this notation, the open-close brackets
means “an array of indeterminate size.”

Here’s an example of increasing the red in each pixel of a picture by doubling
(Figure 2.3).

> Pixel px;
> int index = 0;
> Pixel [] mypixels = p.getPixels();
> while (index < mypixels.length)
{

px = mypixels[index];
px.setRed(px.getRed()*2);
index = index + 1;

}
> p.show()

FIGURE 2.3: Doubling the amount of red in a picture

How would we put this process in a file, something that we could use for any
picture? If we want any picture to be able to increase the amount of red, we need
to edit the class Picture in the file Picture.java and add a new method, maybe
named increaseRed.

Here’s what we would want to type in. The special variable this will represent
the Picture instance that is being asked to increase red. (In Python or Smalltalk,
this is typically called self.)

Program 1: Method to increase red in Picture

“MAIN”
2005/1/3
page 13

i

i

i

i

i

i

i

i

Section 2.2 Manipulating Pictures in Java 13

1 /∗∗
∗ Method to inc rea se the red in a p i c t u r e .

3 ∗/
public void increaseRed ()

5 {
Pixe l px ;

7 int index = 0 ;
P ixe l [] mypixels = this . g e tP i x e l s () ;

9 while (index < mypixels . l ength)
{

11 px = mypixels [index] ;
px . setRed (px . getRed () ∗ 2) ;

13 index = index + 1 ;
}

15 }

How it works:

• The notation /* begins a comment in Java – stuff that the compiler will
ignore. The notation */ ends the comment.

• We have to declare methods just as we do variables! The term public means
that anyone can use this method. (Why would we do otherwise? Why would
we want a method to be private? We’ll start explaining that next chapter.)
The term void means “this is a method that doesn’t return anything–don’t
expect the return value to have any particular type, then.”

Once we type this method into the bottom of class Picture, we can press the
Compile All button. If there are no errors, we can test our new method. When
you compile your code, the objects and variables you had in the Interactions Pane
disappear. You’ll have to recreate the objects you want.

'

&

$

%

Making it Work Tip: The command history isn’t
reset!
Though you lose the variables and objects after a compi-
lation, the history of all commands you typed in DrJava is
still there. Just hit up-arrow to get to previous commands,
then hit return to execute them again.

You can see how this works in Figure 2.4.

> Picture p = new Picture(FileChooser.pickAFile());

> p.increaseRed()

> p.show()

Later on, we’re going to want to have characters moving to the left or to the
right. We’ll probably only want to create one of these (left or right), then flip it
for the other side. Let’s create the method for doing that. Notice that this method

“MAIN”
2005/1/3
page 14

i

i

i

i

i

i

i

i

14 Chapter 2 Introduction to Java

FIGURE 2.4: Doubling the amount of red using our increaseRed method

returns a new picture, not modifying the original one. We’ll see later that that’s
pretty useful (Figure 2.5).

Program 2: Method to flip an image

1 /∗∗
∗ Method to f l i p an image l e f t −to−r i g h t

3 ∗∗/
public Picture f l i p () {

5

Pixe l cu r rP i x e l ;
7 Picture t a r g e t = new Picture (this . getWidth () , this . getHeight ()) ;

9 for (int s r cx = 0 , trgx = getWidth ()−1; s r cx < getWidth () ;
s r cx++, trgx−−)

11 {
for (int s r cy = 0 , trgy = 0 ; s r cy < getHeight () ;

13 s r cy++, trgy++)
{

15 // ge t the curren t p i x e l
cu r rP ix e l = this . g e tP ix e l (srcx , s r cy) ;

17

/∗ copy the co l o r o f cu r rP i x e l i n t o t a r g e t
19 ∗/

“MAIN”
2005/1/3
page 15

i

i

i

i

i

i

i

i

Section 2.2 Manipulating Pictures in Java 15

t a r g e t . g e tP ix e l (trgx , t rgy) . s e tCo lo r (cu r rP ix e l . getColor ()) ;
21 }

} ;
23 return t a r g e t ;

}

> Picture p = new Picture(FileChooser.pickAFile());
> p
Picture, filename D:\cs1316\MediaSources\guy1-left.jpg height 200
width 84
> Picture flipp = p.flip();
> flipp.show();

FIGURE 2.5: Flipping our guy character–original (left) and flipped (right)

'

&

$

%

Common Bug: Width is the size, not the coordi-
nate
Why did we subtract one from getWidth() (which de-
faults to this.getWidth() to set the target X coordinate
(trgx)? getWidth() returns the number of pixels across
the picture. But the last coordinate in the row is one less
than that, because Java starts all arrays at zero. Nor-
mal everyday counting starts with one, and that’s what
getWidth() reports.

Scaling a picture larger.

> Picture doll = new Picture(FileChooser.pickAFile());
> Picture bigdoll = doll.scale(2.0);
> bigdoll.show();
> bigdoll.write("bigdoll.jpg");

“MAIN”
2005/1/3
page 16

i

i

i

i

i

i

i

i

16 Chapter 2 Introduction to Java

Program 3: Method for Picture to scale by a factor

/∗∗
2 ∗ Method to s c a l e the p i c t u r e by a fac to r , and re turn the r e s u l t

∗ @param s ca l e f a c t o r to s c a l e by (1 .0 s t a y s the same , 0 .5 decrease s each s i d e by 0 .5 , 2 .0 doub l e s each s i d e)
4 ∗ @return the s ca l e d p i c t u r e

∗/
6 public Picture s c a l e (double f a c t o r)

{
8 Pixe l sourceP ixe l , t a r g e tP i x e l ;

P i c ture canvas = new Picture ((int) (f a c t o r ∗ this . getWidth ())+1 ,
10 (int) (f a c t o r ∗ this . getHeight ())+1) ;

// loop through the columns
12 for (double sourceX = 0 , targetX=0;

sourceX < this . getWidth () ;
14 sourceX+=(1/ f a c t o r) , targetX++)

{
16 // loop through the rows

for (double sourceY=0, targetY=0;
18 sourceY < this . getHeight () ;

sourceY+=(1/ f a c t o r) , targetY++)
20 {

s ou r c eP ix e l = this . g e tP ix e l ((int) sourceX , (int) sourceY) ;
22 t a r g e tP i x e l = canvas . g e tP ix e l ((int) targetX , (int) targetY) ;

t a r g e tP i x e l . s e tCo lo r (s ou r c eP ix e l . getColor ()) ;
24 }

}
26 return canvas ;

}

Let’s place our “guy” in the jungle. First, we’ll explore the pictures to
figure out their sizes and where we want to compose them (Figure 2.6). We’ll use
setMediaPath and getMediaPath to make it easier to get the jungle by name.

> FileChooser.setMediaPath("D:
cs1316
Mediasources
");
> Picture bg = new Picture(FileChooser.getMediaPath("jungle.jpg"));
> bg.explore();
> p.explore();

Program 4: Method to compose this picture into a target

“MAIN”
2005/1/3
page 17

i

i

i

i

i

i

i

i

Section 2.2 Manipulating Pictures in Java 17

FIGURE 2.6: Using the explore method to see the sizes of the guy and the jungle

1 /∗∗
∗ Method to compose t h i s p i c t u r e onto t a r g e t

3 ∗ at a g iven po in t .
∗ @param t a r g e t the p i c t u r e onto which we chromakey t h i s p i c t u r e

5 ∗ @param t a r g e t x t a r g e t X po s i t i o n to s t a r t a t
∗ @param ta r g e t y t a r g e t Y po s i t i o n to s t a r t a t

7 ∗/
public void compose (P ic ture target , int targetx , int ta rge ty)

9 {
Pixe l cu r rP i x e l = null ;

11 Pixe l newPixel = null ;

13 // loop through the columns
for (int s r cx =0, trgx = targe tx ; s r cx < getWidth () ;

15 s r cx++, trgx++)
{

17

// loop through the rows
19 for (int s r cy =0, trgy=targe ty ; s r cy < getHeight () ;

s r cy++, trgy++)
21 {

23 // ge t the curren t p i x e l
cu r rP ix e l = this . g e tP ix e l (srcx , s r cy) ;

25

/∗ copy the co l o r o f cu r rP i x e l i n t o t a r ge t ,
27 ∗ but on ly i f i t ’ l l f i t .

∗/
29 i f (t rgx < t a r g e t . getWidth () && trgy < t a r g e t . getHeight ())

‘‘MAIN’’
2005/1/3
page 18

i

i

i

i

i

i

i

i

18 Chapter 2 Introduction to Java

{
31 newPixel = ta rg e t . g e tP ix e l (trgx , t rgy) ;

newPixel . s e tCo lo r (cu r rP ix e l . getColor ()) ;
33 }

}
35 }

}

We can then compose the guy into the jungle like this (Figure 2.7).

> Picture p = new Picture(FileChooser.getMediaPath("guy1-left.jpg"));
> Picture bg = new Picture(FileChooser.getMediaPath("jungle.jpg"));
> p.compose(bg,65,250);
> bg.show();
> bg.write("D:
cs1316
jungle-composed-with-guy.jpg")

FIGURE 2.7: Composing the guy into the jungle

'

&

$

%

Common Bug: Don’t try to change the input vari-
ables
You might be wondering why we copied targetx into trgx
in the compose method. While it’s perfectly okay to use
methods on input objects (as we do in compose() when we
get pixels from the target), and maybe change the object
that way, don’t try to add or subtract the values passed
in. It’s complicated why it doesn’t work, or how it does
work in some ways. It’s best just to use them as variables
you can read and call methods on, but not change.

There are a couple of different chromakey methods in Picture. chromakey
lets you input the color for the background and a threshold for how close you want
the color to be. bluescreen assumes that the background is blue, and looks for
more blue than red or green (Figure 2.8. If there’s a lot of blue in the character,
it’s hard to get a threshold to work right

“MAIN”
2005/1/3
page 19

i

i

i

i

i

i

i

i

Section 2.2 Manipulating Pictures in Java 19

> Picture p = new Picture(FileChooser.getMediaPath("monster-right1.jpg"));
> Picture bg = new Picture(FileChooser.getMediaPath("jungle.jpg"));
> p.bluescreen(bg,65,250);
> import java.awt.*; //to get to colors
> p.chromakey(bg,Color.blue,100,165,200);
> p.chromakey(bg,Color.blue,200,26,250);
> bg.show();
> bg.write("D:/cs1316/jungle-with-monster.jpg");

FIGURE 2.8: Chromakeying the monster into the jungle using different levels of
bluescreening

Program 5: Methods for general chromakey and bluescreen

/∗∗
2 ∗ Method to do chromakey us ing an input co l o r f o r background

∗ at a g iven po in t .
4 ∗ @param t a r g e t the p i c t u r e onto which we chromakey t h i s p i c t u r e

∗ @param bgco l o r the co l o r to make t ransparen t
6 ∗ @param th r e s h o l d w i th in t h i s d i s t ance from bgco lor , make t ransparen t

∗ @param t a r g e t x t a r g e t X po s i t i o n to s t a r t a t
8 ∗ @param ta r g e t y t a r g e t Y po s i t i o n to s t a r t a t

∗/
10 public void chromakey (P ic ture target , Color bgco lor , int thresho ld ,

int targetx , int ta rge ty)
12 {

Pixe l cu r rP i x e l = null ;
14 Pixe l newPixel = null ;

“MAIN”
2005/1/3
page 20

i

i

i

i

i

i

i

i

20 Chapter 2 Introduction to Java

16 // loop through the columns
for (int s r cx =0, trgx=targe tx ; srcx<getWidth () && trgx<t a r g e t . getWidth () ; s r cx++, trgx++)

18 {

20 // loop through the rows
for (int s r cy =0, trgy=targe ty ; srcy<getHeight () && trgy<t a r g e t . getHeight () ; s r cy++, trgy++)

22 {

24 // ge t the curren t p i x e l
cu r rP ix e l = this . g e tP ix e l (srcx , s r cy) ;

26

/∗ i f t he co l o r at the curren t p i x e l i s w i th in t h r e s h o l d o f
28 ∗ the input co lor , then don ’ t copy the p i x e l

∗/
30 i f (cu r rP i x e l . c o l o rD i s t ance (bgco lo r)> th r e sho ld)

{
32 t a r g e t . g e tP ix e l (trgx , t rgy) . s e tCo lo r (cu r rP ix e l . getColor ()) ;

}
34 }

}
36 }

38 /∗∗
∗ Method to do chromakey assuming b l u e background f o r background

40 ∗ at a g iven po in t .
∗ @param t a r g e t the p i c t u r e onto which we chromakey t h i s p i c t u r e

42 ∗ @param t a r g e t x t a r g e t X po s i t i o n to s t a r t a t
∗ @param ta r g e t y t a r g e t Y po s i t i o n to s t a r t a t

44 ∗/
public void b lue s c r e en (P ic ture target ,

46 int targetx , int ta rge ty)
{

48 Pixe l cu r rP i x e l = null ;
P ixe l newPixel = null ;

50

// loop through the columns
52 for (int s r cx =0, trgx=targe tx ;

srcx<getWidth () && trgx<t a r g e t . getWidth () ;
54 s r cx++, trgx++)

{
56

// loop through the rows
58 for (int s r cy =0, trgy=targe ty ;

srcy<getHeight () && trgy<t a r g e t . getHeight () ;
60 s r cy++, trgy++)

{
62

// ge t the curren t p i x e l
64 cu r rP ix e l = this . g e tP ix e l (srcx , s r cy) ;

66 /∗ i f t he co l o r at the curren t p i x e l most ly b l u e (b l u e va lue i s

“MAIN”
2005/1/3
page 21

i

i

i

i

i

i

i

i

Section 2.3 Drawing with Turtles 21

∗ g r ea t e r than red and green combined) , then don ’ t copy p i x e l
68 ∗/

i f (cu r rP i x e l . getRed () + cu r rP ix e l . getGreen () > cu r rP ix e l . getBlue ())
70 {

t a r g e t . g e tP ix e l (trgx , t rgy) . s e tCo lo r (cu r rP ix e l . getColor ()) ;
72 }

}
74 }

}

2.3 DRAWING WITH TURTLES

We’re going to use turtles to draw on our pictures and to simplify animation. (See
the Appendix for what the Turtle class looks like.) Here’s how we’ll use this class
(Figure 2.9). Turtles can be created on blank Picture instances (which start out
white) in the middle of the picture with pen down and with black ink.

> Picture blank = new Picture(200,200);
> Turtle fred = new Turtle(blank);
> fred
Unknown at 100, 100 heading 0
> fred.turn(-45);
> fred.forward(100);
> fred.turn(90);
> fred.forward(200);
> blank.show();
> blank.write("D:/cs1316/turtleexample.jpg")

FIGURE 2.9: A drawing with a turtle

How it works:

• Picture objects can be created as blank, with just a horizontal and vertical
number of pixels.

‘‘MAIN’’
2005/1/3
page 22

i

i

i

i

i

i

i

i

22 Chapter 2 Introduction to Java

• Positive turns are clockwise, and negative are counter-clockwise.

We can use turtles with pictures, through the drop method. Pictures get
“dropped” behind (and to the right of) the turtle. If it’s facing down (heading of
180.0), then the picture shows up upside down (Figure 2.10).

> Picture monster = new Picture(FileChooser.getMediaPath("monster-right1.jpg"));
> Picture newbg = new Picture(400,400);
> Turtle myturt = new Turtle(newbg);
> myturt.drop(monster);
> newbg.show();

FIGURE 2.10: Dropping the monster character

We’ll rotate the turtle and drop again (Figure 2.11).

> myturt.turn(180);
> myturt.drop(monster);
> newbg.repaint();

We can drop using loops and patterns, too (Figure 2.12). Why don’t we see
12 monsters here? I’m not sure – there may be limits to how much we can rotate.

> Picture frame = new Picture(600,600);
> Turtle mabel = new Turtle(frame);
> for (int i = 0; i < 12; i++)

mabel.drop(monster); mabel.turn(30);

2.4 SAMPLED SOUNDS

We can work with sounds that come from WAV files. We sometimes call these sam-
pled sounds because they are sounds made up of samples (thousands per second),
in comparison with MIDI music (see the next section) which encodes music (notes,
durations, instrument selections) but not the sounds themselves.

“MAIN”
2005/1/3
page 23

i

i

i

i

i

i

i

i

Section 2.4 Sampled Sounds 23

FIGURE 2.11: Dropping the monster character after a rotation

FIGURE 2.12: An iterated turtle drop of a monster

> Sound s = new Sound(FileChooser.getMediaPath("gonga-2.wav"));

> Sound s2 = new Sound(FileChooser.getMediaPath("gongb-2.wav"));

> s.play();

> s2.play();

> s.reverse().play(); // Play first sound in reverse

> s.append(s2).play(); // Play first then second sound

> s.mix(s2,0.25).play(); // Mix in the second sound

> s.mix(s2.scale(0.5),0.25).play(); // Mix in the second sound sped
up

> s2.scale(0.5).play(); // Play the second sound sped up

> s2.scale(2.0).play(); // Play the second sound slowed down

> s.mix(s2.scale(2.0),0.25).play();

“MAIN”
2005/1/3
page 24

i

i

i

i

i

i

i

i

24 Chapter 2 Introduction to Java

Program 6: Sound methods

1 /∗∗
∗ Method to r e v e r s e a sound .

