
Problem Solving with Data
Structures:

A Multimedia Approach
Mark Guzdial and Barbara Ericson

College of Computing/GVU
Georgia Institute of Technology

ALPHA VERSION OF TEXT

January 1, 2008

i

Copyright held by Mark Guzdial and Barbara Ericson, 2006.

ii

Dedicated to TBD.

Contents

Contents iii

List of Program Examples vii

List of Figures xi

I Introduction to Java: Object-Oriented Programming
for Modeling the World 5

1 Objects for Modeling the World 7
1.1 Making Representations of the World 8
1.2 Why Java? . 14

2 Introduction to Java 19
2.1 What’s Java about? . 19
2.2 Basic (Syntax) Rules of Java 20
2.3 Using Java to Model the World 24
2.4 Manipulating Pictures in Java 35
2.5 Exploring Sound in Java . 41
2.6 Exploring Music in Java . 42

3 Methods in Java: Manipulating Pictures 45
3.1 Reviewing Java Basics . 45
3.2 Java is about Classes and Methods 49
3.3 Methods that return something: Compositing images 57
3.4 Creating classes that do something 66

4 Objects as Agents: Manipulating Turtles 69
4.1 Turtles: An Early Computational Object 69
4.2 Drawing with Turtles . 70
4.3 Creating animations with turtles and frames 78

5 Arrays: A Static Data Structure for Sounds 85
5.1 Manipulating Sampled Sounds 85

iii

iv Contents

5.2 Inserting and Deleting in an Array 91

II Introducing Linked Lists 95

6 Structuring Music using Linked Lists 97
6.1 JMusic and Imports . 97
6.2 Starting out with JMusic . 101
6.3 Making a Simple Song Object 102
6.4 Simple structuring of notes with an array 104
6.5 Making the Song Something to Explore 106
6.6 Making Any Song Something to Explore 113
6.7 Exploring Music . 132

7 Structuring Images using Linked Lists 149
7.1 Simple arrays of pictures . 150
7.2 Listing the Pictures, Left-to-Right 150
7.3 Listing the Pictures, Layering 156
7.4 Reversing a List . 163
7.5 Animation . 164
7.6 Lists with Two Kinds of Elements 167

8 Abstract Data Types: Separating the Meaning from the Im-
plementation 181
8.1 Introducing the Stack . 181
8.2 Introduction to Queues . 194

III Trees: Hierarchical Structures for Media 201

9 Trees of Images 203
9.1 Representing scenes with trees 203
9.2 Our First Scene Graph: Attack of the Killer Wolvies 205
9.3 The Classes in the SceneGraph 207
9.4 Building a scene graph . 210
9.5 Implementing the Scene Graph 217
9.6 Exercises . 231

10 Lists and Trees for Structuring Sounds 233
10.1 Composing with Sampled Sounds and Linked Lists: Recur-

sive Traversals . 233
10.2 Using Trees to Structure Sampled Sounds 247

11 Generalizing Lists and Trees 265
11.1 Refactoring a General Linked List Node Class 265
11.2 Making a New Kind of List 275
11.3 The Uses and Characteristics of Arrays, Lists, and Trees . . 277

Contents v

11.4 Binary Search Trees: Trees that are fast to search 283

12 Circular Linked Lists and Graphs: Lists and Trees That
Loop 295
12.1 Making Cell Animation with Circular Linked Lists 295
12.2 Generalizing a Circular Linked List 300
12.3 Graphs: Trees with Loops . 302

13 User Interface Structures 309
13.1 A Toolkit for Building User Interfaces 309
13.2 Rendering of User Interfaces 312
13.3 A Cavalcade of Swing Components 323
13.4 Creating an Interactive User Interface 328
13.5 Running from the Command Line 338

IV Simulations: Problem Solving with Data Structures 343

14 Using an Existing Simulation Package 345

15 Introducing UML and Continuous Simulations 347
15.1 Introducing Simulations . 348
15.2 Our First Model and Simulation: Wolves and Deer 350
15.3 Modelling in Objects . 352
15.4 Implementing the Simulation Class 356
15.5 Implementing a Wolf . 359
15.6 Implementing Deer . 364
15.7 Implementing AgentNode . 365
15.8 Extending the Simulation . 366

16 Abstracting Simulations: Creating a Simulation Package 375
16.1 Creating a Generalized Simulation Package 376
16.2 Re-Making the Wolves and Deer with our Simulation Package383
16.3 Making a Disease Propagation Simulation 392
16.4 Making a Political Influence Simulation 399
16.5 Walking through the Simulation Package 404
16.6 Finally! Making Wildebeests and Villagers 408
16.7 A Tour of Java Collection Classes 417

17 Discrete Event Simulation 427
17.1 Distributions and Events . 427

A MIDI Instrument names in JMusic 429

B Whole Class Listings 433

Bibliography 451

vi Contents

Index 453

List of Program Examples

Example Program: An Example Program 2
Example Program: Person class, starting place 25
Example Program: Person, with a private name 26
Example Program: Person, with constructors 27
Example Program: toString method for Person 29
Example Program: Student class, initial version 29
Example Program: Class Student, with constructors 30
Example Program: main() method for Person 32
Example Program: greet method for Person 32
Example Program: greet method for Student 33
Example Program: Method to increase red in Picture 38
Example Program: Method to flip an image 40
Example Program: decreaseRed in a Picture 52
Example Program: decreaseRed with an input 55
Example Program: Method to compose this picture into a target . . 57
Example Program: Method for Picture to scale by a factor 60
Example Program: Methods for general chromakey and bluescreen 64
Example Program: A public static void main in a class 67
Example Program: Creating a hundred turtles 73
Example Program: Making a picture with dropped pictures 77
Example Program: An animation generated by a Turtle 79
Example Program: Increase the volume of a sound by a factor 86
Example Program: Reversing a sound 87
Example Program: Create an audio collage 88
Example Program: Append one sound with another 89
Example Program: Mix in part of one sound with another 90
Example Program: Scale a sound up or down in frequency 90
Example Program: Inserting into the middle of sounds 92
Example Program: Amazing Grace as a Song Object 102
Example Program: Amazing Grace with Multiple Voices 106
Example Program: Amazing Grace as Song Elements 108
Example Program: Amazing Grace as Song Elements, Take 2 113
Example Program: General Song Elements and Song Phrases . . . 121
Example Program: More phrases to play with 124
Example Program: Computed Phrases 128

vii

viii List of Program Examples

Example Program: 10 random notes SongPhrase 130
Example Program: 10 slightly less random notes 131
Example Program: SongNode class 133
Example Program: Repeating and weaving methods 136
Example Program: RepeatNextInserting 139
Example Program: SongPart class . 142
Example Program: Song class–root of a tree-like music structure . . 143
Example Program: MySong class with a main metho0d 144
Example Program: Elements of a scene in position order 151
Example Program: Methods to remove and insert elements in a list 154
Example Program: LayeredSceneElements 157
Example Program: Reverse a list . 163
Example Program: Create a simple animation of a dog running . . . 165
Example Program: Abstract method drawWith in abstract class SceneElement

169
Example Program: SceneElement . 170
Example Program: SceneElementPositioned 173
Example Program: SceneElementLayered 174
Example Program: MultiElementScene 175
Example Program: Modified drawFromMeOn in SceneElement . . . 177
Example Program: Testing program for a PictureStack 184
Example Program: PictureStack . 185
Example Program: PictureStack—push, peek, and pop 186
Example Program: PictureStack—size and empty 187
Example Program: Stack implementation with a linked list 188
Example Program: Stack implementation with an array 189
Example Program: Stack implementation with an array—methods . 189
Example Program: Reverse a list–repeated 192
Example Program: Reverse with a stack 193
Example Program: Queue implemented as a linked list 196
Example Program: Queue implemented as an array 197
Example Program: The drawing part of DrawableNode 208
Example Program: Start of WolfAttackMovie class 210
Example Program: Start of setUp method in WolfAttackMovie 211
Example Program: Rest of setUp for WolfAttackMovie 212
Example Program: Rendering just the first scene in WolfAttackMovie 214
Example Program: renderAnimation in WolfAttackMovie 214
Example Program: DrawableNode . 219
Example Program: PictNode . 222
Example Program: BlueScreenNode 223
Example Program: Branch . 225
Example Program: HBranch . 227
Example Program: VBranch . 228
Example Program: MoveBranch . 229
Example Program: SoundElement . 234

List of Program Examples ix

Example Program: SoundListText: Constructing a SoundElement
list . 240

Example Program: RepeatNext for SoundElement 241
Example Program: Weave for SoundElement 241
Example Program: copyNode for SoundElement 242
Example Program: De-gonging the list 243
Example Program: replace for SoundElement 244
Example Program: SoundTreeExample 248
Example Program: CollectableNode 252
Example Program: SoundNode . 253
Example Program: SoundBranch . 254
Example Program: ScaleBranch . 256
Example Program: LLNode, a generalized linked list node class . . 266
Example Program: DrawableNode, with linked list code factored out 269
Example Program: CollectableNode, with linked list code factored

out . 272
Example Program: StudentNode class 275
Example Program: TreeNode, a simple binary tree 285
Example Program: insertInOrder for a binary search tree 287
Example Program: find, for a binary search tree 288
Example Program: traverse, a binary tree in-order 290
Example Program: addFirst and addLast, treating a tree as a list . 292
Example Program: WalkingDoll . 298
Example Program: CharNode, a class for representing characters in

cell animations . 301
Example Program: A Simple GUItree class 312
Example Program: Slightly more complex GUItree class 313
Example Program: A Flowed GUItree 314
Example Program: A BorderLayout GUItree 318
Example Program: A BoxLayout GUItree 321
Example Program: An interactive GUItree 330
Example Program: Start of RhythmTool 333
Example Program: Starting the RhythmTool Window and Building

the Filename Field . 334
Example Program: Creating the Count Field in the RhythmTool . . 336
Example Program: RhythmTool’s Buttons 337
Example Program: Test program for String[] args 338
Example Program: RunPictureTool 339
Example Program: WDSimulation’s setUp() method 384
Example Program: WDSimulation’s lineForFile() method 385
Example Program: DeerAgent’s init method 386
Example Program: DeerAgent’s die() method 387
Example Program: DeerAgent’s act() method 388
Example Program: DeerAgent’s constructors 388
Example Program: WolfAgent’s init method 389
Example Program: WolfAgent’s act() method 390

x List of Program Examples

Example Program: DiseaseSimulation’s setUp method 393
Example Program: WDSimulation’s lineForFile method 393
Example Program: PersonAgent’s init method 394
Example Program: PersonAgent’s act method 395
Example Program: PersonAgent’s infect method 395
Example Program: PersonAgent’s infected method 396
Example Program: PoliticalSimulation’s setUp method 399
Example Program: PoliticalSimulation’s lineForFile and endStep meth-

ods . 401
Example Program: PoliticalAgent’s init method 401
Example Program: PoliticalAgent’s setPolitics method 402
Example Program: PoliticalAgent’s act method 403
Example Program: BirdSimulation’s setUp method 410
Example Program: BirdSimulation’s endStep method 410
Example Program: Changing Simuation’s run() method for a time

step input to act() . 411
Example Program: Changing Agent to make time step inputs op-

tional . 412
Example Program: BirdAgent’s init method 412
Example Program: BirdAgent’s act method 413
Example Program: EggAgent’s init method 415
Example Program: EggAgent’s act method 416
Example Program: WolfDeerSimulation.java 436
Example Program: Wolf.java . 439
Example Program: Deer.java . 442
Example Program: AgentNode . 445
Example Program: HungryWolf . 447

List of Figures

1.1 Wildebeests in The Lion King . 7
1.2 Parisian villagers in The Hunchback of Notre Dame 8
1.3 Katie’s list of treasure hunt clues 10
1.4 An organization chart . 11
1.5 A map of a town . 11
1.6 Opening the DrJava Preferences 16
1.7 Adding the JMusic libraries to DrJava in Preferences 16
1.8 Adding java-source to DrJava 17
1.9 Parts of DrJava window . 17

2.1 Showing a picture . 36
2.2 Doubling the amount of red in a picture 38
2.3 Doubling the amount of red using our increaseRed method 39
2.4 Flipping our guy character–original (left) and flipped (right) . . 41
2.5 Just two notes . 43

3.1 Structure of the Picture class defined in Picture.java 50
3.2 Part of the JavaDoc page for the Pixel class 56
3.3 Composing the guy into the jungle 58
3.4 Mini-collage created with scale and compose 63
3.5 Using the explore method to see the sizes of the guy and the jungle 64
3.6 Chromakeying the monster into the jungle using different levels

of bluescreening . 65
3.7 Run the main method from DrJava 68

4.1 Starting a Turtle in a new World 71
4.2 A drawing with a turtle . 72
4.3 What you get with a hundred turtles starting from the same

point, pointing in random directions, then moving forward the
same amount . 75

4.4 Dropping the monster character 76
4.5 Dropping the monster character after a rotation 76
4.6 An iterated turtle drop of a monster 77
4.7 Making a more complex pattern of dropped pictures 78

xi

xii List of Figures

6.1 Playing all the notes in a score 98
6.2 Frequencies, keys, and MIDI notes—-something I found on the

Web that I need to recreate in a new way 99
6.3 Viewing a multipart score . 101
6.4 JMusic documention for the class Phrase 102
6.5 Playing all the notes in a score 102
6.6 Trying the Amazing Grace song object 105
6.7 A hundred random notes . 105
6.8 Multi-voice Amazing Grace notation 108
6.9 AmazingGraceSongElements with 3 pieces 112
6.10 AmazingGraceSongElements with 3 pieces 112
6.11 Playing some different riffs in patterns 128
6.12 Sax line in the top part, rhythm in the bottom 130
6.13 We now have layers of software, where we deal with only one at

a time . 131
6.14 First score generated from ordered linked list 136
6.15 Javadoc for the class SongNode . 136
6.16 Repeating a node several times 138
6.17 Weaving a new node among the old 139
6.18 Multi-part song using our classes 145

7.1 Array of pictures composed into a background 150
7.2 Elements to be used in our scenes 151
7.3 Our first scene . 153
7.4 Our second scene . 154
7.5 Removing the doggy from the scene 156
7.6 Inserting the doggy into the scene 156
7.7 First rendering of the layered sene 160
7.8 A doubly-linked list . 161
7.9 Second rendering of the layered sene 162
7.10 A few frames from the AnimatedPositionedScene 167
7.11 The abstract class SceneElement, in terms of what it knows and

can do . 169
7.12 The abstract class SceneElement and its two subclasses 174
7.13 A scene rendered from a linked list with different kinds of scene

elements . 176
7.14 Same multi-element scene with pen traced 178

8.1 A pile of plates—only put on the top, never remove from the
bottom . 182

8.2 Later items are at the head (top) of stack 182
8.3 New items are inserted at the top (head) of the stack 183
8.4 Items are removed from the top (head) of a stack 183
8.5 An empty stack as an array . 191
8.6 After pushing Matt onto the stack-as-an-array 191
8.7 After pushing Katie and Jenny, then popping Jenny 192

List of Figures xiii

8.8 A basic queue . 195
8.9 Elements are removed from the top or head of the queue 195
8.10 New elements are pushed onto the tail of the queue 195
8.11 When the queue-as-array starts out, head and tail are both zero 199
8.12 Pushing Matt onto the queue moves up the head to the next

empty cell . 199
8.13 Pushing Katie on moves the head further right 199
8.14 Popping Matt moves the tail up to Katie 200

9.1 A simple scene graph . 204
9.2 A more sophisticated scene graph based on Java 3-D 205
9.3 The nasty wolvies sneak up on the unsuspecting village in the

forest . 205
9.4 Then, our hero appears! . 206
9.5 And the nasty wolvies scamper away 206
9.6 Mapping the elements of the scene onto the scene graph 207
9.7 Stripping away the graphics—the scene graph is a tree 207
9.8 Hierarchy of classes used in our scene graph 208
9.9 The forest branch created in setUp—arrows point to children . . 212
9.10 Reserving more memory for the Interactions Pane in DrJava’s

Preferences pane . 217
9.11 The implementation of the scene graph overlaid on the tree ab-

straction . 218
9.12 The actual implementation of the scene graph 218
9.13 How we actually got some of the bluescreen pictures in this

book, such as our hero in WolfAttackMovie 223

10.1 The initial SoundElement list . 238
10.2 As we start executing playFromMeOn() 238
10.3 Calling e2.collect() . 239
10.4 Finally, we can return a sound 239
10.5 Ending e2.collect() . 240
10.6 Starting out with e1.replace(croak,clap) 245
10.7 Checking the first node . 245
10.8 Replacing from e2 on . 246
10.9 Finally, replace on node e3 . 246
10.10Our first sampled sound tree . 247
10.11The core classes in the CollectableNode class hierarchy 251
10.12Extending the class hierarchy with ScaleBranch 252
10.13Starting out with tree.root().collect() 258
10.14Asking the root’s children to collect() 259
10.15Asking the first SoundNode to collect() 259
10.16Asking the next SoundNode to collect() 260
10.17Collecting from the next of the SoundBranch 260
10.18Collecting from the last SoundBranch 261

xiv List of Figures

11.1 An example organization chart 279
11.2 An equation represented as a tree 280
11.3 A tree of meanings . 281
11.4 A sample sentence diagram . 281
11.5 A query for a collection of sentence trees 282
11.6 A user interface is a tree . 283
11.7 Simple binary tree . 284
11.8 More complex binary tree . 284
11.9 Tree formed by the names example 288
11.10An unbalanced form of the last binary search tree 290
11.11Rotating the right branch off “betty” 290
11.12An equation tree for different kinds of traversals 292

12.1 Scenes from Super Mario Brothers 296
12.2 Three images to be used in a cell animation 296
12.3 A sequence of images arranged to give the appearance of walking297
12.4 A circular linked list of images 297
12.5 Frames of the walking doll . 298
12.6 A partial circular linked list . 300
12.7 A map as a graph . 303
12.8 Apply weights to a graph—distances on a map 304
12.9 Traversing a graph to create a spanning tree 305
12.10Choosing the cheapest path out of Six Flags 306
12.11Going to College Park . 306
12.12Backtracking to avoid re-visiting Six Flags 307
12.13Adding Dunwoody, the obviously cheaper path 307
12.14Finishing up in Charlotte . 308

13.1 Examples of Swing components: JFrame, JPanel, and JSplitPane310
13.2 Simplest Possible GUI . 313
13.3 The slightly more complex GUItree, with two panes 314
13.4 Our GUItree, using a Flowed Layout Manager 315
13.5 Diagram of components of GUI tree 316
13.6 Resizing the Flowed GUItree . 316
13.7 How a BorderLayout GUI is structured 317
13.8 A BorderLayout GUItree . 319
13.9 Resizing the BorderLayout GUItree 319
13.10Example of a GridBag layout . 320
13.11Our GUItree rendered by the BoxLayout 322
13.12Resizing the BoxLayout GUItree 322
13.13Example of use of JScrollPane . 323
13.14Example of a JTabbedPane . 324
13.15Example of JToolbar . 324
13.16An example of JOptionPane . 324
13.17An example of JInternalFrame 324
13.18An example of a JComboBox . 325

List of Figures xv

13.19An example of a JSlider . 325
13.20An example of a JProgressBar . 326
13.21An example of JColorChooser . 326
13.22An example of JFileChooser . 327
13.23An example of a JTextField . 327
13.24An example of a JPasswordField 328
13.25An example of a JTextArea . 328
13.26A tool for generating rhythms . 333
13.27Exploring how String[] args works 339
13.28Executing PictureTool from the command line 339

15.1 An execution of our wolves and deer simulation 350
15.2 The class relationships in the Wolves and Deer simulation . . . 352
15.3 A UML class diagram for the wolves and deer simulation 354
15.4 One UML class . 355
15.5 A Reference Relationship . 356
15.6 A Gen-Spec (Generalization-Specialization) relationship 356
15.7 The structure of the wolves linked list 358

16.1 Sample of disease propagation simulation 379
16.2 A Political Influence Simulation 380
16.3 UML diagram of the base Simulation Package 380
16.4 UML class diagram for Wolves and Deer with the Simulation

Package . 384
16.5 UML Class Diagram of Disease Propagation Simulation 392
16.6 A graph of infection in the large world 397
16.7 A graph smaller world disease propagation simulation 399
16.8 UML class diagram of political simulation 400
16.9 Mapping from agent (turtle) positions on the left to character

positions on the right . 409
16.10Frames from the Egg-Bird Movie 409
16.11The individual images for the bird characters 413
16.12The various egg images . 416

Preface

The focus in this book is on teaching data structures as a way to solve
problems in modeling the world and executing (simulating) the resultant
model. We cover the standard data structures topics (e.g., arrays, linked
lists, trees, graphs, stacks, and queues) but in the context of modeling
situations then creating simulations (often generating animations).

The presumption is that the reader has had some previous program-
ming experience. We expect that the reader can build programs that use
iteration via while and for, and that the reader can assemble that pro-
gram using functions that pass input via arguments. The reader should
know what an array and matrix are. But we don’t care what language that
previous experience is in.

We use DrJava in examples in this text. It is not necessary to use Dr-
Java to use this book! The advantage of DrJava is a simple interface and
a powerful interactions pane, which allows us to manipulate objects with-
out writing new methods or classes for each exploration. Rapid iteration
allows students to explore and learn a wide space more quickly than they
might if each exploration required a new Java file or method.