3 ∗∗/
public Sound r ev e r s e ()

5 {
Sound ta r g e t = new Sound (getLength ()) ;

7 int sampleValue ;

9 for (int s rc Index =0, t rgIndex=getLength ()−1;
s rc Index < getLength () ;

11 s rc Index++,trgIndex−−)
{

13 sampleValue = this . getSampleValueAt (s rc Index) ;
t a r g e t . setSampleValueAt (trgIndex , sampleValue) ;

15 } ;
return t a r g e t ;

17 }

19 /∗∗
∗ Return t h i s sound appended wi th the input sound

21 ∗ @param appendSound sound to append to t h i s
∗∗/

23 public Sound append (Sound appendSound) {
Sound ta r g e t = new Sound (getLength ()+appendSound . getLength ()) ;

25 int sampleValue ;

27 // Copy t h i s sound in
for (int s rc Index =0, t rgIndex =0;

29 s rc Index < getLength () ;
s r c Index++,trgIndex++)

31 {
sampleValue = this . getSampleValueAt (s rc Index) ;

33 t a r g e t . setSampleValueAt (trgIndex , sampleValue) ;
} ;

35

// Copy appendSound in to t a r g e t
37 for (int s rc Index =0, t rgIndex=getLength () ;

s r c Index < appendSound . getLength () ;
39 s rc Index++,trgIndex++)

{
41 sampleValue = appendSound . getSampleValueAt (s rc Index) ;

t a r g e t . setSampleValueAt (trgIndex , sampleValue) ;
43 } ;

45 return t a r g e t ;

“MAIN”
2005/1/3
page 25

i

i

i

i

i

i

i

i

Section 2.4 Sampled Sounds 25

}
47

/∗∗
49 ∗ Mix the input sound wi th t h i s sound , wi th percent r a t i o o f input .

∗ Use mixIn sound up to l e n g t h o f t h i s sound .
51 ∗ Return mixed sound .

∗ @param mixIn sound to mix in
53 ∗ @param ra t i o how much o f input mixIn to mix in

∗∗/
55 public Sound mix (Sound mixIn , double r a t i o){

Sound ta r g e t = new Sound (getLength ()) ;
57

int sampleValue , mixValue , newValue ;
59

// Copy t h i s sound in
61 for (int s rc Index =0, trgIndex =0;

s rc Index < getLength () && src Index < mixIn . getLength () ;
63 s rc Index++,trgIndex++)

{
65 sampleValue = this . getSampleValueAt (s rc Index) ;

mixValue = mixIn . getSampleValueAt (s rc Index) ;
67 newValue = (int) (r a t i o ∗mixValue) + (int)((1 .0− r a t i o)∗ sampleValue) ;

t a r g e t . setSampleValueAt (trgIndex , newValue) ;
69 } ;

return t a r g e t ;
71 }

73 /∗∗
∗ Sca le up or down a sound by the g iven f a c t o r

75 ∗ (1 .0 re turns the same , 2 .0 doub l e s the l eng th , and 0.5 ha l v e s the l e n g t h)
∗ @param f a c t o r r a t i o to inc rea se or decrease

77 ∗∗/
public Sound s c a l e (double f a c t o r){

79 Sound ta r g e t = new Sound ((int) (f a c t o r ∗ (1+getLength ()))) ;
int sampleValue ;

81

// Copy t h i s sound in
83 for (double s rc Index =0.0 , t rgIndex =0;

s rc Index < getLength () ;
85 s rc Index+=(1/ f a c t o r) , t rgIndex++)

{
87 sampleValue = this . getSampleValueAt ((int) s r c Index) ;

t a r g e t . setSampleValueAt ((int) trgIndex , sampleValue) ;
89 } ;

return t a r g e t ;
91 }

How it works: There are several tricky things going on in these methods, but
not too many. Most of them are just copy loops with some tweak.

• The class Sound has a constructor that takes the number of samples.

‘‘MAIN’’
2005/1/3
page 26

i

i

i

i

i

i

i

i

26 Chapter 2 Introduction to Java

FIGURE 2.13: Playing all the notes in a score

• You’ll notice in reverse that we can use -- as well as ++. variable-- is the
same as variable = variable - 1.

• In scale you’ll see another shorthand that Java allows: srcIndex+=(1/factor)
is the same as srcIndex = srcIndex + (1/factor).

• A double is a floating point number. These can’t be automatically converted
to integers. To use the results as integers where we need integers, we cast the
result. We do that by putting the name of the class in parentheses before the
result, e.g. (int) srcIndex.

2.5 JMUSIC AND IMPORTS

Before you can use special features, those not built into the basic Java language,
you have to import them.

Here’s what it looks like when you run with the JMusic libraries installed
(Figure 2.13):

Welcome to DrJava.
> import jm.music.data.*;
> import jm.JMC;
> import jm.util.*;
> Note n = new Note(60,101);
> Note n = new Note(60,0.5); // Can’t do this
Error: Redefinition of ’n’
> n=new Note(60,0.5);
> Phrase phr = new Phrase();
> phr.addNote(n);
> View.notate(phr);

The first argument to the constructor (the call to the class to create a new
instance) for class Note is the MIDI note. Figure 2.14 shows the relation between
frequencies, keys, and MIDI notes1. A simpler summary is in Table 2.1.

Here’s another java that uses a different Phrase constructor to specify a start-
ing time and an instrument which is also known as a MIDI program.

> import jm.music.data.*;
> import jm.JMC;
> import jm.util.*;

1Taken from http://www.phys.unsw.edu.au/~jw/notes.html

‘‘MAIN’’
2005/1/3
page 27

i

i

i

i

i

i

i

i

Section 2.5 JMusic and Imports 27

FIGURE 2.14: Frequencies, keys, and MIDI notes

‘‘MAIN’’
2005/1/3
page 28

i

i

i

i

i

i

i

i

28 Chapter 2 Introduction to Java

Octave #
Note Numbers

C C# D D# E F F# G G# A A# B
-1 0 1 2 3 4 5 6 7 8 9 10 11
0 12 13 14 15 16 17 18 19 20 21 22 23
1 24 25 26 27 28 29 30 31 32 33 34 35
2 36 37 38 39 40 41 42 43 44 45 46 47
3 48 49 50 51 52 53 54 55 56 57 58 59
4 60 61 62 63 64 65 66 67 68 69 70 71
5 72 73 74 75 76 77 78 79 80 81 82 83
6 84 85 86 87 88 89 90 91 92 93 94 95
7 96 97 98 99 100 101 102 103 104 105 106 107
8 108 109 110 111 112 113 114 115 116 117 118 119
9 120 121 122 123 124 125 126 127

TABLE 2.1: MIDI notes

> Note n = new Note(60,0.5)
> Note n2 = new Note(JMC.C4,JMC.QN)
> Phrase phr = new Phrase(0.0,JMC.FLUTE);
> phr.addNote(n);
> phr.addNote(n2);
> View.notate(phr);

How it works:

• We import the pieces we need for Jmusic.

• We create a note using constants, then using named constants. JMC.C4 means
“C in the 4th octave.” JMC.QN means “quarter note.” JMC is the class
Java Music Constants, and it holds many important constants. The con-
stant JMC.C4 means 60, like in the Table 2.1. A sharp would be noted like
JMC.CS5 (C-sharp in the 5th octave). Eighth note is JMC.EN and half note is
JMC.HN. A dotted eighth would be JMC.DEN.

• We create a Phrase object that starts at time 0.0 and uses the instrument
JMC.FLUTE. JMC.FLUTE is a constant that corresponds to the correct instru-
ment from Table 2.2.

• We put the notes into the Phrase instance, and then notate and view the
whole phrase.

We can create multiple parts with different start times and instruments. We
want the different parts to map onto different MIDI channels if we want different
start times and instruments (Figure 2.15). We’ll need to combine the different parts
into a Score object, which can then be viewed and notated the same way as we
have with phrases and parts.

‘‘MAIN’’
2005/1/3
page 29

i

i

i

i

i

i

i

i

Section 2.5 JMusic and Imports 29

Piano
0 — Acoustic Grand
Piano
1 — Bright Acoustic
Piano
2 — Electric Grand
Piano
3 — Honky-tonk Piano
4 — Rhodes Piano
5 — Chorused Piano
6 — Harpsichord
7 — Clavinet

Chromatic Per-
cussion
8 — Celesta
9 — Glockenspiel
10 — Music box
11 — Vibraphone
12 — Marimba
13 — Xylophone
14 — Tubular Bells
15 — Dulcimer
Organ
16 — Hammond Organ
17 — Percussive Organ
18 — Rock Organ
19 — Church Organ
20 — Reed Organ
21 — Accordian
22 — Harmonica
23 — Tango Accordian
Guitar
24 — Acoustic Guitar
(nylon)
25 — Acoustic Guitar
(steel)
26 — Electric Guitar
(jazz)
27 — Electric Guitar
(clean)
28 — Electric Guitar
(muted)
29 — Overdriven Guitar
30 — Distortion Guitar
31 — Guitar Harmonics

Bass
32 — Acoustic Bass
33 — Electric Bass (fin-
ger)
34 — Electric Bass (pick)
35 — Fretless Bass
36 — Slap Bass 1
37 — Slap Bass 2
38 — Synth Bass 1
39 — Synth Bass 2
Strings
40 — Violin
41 — Viola
42 — Cello
43 — Contrabass
44 — Tremolo Strings
45 — Pizzicato Strings
46 — Orchestral Harp
47 — Timpani

Ensemble
48 — String Ensemble 1
49 — String Ensemble 2
50 — Synth Strings 1
51 — Synth Strings 2
52 — Choir Aahs
53 — Voice Oohs
54 — Synth Voice
55 — Orchestra Hit

Brass
56 — Trumpet
57 — Trombone
58 — Tuba
59 — Muted Trumpet
60 — French Horn
61 — Brass Section
62 — Synth Brass 1
63 — Synth Brass 2

Reed
64 — Soprano Sax
65 — Alto Sax
66 — Tenor Sax
67 — Baritone Sax
68 — Oboe
69 — English Horn
70 — Bassoon
71 — Clarinet

Pipe
72 — Piccolo
73 — Flute
74 — Recorder
75 — Pan Flute
76 — Bottle Blow
77 — Shakuhachi
78 — Whistle
79 — Ocarina
Synth Lead
80 — Lead 1 (square)
81 — Lead 2 (sawtooth)
82 — Lead 3 (caliope
lead)
83 — Lead 4 (chiff lead)
84 — Lead 5 (charang)
85 — Lead 6 (voice)
86 — Lead 7 (fifths)
87 — Lead 8 (brass +
lead)

Synth Pad
88 — Pad 1 (new age)
89 — Pad 2 (warm)
90 — Pad 3 (polysynth)
91 — Pad 4 (choir)
92 — Pad 5 (bowed)
93 — Pad 6 (metallic)
94 — Pad 7 (halo)
95 — Pad 8 (sweep)

Synth Effects
96 — FX 1 (rain)
97 — FX 2 (soundtrack)
98 — FX 3 (crystal)
99 — FX 4 (atmosphere)
100 — FX 5 (brightness)
101 — FX 6 (goblins)
102 — FX 7 (echoes)
103 — FX 8 (sci-fi)
Ethnic
104 — Sitar
105 — Banjo
106 — Shamisen
107 — Koto
108 — Kalimba
109 — Bagpipe
110 — Fiddle
111 — Shanai

Percussive
112 — Tinkle Bell
113 — Agogo
114 — Steel Drums
115 — Woodblock
116 — Taiko Drum
117 — Melodic Tom
118 — Synth Drum
119 — Reverse Cymbal

Sound Effects
120 — Guitar Fret Noise
121 — Breath Noise
122 — Seashore
123 — Bird Tweet
124 — Telephone Ring
125 — Helicopter
126 — Applause
127 — Gunshot

TABLE 2.2: MIDI Program numbers

“MAIN”
2005/1/3
page 30

i

i

i

i

i

i

i

i

30 Chapter 2 Introduction to Java

> Note n3=new Note(JMC.E4,JMC.EN)
> Note n4=new Note(JMC.G4,JMC.HN)
> Phrase phr2= new Phrase(0.5,JMC.PIANO);
> phr2.addNote(n3)
> phr2.addNote(n4)
> phr
-------- jMusic PHRASE: ’Untitled Phrase’ contains 2 notes. Start
time: 0.0 --------
jMusic NOTE: [Pitch = 60][RhythmValue = 0.5][Dynamic = 85][Pan = 0.5][Duration
= 0.45]
jMusic NOTE: [Pitch = 60][RhythmValue = 1.0][Dynamic = 85][Pan = 0.5][Duration
= 0.9]

> phr2
-------- jMusic PHRASE: ’Untitled Phrase’ contains 2 notes. Start
time: 0.5 --------
jMusic NOTE: [Pitch = 64][RhythmValue = 0.5][Dynamic = 85][Pan = 0.5][Duration
= 0.45]
jMusic NOTE: [Pitch = 67][RhythmValue = 2.0][Dynamic = 85][Pan = 0.5][Duration
= 1.8]

> Part partA = new Part(phr,"Part A",JMC.FLUTE,1)
> Part partB = new Part(phr2,"Part B",JMC.PIANO,2)
> Phrase phraseAB = new Phrase()
> Score scoreAB = new Score()
> scoreAB.addPart(partA)
> scoreAB.addPart(partB)
> View.notate(scoreAB)

FIGURE 2.15: Viewing a multipart score

How do you figure out what JMusic can do, what the classes are, and how
to use them? There is a standard way of documenting Java classes called Javadoc
which produces really useful documentation (Figure 2.16). JMusic is documented in
this way. You can get to the JMusic Javadoc at http://jmusic.ci.qut.edu.au/
jmDocumentation/index.html, or you can download it onto your own computer
http://jmusic.ci.qut.edu.au/GetjMusic.html.

Table 2.3 lists the constant names in JMC for accessing instrument names.

“MAIN”
2005/1/3
page 31

i

i

i

i

i

i

i

i

Section 2.5 JMusic and Imports 31

AAH BREATHNOISE EL BASS
ABASS BRIGHT ACOUSTIC EL GUITAR
AC GUITAR BRIGHTNESS ELECTRIC BASS
ACCORDION CALLOPE ELECTRIC GRAND
ACOUSTIC BASS CELESTA ELECTRIC GUITAR
ACOUSTIC GRAND CELESTE ELECTRIC ORGAN
ACOUSTIC GUITAR CELLO ELECTRIC PIANO
AGOGO CGUITAR ELPIANO
AHHS CHARANG ENGLISH HORN
ALTO CHIFFER EPIANO
ALTO SAX CHIFFER LEAD EPIANO2
ALTO SAXOPHONE CHOIR FANTASIA
APPLAUSE CHURCH ORGAN FBASS
ATMOSPHERE CLAR FIDDLE
BAG PIPES CLARINET FINGERED BASS
BAGPIPE CLAV FLUTE
BAGPIPES CLAVINET FRENCH HORN
BANDNEON CLEAN GUITAR FRET
BANJO CONCERTINA FRET NOISE
BARI CONTRA BASS FRETLESS
BARI SAX CONTRABASS FRETLESS BASS
BARITONE CRYSTAL FRETNOISE
BARITONE SAX CYMBAL FRETS
BARITONE SAXOPHONE DGUITAR GLOCK
BASS DIST GUITAR GLOCKENSPIEL
BASSOON DISTORTED GUITAR GMSAW WAVE
BELL DOUBLE BASS GMSQUARE WAVE
BELLS DROPS GOBLIN
BIRD DRUM GT HARMONICS
BOTTLE DX EPIANO GUITAR
BOTTLE BLOW EBASS GUITAR HARMONICS
BOWED GLASS ECHO HALO
BRASS ECHO DROP HALO PAD
BREATH ECHO DROPS HAMMOND ORGAN

TABLE 2.3: JMusic constants in JMC for MIDI program changes, Part 1

“MAIN”
2005/1/3
page 32

i

i

i

i

i

i

i

i

32 Chapter 2 Introduction to Java

HARMONICA PANFLUTE SLAP
HARMONICS PBASS SLAP BASS
HARP PHONE SLOW STRINGS
HARPSICHORD PIANO SOLO VOX
HELICOPTER PIANO ACCORDION SOP
HONKYTONK PIC SOPRANO
HONKYTONK PIANO PICC SOPRANO SAX
HORN PICCOLO SOPRANO SAXOPHONE
ICE RAIN PICKED BASS SOUNDEFFECTS
ICERAIN PIPE ORGAN SOUNDFX
JAZZ GUITAR PIPES SOUNDTRACK
JAZZ ORGAN PITZ SPACE VOICE
JGUITAR PIZZ SQUARE
KALIMBA PIZZICATO STRINGS STAR THEME
KOTO POLY SYNTH STEEL DRUM
MARIMBA POLYSYNTH STEEL DRUMS
METAL PAD PSTRINGS STEEL GUITAR
MGUITAR RAIN STEELDRUM
MUSIC BOX RECORDER STEELDRUMS
MUTED GUITAR REED ORGAN STR
MUTED TRUMPET REVERSE CYMBAL STREAM
NGUITAR RHODES STRINGS
NYLON GUITAR SAW SWEEP
OBOE SAWTOOTH SWEEP PAD
OCARINA SAX SYN CALLIOPE
OGUITAR SAXOPHONE SYN STRINGS
OOH SBASS SYNTH BASS
OOHS SEA SYNTH BRASS
ORCHESTRA HIT SEASHORE SYNTH CALLIOPE
ORGAN SFX SYNTH DRUM
ORGAN2 SGUITAR SYNTH DRUMS
ORGAN3 SHAKUHACHI SYNTH STRINGS
OVERDRIVE GUITAR SHAMISEN SYNVOX
PAD SHANNAI TAIKO
PAN FLUTE SITAR TELEPHONE

TABLE 2.4: JMusic constants in JMC for MIDI program changes, Part 2

“MAIN”
2005/1/3
page 33

i

i

i

i

i

i

i

i

Section 2.5 JMusic and Imports 33

TENOR
TENOR SAX
TENOR SAXOPHONE
THUMB PIANO
THUNDER
TIMP
TIMPANI
TINKLE BELL
TOM
TOM TOM
TOM TOMS
TOMS
TREMOLO
TREMOLO STRINGS
TROMBONE
TRUMPET
TUBA
TUBULAR BELL
TUBULAR BELLS
VIBES
VIBRAPHONE
VIOLA
VIOLIN
VIOLIN CELLO
VOICE
VOX
WARM PAD
WHISTLE
WIND
WOODBLOCK
WOODBLOCKS
XYLOPHONE

TABLE 2.5: JMusic constants in JMC for MIDI program changes, Part 3

“MAIN”
2005/1/3
page 34

i

i

i

i

i

i

i

i

34 Chapter 2 Introduction to Java

FIGURE 2.16: JMusic documention for the class Phrase

“MAIN”
2005/1/3
page 35

i

i

i

i

i

i

i

i

P A R T T W O

STRUCTURING
MEDIA
Chapter 3 Structuring Music

Chapter 4 Structuring Images

Chapter 5 Structuring Sounds

Chapter 6 Generalizing Lists and Trees

Chapter 7 User Interface Structures

Chapter 8 Objects in Graphics: Animation

35

“MAIN”
2005/1/3
page 36

i

i

i

i

i

i

i

i

C H A P T E R 3

Structuring Music

3.1 STARTING OUT WITH JMUSIC

3.2 MAKING A SIMPLE SONG OBJECT

3.3 SIMPLE STRUCTURING OF NOTES WITH AN ARRAY

3.4 MAKING THE SONG SOMETHING TO EXPLORE

3.5 MAKING ANY SONG SOMETHING TO EXPLORE

3.6 STRUCTURING MUSIC

3.1 STARTING OUT WITH JMUSIC

Here’s what it looks like when you run:

Welcome to DrJava.
> import jm.music.data.*;
> import jm.JMC;
> import jm.util.*;
> Note n = new Note(C4,QUARTER_NOTE);
Error: Undefined class ’C4’
> Note n = new Note(60,QUARTER_NOTE);
Error: Undefined class ’QUARTER_NOTE’
> Note n = new Note(60,101);
> Note n = new Note(60,0.5);
Error: Redefinition of ’n’
> n=new Note(60,0.5);
> Phrase phr = new Phrase();
> phr.addNote(n);
> View.notate(phrase);
Error: Undefined class ’phrase’
> View.notate(phr);

FIGURE 3.1: Playing all the notes in a score

36

“MAIN”
2005/1/3
page 37

i

i

i

i

i

i

i

i

Section 3.2 Making a Simple Song Object 37

3.2 MAKING A SIMPLE SONG OBJECT

Program 7: Amazing Grace as a Song Object

import jm . music . data . ∗ ;
2 import jm .JMC;

import jm . u t i l . ∗ ;
4 import jm . music . t o o l s . ∗ ;

6 public class AmazingGraceSong {
private Score myScore = new Score (”Amazing Grace”) ;

8

public void f i l lMeUp (){
10 myScore . setTimeSignature (3 , 4) ;

12 double [] phrase1data =
{JMC.G4, JMC.QN,

14 JMC.C5 , JMC.HN, JMC.E5 ,JMC.EN, JMC.C5 ,JMC.EN,
JMC.E5 ,JMC.HN,JMC.D5 ,JMC.QN,

16 JMC.C5 ,JMC.HN,JMC.A4 ,JMC.QN,
JMC.G4,JMC.HN,JMC.G4,JMC.EN,JMC.A4 ,JMC.EN,

18 JMC.C5 ,JMC.HN,JMC.E5 ,JMC.EN,JMC.C5 ,JMC.EN,
JMC.E5 ,JMC.HN,JMC.D5 ,JMC.EN,JMC.E5 ,JMC.EN,

20 JMC.G5,JMC.DHN} ;
double [] phrase2data =

22 {JMC.G5,JMC.HN,JMC.E5 ,JMC.EN,JMC.G5,JMC.EN,
JMC.G5,JMC.HN,JMC.E5 ,JMC.EN,JMC.C5 ,JMC.EN,

24 JMC.E5 ,JMC.HN,JMC.D5 ,JMC.QN,
JMC.C5 ,JMC.HN,JMC.A4 ,JMC.QN,

26 JMC.G4,JMC.HN,JMC.G4,JMC.EN,JMC.A4 ,JMC.EN,
JMC.C5 ,JMC.HN,JMC.E5 ,JMC.EN,JMC.C5 ,JMC.EN,

28 JMC.E5 ,JMC.HN,JMC.D5 ,JMC.QN,
JMC.C5 ,JMC.DHN

30 } ;
Phrase myPhrase = new Phrase () ;

32 myPhrase . addNoteList (phrase1data) ;
myPhrase . addNoteList (phrase2data) ;

34 //Mod. repea t (aPhrase , r epea t s) ;
// c r ea t e a new par t and add the phrase to i t

36 Part aPart = new Part (”Parts ” ,
JMC.FLUTE, 1) ;

38 aPart . addPhrase (myPhrase) ;
// add the par t to the score

40 myScore . addPart (aPart) ;

42 } ;

44 public void showMe(){

“MAIN”
2005/1/3
page 38

i

i

i

i

i

i

i

i

38 Chapter 3 Structuring Music

46 View . notate (myScore) ;
} ;

48

}

How it works:

• We start with the import statements needed to use JMusic.

• We’re declaring a new class whose name is AmazingGraceSong. It’s public
meaning that anyone can access it.

• There is a variable named myScore which is of type class Score. This
means that the score myScore is duplicated in each instance of the class
AmazingGraceSong. It’s private because we don’t actually want users of
AmazingGraceSong messing with the score.

• There are two methods, fillMeUp and showMe. The first method fills the song
with the right notes and durations (see the phrase data arrays in fillMeUp)
with a flute playing the song. The second one opens it up for notation and
playing.

The phrase data arrays are named constants from the JMC class. They’re in
the order of note, duration, note, duration, and so on. The names actually
all correspond to numbers, doubles.

Using the program (Figure 3.2):

> AmazingGraceSong song1 = new AmazingGraceSong();
> song1.fillMeUp();
> song1.showMe();

3.3 SIMPLE STRUCTURING OF NOTES WITH AN ARRAY

Let’s start out grouping notes into arrays. We’ll use Math.random() to generate
random numbers between 0.0 and 1.0. We’ll generate 100 random notes (Fig-
ure 3.3).

> import jm . u t i l . ∗ ;
> import jm . music . data . ∗ ;
> Note [] somenotes = new Note [1 0 0] ;
> for (int i = 0 ; i <100; i++)
{ somenotes [i]=new Note ((int)

(128∗Math . random ()) , 0 . 2 5) ; }
> Phrase phr=new Phrase () ;
> for (int i= 0 ; i <100; i++)

{ phr . addNote (somenotes [i]) ; }
> View . notate (phr) ;

“MAIN”
2005/1/3
page 39

i

i

i

i

i

i

i

i

Section 3.3 Simple structuring of notes with an array 39

FIGURE 3.2: Trying the Amazing Grace song object

FIGURE 3.3: A hundred random notes

“MAIN”
2005/1/3
page 40

i

i

i

i

i

i

i

i

40 Chapter 3 Structuring Music

3.4 MAKING THE SONG SOMETHING TO EXPLORE

In a lot of ways AmazingGraceSong is a really lousy example–and not simply because
it’s a weak version of the tune. We can’t really explore much with this version.
What does it mean to have something that we can explore with?

How might one want to explore a song like this? We can come up with several
ways, without even thinking much about it.

• How about changing the order of the pieces, or duplicating them? Maybe use
a Call and response structure?

• How about using different instruments?

We did learn in an earlier chapter how to create songs with multiple parts.
We can easily do multiple voice and multiple part Amazing Grace. Check out the
below.

Program 8: Amazing Grace with Multiple Voices

import jm . music . data . ∗ ;
2 import jm .JMC;

import jm . u t i l . ∗ ;
4 import jm . music . t o o l s . ∗ ;

6 public class MVAmazingGraceSong {
private Score myScore = new Score (”Amazing Grace”) ;

8

public Score getScore () {
10 return myScore ;

} ;
12

public void f i l lMeUp (){
14 myScore . setTimeSignature (3 , 4) ;

16 double [] phrase1data =
{JMC.G4, JMC.QN,

18 JMC.C5 , JMC.HN, JMC.E5 ,JMC.EN, JMC.C5 ,JMC.EN,
JMC.E5 ,JMC.HN,JMC.D5 ,JMC.QN,

20 JMC.C5 ,JMC.HN,JMC.A4 ,JMC.QN,
JMC.G4,JMC.HN,JMC.G4,JMC.EN,JMC.A4 ,JMC.EN,

22 JMC.C5 ,JMC.HN,JMC.E5 ,JMC.EN,JMC.C5 ,JMC.EN,
JMC.E5 ,JMC.HN,JMC.D5 ,JMC.EN,JMC.E5 ,JMC.EN,

24 JMC.G5,JMC.DHN} ;
double [] phrase2data =

26 {JMC.G5,JMC.HN,JMC.E5 ,JMC.EN,JMC.G5,JMC.EN,
JMC.G5,JMC.HN,JMC.E5 ,JMC.EN,JMC.C5 ,JMC.EN,

28 JMC.E5 ,JMC.HN,JMC.D5 ,JMC.QN,
JMC.C5 ,JMC.HN,JMC.A4 ,JMC.QN,

30 JMC.G4,JMC.HN,JMC.G4,JMC.EN,JMC.A4 ,JMC.EN,
JMC.C5 ,JMC.HN,JMC.E5 ,JMC.EN,JMC.C5 ,JMC.EN,

“MAIN”
2005/1/3
page 41

i

i

i

i

i

i

i

i

Section 3.4 Making the Song Something to Explore 41

32 JMC.E5 ,JMC.HN,JMC.D5 ,JMC.QN,
JMC.C5 ,JMC.DHN

34 } ;

36 //
Phrase trumpetPhrase = new Phrase () ;

38 trumpetPhrase . addNoteList (phrase1data) ; // 22.0 b ea t s long
double endphrase1 = trumpetPhrase . getEndTime () ;

40 System . out . p r i n t l n (”End o f phrase1 : ”+endphrase1) ;
trumpetPhrase . addNoteList (phrase2data) ;

42 // c r ea t e a new par t and add the phrase to i t
Part part1 = new Part (”TRUMPET PART” ,

44 JMC.TRUMPET, 1) ;
part1 . addPhrase (trumpetPhrase) ;

46 // add the par t to the score
myScore . addPart (part1) ;

48 //
Phrase f l u t ePhra s e = new Phrase (endphrase1) ;

50 f l u t ePhra s e . addNoteList (phrase1data) ; // 22.0 b ea t s long
f l u t ePhra s e . addNoteList (phrase2data) ; // op t i ona l l y , remove t h i s

52 // c r ea t e a new par t and add the phrase to i t
Part part2 = new Part (”FLUTE PART” ,

54 JMC.FLUTE, 2) ;
part2 . addPhrase (f l u t ePhra s e) ;

56 // add the par t to the score
myScore . addPart (part2) ;

58

60 } ;

62 public void showMe(){

64 View . notate (myScore) ;
} ;

66

}

We can use this program like this (Figure 3.4:

> MVAmazingGraceSong mysong = new MVAmazingGraceSong();
> song1.fillMeUp()
End of phrase1:22.0
> mysong.showMe();

How it works: The main idea that makes this program work is that we create
two phrases, one of which starts when first phrase (which is 22 beats long) ends.
You’ll note the use of System.out.println() which is a method that takes a
string as input and prints it to the console. Parsing that method is probably a
little challenging. There is a big object that has a lot of important objects as part
of it called System. It includes a connection to the Interactions Pane called out.
That connection (called a stream) knows how to print strings through the println

“MAIN”
2005/1/3
page 42

i

i

i

i

i

i

i

i

42 Chapter 3 Structuring Music

FIGURE 3.4: Multi-voice Amazing Grace notation

(print line) method. The string concatenation operator, +, knows how to convert
numbers into strings automatically.

But that’s not a very satisfying example. Look at the fillMeUp method–
that’s pretty confusing stuff! What we do in the Interactions Pane doesn’t give us
much room to play around. The current structure doesn’t lend itself to exploration.

How can we structure our program so that it’s easy to explore, to try different
things? How about if we start by thinking about how expert musicians think
about music. They typically don’t think about a piece of music as a single thing.
Rather, they think about it in terms of a whole (a Score), parts (Part), and phrases
(Phrase). They do think about these things in terms of a sequence–one part follows
another. Each part will typically have its own notes (its own Phrase) and a starting
time (sometimes parts start together, to get simultaneity, but at other times, will
play after one another). Very importantly, there is an ordering to these parts. We
can model that ordering by having each part know which other part comes next.

Let’s try that in this next program.

Program 9: Amazing Grace as Song Elements

import jm . music . data . ∗ ;
2 import jm .JMC;

import jm . u t i l . ∗ ;
4 import jm . music . t o o l s . ∗ ;

6 public class AmazingGraceSongElement {
// Every element knows i t s next e lement and i t s par t (o f the score)

8 private AmazingGraceSongElement next ;
private Part myPart ;

10

// When we make a new element , the next par t i s empty , and ours i s a b lank new par t
12 public AmazingGraceSongElement (){

this . next = null ;
14 this . myPart = new Part () ;

}
16

“MAIN”
2005/1/3
page 43

i

i

i

i

i

i

i

i

Section 3.4 Making the Song Something to Explore 43

// addPhrase1 puts the f i r s t par t o f AmazingGrace in t o our par t o f the song
18 // at the d e s i r e d s t a r t time wi th the g iven instrument

public void addPhrase1 (double startTime , int instrument){
20

double [] phrase1data =
22 {JMC.G4, JMC.QN,

JMC.C5 , JMC.HN, JMC.E5 ,JMC.EN, JMC.C5 ,JMC.EN,
24 JMC.E5 ,JMC.HN,JMC.D5 ,JMC.QN,

JMC.C5 ,JMC.HN,JMC.A4 ,JMC.QN,
26 JMC.G4,JMC.HN,JMC.G4,JMC.EN,JMC.A4 ,JMC.EN,

JMC.C5 ,JMC.HN,JMC.E5 ,JMC.EN,JMC.C5 ,JMC.EN,
28 JMC.E5 ,JMC.HN,JMC.D5 ,JMC.EN,JMC.E5 ,JMC.EN,

JMC.G5,JMC.DHN} ;
30

Phrase myPhrase = new Phrase (startTime) ;
32 myPhrase . addNoteList (phrase1data) ;

this . myPart . addPhrase (myPhrase) ;
34 // In MVAmazingGraceSong , we did t h i s when we i n i t i a l i z e d

// the par t . But we CAN do i t l a t e r
36 this . myPart . se t Inst rument (instrument) ;

}
38

public void addPhrase2 (double startTime , int instrument) {
40 double [] phrase2data =

{JMC.G5,JMC.HN,JMC.E5 ,JMC.EN,JMC.G5,JMC.EN,
42 JMC.G5,JMC.HN,JMC.E5 ,JMC.EN,JMC.C5 ,JMC.EN,

JMC.E5 ,JMC.HN,JMC.D5 ,JMC.QN,
44 JMC.C5 ,JMC.HN,JMC.A4 ,JMC.QN,

JMC.G4,JMC.HN,JMC.G4,JMC.EN,JMC.A4 ,JMC.EN,
46 JMC.C5 ,JMC.HN,JMC.E5 ,JMC.EN,JMC.C5 ,JMC.EN,

JMC.E5 ,JMC.HN,JMC.D5 ,JMC.QN,
48 JMC.C5 ,JMC.DHN

} ;
50

Phrase myPhrase = new Phrase (startTime) ;
52 myPhrase . addNoteList (phrase2data) ;

this . myPart . addPhrase (myPhrase) ;
54 this . myPart . se t Inst rument (instrument) ;

}
56

// Here are the two methods needed to make a l i n k e d l i s t o f e lements
58 public void setNext (AmazingGraceSongElement nextOne){

this . next = nextOne ;
60 }

62 public AmazingGraceSongElement next (){
return this . next ;

64 }

66 // We cou ld j u s t acces s myPart d i r e c t l y
// but we can CONTROL access by us ing a method

“MAIN”
2005/1/3
page 44

i

i

i

i

i

i

i

i

44 Chapter 3 Structuring Music

68 // (c a l l e d an acces sor)
// We’ l l use i t in showFromMeOn

70 // (So maybe i t doesn ’ t need to be Pub l i c ?)
public Part part (){

72 return this . myPart ;
}

74

// Why do we need t h i s ?
76 // I f we want one p i e ce to s t a r t a f t e r another , we need

// to know when the l a s t one ends .
78 // Notice : I t ’ s the phrase t ha t knows the end time .