Typographical notations

Examples of Java code look like this: x = x + 1. Longer examples look look
like this:

public static void main (String [] args){
System . out . pr int ln (” Hello , World ! ”) ;
}

When showing something that the user types in with DrJava’s response,
it will have a similar font and style, but the user’s typing will appear after
a prompt (>):

> int a = 5;
> a + 7
12

User interface components of DrJava will be specified using a smallcaps
font, like SAVE menu item and the LOAD button.

1

2 List of Figures

There are several special kinds of sidebars that you’ll find in the book.

Utility Program
Utility #1: An Example Utility
Utility programs are new pieces with which we will construct our models–
not necessarily to be studied for themselves, but offered as something in-
teresting to study and expand upon. They appear like this:

public class Greeter
2 {

public static void main (String [] argv)
4 {

// show the s tr ing ” Hello World ” on the console
6 System . out . pr int ln (” Hello World ”) ;

}
8 }

Program
Example #0 Example Java Code: An Example Program

A program creates a model of interest to us.

import jm . music . data . ∗ ;
2 import jm .JMC;

import jm . u t i l . ∗ ;
4 import jm . music . t oo l s . ∗ ;

6 public class Dot03 {
public static void main (String [] args) {

8 Note n = new Note (JMC. C4, JMC.QUARTER NOTE) ;
Phrase phr = new Phrase (0 . 0) ;

10 phr . addNote (n) ;
Mod. repeat (phr , 15) ;

12

Phrase phr2 = new Phrase (0 . 0) ;
14 Note r = new Note (JMC.REST, JMC.EIGHTH NOTE) ;

phr2 . addNote (r) ;
16 Note n2 = new Note (JMC. E4, JMC.EIGHTH NOTE) ;

phr2 . addNote (n2) ;
18 Note r2 = new Note (JMC.REST, JMC.QUARTER NOTE) ;

phr2 . addNote (r2) ;
20 Mod. repeat (phr2 , 7) ;

22 Part p = new Part () ;
p . addPhrase (phr) ;

24 p . addPhrase (phr2) ;

26 View . show (p) ;
}

List of Figures 3

28 }

Computer Science Idea: An Example Idea
Powerful computer science concepts appear like this.

A Problem and Its Solution: The Problem that We’re Solving
We use data structures to solve problems in modeling the world. In these
side bars, we explicitly identify the problem and its solution.

Common Bug: An Example Common Bug
Common things that can cause your recipe to fail appear like this.

Debugging Tip: An Example Debugging Tip
If there’s a good way to keep those bugs from creeping into your recipes in
the first place, they’re highlighted here.

Making It Work Tip: An Example How To Make It Work
Best practices or techniques that really help are highlighted like this.

Acknowledgements

My sincere thanks go out to the following:

• The National Science Foundation who gave us the initial grants that
started the Media Computation project;

• Robert “Corky” Cartwright and the whole DrJava development team
at Rice University;

4 List of Figures

• Andrew Sorensen and Andrew Brown, the developers of JMusic;

• Finally but most importantly, Barbara Ericson, and Matthew, Kather-
ine, and Jennifer Guzdial, who allowed themselves to be photographed
and recorded for Daddy’s media project.

Part I

Introduction to Java:
Object-Oriented Programming

for Modeling the World

5

1 Objects for Modeling the World

In the 1994 Disney animated movie The Lion King, there is a scene when
wildebeests charge over the ridge and stampede the lion king, Mufasa (Fig-
ure 1.11). Later, in the 1996 Disney animated movie The Hunchback of
Notre Dame, Parisian villagers mill about, with a decidedly different look
than the rest of the characters (see bottom of Figure 1.22). These are actu-
ally related scenes. The wildebeests’ stampede was one of the rare times
that Disney broke away from their traditional hand-drawn cel animation.
The wildebeests were not drawn by hand at all—rather, they were modeled
and then brought to life in a simulation.

Figure 1.1: Wildebeests in The Lion King

A model is a detailed description of structure and behavior. The model
of the wildebeests for The Lion King described what wildebeests looked
like, how they moved, and what they did in a stampede. The villagers’
model described what they did when milling about and how they reacted
as a group to something noteworthy, like the entrance of Quasimodo. A
simulation is execution of the model—simply let the wildebeests start re-
sponding to one another and to the obstacles on the ridge, according to the
behavior defined in their model. Then, in a sense, simply “film” the screen.

This is a different process than when Pixar created Toy Story. There
is a model for Woody, which describes how Woody looks and what parts
of him move together when he smiles or walks. But Toy Story wasn’t a

1Images copyright c©1994, 1995 The Walt Disney Company.
2Images copyright c©1995, 1996 The Walt Disney Company.

7

8 CHAPTER 1. OBJECTS FOR MODELING THE WORLD

Figure 1.2: Parisian villagers in The Hunchback of Notre Dame

simulation. The movements and character responses of Toy Story were
carefully scripted. In the wildebeest or villagers simulations, each charac-
ter is simply following a set of rules, usually with some random element
(e.g., Should the wildebeest move left or right when coming up against the
rock? When should the villagers shuffle or look right?) If you run a sim-
ulation a second time, depending on the model and the random variables
you used, you may get a different result than you did the first time.

This book is about understanding these situations. The driving ques-
tions of this book are “How did the wildebeests stampede over the
ridge? How did the villagers move and wave?”. The process of answer-
ing those questions will require us to cover a lot of important computer
science concepts, like how to choose different kinds of data structures to
model different kinds of structures, and how to define behavior and even
combine structure and behavior in a single model. We will also develop
a powerful set of tools and concepts that will help us understand how to
use modelling and simulation to answer important questions in history or
business.

1.1 Making Representations of the World

What we’re doing when we model is to construct a representation of the
world. Think about our job as being the job of an artist–specifically, let’s
consider a painter. Our canvas and paints are what we make our world
out of. That’s what we’ll be using Java for.

Is there more than one way to model the world? Can you imagine
two different paintings, perhaps radically different paintings, of the same
thing? Part of what we have to do is to pick the software structures that
best represents the structure and behavior that we want to model. Making
those choices is solving a representation problem.

You already know about mathematics as a way to model the world,

1.1. MAKING REPRESENTATIONS OF THE WORLD 9

though you may not have thought about it that way. An equation like
F = ma is saying something about how the world works. It says that the
amount of force (F) in a collision (for example) is equal to the amount of
mass (m) of the moving object times its acceleration (a). You might be able
to imagine a world where that’s not true–perhaps a cartoon world where a
slow-moving punch packs a huge wallop. In that world, you’d want to use
a different equation for force F .

The powerful thing about software representations is that they are
executable–they have behavior. They can move, speak, and take action
within the simulation that we can interpret as complex behavior, such as
traversing a scene and accessing resources. A computer model, then, has a
structure to it (the pieces of the model and how they relate) and a behavior
to it (the actions of these pieces and how they interact).

Are there better and worse physical structures? Sure, but it depends on
what you’re going to use them for. A skyscraper and a duplex home each
organize space differently. You probably don’t want a skyscraper for a nu-
clear family with 2.5 children, and you’re not going to fit the headquarters
of a large multinational corporation into a duplex. Consider how different
the physical space of a tree is from a snail—each has its own strengths for
the contexts in which they’re embedded.

Are there better and worse information structures, data structures?
Imagine that you have a representation that lists all the people in your
department, some 50–100 of them sorted by last names. Now imagine
that you have a list of all the people in your work or academic department,
but grouped by role, e.g., teachers vs. writers vs. administrative staff vs.
artists vs. management, or whatever the roles are in your department.
Which representation is better? Depends on what you’re going to do with
it.

• If you need to look up the phone number of someone whose name you
know, the first representation is probably better.

• If the artistic staff gets a new person, the second representation
makes it easier to write the new person’s name in at the right place.

Computer Science Idea: Better or worse structures depend on use
A structure is better or worse depending on how it’s going to be used –
both for access (looking things up) and for change. How will the structure
be changed in the future? The best structures are fast to use and easy to
change in the ways that you need them to change.

Structuring our data is not something new that appeared when we
started using computers. There are lots of examples of data structuring
and the use of representations in your daily life.

10 CHAPTER 1. OBJECTS FOR MODELING THE WORLD

• Consider the stock listing tables that appear in your paper. For each
stock (arranged vertically into rows), there is information such as the
closing price and the difference from the day before (in columns). A
table appears in the computer as a matrix.

• My daughter, Katie, likes to create treasure hunts for the family,
where she hides notes in various rooms (Figure 1.3). Each note ref-
erences the next note in the list. This is an example of a linked list.
Each note is a link in a chain, where the note tells you (links to) the
next link in the chain. Think about some of the advantages of this
structure: the pieces define a single structure, even though each piece
is physically separate from the others; and changing the order of the
notes or inserting a new note only requires changing the neighbor
lists (the ones before or after the notes affected).

Figure 1.3: Katie’s list of treasure hunt clues

• An organization chart (Figure 1.4) describes the relationships be-
tween roles in an organization. It’s just a representation–there aren’t
really lines extending from the feet of the CEO into the heads of
the Presidents of a company. This particular representation is quite
common–it’s called a tree. It’s a common structure for representing
hierarchy.

• A map (Figure 1.5) is another common representation that we use.
The real town actually doesn’t look like that map. The real streets
have other buildings and things on them–they’re wonderfully rich
and complex. When you’re trying to get around in the town, you don’t
want a satellite picture of the town. That’s too much detail. What you
really want is an abstraction of the real town, one that just shows
you what you need to know to get from one place to another. We
think about Interstate I-75 passing through Atlanta, Chattanooga,
Knoxville, Cincinnati, Toledo, and Detroit, and Interstate I-94 goes

1.1. MAKING REPRESENTATIONS OF THE WORLD 11

Figure 1.4: An organization chart

from Detroit through Chicago. We can think about a map as edges or
connections (streets) between points (or nodes) that might be cities,
intersections, buildings, or places of interest. This kind of a structure
is called a graph.

Figure 1.5: A map of a town

Each of these data structures have particular properties that make

12 CHAPTER 1. OBJECTS FOR MODELING THE WORLD

them good for some purposes and bad for others. A table or matrix is re-
ally easy for looking things up (especially if it’s ordered in some way). But
if you have to insert something into the middle of the table, everything
else has to move down. When we’re talking about space in the computer
(memory), we’re literally talking about moving each element in memory
separately. On the other hand, inserting a new element into a linked list
or into a graph is easy—just add edges in the right places.

How does it matter what kind of structure that you’re using? It matters
because of the way that computer memory works. Remember that you can
think of memory as being a whole bunch of mailboxes in a row, each with
its own address. Each mailbox stores exactly one thing. In reality, that
one thing is a binary pattern, but we can interpret it any way we want,
depending on the encoding. Maybe it’s a number or maybe it’s a character.

A table (a matrix or an array) is stored in consecutive mailboxes. So, if
you have to put something into the middle of a table, you have to move the
things already in there somewhere else. If you put something new where
something old used to be, you end up over-writing the something old.

To make it clear, let’s imagine that we have a table that looks something
like this:

Name Age Weight
Arnold 12 220
Kermit 47 3
Ms. Piggy 42 54

Let’s say that we want to add “Fozzie” to the list, who’s 38 and weighs
125 pounds. He would go below Arnold and above Kermit, but if just put
him after Arnold, we would over-write Kermit. So, the first thing we have
to do is to make room for Fozzie at the bottom of the table. (We can simply
annex the next few mailboxes after the table.)

Name Age Weight
Arnold 12 220
Kermit 47 3
Ms. Piggy 42 54

Now we have to copy everything down into the new space, opening up a
spot for Fozzie. We move Ms. Piggy and her values into the bottom space,
then Kermit into the space where Ms. Piggy was. That’s two sets of data
that we have to change, with three values in each set.

Notice that that leaves us with Kermit’s data duplicated. That’s okay—
we’re about to overwrite them.

1.1. MAKING REPRESENTATIONS OF THE WORLD 13

Name Age Weight
Arnold 12 220
Fozzie 38 125
Kermit 47 3
Ms. Piggy 42 54

Now let’s compare that to a different structure, one that’s like the trea-
sure trail of notes that Katie created. We call that a linked list represen-
tation. Consider a note (found in a bedroom) like:

“The next note is in the room where we prepare food.”

Let’s think about that as a note in the bedroom that references (says to
go to) the kitchen. We’ll draw that like this:

bedroom kitchen

In terms of memory mailboxes, think about each note as having two
parts: a current location, and where next is. Each note would be repre-
sented as two memory mailboxes—something like this:

Current location: Where to go next:
Bedroom Kitchen

So let’s imagine that Katie has set up a trail that looks like this:

Katie’s bedroom

kitchen

living room

bathroom

front porch

Now, she changes her mind. Katie’s bedroom shouldn’t refer to the
kitchen; her bedroom should point to Matthew’s bedroom. How do we
change that? Unlike the table, we don’t have to move any data anywhere.
We simply make Matthew’s bedroom (anywhere), then point Katie’s bed-
room’s note to Matthew’s bedroom, and point Matthew’s bedroom’s note to
the kitchen (where Katie’s bedroom used to point).

14 CHAPTER 1. OBJECTS FOR MODELING THE WORLD

Katie’s bedroom Matthew’s bedroom

kitchen

living room

bathroom

front porch

In terms of memory mailboxes, we only changed the next part of Katie’s
bedroom note, and the location and next parts of the (new) Matthew’s bed-
room note. No copying of data was necessary.

Adding to a linked list representation is much easier than adding to a
table, especially when you’re adding to the middle of the table. But there
are advantages to tables, too. They can be faster for looking up particular
pieces of information.

Much of this book is about these trade-offs between different data struc-
tures. Each data structure has strengths that solve some sets of problems,
but the same data structure probably has weaknesses in other areas. Each
choice of data structure is a trade-off between these strengths and weak-
nesses, and the choices can only be made in the context of a particular
problem.

These data structures have a lot to do with our wildebeests and vil-
lagers.

• The visual structure of villagers and wildebeests (e.g., how legs and
arms attach to bodies) is typically described as a tree or graph.

• Tracking which villager is next to do something (e.g., move around)
is a queue.

• Tracking all of the wildebeests to stampede is often done in a list (like
a linked list).

• The images to be used in making the villagers wave or wildebeests
run are usually stored in a list.

1.2 Why Java?

Why is this class taught in Java?

• Overall, Java is faster than Python (and definitely faster than Jython).
We can do more complex things faster in Java than in Python.

1.2. WHY JAVA? 15

• Java is a good language for exploring and learning about data struc-
tures. It makes it explicit how you’re connecting data through refer-
ences.

• More computer science classes are taught in Java than Python. So
if you go on beyond this class in data structures, knowing Java is
important.

• Java has “resume-value.” It’s a well-known language, so it’s worth it
to be able to say, even to people who don’t really know computer sci-
ence, that you know Java. This is important—you’ll learn the content
better if you have good reason for learning it.

Getting Java Set-Up
You can start out with Java by simply downloading a JDK (Java Devel-
opment Kit) from http://www.java.sun.com for your computer. With
that, you have enough to get started programming Java. However, that’s
not the easiest way to learn Java. In this book, we use DrJava which is a
useful IDE (Integrated Development Environment)—a program that com-
bines facilities for editing, compiling, debugging, and running programs.
DrJava is excellent for learning Java because it provides an Interactions
Pane where you can simply type in Java code and try it out. No files or
compilers necessary to get started.

If you’d like to use DrJava, follow these steps:

• Download and install DrJava from http://www.drjava.org.

• Download and install JMusic from http://jmusic.ci.qut.edu.
au/.

• You’ll need to tell DrJava about JMusic in order to access it. You use
the Preferences in DrJava (see Figure 1.6) to add in the JMusic jar
file and the instruments (Figure 1.7).

• Make sure that you grab the MediaSources and java-source from
the CD or the website.

• Just as you added JMusic to your DrJava preferences, add the java-source
folder to your preferences, too.

Making It Work Tip: Keep all your Java files in your java-source
directory
Once you put java-source in your Preferences, you will have added
it to Java’s classpath. That means that everything you create will be
immediately accessible and easy to build upon. (Figure 1.8).

16 CHAPTER 1. OBJECTS FOR MODELING THE WORLD

Figure 1.6: Opening the DrJava Preferences

Figure 1.7: Adding the JMusic libraries to DrJava in Preferences

* * *

Once you start DrJava, you’ll have a screen that looks like Figure 1.9.
If you choose not to use DrJava, that’s fine. Set up your IDE as best

you wish, but be sure to install JMusic and set up your classpath to access
JMusic and java-source directory. This book will assume that you’re
using DrJava and will describe using classes from the Interactions Pane,
but you can easily create a class with a main method (as we’ll start talking

1.2. WHY JAVA? 17

Figure 1.8: Adding java-source to DrJava

Definitions Pane
Where you type
your programs

Interactions Pane
Where you work

with your programs

Document List
Files that you have
open at once, for

use and
compilation

Figure 1.9: Parts of DrJava window

2 Introduction to Java

Chapter Learning Objectives

• Introducing Java with an explanation of why it’s relevant to mod-
elling and simulation.

• Brief taste of media manipulation of pictures, sounds, and music.

2.1 What’s Java about?

Nearly everything in Java is an object. In object-oriented programming,
the programmer cares about more than just specifying a process. In other
languages, like Python or Visual Basic, you mostly tell the computer “First
you do this, then you do that.” In object-oriented programming (which
you have to do in Java, since it’s almost all objects), you care about who
(or what) does the process, and how the overall process emerges from the
interaction of different objects. The software engineering term for this
is responsibility-driven design—we don’t just care about how the process
happens, we care about who (which object) does which part of the process.

Object-oriented programming dates back to a programming language
called Simula, which was a programming language for creating simula-
tions of the world. The idea was to describe the world that you cared about
in the Simula language, e.g. how customers worked their way through a
store floor, how material flowed through a factory, how deer and wolves bal-
anced each other ecologically in the ecosystem. That description is called
a model. When Alan Kay discovered Simula in the late 1960’s, he realized
that all programs can be thought of as modelling some world (real or imag-
inary) and all programming is about simulation. It was that insight that
led to his programming language Smalltalk and our current understand-
ing of object-oriented programming, which is what leads us to Java.

Thinking about programming as modelling and simulation means that
you have to do this responsibility-driven design—you have to share control
over what happens in the overall process across many objects. That’s the
way that the real world works. Setting aside theological arguments, there
is no great big for loop telling everything in the real world to take another
time step. You don’t write one big master program in Java—your program
arises out of the interaction of lots of objects, just like the real world. Most

19

20 CHAPTER 2. INTRODUCTION TO JAVA

importantly, in the real world, no one object knows everything and can do
everything. Instead, in the real world and in Java, each object has things
that it knows and things that it can do (or knows how to do).

2.2 Basic (Syntax) Rules of Java

Here are the basic rules for doing things in Java. We’ll not say much about
classes and methods here–we’ll introduce the syntax for those as we need
them. These are the things that you’ve probably already seen in other
languages.

Declarations and Types
If your past experience programming was in a language like Python, Vi-
sual Basic, or Scheme, the trickiest part of learning Java will probably
be its types. All variables and values (including what you get back from
functions–except that there are no functions, only methods) are typed. We
must declare the type of a variable before we use it. The types Picture,
Sound, and Sample are already created in the base classes for this course
for you. Other types are built-in for Java.

Many of these types are actually the names of classes names. A class
specifies what all the objects of that class know and can do. The Picture
class specifies what pictures can do (e.g., show() themselves) and what they
know (e.g., they know their pixels). We declare variables to only hold ob-
jects of particular classes.

Java, unlike those other languages, is compiled. The Java compiler
actually takes your Java program code and turns it into another program
in another language–something close to machine language, the bytes that
the computer understands natively. It does that to make the program run
faster and more efficiently.

Part of that efficiency is making it run in as little memory as possible–
as few bytes, or to use a popular metaphor for memory, mailboxes. If the
compiler knows just how many bytes each variable will need, it can make
sure that everything runs as tightly packed into memory as possible. How
will the compiler know which variables are integers and which are floating
point numbers and which are pictures and which are sounds? We’ll tell it
by declaring the type of the variable.

> int a = 5;
> a + 7
12

In the below java, we’ll see that we can only declare a variable once,
and a floating point number must have an “f” after it.

> float f;
> f = 13.2;

2.2. BASIC (SYNTAX) RULES OF JAVA 21

Error: Bad types in assignment
> float f = 13.2f;
Error: Redefinition of ’f’
> f = 13.2f
13.2

The type double is also a floating point number, but doesn’t require
anything special.

> double d;
> d = 13.231;
> d
13.231
> d + f
26.43099980926514

There are strings, too.

> String s = "This is a test";
> s
"This is a test"

Assignment
VARIABLE = EXPRESSION

The equals sign (=) is assignment. The left VARIABLE should be re-
placed with a declared variable, or (if this is the first time you’re using the
variable) you can declare it in the same assignment, e.g., int a = 12;. If you
want to create an object (not a literal like the numbers and strings in the
last section, you use the term new with the name of the class (maybe with
an input for use in constructing the object).

> Picture p = new Picture(FileChooser.pickAFile());
> p.show();

All statements are separated by semi-colons. If you have only one state-
ment in a block (the body of a conditional or a loop or a method), you don’t
have to end the statement with a semi-colon.

Conditionals
if (EXPRESSION)

STATEMENT

An expression in Java is pretty similar to a logical expression in any
other language. One difference is that a logical and is written as &&, and
an or is written as || .