// We have to ask the par t f o r i t s phrase (assuming only one)
80 // to ge t the end time .

public double getEndTime (){
82 return this . myPart . getPhrase (0) . getEndTime () ;

}
84

// We need setChannel because each par t has to be in i t s
86 // own channel i f i t has d i f f e r e n t s t a r t t imes .

// So , we ’ l l s e t the channel when we assemble the score .
88 // (But i f we only need i t f o r showFromMeOn , we cou ld

// make i t PRIVATE . . .)
90 public void setChannel (int channel){

myPart . setChannel (channel) ;
92 }

94 public void showFromMeOn(){
// Make the score t ha t we ’ l l assemble the e lements in t o

96 Score myScore = new Score (”Amazing Grace”) ;
myScore . setTimeSignature (3 , 4) ;

98

// Each element w i l l be in i t s own channel
100 int channelCount = 1 ;

102 // S ta r t from t h i s e lement (t h i s)
AmazingGraceSongElement cur rent = this ;

104 // While we ’ re not through . . .
while (cur rent != null)

106 {
// Set the channel , increment the channel , then add i t in .

108 cur rent . setChannel (channelCount) ;
channelCount = channelCount + 1 ;

110 myScore . addPart (cur rent . part ()) ;

112 // Now, move on to the next e lement
// which we a l r eady know i sn ’ t n u l l

114 cur rent = current . next () ;
} ;

116

// At the end , l e t ’ s see i t !
118 View . notate (myScore) ;

‘‘MAIN’’
2005/1/3
page 45

i

i

i

i

i

i

i

i

Section 3.4 Making the Song Something to Explore 45

120 }

122 }

So, imagine that we want to play the first part as a flute, and the second part
as a piano. Here’s how we do it.

Welcome to DrJava.
> import jm.JMC;
> AmazingGraceSongElement part1 = new AmazingGraceSongElement();
> part1.addPhrase1(0.0,JMC.FLUTE);
> AmazingGraceSongElement part2 = new AmazingGraceSongElement();
> part2.addPhrase2(part1.getEndTime(),JMC.PIANO);
> part1.setNext(part2);
> part1.showFromMeOn()

That’s an awful lot of extra effort just to do this, but here’s the cool part.
Let’s do several other variations on Amazing Grace without writing any more pro-
grams. Say that you have a fondness for banjo, fiddle, and pipes for Amazing Grace
(Figure 3.5).

> AmazingGraceSongElement banjo1 = new AmazingGraceSongElement();
> banjo1.addPhrase1(0.0,JMC.BANJO);
> AmazingGraceSongElement fiddle1=new AmazingGraceSongElement();
> fiddle1.addPhrase1(0.0,JMC.FIDDLE);
> banjo1.setNext(fiddle1);
> banjo1.getEndTime()
22.0
> AmazingGraceSongElement pipes2=new AmazingGraceSongElement();
> pipes2.addPhrase2(22.0,JMC.PIPES);
> fiddle1.setNext(pipes2);
> banjo1.showFromMeOn();

FIGURE 3.5: AmazingGraceSongElements with 3 pieces

But now you’re feeling that you want more of an orchestra feel. How about
if we throw all of this together? That’s easy. AmazingGraceSongElement part1 is
already linked to part2. AmazingGraceSongElement pipes1 isn’t linked to any-
thing. We’ll just link part1 onto the end–very easy, to do a new experiment.

“MAIN”
2005/1/3
page 46

i

i

i

i

i

i

i

i

46 Chapter 3 Structuring Music

> pipes2.setNext(part1);

> banjo1.showFromMeOn();

Now we have a song with five pieces (Figure ??). “But wait,” you might be
thinking. “The ordering is all wrong!” Fortunately, the score figures it out for us.
The starting times are all that’s needed. The notion of a next element is just for
our sake, to structure which pieces we want where.

FIGURE 3.6: AmazingGraceSongElements with 3 pieces

At this point, you should be able to see how to play with lots of different
pieces. What if you have a flute echo the pipes, just one beat behind? What if
you want to have several difference instruments playing the same thing, but one
measure (three beats) behind the previous? Try them out!

Computer Science Idea: Layering software makes
it easier to change
Notice that Phrase and Part has disappeared here. All
that we’re manipulating are song elements. A good layer
allows you to ignore the layers below.

3.5 MAKING ANY SONG SOMETHING TO EXPLORE

What makes AmazingGraceSongElement something specific to the song Amazing-
Grace? It’s really just those two addPhrase methods. Let’s think about how we
might generalize (abstract) these to make them usable to explore any song.

First, let’s create a second version (cunningly called AmazingGraceSongElement2)
where there is only one addPhrase method, but you decide which phrase you want

“MAIN”
2005/1/3
page 47

i

i

i

i

i

i

i

i

Section 3.5 Making Any Song Something to Explore 47

as an input. We’ll also clean up some of our protections here, while we’re revising.

Program 10: Amazing Grace as Song Elements, Take 2

import jm . music . data . ∗ ;
2 import jm .JMC;

import jm . u t i l . ∗ ;
4 import jm . music . t o o l s . ∗ ;

6 public class AmazingGraceSongElement2 {
// Every element knows i t s next e lement and i t s par t (o f the score)

8 private AmazingGraceSongElement2 next ;
private Part myPart ;

10

// When we make a new element , the next par t i s empty , and ours i s a b lank new par t
12 public AmazingGraceSongElement2 (){

this . next = null ;
14 this . myPart = new Part () ;

}
16

// se tPhrase t a k e s a phrase and makes i t the one f o r t h i s e lement
18 // at the d e s i r e d s t a r t time wi th the g iven instrument

public void setPhrase (Phrase myPhrase , double startTime , int instrument){
20

//Phrases g e t re turned from phrase1 () and phrase2 () wi th d e f a u l t (0 . 0) starTime
22 // We can s e t i t here wi th whatever se tPhrase g e t s as input

myPhrase . setStartTime (startTime) ;
24 this . myPart . addPhrase (myPhrase) ;

// In MVAmazingGraceSong , we did t h i s when we i n i t i a l i z e d
26 // the par t . But we CAN do i t l a t e r

this . myPart . se t Inst rument (instrument) ;
28 }

30 // F i r s t phrase o f Amazing Grace
public Phrase phrase1 () {

32 double [] phrase1data =
{JMC.G4, JMC.QN,

34 JMC.C5 , JMC.HN, JMC.E5 ,JMC.EN, JMC.C5 ,JMC.EN,
JMC.E5 ,JMC.HN,JMC.D5 ,JMC.QN,

36 JMC.C5 ,JMC.HN,JMC.A4 ,JMC.QN,
JMC.G4,JMC.HN,JMC.G4,JMC.EN,JMC.A4 ,JMC.EN,

38 JMC.C5 ,JMC.HN,JMC.E5 ,JMC.EN,JMC.C5 ,JMC.EN,
JMC.E5 ,JMC.HN,JMC.D5 ,JMC.EN,JMC.E5 ,JMC.EN,

40 JMC.G5,JMC.DHN} ;

42 Phrase myPhrase = new Phrase () ;
myPhrase . addNoteList (phrase1data) ;

44 return myPhrase ;
}

“MAIN”
2005/1/3
page 48

i

i

i

i

i

i

i

i

48 Chapter 3 Structuring Music

46

public Phrase phrase2 () {
48 double [] phrase2data =

{JMC.G5,JMC.HN,JMC.E5 ,JMC.EN,JMC.G5,JMC.EN,
50 JMC.G5,JMC.HN,JMC.E5 ,JMC.EN,JMC.C5 ,JMC.EN,

JMC.E5 ,JMC.HN,JMC.D5 ,JMC.QN,
52 JMC.C5 ,JMC.HN,JMC.A4 ,JMC.QN,

JMC.G4,JMC.HN,JMC.G4,JMC.EN,JMC.A4 ,JMC.EN,
54 JMC.C5 ,JMC.HN,JMC.E5 ,JMC.EN,JMC.C5 ,JMC.EN,

JMC.E5 ,JMC.HN,JMC.D5 ,JMC.QN,
56 JMC.C5 ,JMC.DHN

} ;
58

Phrase myPhrase = new Phrase () ;
60 myPhrase . addNoteList (phrase2data) ;

return myPhrase ;
62 }

64 // Here are the two methods needed to make a l i n k e d l i s t o f e lements
public void setNext (AmazingGraceSongElement2 nextOne){

66 this . next = nextOne ;
}

68

public AmazingGraceSongElement2 next (){
70 return this . next ;

}
72

// We cou ld j u s t acces s myPart d i r e c t l y
74 // but we can CONTROL access by us ing a method

// (c a l l e d an acces sor)
76 private Part part (){

return this . myPart ;
78 }

80 // Why do we need t h i s ?
// I f we want one p i e ce to s t a r t a f t e r another , we need

82 // to know when the l a s t one ends .
// Notice : I t ’ s the phrase t ha t knows the end time .

84 // We have to ask the par t f o r i t s phrase (assuming only one)
// to ge t the end time .

86 public double getEndTime (){
return this . myPart . getPhrase (0) . getEndTime () ;

88 }

90 // We need setChannel because each par t has to be in i t s
// own channel i f i t has d i f f e r e n t s t a r t t imes .

92 // So , we ’ l l s e t the channel when we assemble the score .
private void setChannel (int channel){

94 myPart . setChannel (channel) ;
}

96

“MAIN”
2005/1/3
page 49

i

i

i

i

i

i

i

i

Section 3.5 Making Any Song Something to Explore 49

public void showFromMeOn(){
98 // Make the score t ha t we ’ l l assemble the e lements in t o

// We’ l l s e t i t up wi th the time s i gna tu r e and tempo we l i k e
100 Score myScore = new Score (”Amazing Grace”) ;

myScore . setTimeSignature (3 , 4) ;
102 myScore . setTempo (1 2 0 . 0) ;

104 // Each element w i l l be in i t s own channel
int channelCount = 1 ;

106

// S ta r t from t h i s e lement (t h i s)
108 AmazingGraceSongElement2 cur rent = this ;

// While we ’ re not through . . .
110 while (cur rent != null)

{
112 // Set the channel , increment the channel , then add i t in .

cur rent . setChannel (channelCount) ;
114 channelCount = channelCount + 1 ;

myScore . addPart (cur rent . part ()) ;
116

// Now, move on to the next e lement
118 // which we a l r eady know i sn ’ t n u l l

cur rent = current . next () ;
120 } ;

122 // At the end , l e t ’ s see i t !
View . notate (myScore) ;

124

}
126

}

We can use this to do the flute for the first part and a piano for the second
in much the same way as we did last time.

> import jm.JMC;
> AmazingGraceSongElement2 part1 = new AmazingGraceSongElement2();
> part1.setPhrase(part1.phrase1(),0.0,JMC.FLUTE);
> AmazingGraceSongElement2 part2 = new AmazingGraceSongElement2();
> part2.setPhrase(part2.phrase2(),22.0,JMC.PIANO);
> part1.setNext(part2);
> part1.showFromMeOn();

Now let’s make a few observations about this code. Notice the part2.phrase2()
expression. What would have happened if we did part1.phrase2() there instead?
Would it have worked? (Go ahead, try it. We’ll wait.) It would because both
objects know the same phrase1() and phrase2() methods.

That doesn’t really make a lot of sense, does it, in terms of what each object
should know? Does every song element object need to know how to make every
other song elements’ phrase? We can get around this by creating a static method.

“MAIN”
2005/1/3
page 50

i

i

i

i

i

i

i

i

50 Chapter 3 Structuring Music

Static methods are known to the class, not to the individual objects (instances).
We’d write it something like this:

// F i r s t phrase o f Amazing Grace
stat ic public Phrase phrase1 () {

double [] phrase1data =
{JMC.G4, JMC.QN,

JMC.C5 , JMC.HN, JMC.E5 ,JMC.EN, JMC.C5 ,JMC.EN,
JMC.E5 ,JMC.HN,JMC.D5 ,JMC.QN,
JMC.C5 ,JMC.HN,JMC.A4 ,JMC.QN,
JMC.G4,JMC.HN,JMC.G4,JMC.EN,JMC.A4 ,JMC.EN,
JMC.C5 ,JMC.HN,JMC.E5 ,JMC.EN,JMC.C5 ,JMC.EN,
JMC.E5 ,JMC.HN,JMC.D5 ,JMC.EN,JMC.E5 ,JMC.EN,
JMC.G5,JMC.DHN} ;

Phrase myPhrase = new Phrase () ;
myPhrase . addNoteList (phrase1data) ;
return myPhrase ;

}
We’d actually use this method like this:

> import jm.JMC;
> AmazingGraceSongElement2 part1 = new AmazingGraceSongElement2();
> part1.setPhrase(AmazingGraceSongElement2.phrase1(),0.0,JMC.FLUTE);

Now, that makes sense in an object-oriented kind of way: it’s the class Amaz-
ingGraceSongElement2 that knows about the phrases in the song Amazing Grace,
not the instances of the class–not the different elements. But it’s not really obvious
that it’s important for this to be about Amazing Grace at all! Wouldn’t any song
elements have basically this structure? Couldn’t these phrases (now that they’re
in static methods) go in any class?

Let’s make a generic SongElement class, and a new class SongPhrase that
we could stuff lots of phrases in.

Program 11: General Song Elements and Song Phrases

import jm . music . data . ∗ ;
2 import jm .JMC;

import jm . u t i l . ∗ ;
4 import jm . music . t o o l s . ∗ ;

6 public class SongElement {
// Every element knows i t s next e lement and i t s par t (o f the score)

8 private SongElement next ;
private Part myPart ;

10

// When we make a new element , the next par t i s empty , and ours i s a b lank new par t
12 public SongElement (){

“MAIN”
2005/1/3
page 51

i

i

i

i

i

i

i

i

Section 3.5 Making Any Song Something to Explore 51

this . next = null ;
14 this . myPart = new Part () ;

}
16

// se tPhrase t a k e s a phrase and makes i t the one f o r t h i s e lement
18 // at the d e s i r e d s t a r t time wi th the g iven instrument

public void setPhrase (Phrase myPhrase , double startTime , int instrument){
20 myPhrase . setStartTime (startTime) ;

this . myPart . addPhrase (myPhrase) ;
22 this . myPart . se t Inst rument (instrument) ;

}
24

26 // Here are the two methods needed to make a l i n k e d l i s t o f e lements
public void setNext (SongElement nextOne){

28 this . next = nextOne ;
}

30

public SongElement next (){
32 return this . next ;

}
34

// We cou ld j u s t acces s myPart d i r e c t l y
36 // but we can CONTROL access by us ing a method

// (c a l l e d an acces sor)
38 private Part part (){

return this . myPart ;
40 }

42 // Why do we need t h i s ?
// I f we want one p i e ce to s t a r t a f t e r another , we need

44 // to know when the l a s t one ends .
// Notice : I t ’ s the phrase t ha t knows the end time .

46 // We have to ask the par t f o r i t s phrase (assuming only one)
// to ge t the end time .

48 public double getEndTime (){
return this . myPart . getPhrase (0) . getEndTime () ;

50 }

52 // We need setChannel because each par t has to be in i t s
// own channel i f i t has d i f f e r e n t s t a r t t imes .

54 // So , we ’ l l s e t the channel when we assemble the score .
private void setChannel (int channel){

56 myPart . setChannel (channel) ;
}

58

public void showFromMeOn(){
60 // Make the score t ha t we ’ l l assemble the e lements in t o

// We’ l l s e t i t up wi th a d e f a u l t time s i gna tu r e and tempo we l i k e
62 // (Should probab l y make i t p o s s i b l e to change t h e s e −− maybe wi th inpu t s ?)

Score myScore = new Score (”My Song”) ;

“MAIN”
2005/1/3
page 52

i

i

i

i

i

i

i

i

52 Chapter 3 Structuring Music

64 myScore . setTimeSignature (3 , 4) ;
myScore . setTempo (1 2 0 . 0) ;

66

// Each element w i l l be in i t s own channel
68 int channelCount = 1 ;

70 // S ta r t from t h i s e lement (t h i s)
SongElement cur rent = this ;

72 // While we ’ re not through . . .
while (cur rent != null)

74 {
// Set the channel , increment the channel , then add i t in .