STATEMENT above can be replaced with a single statement (like a=12;)
or it can be any number of statements set up inside of curly braces–{ and
}.

22 CHAPTER 2. INTRODUCTION TO JAVA

if (EXPRESSION)
THEN-STATEMENT

else
ELSE-STATEMENT

Iteration
while (EXPRESSION)

STATEMENT

There is a break statement for ending loops.
Probably the most confusing iteration structure in Java is the for loop.

It really combines a specialized form of a while loop into a single state-
ment.

for (INITIAL-EXPRESSION ; CONTINUING-CONDITION;
ITERATION-EXPRESSION)

STATEMENT

A concrete example will help to make this structure make sense.

> for (int num = 1 ; num <= 10 ; num = num + 1)
System.out.println(num);

1
2
3
4
5
6
7
8
9
10

The first thing that gets executed before anything inside the loop is the
INITIAL-EXPRESSION. In our example, we’re creating an integer vari-
able num and setting it equal to 1. We’ll then execute the loop, testing the
CONTINUING-CONDITION before each time through the loop. In our
example, we keep going as long as the variable num is less than or equal
to 10. Finally, there’s something that happens after each time through
the loop – the ITERATION-EXPRESSION. In this example, we add one
to num. The result is that we print out (using System.out.println, which is
the same as print in many languages) the numbers 1 through 10. The ex-
pressions in the for loop can actually be several statements, separated by
commas.

The phrase VARIABLE = VARIABLE + 1 is so common in Java that a
short form has been created.

> for (int num = 1 ; num <= 10 ; num++)
System.out.println(num);

2.2. BASIC (SYNTAX) RULES OF JAVA 23

Arrays
To declare an array, you specify the type of the elements of the array,
then open and close square brackets. (In Java. all elements of an ar-
ray have the same type.) Picture [] declares an array of type Picture. So
Picture [] myarray; declares myarray to be a variable that can hold an array
of Pictures.

To actually create the array, we might say something like new Picture[5].
This declares an array of five pictures. This does not create the pictures,
though! Each of those have to be created separately. The indices will be 0
to 4 in this example. Java indices start with zero, so if an array has five
elements, the maximum index is four. The fifth array reference (as seen be-
low) will result in an error–the frequently visited ArrayIndexOutOfBoundException.

> Picture [] myarray = new Picture[5];
> Picture background = new Picture(800,800);
> FileChooser.setMediaPath("D:/cs1316/mediasources/");
> //Can load in any order
> myarray[1]=new Picture(FileChooser.getMediaPath("jungle.jpg"));
> myarray[0]=new Picture(FileChooser.getMediaPath("katie.jpg"));
> myarray[2]=new Picture(FileChooser.getMediaPath("barbara.jpg"));
> myarray[3]=new Picture(FileChooser.getMediaPath("flower1.jpg"));
> myarray[4]=new Picture(FileChooser.getMediaPath("flower2.jpg"));
> myarray[5]=new Picture(FileChooser.getMediaPath("butterfly.jpg"));
ArrayIndexOutOfBoundsException:

at java.lang.reflect.Array.get(Native Method)

Strings
A string is not strictly an array, but it is similar to one. You can create
a string from an array of characters. Characters are defined with single
quotes (e.g., ’ a’) as opposed to double quotes (e.g., ”a”) which define strings.

> char characters[]={’B’,’a’,’r’,’b’}
> characters
[C@1ca209e
> String wife = new String(characters)
> wife
"Barb"

You cannot index a string with square brackets like an array. You can
use the substring method on a string to retrieve individual characters (sub-
strings) within the string. The substring method takes a starting and end-
ing position in the string, starting with zero.

> String name = "Mark Guzdial";
> name
"Mark Guzdial"
> name[0]

24 CHAPTER 2. INTRODUCTION TO JAVA

Error: ’java.lang.String’ is not an array
> name.substring(0,0)
""
> name.substring(0,1)
"M"
> name.substring(1,1)
""
> name.substring(1,2)
"a"

2.3 Using Java to Model the World

We have talked about the value of objects in modelling the world, and
about the value of Java. In this section, we use Java to model some objects
from our world. Let’s consider the world of a student.

A Problem and Its Solution: What should I model?
When you model something in the world (real or virtual) as an object, you
are asking yourself “What’s important about the thing that I am trying
to model?” Typically, that question is answered by considering what you
want from the model. Why are you doing this model? What’s important
about it? What questions are you trying to answer?

If you are creating a model of students, then the question that you want
to answer determines what you model and how you model it. If you want
to create a model in order to create a course registration system, then you
care about the students as people with a particular role. If you wanted to
model students to answer questions about their health (e.g., how dormitory
food impacts their liver, or how lack of sleep impacts their brains), then you
want to model students as biological organisms with organs like livers.

For our purposes in this chapter, let’s imagine that we are modeling
students in order to explore registration behavior. Given the previous,
that means that we care about students as people. At the very least then,
we want to define a class Student and a class Person.

A Problem and Its Solution: How much should I model?
Always try for the minimal model. Model as little as possible to answer
your question. Models grow in complexity rapidly. The more attribtues
and variables that you model, the more that you have to worry about later.
When you model, you are always asking yourself “Did I deal with all the
relationships between all the variables in this model?” The more variables
you model, the more relationships there are to consider. Model as little as

2.3. USING JAVA TO MODEL THE WORLD 25

you need to answer your question.

We are going to define the class Student as a subclass of Person. There
are several implications of that statement.

• Class Person is a superclass of Student.

• We also say that Person is the parent class of Student, and Student is
the child class of Person.

• All fields or instance variables of the class Person are automatically in
instances of the class Student. That does not mean that all those vari-
ables are accessible—some of them may be private which means that
they are defined in the parent class, they are accessible in the parent
class, but they are not accessible in the methods of the subclass.

• All methods in the superclass, Person are automatically usable in the
subclass Student.

• We should be able to think about the subclass, Student, as being “a
kind of” (sometimes shortened to kind-of) the superclass. A stu-
dent is a kind of person—that’s true, so it’s a reasonable superclass-
subclass relationship to set up.

Here’s an initial definition of the class Person.

Program
Example #1Example Java Code: Person class, starting place

public class Person {
public String name;

}

That’s enough to create an instance of class Person and use it. Here’s
how it will look in DrJava:
> Person fred = new Person();
> fred.name
null
> fred.name = "Fred";
> fred.name
"Fred"

There’s an implication of this implementation of Person—we can change
the name of the person. Should we be able to do this?

26 CHAPTER 2. INTRODUCTION TO JAVA

> fred.name = "Mabel";
> fred.name
"Mabel"

If we want to control name changes, we can make the field name pri-
vate. To change or get the name, we can use accessor methods (sometimes
called getter and setter methods because they let us get and set instance
variabls). These methods could check whether it’s appropriate to set (or
get) the variable.

Program
Example #2 Example Java Code: Person, with a private name

public class Person {
private String name;

public void setName (String somename)
{this .name = somename;}

public String getName ()
{return this .name;}

}

How it works: The field name is now private meaning that only methods
in this class can directly manipulate this variable. The method setName
takes a String as input, then sets the name to that input. Since setName
doesn’t return any value, it’s return value is void—literally, nothing. The
method getName does return the value of the variable name so it has a
return value of String. Notice that both of these methods refer to this .name.
This is a special variable meaning the object that has been told to getName
or setName. The phrase this.name means “The variable name that is within
the object this, the one that was told to execute this method.”

Now, we manipulate the field name using these methods—because we
can’t access the variable directly anymore. Within getName and setName in
this example, the variable this means fred — they are two variable names
referencing the exact same object.
> Person fred = new Person();
> fred.setName("Fred");
> fred.getName()
"Fred"

This works well for getting and setting the name. Let’s consider what
happens when we first create a new Person instance.

2.3. USING JAVA TO MODEL THE WORLD 27

> Person barney = new Person();
> barney.getName()
null

Should “barney” have a null name? The value null means that this
variable does not yet have a value. How do we define an instance of Person
such that it automatically has a value for its name? That would be the way
that the real world works, that baby people get names at birth.

We can make that happen by defining a constructor. A constructor is
a method that gets called when a new instance is created. A constructor
has the same name as the class itself. It can take an input, so that we
can create an object with certain values. Constructors don’t have to take
inputs—it’s okay to just create an instance and have pre-defined values for
variables.

Program
Example #3Example Java Code: Person, with constructors

public class Person {
private String name;

public Person () {
this . setName (”Not−yet−named”) ;

}

public Person (String name){
this . setName (name) ;

}
public void setName (String somename)
{ this .name = somename;}

public String getName ()
{return this .name;}

}

How it works: This version of class Person has two different construc-
tors. One of them takes no inputs, and gives the name field a predefined,
default value. The other takes one input—a new name to be given to the
new object. It’s okay to have multiple constructors as long as they can be
distinguished by the inputs. Since one of these takes nothing as input, and
the other takes a String, it’s pretty clear which one we’re calling when.
> Person barney = new Person("Barney")
// Here, we call the constructor that takes a string.
> barney.getName()
"Barney"

28 CHAPTER 2. INTRODUCTION TO JAVA

> Person wilma = new Person()
// Here, we call the constructor that doesn’t take an input
> wilma.getName()
"Not-yet-named"
> wilma.setName("Wilma")
> wilma.getName()
"Wilma"

If we give Java some inputs to the constructor, but those inputs don’t
match any existing constructor, we get an error.

> Person agent99 = new Person(99)
java.lang.NoSuchMethodException: Person constructor

Discourse Rules for Java
In an American “Western” novel or movie, there are certain expectations.
The hero carries a gun and rides a horse. The hero never uses a bazooka,
and never flies on a unicorn. Yes, you can make a Western that has a hero
with a bazooka or a unicorn, but it’s considered a weird Western—you’ve
broken some rules.

Those are discourse rules—the rules about how we interact in a certain
genre or setting. They are not laws or rules that are enforced by some
outside entity. They are about expectations.

There are discourse rules in all programming languages. Here are some
for Java:

• Class names start with capital letters. All regular variables and
method names start with lowercase letters. There are a couple spe-
cial cases of variables (those that belong to a class, and those that are
constant or final) that are also capitalized—those are rather rare.

• Class names are never plurals. If you want more than one instance
of a class, you use an array or a list. The class name is not plural.

• Class names are typically nouns, not verbs.

• Instance variables and methods always start with lowercase letters.

• Methods should describe verbs–what objects know how to do.

• Accessors are typically named “set-” and “get-” the name of the field.
To separate the word “set” or “set” from the variable name, the first
letter of the variable name is capitalized.

Defining toString
What is an instance of Person? What do we get if we try to print its value?

2.3. USING JAVA TO MODEL THE WORLD 29

> Person barney = new Person("Barney")
> barney
Person@63a721

That looks like Barney is a Person followed by some expletive or code.
We can make the display of Barney look a little more reasonable using the
method toString. When we try to print an object (by simply displaying its
value in the Interactions Pane in DrJava, or when printed from a program
using System.out.println), the object is converted to a string. The method
toString does that conversion. By providing a good toString method, we can
make debugging easier—we can simply print the variable at important
points in the code to see what the object’s important values are.

Program
Example #4Example Java Code: toString method for Person

public String toString () {
return ” Person named ”+this .name;

}

How it works: The method toString returns a String, so we declare the
return type of toString to be String. We can stick the words “Person named”
before the actual name using the + operator—we call that string concate-
nation.

Now, we can immediately print Barney after creating him, and his
value is reasonable and useful.
> Person barney = new Person("Barney")
> barney
Person named Barney

Defining Student as subclass of Person
Now, let’s define our class Student. A student is a kind of person—we es-
tablished that earlier. In Java, we say that Student extends Person—that
means that Student is a subclass of Person. It means that a Student is ev-
erything that a Person is, with an extension in some way.

How should Student instances be different? Let’s say that a Student has
an identification number. That’s not particularly insightful, but it is likely
true.

Program
Example #5Example Java Code: Student class, initial version

30 CHAPTER 2. INTRODUCTION TO JAVA

public class Student extends Person {
private int idnum ;

public int getID () { return idnum;}
public void setID (int id) {idnum = id ;}

}

How it works: Assuming that the identification number, idnum, will fit
within the bounds of an integer int, this isn’t a bad way to go. If the ID
number might be too large, or if we would want to record dashes or spaces
within it, using an int would be a bad model for the real identification
number. Notice that we are also creating a getter and a setter for idnum.

From here, we can create instances of Student, but only by name—an
inherited constructor from Person. There is no method Student(), so we can’t
create an instance without any input yet.
> Student betsy=new Student("Betsy")
java.lang.NoSuchMethodException: Student constructor
> Student betsy = new Student()
> betsy.getName()
"Not-yet-named"
> betsy.setName("Betsy")
> betsy.getName()
"Betsy"
> betsy.setID(999)
> betsy.getID()
999

If we print out Betsy, she’ll tell us that she’s a Person, not a Student.
That’s because the class Student inherits the toString method from Person.

> betsy
Person named Betsy

Let’s define the class Student with reasonable constructors.

Program
Example #6 Example Java Code: Class Student, with constructors

public class Student extends Person {
private int idnum ;

// Constructors
public Student () {

super () ; //Call the parent ’ s constructor
idnum = −1;
}

2.3. USING JAVA TO MODEL THE WORLD 31

public Student (String name){
super (name) ;
idnum = −1;

}
public int getID () { return idnum;}
public void setID (int id) {idnum = id ;}

}

How it works: We create a default value for the idnum as −1. We also
create accessors, getID() and setID(), for manipulating the identification
number. Note that we still want to do whatever the Person constructors
would do, so we call them with super.

Debugging Tip: Make the call to super first in a method
If you want to extend a method from a superclass, call super first. Let the
superclass do whatever it would do. Then, extend the superclass’s version
with what you want the subclass to do.

Creating a main() method

How do we test our Java code? For those of us using DrJava1, it’s easy—we
can simply type code in the Interactions Pane. What if you don’t have an
Interactions Pane? Then, you can test code by providing a main() method.
There can be at most one main method in a class. It is often used to try out
the class.

A main method is declared as public static void main(String[] args), which
is a real mouthful. That means (in brief—there is a better explanation
later in the book):

• public means that this method can be accessed by any other class.

• static means that this method is known to the class, not just the
instances. We can execute it without any instances having been cre-
ated.

• void means that this method does not return anything.

• String[] args means that this method could be executed by running it
from a command line, and any words on that line (e.g., filenames or
options) would be passed on to the main method as elements in an
array of strings named args (for “arguments”).

1Or BlueJ, http://www.bluej.org

32 CHAPTER 2. INTRODUCTION TO JAVA

Program
Example #7 Example Java Code: main() method for Person

public static void main (String [] args){
Person fred = new Person (” Fred ”) ;
Person barney = new Person (”Barney ”) ;

System . out . pr int ln (” Fred i s ”+fred) ;
System . out . pr int ln (”Barney i s ”+barney) ;

}

How it works: When this method is in the class Person, and we run the
class (however your Java environment allows you to do this) or execute it
from the command line, this method is executed. Two instances of class
Person are created, and then both are printed to the console (or Interac-
tions Pane, for DrJava). System.out.println prints the input to the console.
When what is to be printed includes objects, like fred and barney above,
they are converted to the type String (using the object’s toString method)
and displayed to the console.

When we execute this using the RUN button, we see:
Welcome to DrJava.
> java Person
Fred is Person named Fred
Barney is Person named Barney

Exploring Inheritance

A subclass inherits all the methods in the superclass—unless the subclass
overrides it. If the subclass defines its own version of a method in the
superclass, then the subclass version will be executed from an instance of
the subclass. (An instance of the superclass will, of course, still execute
the method of the superclass.)

Let’s add a method to class Person that allows instances of Person to be
friendly and greet people.

Program
Example #8 Example Java Code: greet method for Person

public void greet () {
System . out . pr int ln (”Hi ! I am ”+this .name) ;

}

2.3. USING JAVA TO MODEL THE WORLD 33

Executing this method looks like this:
> Person bruce = new Person("Bruce")
> bruce.greet()
Hi! I am Bruce
> Person george = new Person("George W.")
> george.greet()
Hi! I am George W.
> Student krista = new Student("Krista")
> krista.greet()
Hi! I am Krista

Let’s imagine that we create a greet method for class Student, too. We
might try something like this:

public void greet () {
System . out . pr int ln (”Hi ! I ’m ”+this .name+

” but I got to run to c lass . . . ”) ;
}

Unfortunately, that will generate an error:
That error occurred because name is a private variable. The subclass,

Student can’t access the variable. Only the class that defined it, Person can
access it. Instances of the class Student certainly have an name variable—
they just can’t access it directly. If we want to access the variable in
Student, we have to use the accessors.

Program
Example #9Example Java Code: greet method for Student

public void greet () {
System . out . pr int ln (”Hi , I ’m ”+this . getName()+

” , but I got to run to c lass . . . ”) ;
}

Now we get different effects when we ask a Person or Student to greet().
Welcome to DrJava.
> Person george = new Person("George W.")

34 CHAPTER 2. INTRODUCTION TO JAVA

> george.greet()
Hi! I am George W.
> Student krista = new Student("Krista")
> krista.greet()
Hi, I’m Krista, but I got to run to class...

It’s worth thinking this through—what exactly happened when we ex-
ecuted krista.greet()?

• Krista knows that she is a Student—an instance of the class Student.
Krista knows that if she can’t greet, she can ask her parent to do it
for her.

• She does know how to greet(), so she executes that method.

• But midway, “Uh-oh. I dont know how to getName()!” So Krista asks
her parent (who might have asked his parent, and so on, as neces-
sary), who does know how to getName().

Let’s try one more experiment:

> Person fred = new Student("Fred")
> Student mabel = new Person("Mabel")
ClassCastException: mabel

Why did the first statement work, but the second one generated an er-
ror? Variables in Java always have a particular type. They can hold values
that match that type. A Person variable fred can hold a Person instance. A
variable of a given type can also hold instances of any subclasses. Thus,
Person variable fred can hold an instance of class Student. However, a vari-
able of a given type can not hold instances of any superclasses. Thus, the
Student variable mabel cannot hold an instance of the class Person.

There are some subtle implications of putting an object of one type in a
variable of another type. Consider the following example:

> fred.greet()
Hi, I’m Fred, but I got to run to class...
> fred.setID(999)
Error: No setID’ method in ’Person’
> ((Student) fred).setID(999)
> ((Student) fred).getID()
999

Our Person variable fred knows how to greet()—of course it does, since
both Person and Student classes know how to greet. Note that fred executes
the Student method greet()—that also makes sense, since fred contains an
instance of the class Student.

Here’s the tricky part: fred can’t setID(). You may be thinking, “But
Fred’s a Student! Students know how to set their ID!” Yes, that’s true. The
variable fred, though, is declared to be type Person. That means that Java is

2.4. MANIPULATING PICTURES IN JAVA 35

checking that fred is only asked to do things that a Person might be asked
to do. A Person does now know how to set its ID. We can tell Java, “It’s
okay—fred contains a Student” by casting. When we say ((Student) fred),
we are telling Java to treat fred like a Student and let it execute Student
methods. Then it works.

2.4 Manipulating Pictures in Java

We can get file paths using FileChooser and its method pickAFile(). FileChooser
is a class in Java. The method pickAFile() is special in that it’s known to the
class, not to objects created from that class (instances). It’s called a static
or class method. To access that method in that class, we use dot notation:
Classname.methodname().

> FileChooser.pickAFile()
"/Users/guzdial/cs1316/MediaSources/beach-smaller.jpg"

In the array example at the end of the last section, we see the use of
FileChooser.setMediaPath and FileChooser.getMediapath. The method setMediaPath
takes as input a directory—note that it must end in a slash. (You can al-
ways use forward slashes here—it’ll work right on any platform.) The
method getMediaPath takes a filename, then returns the directory concate-
nated in front of it. So FileChooser.getMediaPath(”jungle.jpg”) actually re-
turns ”D:/cs1316/mediasources/jungle.jpg”. You only need to use setMediaPath
once! It gets stored in a file on your computer, so that all your code that
accesses getMediaPath will just work. This makes it easier to move your
code around. New pictures don’t have any value – they’re null.

> Picture p;
> p
null

Debugging Tip: Did you get your Picture?
If you got an error as soon as you typed Picture p; there are two main pos-
sibilities.

• All the Java files we provide you are in source form. You need to
compile them to use them. Open Picture.java and click COMPILE
ALL. If you get additional errors about classes not found, open those
files and compile them, too.

• You might not have your PREFERENCES set up correctly. If Java cant
find Picture, you cant use it.

* * *

36 CHAPTER 2. INTRODUCTION TO JAVA

Debugging Tip: Semi-colons or not?
In the DrJava Interactions Pane, you don’t have to end your lines with a
semi-colon (;). If you don’t, you’re saying to DrJava “Evaluate this, and
show me the result.” If you do, you’re saying “Treat this like a line of
code, just as if it were in the Code Pane.” Leaving it off is a useful debug-
ging technique—it shows you what Java thinks that variable or expression
means. But be careful—you must have semi-colons in your Code Pane!

To make a new picture, we use the code (you might guess this one)
new Picture(). Then we’ll have the picture show itself by telling it (using
dot notation) to show() (Figure 2.1).
> p = new Picture("/Users/guzdial/cs1316/MediaSources/beach-smaller.jpg");
> p
Picture, filename /Users/guzdial/cs1316/MediaSources/beach-smaller.jpg height 360 width 480
> p.show()

Figure 2.1: Showing a picture

The variable p in this example has the type Picture. That means that
it can only hold pictures. We can assign it to new pictures, but we can’t
assign it to a Sound or an int. We also can’t re-declare p.

Common Bug: One declaration per scope
Within a given scope (e.g., any set of curly braces, such as a single method,
or the Interactions Pane in DrJava between compilations or reset), a vari-
able can be declared once and only once. Another declaration is an error.

2.4. MANIPULATING PICTURES IN JAVA 37

You can use the variable as much as you might like after declaration, but
you can only declare it once.

After the scope in which it was declared, the variable ceases to exist.
So, if you declare a variable inside the curly braces of a for or while loop,
it will not be available after the end curly brace.

Common Bug: Java may be hidden on Macintosh
When you open windows or pop-up file choosers on a Macintosh, they will
appear in a separate “Java” application. You may have to find it from the
Dock to see it.

The downside of types is that, if you need a variable, you need to create
it. In general, that’s not a big deal. In specific cases, it means that you have
to plan ahead. Let’s say that you want a variable to be a pixel (class Pixel)
that you’re going to assign inside a loop to each pixel in a list of pixels. In
that case, the declaration of the variable has to be before the loop. If the
declaration were inside the loop, you’d be re-creating the variable, which
Java doesn’t allow.

To create an array of pixels, we use the notation Pixels [] . The square
brackets are used in Java to index an array. In this notation, the open-close
brackets means “an array of indeterminate size.”

Here’s an example of increasing the red in each pixel of a picture by
doubling (Figure 2.2).
> Pixel px;
> int index = 0;
> Pixel [] mypixels = p.getPixels();
> while (index < mypixels.length)
{

px = mypixels[index];
px.setRed(px.getRed()*2);
index = index + 1;

}
> p.show()

How would we put this process in a file, something that we could use
for any picture? If we want any picture to be able to increase the amount
of red, we need to edit the class Picture in the file Picture.java and add
a new method, maybe named increaseRed.

Here’s what we would want to type in. The special variable this will
represent the Picture instance that is being asked to increase red. (In
Python or Smalltalk, this is typically called self .)

38 CHAPTER 2. INTRODUCTION TO JAVA

Figure 2.2: Doubling the amount of red in a picture

* * *
Program
Example #10 Example Java Code: Method to increase red in Picture

/∗∗
2 ∗ Method to increase the red in a pic ture .

∗/
4 public void increaseRed ()

{
6 Pixel px ;

int index = 0;
8 Pixel [] mypixels = this . getPixels () ;

while (index < mypixels . length)
10 {

px = mypixels [index] ;
12 px . setRed (px . getRed () ∗ 2) ;

index = index + 1;
14 }

}

How it works:
• The notation /∗ begins a comment in Java – stuff that the compiler

will ignore. The notation ∗/ ends the comment.

• We have to declare methods just as we do variables! The term public
means that anyone can use this method. (Why would we do other-
wise? Why would we want a method to be private? We’ll start ex-
plaining that next chapter.) The term void means “this is a method

2.4. MANIPULATING PICTURES IN JAVA 39

that doesn’t return anything–don’t expect the return value to have
any particular type, then.”

Once we type this method into the bottom of class Picture, we can press
the COMPILE ALL button. If there are no errors, we can test our new
method. When you compile your code, the objects and variables you had
in the Interactions Pane disappear. You’ll have to recreate the objects you
want.

Making It Work Tip: The command history isn’t reset!
Though you lose the variables and objects after a compilation, the history
of all commands you typed in DrJava is still there. Just hit up-arrow to
get to previous commands, then hit return to execute them again.

You can see how this works in Figure 2.3.
> Picture p = new Picture(FileChooser.pickAFile());
> p.increaseRed()
> p.show()

Figure 2.3: Doubling the amount of red using our increaseRed method

Later on, we’re going to want to have characters moving to the left
or to the right. We’ll probably only want to create one of these (left or

40 CHAPTER 2. INTRODUCTION TO JAVA

right), then flip it for the other side. Let’s create the method for doing
that. Notice that this method returns a new picture, not modifying the
original one. Instead of being declared void, the flip method is declared
Picture. It returns a picture. At the bottom of the method, you’ll see that it
does actually use return to return the target picture that we create inside
the method. We’ll see later that that’s pretty useful, to create a new image
rather than change the target picture. (Figure 2.4).

Program
Example #11 Example Java Code: Method to flip an image

/∗∗
2 ∗ Method to f l i p an image l e f t−to−r ight

∗∗/
4 public Picture f l i p () {

6 Pixel currPixel ;
Picture target = new Picture (this . getWidth () , this . getHeight ()) ;

8

for (int srcx = 0 , trgx = getWidth ()−1; srcx < getWidth () ;
10 srcx ++, trgx−−)

{
12 for (int srcy = 0 , trgy = 0; srcy < getHeight () ;

srcy ++, trgy ++)
14 {

// get the current p ix e l
16 currPixel = this . getPixel (srcx , srcy) ;

18 /∗ copy the co lor o f currPixel into targe t
∗/

20 target . getPixel (trgx , trgy) . setColor (currPixel . getColor ()) ;
}

22 } ;
return target ;

24 }

> Picture p = new Picture(FileChooser.pickAFile());
> p
Picture, filename D:\cs1316\MediaSources\guy1-left.jpg height 200
width 84
> Picture flipp = p.flip();
> flipp.show();

* * *

2.5. EXPLORING SOUND IN JAVA 41

Figure 2.4: Flipping our guy character–original (left) and flipped (right)

Common Bug: Width is the size, not the coordinate
Why did we subtract one from getWidth() (which defaults to this.getWidth()
to set the target X coordinate (trgx)? getWidth() returns the number of pixels
across the picture. But the last coordinate in the row is one less than that,
because Java starts all arrays at zero. Normal everyday counting starts
with one, and that’s what getWidth() reports.

2.5 Exploring Sound in Java

We can create sounds in an analogous way to how we’re creating pictures.

> Sound s = new Sound(FileChooser.pickAFile());
> s.play();

How it works: Just as with pictures, we can create sounds as we declare
them. FileChooser is an object that knows how to pickAFile(). That method
puts up a file picker, then returns a string (or null, if the user hits CAN-
CEL). Instances of the class Sound know how to play().

But what if we get it wrong?

42 CHAPTER 2. INTRODUCTION TO JAVA

You can’t ask a Sound object to show()—it doesn’t know how to do that.
Picture doesn’t know how to play() nor how to show()—it’s the instances (ob-
jects of that type or class) that know how to show(). The point of this exam-
ple isn’t to show you Java’s barking messages, but to show you that there
is no bite there. Type the wrong object name? Oh well—try again.

2.6 Exploring Music in Java

We will be working a lot with MIDI in this class. MIDI is a standard
representation of musical information. It doesn’t record sound. It records
notes—when they’re pressed, when they’re released, how hard they’re pressed,
and what instrument is being pressed upon.

To use MIDI, we have to import some additional libraries. We’re go-
ing to be using JMusic which is a wonderful Java music library that is
excellent for manipulating MIDI.

> import jm.util.*;
> import jm.music.data.*;
> Note n1;
> n1 = new Note(60,0.5);
> // Create an eighth note at C octave 4

How it works: First, you’ll see a couple of import statements to bring
in the basics of JMusic. Note is the name of the class that represents a
musical note object. We’re declaring a note variable named n1. We then
create a Note instance. We don’t need a filename—we’re not reading a
JPEG or WAV file. Instead, we simply need to know which note and for
what duration (0.5 is an eighth note). That last line looks surprisingly like
English, because it is. Any line starting with ”//” is considered a comment
and is ignored by Java. Table 2.1 summarizes the relationships between
note numbers and more traditional keys and octaves.

But this isn’t actually enough to play our note yet. A note isn’t music,
at least not to JMusic.

> Note n2=new Note(64,1.0);
> View.notate(n1);
Error: No ’notate’ method in ’jm.util.View’ with arguments:
(jm.music.data.Note)
> Phrase phr = new Phrase();
> phr.addNote(n1);
> phr.addNote(n2);
> View.notate(phr);
-- Constructing MIDI file from’Untitled Score’... Playing with
JavaSound ... Completed MIDI playback --------

2.6. EXPLORING MUSIC IN JAVA 43

Octave #
Note Numbers

C C# D D# E F F# G G# A A# B
-1 0 1 2 3 4 5 6 7 8 9 10 11
0 12 13 14 15 16 17 18 19 20 21 22 23
1 24 25 26 27 28 29 30 31 32 33 34 35
2 36 37 38 39 40 41 42 43 44 45 46 47
3 48 49 50 51 52 53 54 55 56 57 58 59
4 60 61 62 63 64 65 66 67 68 69 70 71
5 72 73 74 75 76 77 78 79 80 81 82 83
6 84 85 86 87 88 89 90 91 92 93 94 95
7 96 97 98 99 100 101 102 103 104 105 106 107
8 108 109 110 111 112 113 114 115 116 117 118 119
9 120 121 122 123 124 125 126 127

Table 2.1: MIDI notes

Figure 2.5: Just two notes

How it works: You’ll see that we can’t notate() a single note. We can,
however, create a phrase that can take two notes (with different dura-
tions) Figure 2.5. A Phrase of JMusic knows how to addNote(). A View
object knows how to notate() a phrase of music in standard Western music
notation. From this window, we can actually play our music, change pa-
rameters (like the speed at which it plays), and shift instruments (e.g., to
accordion or wind chimes or steel drums). We’ll do more with the window
later.

JMusic is a terrific example of using objects to model. JMusic is really
modelling music.

• Note objects have tones and durations.

• Musical Phrase objects are collections of notes.

• A View object can present a musical phrase to us.

We can break this down in terms of what objects know and what they
do.

44 CHAPTER 2. INTRODUCTION TO JAVA

What instances of
this class know

What instances of
this class do

Note A musical pitch and its
duration.

(Nothing we’ve seen
yet.)

Phrase Notes in the phrase. addNote(aNote)

Ex. 1 — Create a constructor for Student that takes a name and an ID.

3 Methods in Java: Manipulating
Pictures

Chapter Learning Objectives
To make wildebeests charge over the ridge or villagers move around in

the town square, we need to be able to manipulate pictures. We manipu-
late pictures using methods, the bits of behavior that classes store for use
on their instances. That’s the focus of this chapter.
The computer science goals for this chapter are:

• To be able to use Java with control over details, like expressions,
understanding what public means, and being able to use correctly
the ubiquitous public static void main(String[] args).

• To compile and execute your code.

• To create a variety of different kinds of methods, including those that
return values.

• To use JavaDoc.

• To chain method calls for compact, powerful expressions.

• To start our discussion of data structures with arrays.

The media learning goals for this chapter are:

• To extend what we can do with pictures.

• To combine methods for powerful picture manipulation.

3.1 Reviewing Java Basics

Assignment
As we saw in the last chapter, assignments come in form of

CLASSNAME VARIABLE = EXPRESSION;
or simply (if the variable has already been declared)
VARIABLE = EXPRESSION;

45

46 CHAPTER 3. METHODS IN JAVA: MANIPULATING PICTURES

As mentioned, we can’t declare variables twice in the same scope, and
you can’t use a variable of one type (or class) with an expression that re-
sults in an incompatible type. You can’t assign a string to an int variable,
for example,

Making It Work Tip: DrJava will declare for you–maybe not a good
thing
If snd is an undeclared variable, DrJava will actually allow you to execute
snd = new Sound(”D:/myfile.wav”);. DrJava is smart enough to figure out that
you must mean for snd to be of type Sound. My suggestion: Don’t do it. Be
explicit in your type declarations. It will be too easy and forget when you’re
in Java Code Pane.

There are rules about Java programming style that you should know
about. These aren’t rules that, if broken, will result in a compiler error
(usually). These are rules about how you write your code so that other
Java programmers will understand what you’re doing. We might call them
discourse rules—they’re the standard style or ways of talking in Java that
Java programmers use.

• Always capitalize your class names.

• Never capitalize instance names, instance variable (sometimes called
fields) names, or method names.

• You can use mixedCaseToShowWordBreaks in a long name.

All Java statements end with a semi-colon. You can insert as many
spaces or returns (press the ENTER key) as you want in an expression—it’s
the semi-colon that Java uses to indicate the end of the line. Indentation
doesn’t matter at all in Java, unlike in Python. You can have no indenta-
tion at all in Java! Of course, no one, including you, will be able to make
out what’s going on in your program if you use no indentation at all. You
probably should indent as we do here, where the body of a loop is indented
deeper than the loop statement itself. DrJava will take care of that for you
to make it easier to read, as will some other Java Integrated Development
Environments (IDEs).

What goes in an expression? We can use +, −, ∗ and / exactly as you
used them in whatever your first programming language was. An expres-
sion that you’ve seen several times already is new CLASSNAME(), some-
times with inputs like new Picture(”C:/mypicture.jpg”). You may have al-
ready noted that sometimes you create a new class with inputs, and some-
times you don’t. Whether or not you need inputs depends on the construc-
tors for the given class—those are methods that take inputs (optionally)
and do something to set up the new object. For example, when we created

3.1. REVIEWING JAVA BASICS 47

a new Note with a pitch and a duration, we passed the specification of the
pitch and duration in as input to the class Note and they were assembled
into the new object.

Java has a handful of shortcuts that you will see frequently. Because
the phrase x = x + 1 (where x could be any integer variable) occurs so often,
we can abbreviate it x++. Because the phrase y=y−1 occurs so often, it can
be abbreviated as y−−. There’s a general form, too. The phrase x = x + y
can be shortened to x += y. There are similar abbreviations x ∗= y, x /= y,
and x −= y.

Arrays
An array is a homogenous (all the same type) linear collection of objects
which are compacted together in memory. An array of integers, then, is
a whole bunch of numbers (each without a decimal place), one right after
another in memory. Being all scrunched together in memory is about as
efficient in terms of memory space as they can be, and they can be accessed
very quickly–going from one to the other is like leaving your house and
going to the one next door.

An array is declared with square brackets [] . It turns out that the
square brackets can come before or after the variable name in a declara-
tion, so both of the below are correct Java statements (though clearly not
both in the same scope!).

Pixel[] myPixels;
Pixel myPixels[];

To access an array, we’ll use square brackets again, e.g., myPixels[0],
which gets the first element in the array. Java begins numbering its in-
dices at zero.

Conditionals
You’ve seen already that conditionals look like this:

if (LOGICAL-EXPRESSION)
then-statement;

As you would expect, the logical expression can be made up of the same
logical operators you’ve used before: <,>,<=,>=,==. Note that == is the test
for equivalence–it is not the assignment operator =. Depending on other
languages you’ve learned, you may have used the words and and or for
chaining together logical statements, but not in Java. In Java, a logical
and is &&. A logical or is || .

The then−statement part can be one of two things. It could just be a
simple statement ending in a semi-colon (e.g., pixel.setRed(0);. Or it could
be any number of statements (each separated by semi-colons) inside of
curly braces, like this:

48 CHAPTER 3. METHODS IN JAVA: MANIPULATING PICTURES

i f (p ixe l . getRed () <25)
{

pixe l . setRed (0) ;
p ixe l . setBlue (1 2 0) ;

}
Do you need a semi-colon after the last curly brace? No, you don’t have

to, but if you do, it’s not wrong. All of the below are correct conditionals in
Java.

i f (thisColor == myColor)
setColor (thisPixel , newColor) ;

i f (thisColor == myColor)
{ setColor (thisPixel , newColor) ; }

i f (thisColor == myColor)
{x = 12;

setColor (thisPixel , newColor) ; } ;

We call those curly braces a block. A block is a single statement to Java.
All the statements in the block together are considered just one statement.
Thus, we can think of a Java statement ending in a semi-colon or a right
curly brace (like an English sentence can end in “.” or “!” or “?”).

After the block for the then part (the part that gets executed “if” the
logical expression is true, as in “if this, then that”) of the if, you can have
the keyword else. The else keyword can be followed with another state-
ment (or another block of statements) that will be executed if the logical
expression is false. You can’t use the else statement if you end the then
block with a semi-colon though (like in the last if in the example above).
Java gets confused if you do that, and thinks that you’re trying to have an
else without an if.

Iteration: While and For
A while loop looks like an if:

while (LOGICAL-EXPRESSION)
statement;

But they’re not at all similar. An if tests the expression once then
possibly executes the then statement. A while tests, and if true, executes
the statement—then tests again, and again executes the statement, and
repeats until the statement is no longer true. That is, a while statement
iterates.

We can use a while for addressing all the pixels in an image and setting
all the red values to zero.

> p
Picture, filename D:/cs1316/MediaSources/Swan.jpg height 360 width
480

3.2. JAVA IS ABOUT CLASSES AND METHODS 49

> Pixel [] mypixels = p.getPixels();
> int index = 0;
> while (index < mypixels.length)

{mypixels[index].setRed(0);
index++;};

How it works: Notice the reference to mypixels.length above. This is the
standard way of getting an array’s length. The expression .length isn’t
referring to a method. Instead it’s referring to an instance variable or field.
Every array knows an instance variable that provides its length, but each
length is an instance variable unique to that instance. It’s all the same
name, but it’s the right value for each array.

Recall that for loop is unusual. It lists initialization (something to be
done before the loop starts), continuing condition (something to test at the
top of each loop), and an incrementing condition (what to do after testing
at the top of each loop). It’s actually the same structure as in the program-
ming languages C and C++. We can use a for loop to count from one value
to another, just as you might use a for loop in Basic or Python. But you
can also use the Java for loop to do a lot more, like walk through both the
x and y values at once.

Here’s the same example as the while loop above, but with a for loop:

> for (int i=0; i < mypixels.length ; i++)
{ mypixels[i].setRed(0);};

How it works: Our initialization part is declaring an integer (int) vari-
able i and setting it equal to zero. Notice that i will ONLY exist within the
for loop. On the line afterward, i won’t exist–Java will complain about an
undeclared variable. The continuing condition is i < mypixels.length. We
keep going until i is equal to the length, and we don’t execute when i is
equal to the length. The incrementing condition is i++–increment i by one.
What this does is to make i take on every value from 0 to mypixels.length−1
(minus one because we stop when i IS the length), and execute the body of
the loop—which sets red of the pixel at i equal to zero.

3.2 Java is about Classes and Methods

In Java, nearly everything is an object. Objects know things and know how
to do things. It’s the objects that do and know things–there aren’t globally
accessible functions like there are in many other languages like Python,
C, or Java.

Programming in Java (and object-oriented languages, in general) is
about defining what these objects know and what they know how to do.
Each object belongs to a class. The class defines what the object knows (its
instance variables or fields) and what it knows how to do (its methods).

For the Picture object, there is a file named Picture.java that defines
the fields and methods that all Picture objects know (Figure 3.1). That file

50 CHAPTER 3. METHODS IN JAVA: MANIPULATING PICTURES

starts out with the line public class Picture. That starts out the definition
of the class Picture. Everything inside the curly braces after that line is the
definition of the class Picture.

Typically, we define at the top of the file the instance variables that all
objects of that class know. We define the methods that all the instance vari-
ables of that class below that, but still within the curly braces of the class
definition. Each object (e.g., each Picture instance) has the same instance
variables, but different values for those variables–e.g., each picture has a
filename where it read its file from, but they can all be different files. But
all objects know the same methods–they know how to do the same things.

Figure 3.1: Structure of the Picture class defined in Picture.java

Debugging Tip: You change Picture.java
There should be one and only one Picture.java file. This means that you
have to modify the file that we give you. If you rename it (say, Picture-v2.java),
Java will just complain about the filename being incorrect. If you save
Picture.java somewhere else, Java will get confused about two versions.
Save a backup copy somewhere, and trust that it will be okay–you won’t
damage the file too severely.

3.2. JAVA IS ABOUT CLASSES AND METHODS 51

* * *

So what’s this public statement about the class Picture? You might be
wondering if there are other options, like discreet or celebrity. The state-
ment public means that the class Picture is available for access by any
other class. In general, every field or method can be public, or protected
or private.

• public means that the class, field, or method is accessible by anyone.
If there was a class with public fields, any other object could read
those fields or change the values in them. Is that a good thing? Think
about it–if objects represent (model) the real world, can you read any
value in the world or change it? Not usually.

• private means that the field or method can only be accessed by the
class containing that field or method. That’s probably the best option
for fields. Some methods might be private, but probably most would
be public.

• protected is a middle ground that doesn’t generally work. It means
that the field or method is accessible by any class or its subclass–
or any class belonging to the same package. “Package?” you say. “I
haven’t seen anything about packages!” Exactly–and if you don’t deal
with packages, protected data and methods are essentially public.
Makes sense? Not to me either.

Pictures are about arrays and pixels

A picture is a two-dimensional array of pixels. An array is typically one-
dimensional—there’s just a collection of values, one right after the other.
In a one-dimensional array, each element has a number associated with
it called a index variable—think of it as the mailbox address for each ele-
ment. A two-dimensional array is called a matrix—it has both height and
width. We usually number the columns and the rows. With pictures, up-
per left hand corner is row number 0 (which we will refer to as the y index)
and column number 0 (which we will refer to as the x index). The y values
increase going down, and the x values increase going to the right.