76 cur rent . setChannel (channelCount) ;
channelCount = channelCount + 1 ;

78 myScore . addPart (cur rent . part ()) ;

80 // Now, move on to the next e lement
// which we a l r eady know i sn ’ t n u l l

82 cur rent = current . next () ;
} ;

84

// At the end , l e t ’ s see i t !
86 View . notate (myScore) ;

88 }

90 }

import jm . music . data . ∗ ;
2 import jm .JMC;

import jm . u t i l . ∗ ;
4 import jm . music . t o o l s . ∗ ;

6 public class SongPhrase {

8 // F i r s t phrase o f Amazing Grace
stat ic public Phrase AG1() {

10 double [] phrase1data =
{JMC.G4, JMC.QN,

12 JMC.C5 , JMC.HN, JMC.E5 ,JMC.EN, JMC.C5 ,JMC.EN,
JMC.E5 ,JMC.HN,JMC.D5 ,JMC.QN,

14 JMC.C5 ,JMC.HN,JMC.A4 ,JMC.QN,
JMC.G4,JMC.HN,JMC.G4,JMC.EN,JMC.A4 ,JMC.EN,

16 JMC.C5 ,JMC.HN,JMC.E5 ,JMC.EN,JMC.C5 ,JMC.EN,
JMC.E5 ,JMC.HN,JMC.D5 ,JMC.EN,JMC.E5 ,JMC.EN,

18 JMC.G5,JMC.DHN} ;

20 Phrase myPhrase = new Phrase () ;
myPhrase . addNoteList (phrase1data) ;

22 return myPhrase ;
}

“MAIN”
2005/1/3
page 53

i

i

i

i

i

i

i

i

Section 3.5 Making Any Song Something to Explore 53

24 // Second phrase o f Amazing Grace
stat ic public Phrase AG2() {

26 double [] phrase2data =
{JMC.G5,JMC.HN,JMC.E5 ,JMC.EN,JMC.G5,JMC.EN,

28 JMC.G5,JMC.HN,JMC.E5 ,JMC.EN,JMC.C5 ,JMC.EN,
JMC.E5 ,JMC.HN,JMC.D5 ,JMC.QN,

30 JMC.C5 ,JMC.HN,JMC.A4 ,JMC.QN,
JMC.G4,JMC.HN,JMC.G4,JMC.EN,JMC.A4 ,JMC.EN,

32 JMC.C5 ,JMC.HN,JMC.E5 ,JMC.EN,JMC.C5 ,JMC.EN,
JMC.E5 ,JMC.HN,JMC.D5 ,JMC.QN,

34 JMC.C5 ,JMC.DHN
} ;

36

Phrase myPhrase = new Phrase () ;
38 myPhrase . addNoteList (phrase2data) ;

return myPhrase ;
40 }

42 }

We can use this like this:

> import jm.JMC;
> SongElement part1 = new SongElement();
> part1.setPhrase(SongPhrase.AG1(),0.0,JMC.FLUTE);
> SongElement part2 = new SongElement();
> part2.setPhrase(SongPhrase.AG2(),22.0,JMC.PIANO);
> part1.setNext(part2);
> part1.showFromMeOn();

We now have a structure to do more songs and more general explorations.

3.5.1 Adding More Phrases

Program 12: More phrases to play with

import jm . music . data . ∗ ;
2 import jm .JMC;

import jm . u t i l . ∗ ;
4 import jm . music . t o o l s . ∗ ;

6 public class SongPhrase {

8 // F i r s t phrase o f Amazing Grace
stat ic public Phrase AG1() {

10 double [] phrase1data =
{JMC.G4, JMC.QN,

12 JMC.C5 , JMC.HN, JMC.E5 ,JMC.EN, JMC.C5 ,JMC.EN,

“MAIN”
2005/1/3
page 54

i

i

i

i

i

i

i

i

54 Chapter 3 Structuring Music

JMC.E5 ,JMC.HN,JMC.D5 ,JMC.QN,
14 JMC.C5 ,JMC.HN,JMC.A4 ,JMC.QN,

JMC.G4,JMC.HN,JMC.G4,JMC.EN,JMC.A4 ,JMC.EN,
16 JMC.C5 ,JMC.HN,JMC.E5 ,JMC.EN,JMC.C5 ,JMC.EN,

JMC.E5 ,JMC.HN,JMC.D5 ,JMC.EN,JMC.E5 ,JMC.EN,
18 JMC.G5,JMC.DHN} ;

20 Phrase myPhrase = new Phrase () ;
myPhrase . addNoteList (phrase1data) ;

22 return myPhrase ;
}

24 // Second phrase o f Amazing Grace
stat ic public Phrase AG2() {

26 double [] phrase2data =
{JMC.G5,JMC.HN,JMC.E5 ,JMC.EN,JMC.G5,JMC.EN,

28 JMC.G5,JMC.HN,JMC.E5 ,JMC.EN,JMC.C5 ,JMC.EN,
JMC.E5 ,JMC.HN,JMC.D5 ,JMC.QN,

30 JMC.C5 ,JMC.HN,JMC.A4 ,JMC.QN,
JMC.G4,JMC.HN,JMC.G4,JMC.EN,JMC.A4 ,JMC.EN,

32 JMC.C5 ,JMC.HN,JMC.E5 ,JMC.EN,JMC.C5 ,JMC.EN,
JMC.E5 ,JMC.HN,JMC.D5 ,JMC.QN,

34 JMC.C5 ,JMC.DHN
} ;

36

Phrase myPhrase = new Phrase () ;
38 myPhrase . addNoteList (phrase2data) ;

return myPhrase ;
40 }

42 // House o f the r i s i n g sun
stat ic public Phrase house (){

44 double [] phrasedata =
{JMC.E4 ,JMC.EN,JMC.A3 ,JMC.HN,JMC.B3 ,JMC.EN,JMC.A3 ,JMC.EN,

46 JMC.C4 ,JMC.HN,JMC.D4 ,JMC.EN,JMC.DS4 ,JMC.EN,
JMC.E4 ,JMC.HN,JMC.C4 ,JMC.EN,JMC.B3 ,JMC.EN,

48 JMC.A3 ,JMC.HN,JMC.E4 ,JMC.QN,
JMC.A4 ,JMC.HN, JMC.E4 , JMC.QN,

50 JMC.G4,JMC.HN, JMC.E4 ,JMC.EN,JMC.D4 ,JMC.EN,JMC.E4 ,JMC.DHN,
JMC.E4 ,JMC.HN,JMC.GS4 ,JMC.EN,JMC.G4,JMC.EN,

52 JMC.A4 ,JMC.HN,JMC.A3 ,JMC.QN,
JMC.C4 ,JMC.EN,JMC.C4 ,JMC.DQN,JMC.E4 ,JMC.QN,

54 JMC.E4 ,JMC.EN,JMC.E4 ,JMC.EN,JMC. E4 ,JMC.QN,JMC.C4 ,JMC.EN,JMC.B3 ,JMC.EN,
JMC.A3 ,JMC.HN,JMC.E4 ,JMC.QN,

56 JMC.E4 ,JMC.HN,JMC.E4 ,JMC.EN,
JMC.E4 ,JMC.EN,JMC.G3,JMC.QN,JMC.C4 ,JMC.EN,JMC.B3 ,JMC.EN,

58 JMC.A3 ,JMC.DHN} ;

60 Phrase myPhrase = new Phrase () ;
myPhrase . addNoteList (phrasedata) ;

62 return myPhrase ;
}

‘‘MAIN’’
2005/1/3
page 55

i

i

i

i

i

i

i

i

Section 3.5 Making Any Song Something to Explore 55

64

// L i t t l e R i f f 1
66 stat ic public Phrase r i f f 1 () {

double [] phrasedata =
68 {JMC.G3,JMC.EN,JMC.B3 ,JMC.EN,JMC.C4 ,JMC.EN,JMC.D4 ,JMC.EN} ;

70 Phrase myPhrase = new Phrase () ;
myPhrase . addNoteList (phrasedata) ;

72 return myPhrase ;
}

74

// L i t t l e R i f f 2
76 stat ic public Phrase r i f f 2 () {

double [] phrasedata =
78 {JMC.D4 ,JMC.EN,JMC.C4 ,JMC.EN,JMC.E4 ,JMC.EN,JMC.G4,JMC.EN} ;

80 Phrase myPhrase = new Phrase () ;
myPhrase . addNoteList (phrasedata) ;

82 return myPhrase ;
}

84

86 // L i t t l e R i f f 3
stat ic public Phrase r i f f 3 () {

88 double [] phrasedata =
{JMC.C4 ,JMC.QN,JMC.E4 ,JMC.EN,JMC.G4,JMC.EN,JMC.E4 ,JMC.SN,

90 JMC.G4,JMC.SN,JMC.E4 ,JMC.SN,JMC.G4,JMC.SN,JMC.C4 ,JMC.QN} ;

92 Phrase myPhrase = new Phrase () ;
myPhrase . addNoteList (phrasedata) ;

94 return myPhrase ;
}

96

// L i t t l e R i f f 4
98 stat ic public Phrase r i f f 4 () {

double [] phrasedata =
100 {JMC.C4 ,JMC.QN,JMC.E4 ,JMC.QN,JMC.G4,JMC.QN,JMC.C4 ,JMC.QN} ;

102 Phrase myPhrase = new Phrase () ;
myPhrase . addNoteList (phrasedata) ;

104 return myPhrase ;
}

106

108 }

> SongElement house = new SongElement();
> house.setPhrase(SongPhrase.house(),0.0,JMC.HARMONICA);
> house.showFromMeOn();

> SongElement riff1 = new SongElement();

“MAIN”
2005/1/3
page 56

i

i

i

i

i

i

i

i

56 Chapter 3 Structuring Music

> riff1.setPhrase(SongPhrase.riff1(),0.0,JMC.HARMONICA);
> riff1.showFromMeOn();
> SongElement riff2 = new SongElement();
> riff2.setPhrase(SongPhrase.riff2(),0.0,JMC.TENOR_SAX);
> riff2.showFromMeOn();

But music is really about repetition and playing off pieces and variations. Try
something like this (Figure 3.7).

> SongElement riff1 = new SongElement();
> riff1.setPhrase(SongPhrase.riff1(),0.0,JMC.HARMONICA);
> riff1.showFromMeOn();
-- Constructing MIDI file from’My Song’... Playing with JavaSound
... Completed MIDI playback --------
> SongElement riff2 = new SongElement();
> riff2.setPhrase(SongPhrase.riff2(),0.0,JMC.TENOR_SAX);
> riff2.showFromMeOn();
-- Constructing MIDI file from’My Song’... Playing with JavaSound
... Completed MIDI playback --------
> riff2.getEndTime()
2.0
> SongElement riff4 = new SongElement();
> riff4.setPhrase(SongPhrase.riff1(),2.0,JMC.TENOR_SAX);
> SongElement riff5 = new SongElement();
> riff5.setPhrase(SongPhrase.riff1(),4.0,JMC.TENOR_SAX);
> SongElement riff6 = new SongElement();
> riff6.setPhrase(SongPhrase.riff2(),4.0,JMC.HARMONICA);
> SongElement riff7 = new SongElement();
> riff7.setPhrase(SongPhrase.riff1(),6.0,JMC.JAZZ_GUITAR);
> riff1.setNext(riff2);
> riff2.setNext(riff4);
> riff4.setNext(riff5);
> riff5.setNext(riff6);
> riff6.setNext(riff7);
> riff1.showFromMeOn();

3.5.2 Computing phrases

If we need some repetition, we don’t have to type things over and over again–we
can ask the computer to do it for us! Our phrases in class SongPhrase don’t have
to come from constants. It’s okay if they are computed phrases.

We can use steel drums (or something else, if we want) to create rhythm.

> SongElement steel = new SongElement();
> steel.setPhrase(SongPhrase.riff1(),0.0,JMC.STEEL_DRUM);
> steel.showFromMeOn();

“MAIN”
2005/1/3
page 57

i

i

i

i

i

i

i

i

Section 3.5 Making Any Song Something to Explore 57

FIGURE 3.7: Playing some different riffs in patterns

Program 13: Computed Phrases

//Larger R i f f 1
stat ic public Phrase pattern1 () {

double [] r i f f 1 d a t a =
{JMC.G3,JMC.EN,JMC.B3 ,JMC.EN,JMC.C4 ,JMC.EN,JMC.D4 ,JMC.EN} ;
double [] r i f f 2 d a t a =
{JMC.D4 ,JMC.EN,JMC.C4 ,JMC.EN,JMC.E4 ,JMC.EN,JMC.G4,JMC.EN} ;

int counter1 ;
int counter2 ;

Phrase myPhrase = new Phrase () ;
// 3 o f r i f f 1 , 1 o f r i f f 2 , and repea t a l l o f i t 3 t imes
for (counter1 = 1 ; counter1 <= 3 ; counter1++)
{ for (counter2 = 1 ; counter2 <= 3 ; counter2++)

myPhrase . addNoteList (r i f f 1 d a t a) ;
myPhrase . addNoteList (r i f f 2 d a t a) ;
} ;

return myPhrase ;
}

//Larger R i f f 2
stat ic public Phrase pattern2 () {

double [] r i f f 1 d a t a =

‘‘MAIN’’
2005/1/3
page 58

i

i

i

i

i

i

i

i

58 Chapter 3 Structuring Music

{JMC.G3,JMC.EN,JMC.B3 ,JMC.EN,JMC.C4 ,JMC.EN,JMC.D4 ,JMC.EN} ;
double [] r i f f 2 d a t a =
{JMC.D4 ,JMC.EN,JMC.C4 ,JMC.EN,JMC.E4 ,JMC.EN,JMC.G4,JMC.EN} ;

int counter1 ;
int counter2 ;

Phrase myPhrase = new Phrase () ;
// 2 o f r i f f 1 , 2 o f r i f f 2 , and repea t a l l o f i t 3 t imes
for (counter1 = 1 ; counter1 <= 3 ; counter1++)
{ for (counter2 = 1 ; counter2 <= 2 ; counter2++)

myPhrase . addNoteList (r i f f 1 d a t a) ;
for (counter2 = 1 ; counter2 <= 2 ; counter2++)

myPhrase . addNoteList (r i f f 2 d a t a) ;
} ;

return myPhrase ;
}

//Rhythm R i f f
stat ic public Phrase rhythm1 () {

double [] r i f f 1 d a t a =
{JMC.G3,JMC.EN,JMC.REST,JMC.HN,JMC.D4 ,JMC.EN} ;
double [] r i f f 2 d a t a =
{JMC.C3 ,JMC.QN,JMC.REST,JMC.QN} ;

int counter1 ;
int counter2 ;

Phrase myPhrase = new Phrase () ;
// 2 o f rhythm r i f f 1 , 2 o f rhythm r i f f 2 , and repea t a l l o f i t 3 t imes
for (counter1 = 1 ; counter1 <= 3 ; counter1++)
{ for (counter2 = 1 ; counter2 <= 2 ; counter2++)

myPhrase . addNoteList (r i f f 1 d a t a) ;
for (counter2 = 1 ; counter2 <= 2 ; counter2++)

myPhrase . addNoteList (r i f f 2 d a t a) ;
} ;

return myPhrase ;
}

> import jm.JMC;
> SongElement sax1 = new SongElement();
> sax1.setPhrase(SongPhrase.pattern1(),0.0,JMC.TENOR_SAX);
> sax1.showFromMeOn();
-- Constructing MIDI file from’My Song’... Playing with JavaSound
... Completed MIDI playback --------
> SongElement sax2 = new SongElement();
> sax2.setPhrase(SongPhrase.pattern2(),0.0,JMC.TENOR_SAX);
> sax2.showFromMeOn()
-- Constructing MIDI file from’My Song’... Playing with JavaSound
... Completed MIDI playback --------

“MAIN”
2005/1/3
page 59

i

i

i

i

i

i

i

i

Section 3.5 Making Any Song Something to Explore 59

> sax1.setNext(sax2);
> sax1.showFromMeOn();
-- Constructing MIDI file from’My Song’... Playing with JavaSound
... Completed MIDI playback --------
> sax1.setNext(null); // I decided I didn’t like it.
> SongElement rhythm1=new SongElement();
> rhythm1.setPhrase(SongPhrase.rhythm1(),0.0,JMC.STEEL_DRUM);
> sax1.setNext(rhythm1); // I put something else with the sax
> sax1.showFromMeOn();
-- Constructing MIDI file from’My Song’... Playing with JavaSound
... Completed MIDI playback --------

Here’s what the sax plus rhythm looked like (Figure 3.8).

FIGURE 3.8: Sax line in the top part, rhythm in the bottom

Computer Science Idea: Layering software makes
it easier to change, Part 2
Notice that all our Editor Pane interactions now are with
SongPhrase. We don’t have to change SongElements
anymore–they work, so now we can ignore them. We’re
not dealing with Phrases and Parts anymore, either. As
we develop layers, if we do it right, we only have to deal
with one layer at a time (Figure 3.9).

FIGURE 3.9: We now have layers of software, where we deal with only one at a time

“MAIN”
2005/1/3
page 60

i

i

i

i

i

i

i

i

60 Chapter 3 Structuring Music

3.6 STRUCTURING MUSIC

What we’ve built for music exploration is okay, but not great. What’s wrong with
it?

• It’s hard to use. We have to specify each phrase’s start time and instrument.
That’s a lot of specification, and it doesn’t correspond to how musicians tend
to think about music structure. More typically, musicians see a single music
part as having a single instrument and start time (much as the structure of
the class Part in the underlying JMusic classes).

• While we have a linked list for connecting the elements of our songs, we don’t
use the linked list for anything. Because each element has its own start time,
there is no particular value to having an element before or after any other
song element.

The way we’re going to address these problems is by a refactoring . We are
going to move a particular aspect of our design to another place in our design.
Currently, every instance of SongElement has its own Part instance–that’s why
we specify the instrument and start time when we create the SongElement. What
if we move the creation of the part until we collect all the SongElement phrases?
Then we don’t have to specify the instrument and start time until later. What’s
more, the ordering of the linked list will define the ordering of the note phrases.

Computer Science Idea: Refactoring refines a de-
sign.
We refactor designs in order to improve them. Our early
decisions about where to what aspect of a piece of soft-
ware might prove to be inflexible or downright wrong (in
the sense of not describing what we want to describe) as we
continue to work. Refactoring is a process of simplifying
and improving a design.

There is a cost to this design. There will be only one instrument and start
time associated with a list of song elements. We’ll correct that problem in the next
section.