What is in those columns and rows is pixels. A pixel is a picture element—
a small dot of color in the picture or on the screen. Each dot is actually
made up of a red component, a green component, and a blue component.
Each of those components can have a value between 0 and 255. A red value
of 0 is no red at all, and a red value of 255 is the maximum red. All the
colors that we can make in a picture are made up of combinations of those
red, green, and blue values, and each of those pixels sits at a specific (x, y)
location in the picture.

52 CHAPTER 3. METHODS IN JAVA: MANIPULATING PICTURES

A method for decreasing red
Let’s explore a method in the class Picture to see how this all works. Here’s
the method to decrease the red in a picture, which would be inserted in
Picture.java within the curly braces defining the class.

Program
Example #12 Example Java Code: decreaseRed in a Picture

/∗∗
2 ∗ Method to decrease the red by half in the current pic ture

∗/
4 public void decreaseRed ()

{
6 Pixel p ixe l = null ; // the current p ix e l

int redValue = 0; // the amount of red
8

// get the array of p i x e l s for th i s pic ture o b j e c t
10 Pixel [] p ixe ls = this . getPixels () ;

12 // s tar t the index at 0
int index = 0;

14

// loop while the index i s l e s s than the length of the p ix e l s array
16 while (index < pixe ls . length)

{
18 // get the current p ix e l at th i s index

pixe l = pixe ls [index] ;
20 // get the red value at the p ixe l

redValue = pixe l . getRed () ;
22 // s e t the red value to half what i t was

redValue = (int) (redValue ∗ 0 . 5) ;
24 // s e t the red for th i s p ix e l to the new value

pixe l . setRed (redValue) ;
26 // increment the index

index ++;
28 }

}

We would use this method like this:

> Picture mypic = new Picture("C:/intro-prog-java/mediasources/Barbara.jpg");
> mypic.show(); // Show the picture
> mypic.decreaseRed();
> mypic.repaint(); // Update the picture to show the changes

The first line creates a picture (new Picture...), declares a variable mypic
to be a Picture, and assigns mypic to the new picture. We then show the

3.2. JAVA IS ABOUT CLASSES AND METHODS 53

picture to get it to appear on the screen. The third line calls (or invokes) the
method decreaseRed on the picture in mypic. The fourth line, mypic.repaint();,
tells the picture to update itself on the screen. decreaseRed changes the
pixels within memory, but repaint tells the window on the screen to update
from memory.
How it works: Note that this method is declared as returning void—

that means that this method doesn’t return anything. It simply changes
the object that it has been invoked upon. It’s public so anyone (any object)
can invoke it.

At the beginning of the method, we typically declare the variables that
we will be using. We will be using a variable pixel to hold each and every
pixel in the picture. It’s okay to have a variable pixel whose class is Pixel—
Java is case sensitive so it can figure out the variable names from the case
names. We will use a variable named redValue to store the red value for
each pixel before we change it (decrease it by 50%). It will be an integer
(no decimal part) number, so we declare it int.

Making It Work Tip: Give variables values as you declare them
It’s considered good practice to give initial values to the variables as you
declare them. That way you know what is in there when you start, because
you put it in there.

We give redValue an initial value of zero. We give pixel an initial value
of null. null is the value that says, “This variable holds an object, but right
now, it’s holding nothing at all.” null is the nothing-object.

The next line in decreaseRed is the statement that both declares the
array of pixels pixels and assigns the name to an array. The array that
we assign it to is what the method getPixels() returns. (That’s the method
getPixels which takes no inputs, but we still have to type () to tell Java that
we want to call the method.) getPixels is a really useful method that returns
all those pixels that are in the picture, but in linear, single-dimension ar-
ray. It converts them from the matrix form to an array form, to make them
easier to process. Of course, as an array, we lose the ability to know what
row or column a pixel is in, but if we’re doing the same thing to all pixels,
we really don’t care.

Notice that the object that we invoke getPixels() on is this. What’s this?
The object that we invoked decreaseRed on. In our example, we are calling
decreaseRed on the picture in mypic (barbara.jpg). So this is the picture
in barbara.jpg.

We are going to use a variable named index to keep track of which pixel
we are currently working on in this method. The first index in any array
is 0, so we start out index as 0. We next use a while loop to process each
pixel in the picture. We want to keep going as long as index is less than the

54 CHAPTER 3. METHODS IN JAVA: MANIPULATING PICTURES

number of pixels in the array. The number of elements in the array pixels
is pixels.length.

length is not a method—it’s a field or an instance variable. It’s a value,
not a behavior. We access it to get the number of elements in an array.
Every array has the field length.

Common Bug: The maximum index is length− 1
A common mistake when working with arrays is to make the index go
until length. The length is the number of elements in the array. The index
numbers (the addresses on the array elements) start at 0, so the maximum
index value is length−1. If you try to access the element at index length you
will get an error that says that you have an OutOfBoundsException—you’ve
gone beyond the bounds of the array.

The body of the while loop in decreaseRed will execute repeatedly as
long as index is less than pixels.length. Within the loop, we:

• Get the pixel at address index in the array pixels and make variable
pixel refer to that pixel.

• Get the redness out of the pixel in variable pixel by calling the method
getRed() and store it in redValue.

• We make redValue 50% smaller by setting it to 0.5 times itself. Notice
that multiplying redValue by 0.5 could result in a value with a decimal
point (think about odd values). But redValue can only be an integer,
a value with no decimal point. So, we have to force the return value
into an integer. We do that we cast the value into an integer, i.e., int.
By saying “(int)” before the value we are casting (“(redValue ∗ 0.5))”),
we turn it into an integer. There’s no rounding involved—any decimal
part simply gets hacked off.

• We then store the new redValue back into the pixel with setRed(redValue).
That is, we invoke the method setRed on the pixel in the variable pixel
with the input redValue: pixel.setRed(redValue);.

• Finally, we increment index with index++;. That makes index point
toward the next value in the array, all set for the test at the top of
the while and the next iteration through the body of the array.

Method with an input

What if we wanted to decrease red by an amount, not always 50%? We
could do that by calling decreaseRed with an input value. Now, the code we
just walked through cannot take an input. Here’s one that can.

3.2. JAVA IS ABOUT CLASSES AND METHODS 55

* * *
Program
Example #13Example Java Code: decreaseRed with an input

/∗∗
∗ Method to decrease the red by an amount
∗ @param amount the amount to change the red by
∗/

public void decreaseRed (double amount)
{

Pixel [] p ixe ls = this . getPixels () ;
Pixel p = null ;
int value = 0;

// loop through a l l the p ix e l s
for (int i = 0 ; i < pixe ls . length ; i ++)
{

// get the current p ix e l
p = pixe ls [i] ;
// get the value
value = p . getRed () ;
// s e t the red value the passed amount time what i t was
p . setRed ((int) (value ∗ amount)) ;

}
}

How it works: This version of decreaseRed has something within the paren-
theses after the method name—it’s the amount to multiply each pixel value
by. We have to tell Java the type of the input value. It’s double, meaning
that it’s a double-precision value, i.e, it can have a decimal point.

In this method, we use a for loop. A for loop has three parts to it:

• An initialization part, a part that occurs before the loop begins. Here,
that’s int i = 0. There are semi-colons before each part.

• A test part—what has to be true for the loop to continue. Here, it’s
that we have more pixels left, i.e., i < pixels.length.

• An iteration part, something to do each time through the loop. Here,
it’s i++, go to the next index value (in variable i).

The rest of this loop is much the same as the other. It’s perfectly okay
with Java to have both versions of decreaseRed in the Picture class at once.
Java can tell the difference between the version that takes no inputs and
the one that takes one numeric input. We call the name, the number of
inputs, and the types of the inputs as the method signature. As long as

56 CHAPTER 3. METHODS IN JAVA: MANIPULATING PICTURES

two methods had different method signatures, it’s okay for them to both
have the same name.

Notice the odd comment at the start of the method, the one with the
@param notation in it. That specialized form of comments is what’s used
to produce the documentation called JavaDoc. The JavaDoc for the media
classes provided with this book is in the doc folder inside the media-sources
folder. These Web pages explain all the methods, their inputs, how they’re
used, and so on (Figure 3.2). We sometimes refer to this information as
the API or Application Program Interface. The content comes from these
specialized comments in the Java files.

Figure 3.2: Part of the JavaDoc page for the Pixel class

Now, if you look at the class Picture, you may be surprised to see that
it doesn’t know very much at all. Certainly, important methods like show
and repaint are missing. Where are they? If you edit the class Picture (in
the file Picture.java), you’ll see that it says:

public class Picture extends SimplePicture

That means that some of what the class Picture understands is actually
defined in the class SimplePicture. Class Picture extends class SimplePicture.
Picture is a subclass of SimplePicture, which means that class Picture inher-
its everything that SimplePicture has and knows. It’s SimplePicture that ac-
tually knows about pixels and how pictures are stored, and it’s SimplePicture
that knows how to show and repaint pictures. Picture inherits all of that
by being a subclass of SimplePicture.

Why do that? Why make Picture so relatively dumb? There are lots
of reasons for using inheritance. The one we’re using here is informa-
tion hiding. Open up SimplePicture.java and take a peek at it. It’s
pretty technical and sophisticated code, filled with BufferedImage objects
and references to Graphics contexts. We want you to edit the Picture class,
to change methods and add new methods. We want that code to be under-
standable, so we hide the stuff that is hard to understand in SimplePicture.

3.3. METHODS THAT RETURN SOMETHING: COMPOSITING
IMAGES 57

3.3 Methods that return something: Compositing
images

If we’re going to make wildebeests or villagers, we need some way of get-
ting those images onto a frame. Here are some methods to do it. Along
the way, we will create methods that return new pictures—a very useful
feature for creating more complex pictures.

Program
Example #14Example Java Code: Method to compose this picture into a target

/∗∗
2 ∗ Method to compose th i s pic ture onto targe t

∗ at a given point .
4 ∗ @param targe t the pic ture onto which we chromakey th i s pic ture

∗ @param targe tx targe t X pos i t ion to s tar t at
6 ∗ @param targe ty targe t Y pos i t ion to s tar t at

∗/
8 public void compose (Picture target , int targetx , int targety)

{
10 Pixel currPixel = null ;

Pixel newPixel = null ;
12

// loop through the columns
14 for (int srcx =0 , trgx = targetx ; srcx < this . getWidth () ;

srcx ++, trgx ++)
16 {

18 // loop through the rows
for (int srcy =0 , trgy=targety ; srcy < this . getHeight () ;

20 srcy ++, trgy ++)
{

22

// get the current p ix e l
24 currPixel = this . getPixel (srcx , srcy) ;

26 /∗ copy the co lor o f currPixel into target ,
∗ but only i f i t ’ l l f i t .

28 ∗/
i f (trgx < target . getWidth () && trgy < target . getHeight ())

30 {
newPixel = target . getPixel (trgx , trgy) ;

32 newPixel . setColor (currPixel . getColor ()) ;
}

34 }
}

36 }

58 CHAPTER 3. METHODS IN JAVA: MANIPULATING PICTURES

* * *

Using this method, we can then compose the guy into the jungle like this
(Figure 3.3).

> Picture p = new Picture(FileChooser.getMediaPath("guy1-left.jpg"));
> Picture bg = new Picture(FileChooser.getMediaPath("jungle.jpg"));
> p.compose(bg,65,250);
> bg.show();
> bg.write("D:\\cs1316\\jungle-composed-with-guy.jpg")

Figure 3.3: Composing the guy into the jungle

How it works: Basically what happens in this method is that we copy
the colors out of the source picture, this, and set the pixels in the target to
that color. That makes this picture appear in the target.

The compose method takes three inputs. The first one is a picture onto
which the this picture (the one that the method is being invoked upon)
will be composed. Think of the input as a canvas onto which we paint
this picture. The other two inputs are the x and y position where we start
painting the picture—the variables targetx and targety are integers that
define where the upper left hand corner of this picture appears.

We don’t have the luxury of using getPixels this time. We need to know
which rows and columns are which, so that we make sure that we copy
them all into the right places. We don’t want this picture (our source) to
show up as one long line of pixels—we want the rows and columns in the
source to show up as rows and columns in the target.

We are going to need two for loops. One is going to take care of the x
indices, and the other will take care of the y indices. We use two variables
for keeping track of the current pixel in this picture, our source. Those
variables are named srcx and srcy. We use two other variables for keeping
track of the current location in the target, trgx and trgy. The trick to a
composition is to always increment srcx and trgx together (so that we’re
talking about columns in the course and the target at the same time), and
srcy and trgy together (so that the rows are also in synch). You don’t want

3.3. METHODS THAT RETURN SOMETHING: COMPOSITING
IMAGES 59

to start a new row in the source but not the target, else the picture won’t
look right when composed.

To keep them in synch, we use a for loop where we move a couple of
expressions in each part. Let’s look at the first one in detail.

for (int srcx =0 , trgx = targetx ; srcx < this . getWidth () ;
srcx ++, trgx ++)

• In the initialization part, we declare srcx and set it equal to zero, then
declare trgx and have it start out as the input targetx. Notice that
declaring variables here is the same as (for the for loop) declaring
them inside the curly braces of the for loop’s block. This means that
those variables only exist in this block—you can’t access them after
the class ends.

• In the testing part, we keep going as long as we have more columns
of pixels to process in the source—that is, as long as srcx is less than
the maximum width of this picture, this.getWidth().

• In the increment part, we increment srcx and trgx together.

Common Bug: Don’t try to change the input variables
You might be wondering why we copied targetx into trgx in the compose
method. While it’s perfectly okay to use methods on input objects (as we
do in compose() when we get pixels from the target), and maybe change
the object that way, don’t try to add or subtract the values passed in. It’s
complicated why it doesn’t work, or how it does work in some ways. It’s
best just to use them as variables you can read and call methods on, but
not change.

The body of the loop essentially gets the pixel from the source, gets the
pixel from the target, and sets the color of the target pixel to the color of
the source pixel. There is one other interesting statement to look at:

i f (trgx < target . getWidth () && trgy < target . getHeight ())

What happens if you have a really wide source picture and you try to
compose it at the far right edge of the target? You can’t fit all the pixels, of
course. But if you write code that tries to access pixels beyond the edge of
the target picture, you will get an error about OutOfBoundsException. This
statement prevents that.

The conditional says that we only get the target pixel and set its color,
if the x and y values that we’re going to access are less than the maximum

60 CHAPTER 3. METHODS IN JAVA: MANIPULATING PICTURES

width of the target and the the maximum height of the target. We stay
well inside the boundary of the picture that way1.

So far, we’ve only only seen methods that return void. We get some
amazing expressive power by combining methods that return other objects.
Below is an example of how we use the methods in class Picture to scale a
picture larger (or smaller).
> // Make a picture from a file selected by the user
> Picture doll = new Picture(FileChooser.pickAFile());
> Picture bigdoll = doll.scale(2.0);
> bigdoll.show();
> bigdoll.write("bigdoll.jpg"); //Store the new picture to a new
file

Program
Example #15 Example Java Code: Method for Picture to scale by a factor

/∗∗
2 ∗ Method to sca le the pic ture by a factor , and return the r e su l t

∗ @param scale fac to r to sca le by (1 .0 stays the same ,
4 ∗ 0.5 decreases each side by 0 .5 , 2.0 doubles each side)

∗ @return the scaled pic ture
6 ∗/

public Picture scale (double fa c tor)
8 {

Pixel sourcePixel , targetPixel ;
10 Picture canvas = new Picture (

(int) (fa c tor ∗this . getWidth ()) + 1 ,
12 (int) (fa c tor ∗this . getHeight ()) + 1) ;

// loop through the columns
14 for (double sourceX = 0 , targetX =0;

sourceX < this . getWidth () ;
16 sourceX +=(1/ fac tor) , targetX ++)

{
18 // loop through the rows

for (double sourceY=0 , targetY =0;
20 sourceY < this . getHeight () ;

sourceY +=(1/ fac tor) , targetY ++)
22 {

sourcePixel = this . getPixel ((int) sourceX , (int) sourceY) ;
24 targetPixel = canvas . getPixel ((int) targetX , (int) targetY) ;

targetPixel . setColor (sourcePixel . getColor ()) ;
26 }

}
28 return canvas ;

1Of course, if you try to compose to the left of the picture, or above it, by using negative
starting index values, you will get an exception still.

3.3. METHODS THAT RETURN SOMETHING: COMPOSITING
IMAGES 61

}

How it works: The method scale takes as input the amount to scale the
picture this. This method is declared type Picture, instead of void—scale
returns a picture.

The basic process of scaling isn’t too complicated. If we have a picture
and want it to fit into a smaller space, we have to lose some pixels—we
simply can’t fit all the pixels in. (All pixels are basically the same size, for
our purposes.) One way of doing that is to skip, say, every other pixel, by
skipping every other row and column. We do that by adding two to each
index instead of incrementing by one each time through the loop. That
reduces the size of the picture by 50% in each dimension.

What if we want to scale up a picture to fill a large space? Well, we
have to duplicate some pixels. Think about what happens if we add 0.5
to the index variable (either for x or y) each time through the loop. The
values that the index variable will take will be 0, 0.5, 1.0, 1.5, 2.0, 2.5, and
so on. But the index variable can only be an integer, so we’d chop off the
decimal. The result is 0, 0, 1, 1, 2, 2, and so on. By adding 0.5 to the index
variable, we end up taking each position twice, thus doubling the size of
the picture.

Now, what if we want a different sizing–increase by 30% or decrease by
25%? That’s where the factor comes in as the input to scale. If you want
a factor of 0.25, you want the new picture to be 1/4 of the original picture
in each dimension. So what do you add to the index variable? It turns out
that 1/factor works quite nice. 1/0.25 is 4, which is a good index increment
to get 0.25 of the size.

The scale method starts out by creating a target picture. The picture
is sized to be the scaling factor times the height and width—so the target
will be bigger if the scaling factor is over 1.0, and smaller if it is less. As we
can see here, new instances of the class Picture can be created by filename
or by specifying the height and width of the picture. The returned picture
is blank. We add one to deal with off-by-one errors on oddly sized pictures.

The tricky part of this method is the for loops.

for (double sourceX = 0 , targetX =0;
sourceX < this . getWidth () ;
sourceX +=(1/ fac tor) , targetX ++)

Like in compose, we’re manipulation two variables at once in this for
loop. We’re using double variables to store the indices, so that we can add
a 1/factor to them and have them work, even if 1/factor isn’t an integer.
Again, we start out at zero, and keep going as long as there are columns
(or rows, for the y variable) to process. The increment part has us adding
one to targetX but doing sourceX += (1/factor) for the sourceX variable. This
is a shortcut that is equivalent to sourceX = sourceX + (1/factor).

62 CHAPTER 3. METHODS IN JAVA: MANIPULATING PICTURES

When we use the index variables, we cast them to integers, which re-
moves the floating point part.

sourcePixel = this . getPixel ((int) sourceX , (int) sourceY) ;

At the very of end of this method, we return the newly created picture.
The power of returning a new picture is that we can now do a lot of manip-
ulation of pictures with opening up only a few pictures and never changing
those original pictures. Consider the below which creates a mini-collage by
creating a new blank picture (by asking for a new Picture with a height and
width as inputs to the constructor, instead of a filename) then composing
pictures onto it, scaled at various amounts (Figure 3.4).
> Picture blank = new Picture(600,600);
> Picture swan = new Picture("C:/cs1316/MediaSources/swan.jpg");
> Picture rose = new Picture("C:/cs1316/MediaSources/rose.jpg");
> rose.scale(0.5).compose(blank,10,10);
> rose.scale(0.75).compose(blank,300,300);
> swan.scale(1.25).compose(blank,0,400);
> blank.show();

What’s going on here? How can we cascade methods like this? It’s
because all pictures understand the same methods, whether they were
created from a file or created from nothing. So, the scaled rose understands
compose just as well as the rose itself does.

Sometimes you don’t want to show the result. You may prefer to explore
it, which allows you to check colors and get exact x and y coordinates for
parts of the picture. We can explore pictures to figure out their sizes and
where we want to compose them (Figure 3.5).

We also see in this example that we can use setMediaPath and getMediaPath
to make it easier to get the pieces by basename instead of typing out the
whole file path each time. FileChooser.setMediaPath remembers the path
that you specify as the location of your media2. FileChooser.getMediaPath
then recalls that path and sticks it before the base file name that you pro-
vide as input.

2The path is actually stored as a file on your disk, so you should only have to do
setMediaPath once on a single computer

3.3. METHODS THAT RETURN SOMETHING: COMPOSITING
IMAGES 63

Figure 3.4: Mini-collage created with scale and compose

> FileChooser.setMediaPath("C:/cs1316/mediasources/");
> Picture bg = new Picture(FileChooser.getMediaPath("jungle.jpg"));
> bg.explore();
> p.explore();

Composing by Chromakey
Chromakey is the video technique by which a meteorologist on our televi-
sion screen gestures to show a storm coming in from the East, and we see
the meteorologist in front of a map (perhaps moving) where the storm is
clearly visible in the East next to the meteorologist’s hand. The reality is
that the meteorologist is standing in front of a blue or green screen. The
chromakey algorithm replaces all the blue or green pixels in the picture
with pixels of a different background, effectively changing where it looks
like the meteorologist is standing. Since the background pixels won’t be all
the exact same blue or green (due to lighting and other factors), we usually
use a threshold value. If the blue or green is “close enough” (that is, within
a threshold distance from our comparison blue or green color), we swap
the background color.

There are a couple of different chromakey methods in Picture. chromakey()
lets you input the color for the background and a threshold for how close
you want the color to be. bluescreen() assumes that the background is blue,
and looks for more blue than red or green (Figure 3.6. If there’s a lot of blue

64 CHAPTER 3. METHODS IN JAVA: MANIPULATING PICTURES

Figure 3.5: Using the explore method to see the sizes of the guy and the
jungle

in the character, it’s hard to get a threshold to work right. It’s the same
reason that the meteorologist doesn’t wear blue or green clothes—we’d see
right through them!

> Picture p = new Picture(FileChooser.getMediaPath("monster-right1.jpg"));
> Picture bg = new Picture(FileChooser.getMediaPath("jungle.jpg"));
> p.bluescreen(bg,65,250);
> import java.awt.*; //to get to colors
> p.chromakey(bg,Color.blue,100,165,200);
> p.chromakey(bg,Color.blue,200,26,250);
> bg.show();
> bg.write("D:/cs1316/jungle-with-monster.jpg");

Program
Example #16 Example Java Code: Methods for general chromakey and bluescreen

/∗∗
2 ∗ Method to do chromakey using an input co lor for background

∗ at a given point .
4 ∗ @param targe t the pic ture onto which we chromakey th i s pic ture

∗ @param bgcolor the co lor to make transparent
6 ∗ @param threshold within th i s distance from bgcolor , make transparent

∗ @param targe tx targe t X pos i t ion to s ta r t at
8 ∗ @param targe ty targe t Y pos i t ion to s ta r t at

3.3. METHODS THAT RETURN SOMETHING: COMPOSITING
IMAGES 65

Figure 3.6: Chromakeying the monster into the jungle using different lev-
els of bluescreening

∗/
10 public void chromakey (Picture target , Color bgcolor , int threshold ,

int targetx , int targety)
12 {

Pixel currPixel = null ;
14 Pixel newPixel = null ;

16 // loop through the columns
for (int srcx =0 , trgx=targetx ;

18 srcx<getWidth () && trgx<target . getWidth () ;
srcx ++, trgx ++)

20 {

22 // loop through the rows
for (int srcy =0 , trgy=targety ;

24 srcy<getHeight () && trgy<target . getHeight () ;
srcy ++, trgy ++)

26 {

28 // get the current p ix e l
currPixel = this . getPixel (srcx , srcy) ;

30

/∗ i f the co lor at the current p ix e l i s within threshold of
32 ∗ the input color , then don ’ t copy the p ixe l

∗/
34 i f (currPixel . colorDistance (bgcolor)> threshold)

{
36 target . getPixel (trgx , trgy) . setColor (currPixel . getColor ()) ;

}

66 CHAPTER 3. METHODS IN JAVA: MANIPULATING PICTURES

38 }
}

40 }

42 /∗∗
∗ Method to do chromakey assuming blue background for background

44 ∗ at a given point .
∗ @param targe t the pic ture onto which we chromakey th i s pic ture

46 ∗ @param targe tx targe t X pos i t ion to s ta r t at
∗ @param targe ty targe t Y pos i t ion to s ta r t at

48 ∗/
public void bluescreen (Picture target ,

50 int targetx , int targety)
{

52 Pixel currPixel = null ;
Pixel newPixel = null ;

54

// loop through the columns
56 for (int srcx =0 , trgx=targetx ;

srcx<getWidth () && trgx<target . getWidth () ;
58 srcx ++, trgx ++)

{
60

// loop through the rows
62 for (int srcy =0 , trgy=targety ;

srcy<getHeight () && trgy<target . getHeight () ;
64 srcy ++, trgy ++)

{
66

// get the current p ix e l
68 currPixel = this . getPixel (srcx , srcy) ;

70 /∗ i f the co lor at the current p ix e l mostly blue (blue value i s
∗ greater than red and green combined) , then don ’ t copy p ixe l

72 ∗/
i f (currPixel . getRed () + currPixel . getGreen () > currPixel . getBlue ())

74 {
target . getPixel (trgx , trgy) . setColor (currPixel . getColor ()) ;

76 }
}

78 }
}

3.4 Creating classes that do something

So far, we have created methods in the class Picture that know how to do
something, but we actually do things with statements in the Interactions

3.4. CREATING CLASSES THAT DO SOMETHING 67

Pane. How do we get a Java class to do something? We use a particular
method that declares itself to be the main thing that this class does. You
declare a method like this:

public static void main (String [] args){
//code goes here
}

The code that goes inside a main method is exactly like what goes in an
Interactions Pane. For example, here’s a class that the only thing it does
is to create a mini-collage.

Program
Example #17Example Java Code: A public static void main in a class

public class MyPicture {
2

public static void main (String args []) {
4

Picture canvas = new Picture (600 ,600) ;
6 Picture swan = new Picture (”C : / cs1316 / MediaSources / swan . jpg ”) ;

Picture rose = new Picture (”C : / cs1316 / MediaSources / rose . jpg ”) ;
8 Picture tur t l e = new Picture (”C : / cs1316 / MediaSources / tur t l e . jpg ”) ;

10 swan . scale (0 . 5) . compose (canvas , 1 0 , 1 0) ;
swan . scale (0 . 5) . compose (canvas ,350 ,350) ;

12 swan . f l i p () . sca le (0 . 5) . compose (canvas ,10 ,350) ;
swan . f l i p () . sca le (0 . 5) . compose (canvas ,350 ,10) ;

14 rose . scale (0 . 2 5) . compose (canvas ,200 ,200) ;
tur t l e . scale (2 . 0) . compose (canvas ,10 ,200) ;

16 canvas . show () ;
}

18 }

The seemingly-magical incantation public static void main(String [] args)
will be explained more later, but we can talk about it briefly now.

• public means that it’s a method that any other class can access.

• static means that this is a method accessible from the class. We don’t
need to create instances of this class in order to run the main method.

• void means that the main method doesn’t return anything.

• String[] args means that the main method can actually take inputs
from the command line. You can run a main method from the com-
mand line by typing the command java and the class name, e.g. java MyPicture
(presuming that you have Java installed!).

68 CHAPTER 3. METHODS IN JAVA: MANIPULATING PICTURES

To run a main method from within DrJava, use function key F2. That’s
the same as using RUN DOCUMENT’S MAIN METHOD from the TOOLS
menu (Figure 3.7).

Figure 3.7: Run the main method from DrJava

A main method is not very object-oriented – it’s not about defining what
an object knows or what it can do. But it is pretty useful.

4 Objects as Agents:
Manipulating Turtles

Chapter Learning Objectives
We are going to model our wildebeests and villagers as agents—objects

that behave independent of each other, seemingly simultaneously, with a
graphical (visible) representation. Turtles are an old computational idea
that are useful for understanding agents behavior. They are also a pow-
erful tool for understanding object-oriented programming. In this chapter,
we learn about turtles in order to simply animations and simulations later.
The computer science goals for this chapter are:

• To introduce some of the history of object-oriented programming, from
Logo (and turtles) to Smalltalk.

• To generalize an understanding of objects, from Pictures to Turtles.

• To understand better cascading methods.

• To introduce some basic list manipulation ideas, e.g., that nodes are
different objects.

The media learning goals for this chapter are:

• To create animations using a FrameSequence.

• To find another technique for composing pictures.

• To use a simple technique for rotating pictures.

4.1 Turtles: An Early Computational Object

In the mid-1960’s, Seymour Papert at MIT and Wally Feurzeig and Danny
Bobrow at BBN Labs were exploring educational programming by chil-
dren. That was a radical idea at the time. Computers were large, expen-
sive devices which were shared by multiple people at once. Some found
the thought of giving up precious computing time for use by 10 or 11 year
old children to be ludicrous. But Papert, Feurzeig, and Bobrow believed

69

70 CHAPTER 4. OBJECTS AS AGENTS: MANIPULATING TURTLES

that the activity of programming was a great context for learning all kinds
of things, including learning about higher-order thinking skills, like plan-
ning and debugging. They created the programming language Logo as a
simplified tool for children.

The most common interaction with computers in those days was through
teletypes—large machines with big clunky keys that printed all output to
a roll of paper, like a big cash register receipt paper roll. That worked
reasonably well for textual interactions, and much of the early use of Logo
was for playing with language (e.g., writing a pig-Latin generator). But
the Logo team realized that they really needed some graphical interaction
to attract the kids with whom they were working. They created a robot
turtle with an attached pen to give the students something to control to
make drawings.

The simple robot turtle sat on a large piece of paper, and when it moved
(and if its pen was “down” and touching the paper) it would draw a line be-
hind it. The Logo team literally invented a new kind of mathematics to
make Logo work (XXX Cite Abelson and diSessa), where the turtle didn’t
know Cartesian coordinates ((x, y) points) but instead knew it’s heading
(which direction it was facing), and could turn and go forward. This rela-
tive positioning (as opposed to global, Cartesian coordinates) was actually
enough to do quite a bit of mathematics, including biological simulations
and an exploration of Einstein’s Special Theory of Relativity (XXX Cite
Abelson and diSessa).

As we will see in the next section, the Logo turtle is very clearly a com-
putational object, in our sense of object. The turtle knows some things (like
its heading and whether its pen is down) and it can do some things (like
turn and forward). But even more directly, the Logo turtle influenced the
creation of object-oriented programming. Alan Kay (XXX Cite ”An Early
History of Smalltalk”) modeled his Smalltalk programming language on
Logo—and Smalltalk is considered to be the very first object-oriented pro-
gramming language (a direct influence on Java), and Alan Kay is consid-
ered to be the inventor of object-oriented programming.

The Logo turtle today still exists in many implementations of many lan-
guages, but has multiplied. Seymour Papert’s student, Mitchel Resnick,
developed a version of Logo, StarLogo with thousands of turtles that can
interact with one another. Through this interaction, they can simulate sce-
narios like ants in an anthill, or termites, slime mold, or vehicle traffic[Resnick, 1997].

4.2 Drawing with Turtles

We’re going to use turtles to draw on our pictures in interesting and flexi-
ble ways, and to simplify animation. (See the Appendix for what the Turtle
class looks like.) Our Turtle class instances can be created on a Picture or
on a World. Think of a World as a constantly updating picture that repaints
automatically. We create a World by simply creating a new one. We create

4.2. DRAWING WITH TURTLES 71

a Turtle on this world by passing the World instance in as input to the Turtle
constructor (Figure 4.1).

Figure 4.1: Starting a Turtle in a new World

Here’s an example of opening a turtle on a Picture instead (Figure 4.2).
Turtles can be created on blank Picture instances (which start out white)
in the middle of the picture with pen down and with black ink. When a
turtle is told to go forward, it moves forward the input number of turtle
steps (think “pixels,” which isn’t exactly correct, but is close enough most of
the time—the actual unit is computed by Java depending on your screen
resolution) in whatever direction the turtle is currently facing. You can
change the direction in which the turtle is facing by using the turn method
which takes as input the number of degrees to turn. Positive degrees are
clockwise, and negative ones are counter-clockwise.

> Picture blank = new Picture(200,200);
> Turtle fred = new Turtle(blank);
> fred
Unknown at 100, 100 heading 0
> fred.turn(-45);

72 CHAPTER 4. OBJECTS AS AGENTS: MANIPULATING TURTLES

> fred.forward(100);
> fred.turn(90);
> fred.forward(200);
> blank.show();
> blank.write("D:/cs1316/turtleexample.jpg")

Figure 4.2: A drawing with a turtle

Turtles know their position (unlike the original robot turtles) and their
heading. The heading is 0 when straight up (how they’re first created),
and 90 when pointed to the right (due east), and 180 when pointed straight
down. Clearly, turtles know things (e.g., their heading, x and y position)
and can do things (e.g., like moving forward and turning).

> fred.forward(100);
> fred.turn(90);
> fred.getHeading()
90
> fred.getXPos()
320
> fred.getYPos()
140

Turtles can pick up their pen (stop drawing) using either the method
penUp() or the code setPenDown(false). We can set the pen down using
penDown() or setPenUp(true). Java does know about truth, or at least, about
Boolean values: true and false.

To draw more complex shapes, we tell the turtle to do its basic steps
repeatedly. Telling a turtle to go forward a certain number of steps and to
turn 90 degrees makes a square.

> for (int sides=0; sides <= 3 ; sides++)
{fred.forward(100); fred.turn(90);}

4.2. DRAWING WITH TURTLES 73

When cascades don’t work
Here’s a thought experiment: will this work?

> World earth = new World () ;
> Turtle tur t l e = new Turtle (earth) ;
> tur t l e . forward (1 0 0) . r ight (9 0) ;

The answer is “no,” but can you figure out why? Here’s a hint: The error
you get in the Interactions Pane is Error: No ’right ’ method in ’void’ with arguments: (int).
While the error message is actually telling you exactly what the problem
is, it’s written in Javanese—it presumes that you understand Java and can
thus interpret the message.

The problem is that forward does not return anything, and certainly not
a turtle. The method forward returns void. When we cascade methods like
this, we are telling Java to invoke right(90) on what turtle .forward(100) re-
turns. Since forward returns void, Java checks if instances of class void
understand right. Of course not—void is nothing at all. So Java tells
us that it checked for us, and the class void has no method right that
takes an integer (int) input (e.g., 90 in our example). (Of course, void
doesn’t know anything about right with any inputs, but just in case we
only got the inputs wrong, Java lets us know what it looked for.) Thus:
Error: No ’right ’ method in ’void’ with arguments: (int).

You can only use a cascade of method calls if the previous method call
returns an object that has a method defined for the next method call. Since
forward returns nothing (void), you can’t cascade anything after it. Sure,
we could create forward so that it does return the turtle this, the one it
was invoked on, but one may ask if that makes any sense. Should forward
return something?

Making lots of turtles
Using Mitchel Resnick’s StarLogo as inspiration, we may want to create
something with lots of turtles. For example, consider what this program
draws on the screen.

Program
Example #18Example Java Code: Creating a hundred turtles

public class LotsOfTurtles {
2

public static void main (String [] args){
4 // Create a world

World myWorld = new World () ;
6 // A f l o t i l l a o f t u r t l e s

Turtle [] myTurtles = new Turtle [1 0 0] ;
8

74 CHAPTER 4. OBJECTS AS AGENTS: MANIPULATING TURTLES

// Make a hundred t u r t l e s
10 for (int i =0; i < 100; i ++) {

myTurtles [i] = new Turtle (myWorld) ;
12 }

14 //Tel l them a l l what to do
for (int i =0; i < 100; i ++) {

16 // Turn a random amount between 0 and 360
myTurtles [i] . turn ((int) (360 ∗ Math . random ())) ;

18 // Go 100 p ix e l s
myTurtles [i] . forward (1 0 0) ;

20 }
}

22 }

How it works: Study the program and think about it before you look at
Figure 4.3.

• First we create a World and name it myWorld.

• Next, we create an array to store 100 Turtle instances. Notice that
Turtle [] myTurtles = new Turtle[100]; creates no turtles!. That 100 is
enclosed in square brackets—we’re not calling the Turtle constructor
yet. Instead, we’re simply asking for 100 slots in an array myTurtles
that will each be a Turtle.

• Inside a for loop that goes 100 times, we see myTurtles[i] = new Turtle(myWorld);.
Here’s where we’re creating each of the 100 turtles in myWorld and
putting each of them in their own slot of the array myTurtles.

• Finally, we tell each of the turtles to turn a random amount and go
forward 100 steps. Math.random() returns a number between 0 and 1.0
where all numbers (e.g., 0.2341534) in that range are equally likely.
Since that will be a double, we have to cast the result to int to use it
as an input to forward.

Figured it out yet? It makes a circle of radius 100! This is an example
from Mitchel Resnick’s book that introduced StarLogo[Resnick, 1997].

Obviously, we can have more than one Turtle in a World at once. In-
stances of class Turtle know some methods that allow them to interact with
one another. They know how to turnToFace(anotherTurtle) which changes
the one heading to match the other. They also know how to compute
getDistance(x,y) which is the distance from this turtle (the one that getDistance
was invoked upon) to the point x, y. Thus, in this example, r2d2 goes off
someplace random on tattoine, but c3po turns to face him and moves for-
ward exactly the right distance to catch r2d2.

4.2. DRAWING WITH TURTLES 75

Figure 4.3: What you get with a hundred turtles starting from the same
point, pointing in random directions, then moving forward the same
amount

> World tattoine = new World();
> Turtle r2d2 = new Turtle(tattoine);
> r2d2.turn((int)

(360 * Math.random()));
> r2d2.forward((int)

(Math.random() * 100));
> Turtle c3po = new Turtle(tattoine);
> c3po.turnToFace(r2d2);
> c3po.forward((int)

(c3po.getDistance(
r2d2.getXPos(),r2d2.getYPos())));

Composing pictures with turtles
We saw earlier that we can place turtles on instance of class Picture, not
just instances of class World. We can also use turtles to compose pictures
into other pictures, through use of the drop method. Pictures get “dropped”
behind (and to the right of) the turtle. If it’s facing down (heading of 180.0),
then the picture shows up upside down (Figure 4.4).

> Picture monster = new Picture(FileChooser.getMediaPath("monster-right1.jpg"));
> Picture newbg = new Picture(400,400);
> Turtle myturt = new Turtle(newbg);
> myturt.drop(monster);
> newbg.show();

We’ll rotate the turtle and drop again (Figure 4.5).

76 CHAPTER 4. OBJECTS AS AGENTS: MANIPULATING TURTLES

Figure 4.4: Dropping the monster character

> myturt.turn(180);
> myturt.drop(monster);
> newbg.repaint();

Figure 4.5: Dropping the monster character after a rotation

We can drop using loops and patterns, too (Figure 4.6). Why don’t we
see 12 monsters here? Maybe some are blocking the others?

> Picture frame = new Picture(600,600);
> Turtle mabel = new Turtle(frame);
> for (int i = 0; i < 12; i++)

{mabel.drop(monster); mabel.turn(30);}

4.2. DRAWING WITH TURTLES 77

Figure 4.6: An iterated turtle drop of a monster

We can combine these in a main method to create a more complex image
(Figure 4.7).

Program
Example #19Example Java Code: Making a picture with dropped pictures

public class MyTurtlePicture {
2

public static void main (String [] args) {
4 Picture canvas = new Picture (600 ,600) ;

Turtle jenny = new Turtle (canvas) ;
6 Picture l i l T u r t l e =

new Picture (
8 FileChooser . getMediaPath (” Turtle . jpg ”)) ;

10 for (int i =0; i <=40; i ++)
{

12 i f (i < 20)
{ jenny . turn (2 0) ;}

14 else
{ jenny . turn (−20);}

16 jenny . forward (4 0) ;
jenny . drop (l i l T u r t l e . scale (0 . 5)) ;

18 }
canvas . show () ;

20 }
}

* * *

78 CHAPTER 4. OBJECTS AS AGENTS: MANIPULATING TURTLES

Figure 4.7: Making a more complex pattern of dropped pictures

4.3 Creating animations with turtles and frames

Our eyes tend to present an image to our brain, even for a few moments
after the image as disappeared from sight. That’s one of the reasons why
we don’t panic when we naturally blink (many times a minute without
noticing)—the world doesn’t go away and we don’t see blackness. Rather,
our eyes persist in showing the image in the brief interval when we blink—
we call that persistence of vision.

A movie is a series of images, one shown right after the other. If we
can show at least 16 images (frames) in a logical sequence in a second, our
eye merges them through persistence of vision, and we perceive continu-
ous motion. Fewer frames per second may be viewed as continuous, but
it will probably be choppy. If we show frames that are not in a logical se-
quence, we perceive a montage, not continuous motion. Typical theater
movies present at 22 frames per second, and video is typically 30 frames
per second.

If we want to create an animation, then, we need to store a bunch of
instances of Picture as frames, then play them back faster than 16 frames
per second. We have a class for doing this, FrameSequence.

• The constructor for FrameSequence takes a path to a directory where
frames will be stored as JPEG images, so that you might be able to
reassemble them into a movie using some other tool (e.g., Windows

4.3. CREATING ANIMATIONS WITH TURTLES AND FRAMES 79

Movie Maker, Apple Quicktime Player, ImageMagick).

• A FrameSequence knows how to show(). Once shown, a FrameSequence
will show each frame as it is added to the FrameSequence. When you
first tell a FrameSequence to show, it will warn you that there’s noth-
ing to see until a frame is added.

• It knows how to addFrame(aPicture) to add another frame to a FrameSequence.

• It knows how to replay(delay) to show a sequence of frames back again.
The delay is an integer for the number of milliseconds to wait between
each frame. A delay of 62 is roughly 16 frames per second—anything
around there or less will be perceived as continuous motion.

Here’s a silly example of how you might use a FrameSequence. We’re
adding three (unrelated) pictures to a FrameSequence via addFrame. We
can then replay the sequence back, one frame per second (or strictly, one
frame per 1000 milliseconds).

> FrameSequence f = new FrameSequence("D:/Temp");
> f.show()
There are no frames to show yet. When you add a frame it will be
shown
> Picture t = new

Picture("C:/cs1316/MediaSources/Turtle.jpg");
> f.addFrame(t);
> Picture barb = new

Picture("C:/cs1316/MediaSources/Barbara.jpg");
> f.addFrame(barb);
> Picture katie = new

Picture("C:/cs1316/MediaSources/Katie.jpg");
> f.addFrame(katie);
> f.replay(1000); // Delay one frame per second

Let’s combine turtles and a FrameSequence to make an animation of
frames.