We’re going to rewrite our SongElement class for this new design, and we’re
going to give it a fairly geeky, abstract name–in order to make a point. We’re going
to name our class SongNode to highlight that each element in the song is now a
node in a list of song elements. Computer scientists typically use the term node to
describe pieces in a list or tree.

Program 14: SongNode class

1 import jm . music . data . ∗ ;
import jm .JMC;

3 import jm . u t i l . ∗ ;

“MAIN”
2005/1/3
page 61

i

i

i

i

i

i

i

i

Section 3.6 Structuring Music 61

import jm . music . t o o l s . ∗ ;
5

public class SongNode {
7 /∗∗

∗ the next SongNode in the l i s t
9 ∗/

private SongNode next ;
11 /∗∗

∗ the Phrase con ta in ing the notes and dura t ions a s s o c i a t e d wi th t h i s node
13 ∗/

private Phrase myPhrase ;
15

/∗
17 ∗ When we make a new element , the next par t i s empty , and ours i s a b lank new par t

∗/
19 public SongNode (){

this . next = null ;
21 this . myPhrase = new Phrase () ;

}
23

/∗
25 ∗ se tPhrase t a k e s a Phrase and makes i t the one f o r t h i s node

∗ @param th i sPhrase the phrase f o r t h i s node
27 ∗/

public void setPhrase (Phrase th i sPhrase){
29 this . myPhrase = th i sPhrase ;

}
31

33 /∗
∗ Creates a l i n k between the curren t node and the input node

35 ∗ @param nextOne the node to l i n k to
∗/

37 public void setNext (SongNode nextOne){
this . next = nextOne ;

39 }

41 /∗
∗ Provides p u b l i c acces s to the next node .

43 ∗ @return a SongNode ins tance (or n u l l)
∗/

45 public SongNode next (){
return this . next ;

47 }

49 /∗
∗ Accessor f o r the node ’ s Phrase

51 ∗ @return i n t e r n a l phrase
∗/

53 private Phrase getPhrase (){
return this . myPhrase ;

“MAIN”
2005/1/3
page 62

i

i

i

i

i

i

i

i

62 Chapter 3 Structuring Music

55 }

57 /∗
∗ Accessor f o r the notes i n s i d e the node ’ s phrase

59 ∗ @return array o f notes and dura t ions i n s i d e the phrase
∗/

61 private Note [] getNotes (){
return this . myPhrase . getNoteArray () ;

63 }

65 /∗
∗ Co l l e c t a l l t he notes from t h i s node on

67 ∗ in an par t (then a score) and open i t up f o r v iewing .
∗ @param instrument MIDI instrument (program) to be used in p l ay ing t h i s l i s t

69 ∗/
public void showFromMeOn(int instrument){

71 // Make the Score t ha t we ’ l l assemble the e lements in t o
// We’ l l s e t i t up wi th a d e f a u l t time s i gna tu r e and tempo we l i k e

73 // (Should probab l y make i t p o s s i b l e to change t h e s e −− maybe wi th inpu t s ?)
Score myScore = new Score (”My Song”) ;

75 myScore . setTimeSignature (3 , 4) ;
myScore . setTempo (1 2 0 . 0) ;

77

// Make the Part t h a t we ’ l l assemble t h i n g s in t o
79 Part myPart = new Part (instrument) ;

81 // Make a new Phrase t ha t w i l l conta in the notes from a l l the phrases
Phrase c o l l e c t o r = new Phrase () ;

83

// S ta r t from t h i s e lement (t h i s)
85 SongNode cur rent = this ;

// While we ’ re not through . . .
87 while (cur rent != null)

{
89 c o l l e c t o r . addNoteList (cur rent . getNotes ()) ;

91 // Now, move on to the next e lement
cur rent = current . next () ;

93 } ;

95 // Now, cons t ruc t the par t and the score .
myPart . addPhrase (c o l l e c t o r) ;

97 myScore . addPart (myPart) ;

99 // At the end , l e t ’ s see i t !
View . notate (myScore) ;

101

}
103

}

“MAIN”
2005/1/3
page 63

i

i

i

i

i

i

i

i

Section 3.6 Structuring Music 63

We can use this new class to do some of the things that we did before (Fig-
ure 3.10).

> SongNode first = new SongNode();
> first.setPhrase(SongPhrase.riff1());
> import jm.JMC; // We’ll need this!
> first.showFromMeOn(JMC.FLUTE); // We can play with just one node
-- Constructing MIDI file from’My Song’... Playing with JavaSound
... Completed MIDI playback --------
> SongNode second = new SongNode();
> second.setPhrase(SongPhrase.riff2());
> first.next(second); // OOPS!
Error: No ’next’ method in ’SongNode’ with arguments: (SongNode)
> first.setNext(second);
> first.showFromMeOn(JMC.PIANO);

FIGURE 3.10: First score generated from ordered linked list

Remember the documentation for the JMusic classes that we saw earlier in
the book? That documentation can actually be automatically generated from the
comments that we provide. Javadoc is the name for the specialized commenting
structure and the tool that generates HTML documentation from that structure.
The commenting structure is: (XXX-TO-DO See DrJava docs for now.) (Fig-
ure 3.11

3.6.1 Now Let’s Play!

Now we can really play with repetition and weaving in at regular intervals–stuff
of real music! Let’s create two new methods: One that repeats an input phrase
several times, and one that weaves in a phrase every n nodes.

Program 15: Repeating and weaving methods

“MAIN”
2005/1/3
page 64

i

i

i

i

i

i

i

i

64 Chapter 3 Structuring Music

FIGURE 3.11: Javadoc for the class SongNode

/∗
2 ∗ copyNode re turns a copy o f t h i s node

∗ @return another song node wi th the same notes
4 ∗/

public SongNode copyNode (){
6 SongNode returnMe = new SongNode () ;

returnMe . setPhrase (this . getPhrase ()) ;
8 return returnMe ;

}
10

/∗∗
12 ∗ Repeat the input phrase f o r the number o f t imes s p e c i f i e d .

∗ I t a lways appends to the curren t node , NOT in s e r t .
14 ∗ @param nextOne node to be cop ied in to l i s t

∗ @param count number o f t imes to copy i t in .
16 ∗/

public void repeatNext (SongNode nextOne , int count) {
18 SongNode cur rent = this ; // S ta r t from here

SongNode copy ; // Where we keep the curren t copy
20

for (int i =1; i <= count ; i++)
22 {

copy = nextOne . copyNode () ; // Make a copy
24 cur rent . setNext (copy) ; // Set as next

cur rent = copy ; // Now append to copy
26 }

}
28

/∗∗
30 ∗ I n s e r t the input SongNode AFTER t h i s node ,

∗ and make whatever node comes NEXT become the next o f the input node .

‘‘MAIN’’
2005/1/3
page 65

i

i

i

i

i

i

i

i

Section 3.6 Structuring Music 65

32 ∗ @param nextOne SongNode to i n s e r t a f t e r t h i s one
∗/

34 public void i n s e r tA f t e r (SongNode nextOne)
{

36 SongNode oldNext = this . next () ; // Save i t s next
this . setNext (nextOne) ; // In s e r t the copy

38 nextOne . setNext (oldNext) ; // Make the copy po in t on to the r e s t

40 }

42 /∗∗
∗ Weave the input phrase count t imes every skipAmount nodes

44 ∗ @param nextOne node to be cop ied in t o the l i s t
∗ @param count how many t imes to copy

46 ∗ @param skipAmount how many nodes to s k i p per weave
∗/

48 public void weave (SongNode nextOne , int count , int skipAmount)
{

50 SongNode cur rent = this ; // S ta r t from here
SongNode copy ; // Where we keep the one to be weaved in

52 SongNode oldNext ; // Need t h i s to i n s e r t p rope r l y
int sk ipped ; // Number sk ipped cu r r en t l y

54

for (int i =1; i <= count ; i++)
56 {

copy = nextOne . copyNode () ; // Make a copy
58

// Skip skipAmount nodes
60 sk ipped = 1 ;

while ((cur rent . next () != null) && (skipped < skipAmount))
62 {

cur rent = current . next () ;
64 sk ipped++;

} ;
66

i f (cur rent . next () == null) // Did we a c t u a l l y g e t to the end ea r l y ?
68 break ; // Leave the loop

70 oldNext = current . next () ; // Save i t s next
cur rent . i n s e r tA f t e r (copy) ; // In s e r t the copy a f t e r t h i s one

72 cur rent = oldNext ; // Continue on wi th the r e s t
}

74 }

First, let’s make 15 copies of one pattern (Figure 3.12).

> import jm.JMC;
> SongNode first = new SongNode();
> SongNode riff1 = new SongNode();
> riff1.setPhrase(SongPhrase.riff1());
> first.repeatNext(riff1,15);

“MAIN”
2005/1/3
page 66

i

i

i

i

i

i

i

i

66 Chapter 3 Structuring Music

> first.showFromMeOn(JMC.FLUTE);

FIGURE 3.12: Repeating a node several times

Now, let’s weave in a second pattern every-other (off by 1) node, for seven
times (Figure ??).

> SongNode riff2 = new SongNode();
> riff2.setPhrase(SongPhrase.riff2());
> first.weave(riff2,7,1);
> first.showFromMeOn(JMC.PIANO);

FIGURE 3.13: Weaving a new node among the old

And we can keep weaving in more.

> SongNode another = new SongNode();
> another.setPhrase(SongPhrase.rhythm1());
> first.weave(another,10,2);
> first.showFromMeOn(JMC.STEEL_DRUMS);

3.6.2 Creating a Music Tree

Now, let’s get back to the problem of having multiple parts, something we lost
when we went to the ordered linked list implementation. We’ll create a SongPart
class that will store the instrument and the start of a SongPhrase list. Then we’ll
create a Song class that will store multiple parts–two parts, each a list of nodes.
This structure is a start toward a tree structure.

Program 16: SongPart class

import jm . music . data . ∗ ; import jm .JMC; import jm . u t i l . ∗ ; import
2 jm . music . t o o l s . ∗ ;

“MAIN”
2005/1/3
page 67

i

i

i

i

i

i

i

i

Section 3.6 Structuring Music 67

4 public class SongPart {

6 /∗
∗ SongPart has a Part

8 ∗/
public Part myPart ;

10 /∗
∗ SongPart has a SongNode t ha t i s the beg inng o f i t s

12 ∗/
public SongNode myList ;

14

/∗∗
16 ∗ Construct a SongPart

∗ @param instrument MIDI instrument (program)
18 ∗ @param star tNode where the song l i s t s t a r t s from

∗/
20 public SongPart (int instrument , SongNode startNode)

{
22 myPart = new Part (instrument) ;

myList = startNode ;
24 }

26 /∗∗
∗ Co l l e c t pa r t s o f t h i s SongPart

28 ∗/
public Phrase c o l l e c t (){

30 return this . myList . c o l l e c t () ; // d e l e g a t e to SongNode ’ s c o l l e c t
}

32

/∗∗
34 ∗ Co l l e c t a l l no tes in t h i s SongPart and open i t up f o r v iewing .

∗/
36 public void show (){

// Make the Score t ha t we ’ l l assemble the par t i n t o
38 // We’ l l s e t i t up wi th a d e f a u l t time s i gna tu r e and tempo we l i k e

// (Should probab l y make i t p o s s i b l e to change t h e s e −− maybe wi th inpu t s ?)
40 Score myScore = new Score (”My Song”) ;

myScore . setTimeSignature (3 , 4) ;
42 myScore . setTempo (1 2 0 . 0) ;

44 // Now, cons t ruc t the par t and the score .
this . myPart . addPhrase (this . c o l l e c t ()) ;

46 myScore . addPart (this . myPart) ;

48 // At the end , l e t ’ s see i t !
View . notate (myScore) ;

50

}
52

}

“MAIN”
2005/1/3
page 68

i

i

i

i

i

i

i

i

68 Chapter 3 Structuring Music

Program 17: Song class–root of a tree-like music structure

import jm . music . data . ∗ ; import jm .JMC; import jm . u t i l . ∗ ; import
2 jm . music . t o o l s . ∗ ;

4 public class Song {
/∗∗

6 ∗ f i r s t Channel
∗/

8 public SongPart f i r s t ;

10 /∗∗
∗ second Channel

12 ∗/
public SongPart second ;

14

/∗∗
16 ∗ Take in a SongPart to make the f i r s t channel in the song

∗/
18 public void s e t F i r s t (SongPart channel1){

f i r s t = channel1 ;
20 f i r s t . myPart . setChannel (1) ;

}
22

/∗∗
24 ∗ Take in a SongPart to make the second channel in the song

∗/
26 public void setSecond (SongPart channel2){

second = channel2 ;
28 f i r s t . myPart . setChannel (2) ;

}
30

public void show (){
32 // Make the Score t ha t we ’ l l assemble the par t s i n t o

// We’ l l s e t i t up wi th a d e f a u l t time s i gna tu r e and tempo we l i k e
34 // (Should probab l y make i t p o s s i b l e to change t h e s e −− maybe wi th inpu t s ?)

Score myScore = new Score (”My Song”) ;
36 myScore . setTimeSignature (3 , 4) ;

myScore . setTempo (1 2 0 . 0) ;
38

// Now, cons t ruc t the par t and the score .
40 f i r s t . myPart . addPhrase (f i r s t . c o l l e c t ()) ;

second . myPart . addPhrase (second . c o l l e c t ()) ;
42 myScore . addPart (f i r s t . myPart) ;

myScore . addPart (second . myPart) ;
44

// At the end , l e t ’ s see i t !

“MAIN”
2005/1/3
page 69

i

i

i

i

i

i

i

i

Section 3.6 Structuring Music 69

46 View . notate (myScore) ;

48 }

50

}

While our new structure is very flexible, it’s not the easiest thing to use. We
don’t want to have to type everything into the Interactions Pane every time. So,
we’ll create a class that has its main method that will run on its own. You can
execute it using Run Document’s Main Method (F2) in the Tools menu. Using
MySong, we can get back to having multi-part music in a single score (Figure 3.14).

Program 18: MySong class with a main metho0d

1 import jm . music . data . ∗ ;
import jm .JMC;

3 import jm . u t i l . ∗ ;
import jm .JMC;

5

public class MyFirstSong {
7 public stat ic void main (St r ing [] a rgs) {

Song songroot = new Song () ;
9

SongNode node1 = new SongNode () ;
11 SongNode r i f f 3 = new SongNode () ;

r i f f 3 . se tPhrase (SongPhrase . r i f f 3 ()) ;
13 node1 . repeatNext (r i f f 3 , 1 6) ;

SongNode r i f f 1 = new SongNode () ;
15 r i f f 1 . se tPhrase (SongPhrase . r i f f 1 ()) ;

node1 . weave (r i f f 1 , 7 , 1) ;
17 SongPart part1 = new SongPart (JMC.PIANO, node1) ;

19 songroot . s e t F i r s t (part1) ;

21 SongNode node2 = new SongNode () ;
SongNode r i f f 4 = new SongNode () ;

23 r i f f 4 . se tPhrase (SongPhrase . r i f f 4 ()) ;
node2 . repeatNext (r i f f 4 , 2 0) ;

25 node2 . weave (r i f f 1 , 4 , 5) ;
SongPart part2 = new SongPart (JMC.STEEL DRUMS, node2) ;

27

songroot . setSecond (part2) ;
29 songroot . show () ;

}
31 }

The point of all of this is to create a structure which enables us easily to
explore music compositions, in the ways that we will most probably want to explore.

“MAIN”
2005/1/3
page 70

i

i

i

i

i

i

i

i

70 Chapter 3 Structuring Music

FIGURE 3.14: Multi-part song using our classes

We imagine that most music composition exploration will consist of defining new
phrases of notes, then combining them in interesting ways: defining which come
after which, repeating them, and weaving them in with the rest. At a later point,
we can play with which instruments we want to use to play our parts.

PROBLEMS

3.1. The Song structure that we’ve developed on top of JMusic is actually pretty
similar to the actual implementation of the classes Score, Part, and Phrase

within the JMusic system. Take one of the music examples that we’ve built with
our own linked list, and re-implement it using only the JMusic classes.

3.2. Add into Song the ability to record different starting times for the composite
SongParts. It’s the internal Phrase that remembers the start time, so you’ll have
to pass it down the structure.

3.3. The current implementation of repeatAfter in SongNode append’s the input
node, as opposed to inserting it. If you could insert it, then you could repeat
a bunch of a given phrase between two other nodes. Create a repeatedInsert

method that does an insertion rather than an append.
3.4. The current implementation of Song implements two channels. Channel nine is

the MIDI Drum Kit where the notes are different percussion instruments (Fig-
ure 3.1). Modify the Song class take a third channel, which gets assigned to MIDI
channel 9 and plays a percussion SongPart.