Program
Example #20Example Java Code: An animation generated by a Turtle

public class MyTurtleAnimation {
2

private Picture canvas ;
4 private Turtle jenny ;

private FrameSequence f ;
6

public MyTurtleAnimation () {
8

80 CHAPTER 4. OBJECTS AS AGENTS: MANIPULATING TURTLES

canvas = new Picture (600 ,600) ;
10 jenny = new Turtle (canvas) ;

f = new FrameSequence (”C : / Temp/ ”) ;
12 }

14 public void next () {
Picture l i l T u r t l e = new Picture (FileChooser . getMediaPath (” Turtle . jpg ”)) ;

16

jenny . turn (−20);
18 jenny . forward (3 0) ;

jenny . turn (3 0) ;
20 jenny . forward (−5);

jenny . drop (l i l T u r t l e . scale (0 . 5)) ;
22 f . addFrame(canvas . copy ()) ; // Try th i s as

// f . addFrame(canvas) ;
24 }

26 public void next (int numTimes){
for (int i =0; i < numTimes ; i ++)

28 { this . next () ; }
}

30

public void show () {
32 f . show () ;

}
34

public void replay (int delay){
36 f . show () ;

f . replay (delay) ;
38 }

}

We run this program like this:
> MyTurtleAnimation anim = new MyTurtleAnimation();
> anim.next(20); // Generate 20 frames
> anim.replay(500); // Play them back, two per second

How it works: An instance of MyTurtleAnimation has three instance vari-
ables associated with it: A Picture onto which the turtle will draw named
canvas, a Turtle named jenny, and a FrameSequence. The constructor for
MyTurtleAnimation creates the original objects for each of these three names.

Common Bug: Don’t declare the instance variables
There’s a real temptation to put “Picture” in front of that line in the con-
structor canvas = new Picture(600,600);. But resist it. Will it compile? Ab-
solutely. Will it work? Not at all. If you declare canvas a Picture inside

4.3. CREATING ANIMATIONS WITH TURTLES AND FRAMES 81

of the constructor MyTurtleAnimation(), it only exists in the constructor. If
you want it canvas to exist outside that method, you have to access the in-
stance variable, the field created in the object. If you don’t declare it in the
constructor, Java figures out that you mean the instance variable.

There are two different next methods in MyTurtleAnimation. The one
that we called in the example (where we told it to go for 20 steps) is this
one:

public void next (int numTimes){
for (int i =0; i < numTimes ; i ++)
{this . next () ; }

}

All that next(int numTimes) does is to call next() the input numTimes
number of times. So the real activity in MyTurtleAnimation occurs in next()
with no inputs.

public void next () {
Picture l i l T u r t l e = new Picture (

FileChooser . getMediaPath (” Turtle . jpg ”)) ;

jenny . turn (−20);
jenny . forward (3 0) ;
jenny . turn (3 0) ;
jenny . forward (−5);
jenny . drop (l i l T u r t l e . scale (0 . 5)) ;
f . addFrame(canvas . copy ()) ; // Try th i s as

// f . addFrame(canvas) ;
}

The method next() does a bit of movement, a drop of a picture, and an
addition of a frame to the FrameSequence. Basically, it generates the next
frame in the animation sequence.

The show() and replay() methods delegate their definition to the FrameSquence
instance. Delegation is where one class accomplishes what it needs to do by
asking something else to do it. It’s what you might call “passing the buck.”
An animation should know how to show() or codereplay(). The way that the
animation accomplishes those tasks is by asking the FrameAnimation to
show or replay.
Data structure within FrameSequence

Did you try this same animation with the last line of next changed to
f .addFrame(canvas);? What happened? If you did try it, you may have
thought you made a mistake. When you ran the next animation, you saw
the animation play out as normal. But when you executed replay, you saw
only the final frame appear —never any other frame. Go check the tempo-
rary directory where the FrameSequence wrote out its frames. You’ll find a

82 CHAPTER 4. OBJECTS AS AGENTS: MANIPULATING TURTLES

bunch of JPEG images there: frame0001.jpg, frame0002.jpg, and so
on. So the animation did work and the FrameSequence did write out the
frames. But why isn’t it replaying correctly?

What we are seeing helps us to understand how FrameSequence works
and what its internal data structure is. As you might imagine, a FrameSequence
is a series of frames—but that’s not correct in the details. The FrameSequence
is actually a list of references to Picture objects. Each element in the FrameSequence
refers to some Picture.

If a FrameSequence does not actually have any frames in it, where do
the frames come from? From the Picture that you input to addFrame! That’s
what the FrameSequence frame references point to.

Without the .copy() method call on canvas, all the references in the code-
FrameSequence point to one Picture, canvas. There is only one picture in
the FrameSequence, and since, at the end, the canvas is in its final state,
then all the references in FrameSeqence point to that same canvas Picture in
its final state.

With the .copy() method call on canvas, you create different Picture in-
stances for each reference in the FrameSequence. When we tell the FrameSequence
to replay, the pictures referenced by the FrameSequence play out on the
screen.

4.3. CREATING ANIMATIONS WITH TURTLES AND FRAMES 83

Exercises

1. Using sampled sounds and turtles, create a musical dance. Play mu-
sic (sounds at least?) while the turtles move in patterns.

• Your piece must last at least 10 seconds.
• You must have at least five turtles. They can drop pictures, they

can leave trails (or not), they can spin slowly, whatever you want
them to do. Your turtles must move.

• You must have at least four different sounds.
• There must be some interweaving between turtle motion and

sounds. In other words, you can’t move the five turtles a little,
then play 10 seconds of music. Hint: Use blockingPlay() instead
of play() to play the sounds. If you use play(), the turtle move-
ment and the sounds will go in parallel, which is nice, but you’ll
have no way to synchronize playing and moving. The method
blockingPlay() will keep anything else from happening (e.g., tur-
tle movement) during the playing of the sound.

Implement your dance and sounds in a TurtleDance class in a main
method.
For extra credit, use MIDI (JMusic) instead of sampled sounds. Look
up the Play object in the JMusic docs. Play.midi(score,false) will play a
score in the background (false keeps it from quitting Java after play-
ing). Play.waitcycle(score) will block (wait) anything else from happen-
ing until the score is done playing essentially, letting you block like
blockingPlay().

5 Arrays: A Static Data Structure
for Sounds

Chapter Learning Objectives
The last media type that we will need to create animations like those

segments of the wildebeests and villagers is sampled sound. Sampled
sound has an advantage for our purposes here—it’s naturally an array.
Sounds are arrays of samples. We will use sampled sounds to talk about
the strengths and weaknesses of arrays as a data structure.
The computer science goals for this chapter are:

• To use and manipulate arrays, including insertions into the middle
(shifting the rest towards the end) and deletions from the middle
(shifting the end back and padding).

The media learning goals for this chapter are:

• To understand how sounds are sampled and stored on a computer.

• To learn methods for manipulating sounds.

5.1 Manipulating Sampled Sounds

We can work with sounds that come from WAV files. We sometimes call
these sampled sounds because they are sounds made up of samples (thou-
sands per second), in comparison with MIDI music which encodes music
(notes, durations, instrument selections) but not the sounds themselves.

A sampled sound is a series of numbers (samples) that represent the
air pressure at a given moment in time. As you probably know from
your physics classes, sound is the result of vibrations in the air molecules
around our ears. When the molecules bunch up, there is an increase in
air pressure called compression; when the molecules then space back up,
there is a rarefaction (a drop) in the air pressure. We can plot air pressure
over time to see the cyles of sounds.

Each of these samples is a number that goes both positive (for increases
in air pressure) and negative (for rarefactions). Typically, two bytes (8 bits
each, for a total of 16 bits) are used to store each sample. Given that we

85

86CHAPTER 5. ARRAYS: A STATIC DATA STRUCTURE FOR SOUNDS

have to represent both negative and positive numbers in those 16 bits, we
have plus or minus 32, 000 (roughly) as values in our samples. To capture
all the frequencies of a sound that humans can hear, CD-quality sound
requires that we capture 44, 100 samples every second.

A WAV file stores samples, albeit in a compressed form. MIDI actually
stores specifications of music. MIDI files contain encoded commands of the
form “Press down on this key now” and later “release that key now.” What
a “key” sounds like is determined by the MIDI synthesizer when the file is
played. A WAV file, though, stores the original samples—the sound itself,
as encoded on a computer.

Here’s a simple example of creating a Sound instance from a file, and
playing it.

> Sound s = new Sound(C:/cs1316/MediaSources/thisisatest.wav");
> s.play();
> s.increaseVolume(2.0);
> s.play();

How it works: Here we see us creating a new Sound instance (by say-
ing new Sound). The constructor for the Sound class (the method that con-
structs and initializes a new instance of a class) takes a WAV filename
as input, then creates a Sound instance from those samples. We play the
sound using the play() method. We then increase the volume by 2.0 and
play it again.

Increasing the volume is a matter of increasing the amplitude of the
sound. Here’s what that method looks like.

Program
Example #21 Example Java Code: Increase the volume of a sound by a factor

/∗∗
2 ∗ Increase the volume of a sound

∗∗/
4 public void increaseVolume (double fa c tor){

SoundSample [] samples = this . getSamples () ;
6 SoundSample current = null ;

8 for (int i =0; i < samples . length ; i ++) {
current = samples [i] ;

10 current . setValue ((int) (f ac tor ∗ current . getValue ())) ;
}

12 }

How it works: The first thing we do is to get all the samples out of the
sound. getSamples() returns an array of SoundSample objects with all the

5.1. MANIPULATING SAMPLED SOUNDS 87

samples in the sound. We then use a for loop for the length of the samples.
We get each sample, then multiply the factor times the current getValue()
of the sample. We set the sample to the product. If the factor is less than
1.0, this reduces the volume, because the amplitude shrinks. If the factor
is greater than 1.0, the sound increases in volume because the amplitude
grows.

Just like with Picture instances, methods that return a new Sound are
particularly powerful. Consider the following example:
> Sound s = new Sound("D:/cs1316/MediaSources/thisisatest.wav");
> s.play();
> s.reverse()
Sound number of samples: 64513

Why do you think we see this printout after reverse()? Because reverse
doesn’t change the Sound instance that it’s called on—it returns a new
one. If you were to execute s.play() right now, the sound would be the
same. If you want to hear the reversed sound, you’d need to execute
s.reverse().play(); .

Here’s how we reverse a sound.

Program
Example #22Example Java Code: Reversing a sound

/∗∗
2 ∗ Method to reverse a sound .

∗∗/
4 public Sound reverse ()

{
6 Sound target = new Sound (getLength ()) ;

int sampleValue ;
8

for (int srcIndex =0 , trgIndex=getLength ()−1;
10 srcIndex < getLength () ;

srcIndex ++, trgIndex−−)
12 {

sampleValue = this . getSampleValueAt (srcIndex) ;
14 target . setSampleValueAt (trgIndex , sampleValue) ;

} ;
16 return target ;

}

How it works: The reverse() method first creates a target sound instance.
It has the same length as the sound that reverse() is called upon. (Notice
that a reference to getLength() without a specified object default to being
references to this.) We use a for loop that manipulates two variables at

88CHAPTER 5. ARRAYS: A STATIC DATA STRUCTURE FOR SOUNDS

once. The source index, srcIndex goes up from 0 (the start of the array).
The target index, trgIndex starts at the end of the list. Each time through
the list, we add one to the source index and subtract one from the target
index. The effect is to copy the front of the source to the back of the target,
and to keep going until the whole sound is copied—reversing the sound.
The methods getSampleValueAt and setSampleValueAt allow you to get and
set the number in the sample. Most importantly, the last thing in the
method is return target; which lets us meet the requirement of our method
reverse() declaration, that it returns a Sound.

Debugging Tip: Beware the length as an index
Why did we subtract one from getLength to start out the target index (trgIndex)?
Because getLength is the number of elements (samples) in the array, but the
last index is getLength()−1. Computer scientists stubbornly insist on start-
ing counting indices from zero, not one, so the last value is one less than
the number of elements there.

Methods that return a new sound can then be used to create all kinds
of interesting effects, without modifying the source sound.
> Sound s = new Sound(FileChooser.getMediaPath("gonga-2.wav"));
> Sound s2 = new Sound(FileChooser.getMediaPath("gongb-2.wav"));
> s.play();
> s2.play();
> s.reverse().play(); // Play first sound in reverse
> s.append(s2).play(); // Play first then second sound
> // Mix in the second sound, so you can hear part of each
> s.mix(s2,0.25).play();
> // Mix in the second sound sped up
> s.mix(s2.scale(0.5),0.25).play();
> s2.scale(0.5).play(); // Play the second sound sped up
> s2.scale(2.0).play(); // Play the second sound slowed down
> s.mix(s2.scale(2.0),0.25).play();

Given all of these, we can create a collage of sounds pretty easily.

Program
Example #23 Example Java Code: Create an audio collage

public class MySoundCollage {
2

public static void main (String [] args){
4

Sound snap = new Sound (
6 FileChooser . getMediaPath (” snap−tenth . wav”)) ;

5.1. MANIPULATING SAMPLED SOUNDS 89

Sound drum = new Sound (
8 FileChooser . getMediaPath (” drumroll−1.wav”)) ;

Sound cl ink = new Sound (
10 FileChooser . getMediaPath (” clink−tenth . wav”)) ;

Sound clap = new Sound (
12 FileChooser . getMediaPath (” clap−q . wav”)) ;

14 Sound drumRev = drum. reverse () . scale (0 . 5) ;
Sound soundA = snap . append (c l ink) .

16 append (c l ink) . append (clap) . append (drumRev) ;
Sound soundB = cl ink . append (clap) .

18 append (clap) . append (drum) . append (snap) . append (snap) ;

20 Sound co l lage = soundA . append (soundB) .
append (soundB) . append (soundA) .

22 append (soundA) . append (soundB) ;
co l lage . play () ;

24 }
}

Here is how some of these additional methods are coded.

Program
Example #24Example Java Code: Append one sound with another

/∗∗
2 ∗ Return th i s sound appended with the input sound

∗ @param appendSound sound to append to th i s
4 ∗∗/

public Sound append (Sound appendSound) {
6 Sound target = new Sound (getLength ()+ appendSound . getLength ()) ;

int sampleValue ;
8

// Copy th i s sound in
10 for (int srcIndex =0 , trgIndex =0;

srcIndex < getLength () ;
12 srcIndex ++, trgIndex ++)

{
14 sampleValue = this . getSampleValueAt (srcIndex) ;

target . setSampleValueAt (trgIndex , sampleValue) ;
16 } ;

18 // Copy appendSound in to targe t
for (int srcIndex =0 , trgIndex=getLength () ;

20 srcIndex < appendSound . getLength () ;
srcIndex ++, trgIndex ++)

90CHAPTER 5. ARRAYS: A STATIC DATA STRUCTURE FOR SOUNDS

22 {
sampleValue = appendSound . getSampleValueAt (srcIndex) ;

24 target . setSampleValueAt (trgIndex , sampleValue) ;
} ;

26

return target ;
28 }

Program
Example #25 Example Java Code: Mix in part of one sound with another

/∗∗
2 ∗ Mix the input sound with th i s sound , with percent ra t i o o f input .

∗ Use mixIn sound up to length of th i s sound .
4 ∗ Return mixed sound .

∗ @param mixIn sound to mix in
6 ∗ @param rat io how much of input mixIn to mix in

∗∗/
8 public Sound mix (Sound mixIn , double rat i o){

Sound target = new Sound (getLength ()) ;
10

int sampleValue , mixValue , newValue ;
12

// Copy th i s sound in
14 for (int srcIndex =0 , trgIndex =0;

srcIndex < getLength () && srcIndex < mixIn . getLength () ;
16 srcIndex ++, trgIndex ++)

{
18 sampleValue = this . getSampleValueAt (srcIndex) ;

mixValue = mixIn . getSampleValueAt (srcIndex) ;
20 newValue = (int) (ra t i o ∗mixValue) + (int) ((1 .0− rat i o)∗ sampleValue) ;

target . setSampleValueAt (trgIndex , newValue) ;
22 } ;

return target ;
24 }

Program
Example #26 Example Java Code: Scale a sound up or down in frequency

/∗∗
2 ∗ Scale up or down a sound by the given fac to r

∗ (1 .0 returns the same , 2.0 doubles the length , and 0.5 halves the length)

5.2. INSERTING AND DELETING IN AN ARRAY 91

4 ∗ @param fac to r ra t i o to increase or decrease
∗∗/

6 public Sound scale (double fa c tor){
Sound target = new Sound ((int) (f ac tor ∗ (1+ getLength ()))) ;

8 int sampleValue ;

10 // Copy th i s sound in
for (double srcIndex =0.0 , trgIndex =0;

12 srcIndex < getLength () ;
srcIndex +=(1/ fac tor) , trgIndex ++)

14 {
sampleValue = this . getSampleValueAt ((int) srcIndex) ;

16 target . setSampleValueAt ((int) trgIndex , sampleValue) ;
} ;

18 return target ;
}

How it works: There are several tricky things going on in these meth-
ods, but not too many. Most of them are just copy loops with some tweak.

• The class Sound has a constructor that takes the number of samples.

• You’ll notice in reverse that we can use −− as well as ++. variable−−
is the same as variable = variable − 1.

• In scale you’ll see another shorthand that Java allows: srcIndex+=(1/factor)
is the same as srcIndex = srcIndex + (1/factor).

• A double is a floating point number. These can’t be automatically
converted to integers. To use the results as integers where we need
integers, we cast the result. We do that by putting the name of the
class in parentheses before the result, e.g. (int) srcIndex.

5.2 Inserting and Deleting in an Array

A sound is naturally an array. It’s a long list of sample values, one right
after the other. Manipulation of sounds, then, gives us a sense of the trade-
offs of working with an array.

Imagine that you want to insert one sound into another—not overwrit-
ing parts of the original sound, but pushing the end further down. So if
you had “This is a test” and you wanted to insert a clink sound after the
word “is,” you’d want to hear “This isclink a test.” It might look like this:

> Sound test = new Sound("D:/cs1316/MediaSources/thisisatest.wav");
> test.getLength()
64513
> Sound clink = new Sound("D:/cs1316/MediaSources/clink-tenth.wav");
> clink.getLength()

92CHAPTER 5. ARRAYS: A STATIC DATA STRUCTURE FOR SOUNDS

2184
> test.insertAfter(clink,40000)
> test.play()

How would you do this? Think about doing it physically. If you had
a line of objects in particular spots (think about a line of mailboxes in an
office) and you had to insert something in the middle, how would you do it?
First thing you’d have to do is to make space for the new ones. You’d move
the ones from the end further down. You would move the last ones first,
and then the ones just before the old last, and then the ones before that—
moving backwards towards the front. There are some error conditions to
consider, e.g., what if there’s not enough mailboxes? Assuming that you
have to put in the new ones, you have to lose some of the old content.
Maybe trim off the end?

In any case, your first step would look something like this:

And then, you would insert the new things in. That’s the easy part.

That’s essentially what it takes to do it with sounds, too.

Program
Example #27 Example Java Code: Inserting into the middle of sounds

5.2. INSERTING AND DELETING IN AN ARRAY 93

/∗∗
2 ∗ in s e r t the input Sound a f t e r the nth sample (input in teger) .

∗ Modifies the given sound
4 ∗ @param insound Sound to ins e r t

∗ @param star t index where to s tar t inser t ing the new sound
6 ∗∗/

public void insertAfter (Sound inSound , int start){
8

SoundSample current=null ;
10 // Find how long insound i s

int amtToCopy = inSound . getLength () ;
12 int endOfThis = this . getLength ()−1;

14 i f (s tart + amtToCopy > endOfThis)
{// I f too long , copy only as much as wi l l f i t

16 amtToCopy = endOfThis−start −1;}
else {

18 // I f short enough , need to c l ear out room .
// Copy from endOfThis−amtToCopy ; , moving backwards

20 // (toward front o f l i s t) to s tart ,
// moving UP (toward back) to endOfThis

22 // KEY INSIGHT: How much gets l o s t o f f the end of the
// array ? Same s i z e as what we ’ re inser t ing −− amtToCopy

24 for (int source=endOfThis−amtToCopy ; source >= start ; source−−)
{

26 // current i s the TARGET −− where we ’ re copying to
current = this . getSample (source+amtToCopy) ;

28 current . setValue (this . getSampleValueAt (source)) ;
}

30 }

32 // NOW, copy in inSound up to amtToCopy
for (int target=start , source =0;

34 source < amtToCopy ;
target ++, source ++) {

36 current = this . getSample (target) ;
current . setValue (inSound . getSampleValueAt (source)) ;

38 }
}

Think for a minute how long this takes to do. There are two loops
here, and each one basically involves moving n elements, where n is the
number of elements in the inserted array (sound). We would say that this
algorithm is O(2n) or O(n). The number of operations grows linearly with
the grown of the data.

Part II

Introducing Linked Lists

95

6 Structuring Music using
Linked Lists

Chapter Learning Objectives
Media manipulators are often artists and always creative. They need

flexibility in manipulating data, in inserting some here and deleting some
there. Arrays, as we saw in the last chapter, are not particularly flexible.
We will introduce linked lists in this chapter as a way of handling data
more flexibly. In this chapter, the problem driving our exploration will be,
“How do we make it easy for composers to creatively define music?”
The computer science goals for this chapter are:

• To create linked lists of various kinds.

• To understand and use operations on linked lists, including traver-
sals, insertion, deletion, repetition, and weaving.

• To understand the tradeoffs between linked lists and arrays.