“MAIN”
2005/1/3
page 71

i

i

i

i

i

i

i

i

Section 3.6 Structuring Music 71

35 Acoustic Bass Drum 51 Ride Cymbal 1
36 Bass Drum 1 52 Chinese Cymbal
37 Side Stick 53 Ride Bell
38 Acoustic Snare 54 Tambourine
39 Hand Clap 55 Splash Cymbal
40 Electric Snare 56 Cowbell
41 Lo Floor Tom 57 Crash Cymbal 2
42 Closed Hi Hat 58 Vibraslap
43 Hi Floor Tom 59 Ride Cymbal 2
44 Pedal Hi Hat 60 Hi Bongo
45 Lo Tom Tom 61 Low Bongo
46 Open Hi Hat 62 Mute Hi Conga
47 Low -Mid Tom Tom 63 Open Hi Conga
48 Hi Mid Tom Tom 64 Low Conga
49 Crash Cymbal 1 65 Hi Timbale
50 Hi Tom Tom 66 Lo Timbale

TABLE 3.1: MIDI Drum Kit Notes

“MAIN”
2005/1/3
page 72

i

i

i

i

i

i

i

i

C H A P T E R 4

Structuring Images

4.1 SIMPLE ARRAYS OF PICTURES

4.2 LISTING THE PICTURES, LEFT-TO-RIGHT

4.3 LISTING THE PICTURES, LAYERING

4.4 REPRESENTING SCENES WITH TREES

We know a lot about manipulating individual images. We know how to ma-
nipulate the pixels of an image to create various effect. We’ve encapsulated a bunch
of these in methods to make them pretty easy to use. The question is how to build
up these images into composite images. How do we create scenes made up of lots
of images?

When computer graphics and animation professionals construct complicated
scenes such as in Toy Story and Monsters, Inc., they go beyond thinking about
individual images. Certainly, at some point, they care about how Woody and
Nemo are created, how they look, and how they get inserted into the frame–but all
as part of how the scene is constructed.

How do we describe the structure of a scene? How do we structure our objects
in order to describe scenes that we want to describe, but what’s more, how do we
describe them in such a way that we can change the scene (e.g., in order to define
an animation) in the ways that we’ll want to later? Those are the questions of this
chapter.

4.1 SIMPLE ARRAYS OF PICTURES

The simplest thing to do is to simply list all the pictures we want in array. We then
compose them each into a background (Figure 4.1).

> Picture [] myarray = new Picture [5] ;
> myarray [0]=new Picture (Fi l eChooser . getMediaPath (” ka t i e . jpg ”)) ;
> myarray [1]=new Picture (Fi l eChooser . getMediaPath (”barbara . jpg ”)) ;
> myarray [2]=new Picture (Fi l eChooser . getMediaPath (” f l ower1 . jpg ”)) ;
> myarray [3]=new Picture (Fi l eChooser . getMediaPath (” f l ower2 . jpg ”)) ;
> myarray [4]=new Picture (Fi l eChooser . getMediaPath (” bu t t e r f l y . jpg ”)) ;
> Picture background = new Picture (400 ,400)
> for (int i = 0 ; i < 5 ; i++)

{myarray [i] . s c a l e (0 . 5) . compose (background , i ∗10 , i ∗10) ;}
> background . show () ;

4.2 LISTING THE PICTURES, LEFT-TO-RIGHT

We met a linked list in the last chapter. We can use the same concept for images.

72

“MAIN”
2005/1/3
page 73

i

i

i

i

i

i

i

i

Section 4.2 Listing the Pictures, Left-to-Right 73

FIGURE 4.1: Array of pictures composed into a background

Let’s start out by thinking about a scene as a collection of pictures that lay
next to one another. Each element of the scene is a picture and knows the next
element in the sequence. The elements form a list that is linked together–that’s a
linked list .

We’ll use three little images drawn on a blue background, to make them easier
to chromakey into the image (Figure 4.2).

FIGURE 4.2: Elements to be used in our scenes

Program 19: Elements of a scene in position order

“MAIN”
2005/1/3
page 74

i

i

i

i

i

i

i

i

74 Chapter 4 Structuring Images

public class Posit ionedSceneElement {
2

/∗∗
4 ∗ the p i c t u r e t ha t t h i s e lement ho l d s

∗∗/
6 private Picture myPic ;

8 /∗∗
∗ the next e lement in the l i s t

10 ∗∗/
private Posit ionedSceneElement next ;

12

/∗∗
14 ∗ Make a new element wi th a p i c t u r e as input , and

∗ next as n u l l .
16 ∗ @param he ldPic Pic ture f o r e lement to ho ld

∗∗/
18 public Posit ionedSceneElement (P ic ture he ldPic){

myPic = he ldPic ;
20 next = null ;

}
22

/∗∗
24 ∗ Methods to s e t and ge t next e lements

∗ @param nextOne next e lement in l i s t
26 ∗∗/

public void setNext (Pos it ionedSceneElement nextOne){
28 this . next = nextOne ;

}
30

public Posit ionedSceneElement getNext (){
32 return this . next ;

}
34

/∗∗
36 ∗ Returns the p i c t u r e in the node .

∗ @return the p i c t u r e in the node
38 ∗∗/

public Picture ge tP i c tu r e (){
40 return this . myPic ;

}
42

/∗∗
44 ∗ Method to draw from t h i s node on in the l i s t , us ing b l u e s c r e en .

∗ Each new element has i t ’ s lower− l e f t corner at the lower−r i g h t
46 ∗ o f the prev ious node . S t a r t s drawing from l e f t −bottom

∗ @param bg Pic ture to draw drawing on
48 ∗∗/

public void drawFromMeOn(Pic ture bg) {
50 Posit ionedSceneElement cur rent ;

int currentX=0, currentY = bg . getHeight ()−1;

‘‘MAIN’’
2005/1/3
page 75

i

i

i

i

i

i

i

i

Section 4.2 Listing the Pictures, Left-to-Right 75

52

cur rent = this ;
54 while (cur rent != null)

{
56 cur rent . drawMeOn(bg , currentX , currentY) ;

currentX = currentX + current . g e tP i c tu r e () . getWidth () ;
58 cur rent = current . getNext () ;

}
60 }

62 /∗∗
∗ Method to draw from t h i s p i c ture , us ing b l u e s c r e en .

64 ∗ @param bg Pic ture to draw drawing on
∗ @param l e f t x p o s i t i o n to draw from

66 ∗ @param bottom y po s i t i o n to draw from
∗∗/

68

private void drawMeOn(Pic ture bg , int l e f t , int bottom) {
70 // Bluescreen take s an upper l e f t corner

this . g e tP i c tu r e () . b lue s c r e en (bg , l e f t ,
72 bottom−this . g e tP i c tu r e () . getHeight ()) ;

}
74 }

To construct a scene, we create our PositionedSceneElement objects from
the original three pictures. We connect the elements in order, then draw them all
onto a background (Figure 4.3).

> FileChooser.setMediaPath("D:/cs1316/MediaSources/");
> PositionedSceneElement tree1 = new PositionedSceneElement(new Picture(FileChooser.getMediaPath("tree-blue.jpg")));
> PositionedSceneElement tree2 = new PositionedSceneElement(new Picture(FileChooser.getMediaPath("tree-blue.jpg")));
> PositionedSceneElement tree3 = new PositionedSceneElement(new Picture(FileChooser.getMediaPath("tree-blue.jpg")));
> PositionedSceneElement doggy = new PositionedSceneElement(new Picture(FileChooser.getMediaPath("dog-blue.jpg")));
> PositionedSceneElement house = new PositionedSceneElement(new Picture(FileChooser.getMediaPath("house-blue.jpg")));
> Picture bg = new Picture(FileChooser.getMediaPath("jungle.jpg"));
> tree1.setNext(tree2); tree2.setNext(tree3); tree3.setNext(doggy);
doggy.setNext(house);
> tree1.drawFromMeOn(bg);
> bg.show();
> bg.write("D:/cs1316/first-house-scene.jpg");

This successfully draws a scene, but is it easy to recompose into new scenes?
Let’s say that we decide that we actually want the dog between trees two and three,
instead of tree three and the house. To change the list, we need tree2 to point
at the doggy element, doggy to point at tree3, and tree3 to point at the house
(what the doggy used to point at). Then redraw the scene on a new background
(Figure 4.4).

> tree3.setNext(house); tree2.setNext(doggy); doggy.setNext(tree3);
> bg = new Picture(FileChooser.getMediaPath("jungle.jpg"));

“MAIN”
2005/1/3
page 76

i

i

i

i

i

i

i

i

76 Chapter 4 Structuring Images

FIGURE 4.3: Our first scene

> tree1.drawFromMeOn(bg);
> bg.show();
> bg.write("D:/cs1316/second-house-scene.jpg");

FIGURE 4.4: Our second scene

4.2.1 Generalizing moving the element

Let’s consider what happened in this line:

> tree3.setNext(house); tree2.setNext(doggy); doggy.setNext(tree3);

The first statement, tree3.setNext(house);, gets the doggy out of the list.
tree3 used to point to (setNext) doggy. The next two statements put the doggy

‘‘MAIN’’
2005/1/3
page 77

i

i

i

i

i

i

i

i

Section 4.2 Listing the Pictures, Left-to-Right 77

after tree2. The second statement, tree2.setNext(doggy);, puts the doggy after
tree2. The last statement, doggy.setNext(tree3);, makes the doggy point at
what tree2 used to point at. All together, the three statements in that line:

• Remove the item doggy from the list.

• Insert the item doggy after tree2.

We can write methods to allow us to do this removing and insertion more
generally.

Program 20: Methods to remove and insert elements in a list

1 /∗∗ Method to remove node from l i s t , f i x i n g l i n k s app r op r i a t e l y .
∗ @param node element to remove from l i s t .

3 ∗∗/
public void remove (Posit ionedSceneElement node){

5 i f (node==this)
{

7 System . out . p r i n t l n (” I can ’ t remove the f i r s t node from the l i s t . ”) ;
return ;

9 } ;

11 Posit ionedSceneElement cur rent = this ;
// While t h e r e are more nodes to cons ider

13 while (cur rent . getNext () != null)
{

15 i f (cur rent . getNext () == node){
// Simply make node ’ s next be t h i s next

17 cur rent . setNext (node . getNext ()) ;
// Make t h i s node po in t to noth ing

19 node . setNext (null) ;
return ;

21 }
cur rent = current . getNext () ;

23 }
}

25

/∗∗
27 ∗ I n s e r t the input node a f t e r t h i s node .

∗ @param node element to i n s e r t a f t e r t h i s .
29 ∗∗/

public void i n s e r tA f t e r (Pos it ionedSceneElement node){
31 // Save what ” t h i s ” cu r r en t l y po in t s a t

Posit ionedSceneElement oldNext = this . getNext () ;
33 this . setNext (node) ;

node . setNext (oldNext) ;
35 }

The first method allows us to remove an element from a list, like this:

“MAIN”
2005/1/3
page 78

i

i

i

i

i

i

i

i

78 Chapter 4 Structuring Images

> tree1.setNext(tree2); tree2.setNext(tree3); tree3.setNext(doggy);
doggy.setNext(house);
> tree1.remove(doggy);
> tree1.drawFromMeOn(bg);

The result is that doggy is removed entirely (Figure 4.5).

FIGURE 4.5: Removing the doggy from the scene

Now we can re-insert the doggy wherever we want, say, after tree1 (Fig-
ure 4.6):

> bg = new Picture(FileChooser.getMediaPath("jungle.jpg"));
> tree1.insertAfter(doggy);
> tree1.drawFromMeOn(bg);

4.3 LISTING THE PICTURES, LAYERING

In the example from last section, we used the order of the elements in the linked list
to determine position. We can decide what our representations encode. Let’s say
that we didn’t want to just have our elements be in a linear sequence–we wanted
them to each know their positions anywhere on the screen. What, then, would
order in the linked list encode? As we’ll see, it will encode layering .

Program 21: LayeredSceneElements

1 public class LayeredSceneElement {

3 /∗∗
∗ the p i c t u r e t ha t t h i s e lement ho l d s

“MAIN”
2005/1/3
page 79

i

i

i

i

i

i

i

i

Section 4.3 Listing the Pictures, layering 79

FIGURE 4.6: Inserting the doggy into the scene

5 ∗∗/
private Picture myPic ;

7

/∗∗
9 ∗ the next e lement in the l i s t

∗∗/
11 private LayeredSceneElement next ;

13 /∗∗
∗ The coord ina t e s f o r t h i s e lement

15 ∗∗/
private int x , y ;

17

/∗∗
19 ∗ Make a new element wi th a p i c t u r e as input , and

∗ next as nu l l , to be drawn at g i ven x , y
21 ∗ @param he ldPic Pic ture f o r e lement to ho ld

∗ @param xpos x p o s i t i o n de s i r ed f o r e lement
23 ∗ @param ypos y p o s i t i o n de s i r e d f o r e lement

∗∗/
25 public LayeredSceneElement (P ic ture heldPic , int xpos , int ypos){

myPic = he ldPic ;
27 next = null ;

x = xpos ;
29 y = ypos ;

}
31

/∗∗
33 ∗ Methods to s e t and ge t next e lements

∗ @param nextOne next e lement in l i s t
35 ∗∗/

“MAIN”
2005/1/3
page 80

i

i

i

i

i

i

i

i

80 Chapter 4 Structuring Images

public void setNext (LayeredSceneElement nextOne){
37 this . next = nextOne ;

}
39

public LayeredSceneElement getNext (){
41 return this . next ;

}
43

/∗∗
45 ∗ Returns the p i c t u r e in the node .

∗ @return the p i c t u r e in the node
47 ∗∗/

public Picture ge tP i c tu r e (){
49 return this . myPic ;

}
51

/∗∗
53 ∗ Method to draw from t h i s node on in the l i s t , us ing b l u e s c r e en .

∗ Each new element has i t ’ s lower− l e f t corner at the lower−r i g h t
55 ∗ o f the prev ious node . S t a r t s drawing from l e f t −bottom

∗ @param bg Pic ture to draw drawing on
57 ∗∗/

public void drawFromMeOn(Pic ture bg) {
59 LayeredSceneElement cur rent ;

61 cur rent = this ;
while (cur rent != null)

63 {
cur rent . drawMeOn(bg) ;

65 cur rent = current . getNext () ;
}

67 }

69 /∗∗
∗ Method to draw from t h i s p i c ture , us ing b l u e s c r e en .

71 ∗ @param bg Pic ture to draw drawing on
∗∗/

73

private void drawMeOn(Pic ture bg) {
75 this . g e tP i c tu r e () . b lue s c r e en (bg , x , y) ;

}
77

/∗∗ Method to remove node from l i s t , f i x i n g l i n k s app r op r i a t e l y .
79 ∗ @param node element to remove from l i s t .

∗∗/
81 public void remove (LayeredSceneElement node){

i f (node==this)
83 {

System . out . p r i n t l n (” I can ’ t remove the f i r s t node from the l i s t . ”) ;
85 return ;

} ;

“MAIN”
2005/1/3
page 81

i

i

i

i

i

i

i

i

Section 4.3 Listing the Pictures, layering 81

87

LayeredSceneElement cur rent = this ;
89 // While t h e r e are more nodes to cons ider

while (cur rent . getNext () != null)
91 {

i f (cur rent . getNext () == node){
93 // Simply make node ’ s next be t h i s next

cur rent . setNext (node . getNext ()) ;
95 // Make t h i s node po in t to noth ing

node . setNext (null) ;
97 return ;

}
99 cur rent = current . getNext () ;

}
101 }

103 /∗∗
∗ I n s e r t the input node a f t e r t h i s node .

105 ∗ @param node element to i n s e r t a f t e r t h i s .
∗∗/

107 public void i n s e r tA f t e r (LayeredSceneElement node){
// Save what ” t h i s ” cu r r en t l y po in t s a t

109 LayeredSceneElement oldNext = this . getNext () ;
this . setNext (node) ;

111 node . setNext (oldNext) ;
}

113 }

Our use of LayeredSceneElement is much the same as the PositionedSceneElement,
except that when we create a new element, we also specify its position on the screen.

> Picture bg = new Picture(400,400);
> LayeredSceneElement tree1 = new LayeredSceneElement(
new Picture(FileChooser.getMediaPath("tree-blue.jpg")),10,10);
> LayeredSceneElement tree2 = new LayeredSceneElement(
new Picture(FileChooser.getMediaPath("tree-blue.jpg")),100,10);
> LayeredSceneElement tree3 = new LayeredSceneElement(
new Picture(FileChooser.getMediaPath("tree-blue.jpg")),200,100);
> LayeredSceneElement house = new LayeredSceneElement(
new Picture(FileChooser.getMediaPath("house-blue.jpg")),175,175);
> LayeredSceneElement doggy = new LayeredSceneElement(
new Picture(FileChooser.getMediaPath("dog-blue.jpg")),150,325);
> tree1.setNext(tree2); tree2.setNext(tree3); tree3.setNext(doggy);
doggy.setNext(house);
> tree1.drawFromMeOn(bg);
> bg.show();
> bg.write("D:/cs1316/first-layered-scene.jpg");

The result (Figure 4.7) shows the house in front of a tree and the dog. In the
upper left, we can see one tree overlapping the other.

“MAIN”
2005/1/3
page 82

i

i

i

i

i

i

i

i

82 Chapter 4 Structuring Images

FIGURE 4.7: First rendering of the layered sene

Now, let’s reorder the elements in the list, without changing the elements–not
even their locations. We’ll reverse the list so that we start with the house, not the
first tree. (Notice that we set the tree1 element to point to null–if we didn’t do
that, we’d get an infinite loop with tree1 pointing to itself.)

The resultant figure (Figure 4.8) has completely different layering. The trees
in the upper left have swapped, and the tree and dog are now in front of the house.

> house.setNext(doggy); doggy.setNext(tree3); tree3.setNext(tree2);
tree2.setNext(tree1);
> tree1.setNext(null);
> bg = new Picture(400,400);
> house.drawFromMeOn(bg);
> bg.show();
> bg.write("D:/cs1316/second-layered-scene.jpg");

Have you ever used a drawing program like Visio or even PowerPoint where
you brough an object forward, or sent it to back? What you were doing is, quite
literally, exactly what we’re doing when we’re changing the order of elements in
the list of PositionedSceneElements. In tools such as Visio or PowerPoint, each
drawn object is an element in a list. To draw the screen, the program literally
walks the list (traverses the list) and draws each object. We call the re-creation of
the scene through traversing a data structure a rendering of the scene. If the list
gets reordered (with bringing an object forward or sending it to the back), then the
layering changes. “Bringing an object forward” is about moving an element one

“MAIN”
2005/1/3
page 83

i

i

i

i

i

i

i

i

Section 4.3 Listing the Pictures, layering 83

FIGURE 4.8: Second rendering of the layered sene

position further back in the list–the things at the end get drawn last and thus are
on top.

One other observation: Did you notice how similar both of these elements
implementations are?

4.3.1 Reversing a List

In the last example, we reversed the list “by hand” in a sense. We took each and
every node and reset what it pointed to. What if we had a lot of elements, though?
What if our scene had dozens of elements in it? Reversing the list would take a
lot of commands. Could we write down the process of reversing the list, so that we
can encode it?

First, we need to create a seriously large scene. Let’s not do it in the Inter-
actions Pane–it would take too long to recreate when we needed to. Let’s create a
class just for our specific scene and put our messages there for creating it.

There are actually several different ways of reversing a list. Let’s do it in
two different ways here. The first way we’ll do it is by repeatedly getting the last
element of the original list, removing it from the list, then adding it to the new
reversed list. That will work, but slowly. To find the last element of the list means
traversing the whole list. To add an element to the end of the list means walking
to the end of the new list and setting the last element there to the new element.

How would you do it in real life? Imagine that you have a bunch of cards laid
out in a row, and you need to reverse them. How would you do it? One way to do it
is to pile them up, and then set them back out. A pile (called a stack in computer
science) has an interesting property in that the last thing placed on the pile is the

“MAIN”
2005/1/3
page 84

i

i

i

i

i

i

i

i

84 Chapter 4 Structuring Images

first one to remove from the pile–that’s called LIFO, Last-In-First-Out. We can
use that property to reverse the list. We can define a Stack class to represent the
abstract notion of a pile, then use it to reverse the list.

4.4 REPRESENTING SCENES WITH TREES

A list can only really represent a single dimension–either a linear placement on the
screen, or a linear layering. A full scene has multiple dimensions. We can represent
an entire scene with a tree. Computer scientists call the tree that is rendered to
generate an entire scene a scene graph.

Scene graphs typically represent more than just things that are to be drawn.
They also represent operations on the scene, such as translations (moving the start-
ing position for drawing the next list of elements) and rotations (changing the di-
rection in which we’re drawing). Let’s use a Turtle to handle translations and
rotations.

Here’s how we’ll do it:

• We need a new kind of Element class to represent things we’ll draw.

• We’ll also need Translation and Rotation elements.

• But then we have a Java problem. If we have three different kinds of elements,
how do we put them all in a tree? How do we declare the variables representing
the elements in the tree? Java gives us an out here–we’ll have all of the
elements have the same kind of method for drawing, and we’ll define an
Interface which represents that standardized method.

Trees have a property that they can be traversed in more than one way. While
a list is traversed linearly, a tree can be traversed in several different ways. When
the tree represents a scene, different traversals lead to different renderings–the scene
looks different.

PROBLEMS

4.1. Set up a scene with PositionedSceneElement, then change the layering of just a
single element using remove and insertAfter.

“MAIN”
2005/1/3
page 85

i

i

i

i

i

i

i

i

C H A P T E R 5

Structuring Sounds

The same structures that we used for images can also be used for sounds.

• We can create lists of sounds that, by rendering (traversing), we can generate
music pieces. Changing the music pieces is pretty easy within the list. We
can use the weaving and repeating methods that we developed for music here.
We might even use lists to make wholesale changes in music, e.g., replace all
snaps with pops.

• At this point, you might be wondering, “Do we have to go to all that trouble?
Do we have to use lists? How about just using arrays like we used to?” Let’s
recreate our list of sound elements using arrays instead. We’ll find that it’s
do-able but not easy. Linked lists offer us more flexibility.

• Finally, let’s construct a tree of sound elements, like our tree of picture ele-
ments. Again, different traversals lead to different renderings, where a ren-
dering here means a different sounding piece.

85

“MAIN”
2005/1/3
page 86

i

i

i

i

i

i

i

i

C H A P T E R 6

Generalizing Lists and Trees

There’s a lot of code in common between our different list and tree implemen-
tations. It’s a good idea to pull out the common code into more abstract MMList
(MultiMedia List) and MTree classes. There are a couple of reasons for creating
such abstractions:

• It’s wasteful to have the same code in different places. More importantly, it’s
hard to maintain. What if we found a better way to write some of that com-
mon code? To make the improvement everywhere involves updating several
different classes. If the common code were in one and only one class, then we
would have only one place to fix it.

• Once we have the abstract classes defined, it becomes easier to create new
lists and trees in the future.

• Finally, computer scientists have studied the properties of abstract lists and
trees. What they’ve learned can help us to use lists and trees to make our
code more efficient.

86

“MAIN”
2005/1/3
page 87

i

i

i

i

i

i

i

i

C H A P T E R 7

User Interface Structures

We are all familiar with the basic pieces of a graphical user interface (GUI):
windows, menus, lists, buttons, scrollbars, and the like. As programmers, we can see
that these elements are actually constructed using the lists and trees that we’ve seen
in previous chapters. A window contains panes that in turn contain components
such as buttons and lists. It’s all a hierarchy, as might be represented by a tree.
Different layout managers are essentially rendering the interface component tree
via different traversals.

87

“MAIN”
2005/1/3
page 88

i

i

i

i

i

i

i

i

C H A P T E R 8

Objects in Graphics: Animation

8.1 BASIC FRAMESEQUENCE

How would you create an animation in Java? One good answer is, “Modify
your structure describing your picture, then render it again!” We’ll also be using
linked lists and even graphs to create structures representing the flow of images
representing a single character in motion.

8.1 BASIC FRAMESEQUENCE

We’ll use the utility class FrameSequence to do the basics of animation. We use
FrameSequence by giving it a directory to write frames to. Each time we addFrame,
we add a picture to the frame sequence. If you show the FrameSequence, you see
the animation as it gets written out to frames frame0001.jpg, frame0002.jpg,
and so on.

Here’s an example using some simple turtle graphics to create frames (Fig-
ure 8.1).

> Picture p = new Picture(400,400);
> Turtle t = new Turtle(p);
> t
Unknown at 200, 200 heading 0
> t.forward(100);
> p.show();
> FrameSequence f = new FrameSequence("D:/movie");
> for (int i = 0; i < 100; i++)

t.forward(10);t.turn(36);f.addFrame(p);

FIGURE 8.1: Three frames from the simple FrameSequence example

88

“MAIN”
2005/1/3
page 89

i

i

i

i

i

i

i

i

P A R T T H R E E

SIMULATIONS
Chapter 9 Continuous Simulation

Chapter 10 Discrete Event Simulation

89

“MAIN”
2005/1/3
page 90

i

i

i

i

i

i

i

i

C H A P T E R 9

Continuous Simulation

Simulations are representations of the world (models) that are executed (made
to behave like things in the world). Continuous simulations represent every moment
of the simulated world.

We’ll explore a few different kinds of continuous simulations here. We’ll use
our Turtle class to represent individuals in our simulated worlds.

• A common form of continuous simulation is predator and prey simulations,
like the way wolves and deer interact.

• We can create more sophisticated simulations, too. We might simulate the
spread of disease (or ideas, or political influence).

• One of the critical factors in any simulation is access to resources. We need
to be able to represent how agents in the simulation queue to take turns at a
resource.

90

“MAIN”
2005/1/3
page 91

i

i

i

i

i

i

i

i

C H A P T E R 10

Discrete Event Simulation

10.1 DISTRIBUTIONS AND EVENTS

The difference between continuous and discrete event simulations is that the
latter only represent some moments of time–the ones where something important
happens. Discrete event simulations are very powerful for describing situations such
as supermarkets and factory floors.

10.1 DISTRIBUTIONS AND EVENTS

How do we represent how real things move and act in the real world? It’s random,
yes, but there are different kinds of random.

And once we make things happen randomly, we have to make sure that we
keep true to time order–first things come first, and next things come next. We need
to sort events in time order so that we deal with things accurately. We can also
use binary trees and insertion into an ordered list to keep track of event order.

91

‘‘MAIN’’
2005/1/3
page 92

i

i

i

i

i

i

i

i

A P P E N D I X A

Utility Classes

Utility 1: Turtle

/***
* Creates a Turtle on an input
*
***/

import java.awt.*;
import java.awt.event.*;
import java.awt.geom.*;
import javax.swing.*;
import java.awt.image.*;

public class Turtle {

private Picture myPicture; // the picture that we’re drawing on
private Graphics2D myGraphics;
JFrame myWindow;

private double x = 0.0, y = 0.0; // turtle is at coordinate (x, y)
private int height, width;
private double heading = 180.0; // facing this many degrees counterclockwise
private Color foreground = Color.black; // foreground color
private boolean penDown = true;

// turtles are created on pictures
public Turtle(Picture newPicture) {

myPicture = newPicture;
myGraphics = (Graphics2D) myPicture.getBufferedImage().createGraphics();
myGraphics.setColor(foreground);
height = myPicture.getHeight();
width = myPicture.getWidth();

};

92

‘‘MAIN’’
2005/1/3
page 93

i

i

i

i

i

i

i

i

Appendix A Utility Classes 93

// accessor methods
public double x() { return x; }
public double y() { return y; }

public double heading() { return heading; }
public void setHeading(double newhead) {

heading = newhead;
}

public void setColor(Color color) {
foreground = color;
myGraphics.setColor(foreground);

}

//Pen Stuff
public void penUp(){

penDown = false;
}

public void penDown(){
penDown = true;

}

public boolean pen(){
return penDown;

}

public float getPenWidth(){
BasicStroke bs = (BasicStroke) myGraphics.getStroke();
return bs.getLineWidth();

}

public void setPenWidth(float width){
BasicStroke newStroke = new BasicStroke(width);
myGraphics.setStroke(newStroke);

};

public void go(double x, double y) {
if (penDown)
myGraphics.draw(new Line2D.Double(this.x, this.y, x, y));

this.x = x;
this.y = y;

}

// draw w-by-h rectangle, centered at current location
public void spot(double w, double h) {

myGraphics.fill(new Rectangle2D.Double(x - w/2, y - h/2, w, h));

‘‘MAIN’’
2005/1/3
page 94

i

i

i

i

i

i

i

i

94 Appendix A Utility Classes

}

// draw circle of diameter d, centered at current location
public void spot(double d) {

if (d <= 1) myGraphics.drawRect((int) x, (int) y, 1, 1);
else myGraphics.fill(new Ellipse2D.Double(x - d/2, y - d/2, d, d));

}

// draw spot using jpeg/gif - fix to be at (x, y)
public void spot(String s) {

Picture spotPicture = new Picture(s);
Image image = spotPicture.getImage();

int w = image.getWidth(null);
int h = image.getHeight(null);

myGraphics.rotate(Math.toRadians(heading), x, y);
myGraphics.drawImage(image, (int) x, (int) y, null);
myGraphics.rotate(Math.toRadians(heading), x, y);

}

// draw spot using gif, left corner on (x, y), scaled of size w-by-h
public void spot(String s, double w, double h) {

Picture spotPicture = new Picture(s);
Image image = spotPicture.getImage();

myGraphics.rotate(Math.toRadians(heading), x, y);
myGraphics.drawImage(image, (int) x, (int) y,

(int) w, (int) h, null);
myGraphics.rotate(Math.toRadians(heading), x, y);

}

public void pixel(int x, int y) {
myGraphics.drawRect(x, y, 1, 1);

}

// rotate counterclockwise in degrees
public void turn(double angle) { heading = (heading + angle) % 360; }

// walk forward
public void forward(double d) {

double oldx = x;
double oldy = y;
x += d * -Math.cos(Math.toRadians(heading));
y += d * Math.sin(Math.toRadians(heading));
if (penDown)

“MAIN”
2005/1/3
page 95

i

i

i

i

i

i

i

i

Appendix A Utility Classes 95

myGraphics.draw(new Line2D.Double(x, y, oldx, oldy));
}

// write the given string in the current font
public void write(String s) {

FontMetrics metrics = myGraphics.getFontMetrics();
int w = metrics.stringWidth(s);
int h = metrics.getHeight();
myGraphics.drawString(s, (float) (x - w/2.0), (float) (y + h/2.0));

}

// write the given string in the given font
public void write(String s, Font f) {

myGraphics.setFont(f);
write(s);

}

}

“MAIN”
2005/1/3
page 96

i

i

i

i

i

i

i

i

Bibliography

96

“MAIN”
2005/1/3
page 97

i

i

i

i

i

i

i

i

Index

*/, 13
++, 26
–, 26
/*, 13

abstraction, 4
AmazingGraceSong, 38
AmazingGraceSongElement, 42
and, 9

behavior, 2
binary trees, 91
block, 9
bluescreen, 18
break, 9
buttons, 87

Call and response, 40
cast, 26
chromakey, 18
class, 10
class method, 11
common bug

Don’t try to change the input variables, 18
Java may be hidden on Macintosh, 11
Width is the size, not the coordinate, 15

compiled, 8
computer science idea

Better or worse structures depend on use, 2
Layering software makes it easier to change, 46
Layering software makes it easier to change, Part 2, 59
Refactoring refines a design., 60

connections, 4
constructor, 25, 26
curly braces, 9

declaring, 8
discrete event simulations, 91
dot notation, 11
double, 8
DrJava, 4
drop, 22

97

“MAIN”
2005/1/3
page 98

i

i

i

i

i

i

i

i

98 Index

edges, 4
Element, 84
expert musicians, 42
explore, 16

file paths, 10
FileChooser, 10
for, 9
FrameSequence, 88
functions, 7

getMediaPath, 16
graph, 4
graphical user interface (GUI), 87
graphs, 88
GUI, 87

hierarchy, 3

import, 26
increaseRed, 12
instances, 10, 50
instrument, 26, 28
Interface, 84

jar file, 4
Java, 2
Javadoc, 30, 63
JMC, 28
JMC.C4, 28
JMC.FLUTE, 28
JMC.QN, 28
JMusic, 4

Javadoc, 30

LayeredSceneElement, 81
layering, 78
layout managers, 87
linked list, 3, 72, 73

images, 73
music, 42
traversal, 82

list, 60, 73
lists, 87
literal, 8

machine language, 8
main, 69

“MAIN”
2005/1/3
page 99

i

i

i

i

i

i

i

i

Index 99

making it work
The command history isn’t reset, 13

Math.random(), 38
method, 12
methods, 7
MIDI

drum kit, 70
MIDI channels, 28
MIDI Drum Kit, 70
MIDI music, 22
MIDI note, 26
MIDI program, 26
MMList, 86
model, 42

ordering, 42
MTree, 86
MySong, 69

new, 8
new Picture(), 11
node, 60
nodes, 4
Note, 26
null, 11

or, 9
ordered list, 91
ordering, 42

panes, 87
Part, 42, 60, 70
Phrase, 26, 28, 42, 70
pickAFile(), 10
Picture, 7, 18
pile, 83
Pixel, 11
Pixels [], 12
PositionedSceneElement, 75, 81
PowerPoint, 82
predator and prey, 90
print, 10
println, 41
private, 13
program

Amazing Grace as a Song Object, 37
Amazing Grace as Song Elements, 42
Amazing Grace as Song Elements, Take 2, 47

“MAIN”
2005/1/3
page 100

i

i

i

i

i

i

i

i

100 Index

Amazing Grace with Multiple Voices, 40
Computed Phrases, 57
Elements of a scene in position order, 73
General Song Elements and Song Phrases, 50
LayeredSceneElements, 78
Method for Picture to scale by a factor, 16
Method to compose this picture into a target, 16
Method to flip an image, 14
Method to increase red in Picture, 12
Methods for general chromakey and bluescreen, 19
Methods to remove and insert elements in a list, 77
More phrases to play with, 53
MySong class with a main metho0d, 69
Repeating and weaving methods, 63
Song class–root of a tree-like music structure, 68
SongNode class, 60
SongPart class, 66
Sound methods, 24

property, 83
public, 13

queue, 90

random, 91
refactoring, 60
render, 88
rendering, 82
representations, 2
resources, 90
Rotation, 84
rotations, 84

Sample, 7
sampled sounds, 22
scene graph, 84
scenes, 72
Score, 28, 42, 70
self, 12
sequence, 42
setMediaPath, 16
show(), 11
Song, 70
SongElement, 50, 60
SongNode, 60
SongPart, 66
SongPhrase, 50, 66
sort, 91

“MAIN”
2005/1/3
page 101

i

i

i

i

i

i

i

i

Index 101

Sound, 7, 25
square brackets, 10
Stack, 84
stack, 83
static, 10, 49
stream, 41
string concatenation, 42
structure, 2
System.out.println, 10
System.out.println(), 41

this, 12
time order, 91
Translation, 84
translations, 84
traverses, 82
tree, 3, 60, 66
Turtle, 84, 90
types, 7

utility
Turtle, 92

Visio, 82
void, 13

WAV files, 22
while, 9