• To see a need for tree structures.

The media learning goals for this chapter are:

• To manipulate data flexibly.

• To develop different structures for composing MIDI creatively.

• To use rudimentary forms automated composition of music.

6.1 JMusic and Imports

Before you can use special features, those not built into the basic Java
language, you have to import them.

Here’s what it looks like when you run with the JMusic libraries in-
stalled (Figure 6.1):

Welcome to DrJava.
> import jm.music.data.*;
> import jm.JMC;

97

98 CHAPTER 6. STRUCTURING MUSIC USING LINKED LISTS

Figure 6.1: Playing all the notes in a score

> import jm.util.*;
> Note n = new Note(60,101);
> Note n = new Note(60,0.5); // Can’t do this
Error: Redefinition of ’n’
> n=new Note(60,0.5);
> Phrase phr = new Phrase();
> phr.addNote(n);
> View.notate(phr);

The first argument to the constructor (the call to the class to create a
new instance) for class Note is the MIDI note. Figure 6.2 shows the relation
between frequencies, keys, and MIDI notes1.

Here’s another java that uses a different Phrase constructor to specify a
starting time and an instrument which is also known as a MIDI program.

> import jm.music.data.*;
> import jm.JMC;
> import jm.util.*;
> Note n = new Note(60,0.5)
> Note n2 = new Note(JMC.C4,JMC.QN)
> Phrase phr = new Phrase(0.0,JMC.FLUTE);
> phr.addNote(n);
> phr.addNote(n2);
> View.notate(phr);

How it works:

• We import the pieces we need for Jmusic.

• We create a note using constants, then using named constants. JMC.C4
means “C in the 4th octave.” JMC.QN means “quarter note.” JMC is
the class Java Music Constants, and it holds many important con-
stants. The constant JMC.C4 means 60, like in the Table 2.1. A sharp
would be noted like JMC.CS5 (C-sharp in the 5th octave). Eighth
note is JMC.EN and half note is JMC.HN. A dotted eighth would be
JMC.DEN.

1Taken from http://www.phys.unsw.edu.au/˜jw/notes.html

6.1. JMUSIC AND IMPORTS 99

Figure 6.2: Frequencies, keys, and MIDI notes—-something I found on the
Web that I need to recreate in a new way

100 CHAPTER 6. STRUCTURING MUSIC USING LINKED LISTS

• We create a Phrase object that starts at time 0.0 and uses the instru-
ment JMC.FLUTE. JMC.FLUTE is a constant that corresponds to the
correct instrument from Table 6.1.

• We put the notes into the Phrase instance, and then notate and view
the whole phrase.

Piano
0 — Acoustic Grand Piano
1 — Bright Acoustic Piano
2 — Electric Grand Piano
3 — Honky-tonk Piano
4 — Rhodes Piano
5 — Chorused Piano
6 — Harpsichord
7 — Clavinet

Chromatic Percussion
8 — Celesta
9 — Glockenspiel
10 — Music box
11 — Vibraphone
12 — Marimba
13 — Xylophone
14 — Tubular Bells
15 — Dulcimer
Organ
16 — Hammond Organ
17 — Percussive Organ
18 — Rock Organ
19 — Church Organ
20 — Reed Organ
21 — Accordian
22 — Harmonica
23 — Tango Accordian
Guitar
24 — Acoustic Guitar (nylon)
25 — Acoustic Guitar (steel)
26 — Electric Guitar (jazz)
27 — Electric Guitar (clean)
28 — Electric Guitar (muted)
29 — Overdriven Guitar
30 — Distortion Guitar
31 — Guitar Harmonics

Bass
32 — Acoustic Bass
33 — Electric Bass (finger)
34 — Electric Bass (pick)
35 — Fretless Bass
36 — Slap Bass 1
37 — Slap Bass 2
38 — Synth Bass 1
39 — Synth Bass 2
Strings
40 — Violin
41 — Viola
42 — Cello
43 — Contrabass
44 — Tremolo Strings
45 — Pizzicato Strings
46 — Orchestral Harp
47 — Timpani

Ensemble
48 — String Ensemble 1
49 — String Ensemble 2
50 — Synth Strings 1
51 — Synth Strings 2
52 — Choir Aahs
53 — Voice Oohs
54 — Synth Voice
55 — Orchestra Hit

Brass
56 — Trumpet
57 — Trombone
58 — Tuba
59 — Muted Trumpet
60 — French Horn
61 — Brass Section
62 — Synth Brass 1
63 — Synth Brass 2

Reed
64 — Soprano Sax
65 — Alto Sax
66 — Tenor Sax
67 — Baritone Sax
68 — Oboe
69 — English Horn
70 — Bassoon
71 — Clarinet

Pipe
72 — Piccolo
73 — Flute
74 — Recorder
75 — Pan Flute
76 — Bottle Blow
77 — Shakuhachi
78 — Whistle
79 — Ocarina
Synth Lead
80 — Lead 1 (square)
81 — Lead 2 (sawtooth)
82 — Lead 3 (caliope lead)
83 — Lead 4 (chiff lead)
84 — Lead 5 (charang)
85 — Lead 6 (voice)
86 — Lead 7 (fifths)
87 — Lead 8 (brass + lead)

Synth Pad
88 — Pad 1 (new age)
89 — Pad 2 (warm)
90 — Pad 3 (polysynth)
91 — Pad 4 (choir)
92 — Pad 5 (bowed)
93 — Pad 6 (metallic)
94 — Pad 7 (halo)
95 — Pad 8 (sweep)

Synth Effects
96 — FX 1 (rain)
97 — FX 2 (soundtrack)
98 — FX 3 (crystal)
99 — FX 4 (atmosphere)
100 — FX 5 (brightness)
101 — FX 6 (goblins)
102 — FX 7 (echoes)
103 — FX 8 (sci-fi)
Ethnic
104 — Sitar
105 — Banjo
106 — Shamisen
107 — Koto
108 — Kalimba
109 — Bagpipe
110 — Fiddle
111 — Shanai

Percussive
112 — Tinkle Bell
113 — Agogo
114 — Steel Drums
115 — Woodblock
116 — Taiko Drum
117 — Melodic Tom
118 — Synth Drum
119 — Reverse Cymbal

Sound Effects
120 — Guitar Fret Noise
121 — Breath Noise
122 — Seashore
123 — Bird Tweet
124 — Telephone Ring
125 — Helicopter
126 — Applause
127 — Gunshot

Table 6.1: MIDI Program numbers

We can create multiple parts with different start times and instru-
ments. We want the different parts to map onto different MIDI channels if
we want different start times and instruments (Figure 6.3). We’ll need to
combine the different parts into a Score object, which can then be viewed
and notated the same way as we have with phrases and parts.

> Note n3=new Note(JMC.E4,JMC.EN)
> Note n4=new Note(JMC.G4,JMC.HN)
> Phrase phr2= new Phrase(0.5,JMC.PIANO);
> phr2.addNote(n3)
> phr2.addNote(n4)
> phr
-------- jMusic PHRASE: ’Untitled Phrase’ contains 2 notes. Start time: 0.0 --------

6.2. STARTING OUT WITH JMUSIC 101

jMusic NOTE: [Pitch = 60][RhythmValue = 0.5][Dynamic = 85][Pan =
0.5][Duration = 0.45] jMusic NOTE: [Pitch = 60][RhythmValue =
1.0][Dynamic = 85][Pan = 0.5][Duration = 0.9]

> phr2
-------- jMusic PHRASE: ’Untitled Phrase’ contains 2 notes. Start time: 0.5 --------
jMusic NOTE: [Pitch = 64][RhythmValue = 0.5][Dynamic = 85][Pan =
0.5][Duration = 0.45] jMusic NOTE: [Pitch = 67][RhythmValue =
2.0][Dynamic = 85][Pan = 0.5][Duration = 1.8]

> Part partA = new Part(phr,"Part A",JMC.FLUTE,1)
> Part partB = new Part(phr2,"Part B",JMC.PIANO,2)
> Phrase phraseAB = new Phrase()
> Score scoreAB = new Score()
> scoreAB.addPart(partA)
> scoreAB.addPart(partB)
> View.notate(scoreAB)

Figure 6.3: Viewing a multipart score

How do you figure out what JMusic can do, what the classes are, and
how to use them? There is a standard way of documenting Java classes
called Javadoc which produces really useful documentation (Figure 6.4).
JMusic is documented in this way. You can get to the JMusic Javadoc at
http://jmusic.ci.qut.edu.au/jmDocumentation/index.html, or
you can download it onto your own computer http://jmusic.ci.qut.
edu.au/GetjMusic.html.

Table A.1 in the Appendix lists the constant names in JMC for accessing
instrument names.

6.2 Starting out with JMusic

Here’s what it looks like when you run:

Welcome to DrJava.
> import jm.music.data.*;
> import jm.JMC;
> import jm.util.*;
> Note n = new Note(C4,QUARTER_NOTE);

102 CHAPTER 6. STRUCTURING MUSIC USING LINKED LISTS

Figure 6.4: JMusic documention for the class Phrase

Error: Undefined class ’C4’
> Note n = new Note(60,QUARTER_NOTE);
Error: Undefined class ’QUARTER_NOTE’
> Note n = new Note(60,101);
> Note n = new Note(60,0.5);
Error: Redefinition of ’n’
> n=new Note(60,0.5);
> Phrase phr = new Phrase();
> phr.addNote(n);
> View.notate(phrase);
Error: Undefined class ’phrase’
> View.notate(phr);

Figure 6.5: Playing all the notes in a score

6.3 Making a Simple Song Object

Program
Example #28 Example Java Code: Amazing Grace as a Song Object

6.3. MAKING A SIMPLE SONG OBJECT 103

import jm . music . data . ∗ ;
2 import jm .JMC;

import jm . u t i l . ∗ ;
4 import jm . music . t oo l s . ∗ ;

6 public class AmazingGraceSong {
private Score myScore = new Score (”Amazing Grace ”) ;

8

public void fillMeUp () {
10 myScore . setTimeSignature (3 , 4) ;

12 double [] phrase1data =
{JMC.G4, JMC.QN,

14 JMC. C5, JMC.HN, JMC. E5,JMC.EN, JMC. C5,JMC.EN,
JMC. E5,JMC.HN,JMC.D5,JMC.QN,

16 JMC. C5,JMC.HN,JMC. A4,JMC.QN,
JMC.G4,JMC.HN,JMC.G4,JMC.EN,JMC. A4,JMC.EN,

18 JMC. C5,JMC.HN,JMC. E5,JMC.EN,JMC. C5,JMC.EN,
JMC. E5,JMC.HN,JMC.D5,JMC.EN,JMC. E5,JMC.EN,

20 JMC.G5,JMC.DHN} ;
double [] phrase2data =

22 {JMC.G5,JMC.HN,JMC. E5,JMC.EN,JMC.G5,JMC.EN,
JMC.G5,JMC.HN,JMC. E5,JMC.EN,JMC. C5,JMC.EN,

24 JMC. E5,JMC.HN,JMC.D5,JMC.QN,
JMC. C5,JMC.HN,JMC. A4,JMC.QN,

26 JMC.G4,JMC.HN,JMC.G4,JMC.EN,JMC. A4,JMC.EN,
JMC. C5,JMC.HN,JMC. E5,JMC.EN,JMC. C5,JMC.EN,

28 JMC. E5,JMC.HN,JMC.D5,JMC.QN,
JMC. C5,JMC.DHN

30 } ;
Phrase myPhrase = new Phrase () ;

32 myPhrase . addNoteList (phrase1data) ;
myPhrase . addNoteList (phrase2data) ;

34 //Mod. repeat (aPhrase , repeats) ;
// create a new part and add the phrase to i t

36 Part aPart = new Part (” Parts ” ,
JMC.FLUTE, 1) ;

38 aPart . addPhrase (myPhrase) ;
// add the part to the score

40 myScore . addPart (aPart) ;

42 } ;

44 public void showMe() {

46 View . notate (myScore) ;
} ;

48

}

104 CHAPTER 6. STRUCTURING MUSIC USING LINKED LISTS

* * *

How it works:

• We start with the import statements needed to use JMusic.

• We’re declaring a new class whose name is AmazingGraceSong. It’s
public meaning that anyone can access it.

• There is a variable named myScore which is of type class Score. This
means that the score myScore is duplicated in each instance of the
class AmazingGraceSong. It’s private because we don’t actually want
users of AmazingGraceSong messing with the score.

• There are two methods, fillMeUp and showMe. The first method fills
the song with the right notes and durations (see the phrase data ar-
rays in fillMeUp) with a flute playing the song. The second one opens
it up for notation and playing.

The phrase data arrays are named constants from the JMC class.
They’re in the order of note, duration, note, duration, and so on. The
names actually all correspond to numbers, doubles.

Using the program (Figure 6.6):

> AmazingGraceSong song1 = new AmazingGraceSong();
> song1.fillMeUp();
> song1.showMe();

6.4 Simple structuring of notes with an array

Let’s start out grouping notes into arrays. We’ll use Math.random() to gen-
erate random numbers between 0.0 and 1.0. We’ll generate 100 random
notes (Figure 6.7).

> import jm . u t i l . ∗ ;
> import jm . music . data . ∗ ;
> Note [] somenotes = new Note [1 0 0] ;
> for (int i = 0 ; i <100; i ++)
{ somenotes [i]=new Note ((int)

(128∗Math . random ()) , 0 . 2 5) ; }
> Phrase phr=new Phrase () ;
> for (int i = 0 ; i <100; i ++)

{ phr . addNote (somenotes [i]) ; }
> View . notate (phr) ;

6.4. SIMPLE STRUCTURING OF NOTES WITH AN ARRAY 105

Figure 6.6: Trying the Amazing Grace song object

Figure 6.7: A hundred random notes

106 CHAPTER 6. STRUCTURING MUSIC USING LINKED LISTS

6.5 Making the Song Something to Explore

In a lot of ways AmazingGraceSong is a really lousy example–and not simply
because it’s a weak version of the tune. We can’t really explore much with
this version. What does it mean to have something that we can explore
with?

How might one want to explore a song like this? We can come up with
several ways, without even thinking much about it.

• How about changing the order of the pieces, or duplicating them?
Maybe use a Call and response structure?

• How about using different instruments?

We did learn in an earlier chapter how to create songs with multiple
parts. We can easily do multiple voice and multiple part Amazing Grace.
Check out the below.

Program
Example #29 Example Java Code: Amazing Grace with Multiple Voices

import jm . music . data . ∗ ;
2 import jm .JMC;

import jm . u t i l . ∗ ;
4 import jm . music . t oo l s . ∗ ;

6 public class MVAmazingGraceSong {
private Score myScore = new Score (”Amazing Grace ”) ;

8

public Score getScore () {
10 return myScore ;

} ;
12

public void fillMeUp () {
14 myScore . setTimeSignature (3 , 4) ;

16 double [] phrase1data =
{JMC.G4, JMC.QN,

18 JMC. C5, JMC.HN, JMC. E5,JMC.EN, JMC. C5,JMC.EN,
JMC. E5,JMC.HN,JMC.D5,JMC.QN,

20 JMC. C5,JMC.HN,JMC. A4,JMC.QN,
JMC.G4,JMC.HN,JMC.G4,JMC.EN,JMC. A4,JMC.EN,

22 JMC. C5,JMC.HN,JMC. E5,JMC.EN,JMC. C5,JMC.EN,
JMC. E5,JMC.HN,JMC.D5,JMC.EN,JMC. E5,JMC.EN,

24 JMC.G5,JMC.DHN} ;
double [] phrase2data =

26 {JMC.G5,JMC.HN,JMC. E5,JMC.EN,JMC.G5,JMC.EN,
JMC.G5,JMC.HN,JMC. E5,JMC.EN,JMC. C5,JMC.EN,

6.5. MAKING THE SONG SOMETHING TO EXPLORE 107

28 JMC. E5,JMC.HN,JMC.D5,JMC.QN,
JMC. C5,JMC.HN,JMC. A4,JMC.QN,

30 JMC.G4,JMC.HN,JMC.G4,JMC.EN,JMC. A4,JMC.EN,
JMC. C5,JMC.HN,JMC. E5,JMC.EN,JMC. C5,JMC.EN,

32 JMC. E5,JMC.HN,JMC.D5,JMC.QN,
JMC. C5,JMC.DHN

34 } ;

36 //
Phrase trumpetPhrase = new Phrase () ;

38 trumpetPhrase . addNoteList (phrase1data) ; // 22.0 beats long
double endphrase1 = trumpetPhrase . getEndTime () ;

40 System . out . pr int ln (”End of phrase1 : ”+endphrase1) ;
trumpetPhrase . addNoteList (phrase2data) ;

42 // create a new part and add the phrase to i t
Part part1 = new Part (”TRUMPET PART” ,

44 JMC.TRUMPET, 1) ;
part1 . addPhrase (trumpetPhrase) ;

46 // add the part to the score
myScore . addPart (part1) ;

48 //
Phrase flutePhrase = new Phrase (endphrase1) ;

50 f lutePhrase . addNoteList (phrase1data) ; // 22.0 beats long
f lutePhrase . addNoteList (phrase2data) ; // optionally , remove th i s

52 // create a new part and add the phrase to i t
Part part2 = new Part (”FLUTE PART” ,

54 JMC.FLUTE, 2) ;
part2 . addPhrase (flutePhrase) ;

56 // add the part to the score
myScore . addPart (part2) ;

58

60 } ;

62 public void showMe() {

64 View . notate (myScore) ;
} ;

66

}

We can use this program like this (Figure 6.8:
> MVAmazingGraceSong mysong = new MVAmazingGraceSong();
> song1.fillMeUp()
End of phrase1:22.0
> mysong.showMe();

How it works: The main idea that makes this program work is that we

108 CHAPTER 6. STRUCTURING MUSIC USING LINKED LISTS

Figure 6.8: Multi-voice Amazing Grace notation

create two phrases, one of which starts when first phrase (which is 22 beats
long) ends. You’ll note the use of System.out.println() which is a method that
takes a string as input and prints it to the console. Parsing that method
is probably a little challenging. There is a big object that has a lot of
important objects as part of it called System. It includes a connection to
the Interactions Pane called out. That connection (called a stream) knows
how to print strings through the println (print line) method. The string
concatenation operator, +, knows how to convert numbers into strings au-
tomatically.

But that’s not a very satisfying example. Look at the fillMeUp method–
that’s pretty confusing stuff! What we do in the Interactions Pane doesn’t
give us much room to play around. The current structure doesn’t lend itself
to exploration.

How can we structure our program so that it’s easy to explore, to try
different things? How about if we start by thinking about how expert mu-
sicians think about music. They typically don’t think about a piece of mu-
sic as a single thing. Rather, they think about it in terms of a whole (a
Score), parts (Part), and phrases (Phrase). They do think about these things
in terms of a sequence–one part follows another. Each part will typically
have its own notes (its own Phrase) and a starting time (sometimes parts
start together, to get simultaneity, but at other times, will play after one
another). Very importantly, there is an ordering to these parts. We can
model that ordering by having each part know which other part comes
next.

Let’s try that in this next program.

Program
Example #30 Example Java Code: Amazing Grace as Song Elements

import jm . music . data . ∗ ;
2 import jm .JMC;

import jm . u t i l . ∗ ;
4 import jm . music . t oo l s . ∗ ;

6.5. MAKING THE SONG SOMETHING TO EXPLORE 109

6 public class AmazingGraceSongElement {
// Every element knows i t s next element and i t s part (o f the score)

8 private AmazingGraceSongElement next ;
private Part myPart ;

10

// When we make a new element , the next part i s empty , and ours i s a blank new part
12 public AmazingGraceSongElement () {

this . next = null ;
14 this . myPart = new Part () ;

}
16

// addPhrase1 puts the f i r s t part o f AmazingGrace into our part o f the song
18 // at the desired s tar t time with the given instrument

public void addPhrase1 (double startTime , int instrument){
20

double [] phrase1data =
22 {JMC.G4, JMC.QN,

JMC. C5, JMC.HN, JMC. E5,JMC.EN, JMC. C5,JMC.EN,
24 JMC. E5,JMC.HN,JMC.D5,JMC.QN,

JMC. C5,JMC.HN,JMC. A4,JMC.QN,
26 JMC.G4,JMC.HN,JMC.G4,JMC.EN,JMC. A4,JMC.EN,

JMC. C5,JMC.HN,JMC. E5,JMC.EN,JMC. C5,JMC.EN,
28 JMC. E5,JMC.HN,JMC.D5,JMC.EN,JMC. E5,JMC.EN,

JMC.G5,JMC.DHN} ;
30

Phrase myPhrase = new Phrase (startTime) ;
32 myPhrase . addNoteList (phrase1data) ;

this . myPart . addPhrase (myPhrase) ;
34 // In MVAmazingGraceSong , we did th i s when we i n i t i a l i z e d

// the part . But we CAN do i t l a t e r
36 this . myPart . setInstrument (instrument) ;

}
38

public void addPhrase2 (double startTime , int instrument) {
40 double [] phrase2data =

{JMC.G5,JMC.HN,JMC. E5,JMC.EN,JMC.G5,JMC.EN,
42 JMC.G5,JMC.HN,JMC. E5,JMC.EN,JMC. C5,JMC.EN,

JMC. E5,JMC.HN,JMC.D5,JMC.QN,
44 JMC. C5,JMC.HN,JMC. A4,JMC.QN,

JMC.G4,JMC.HN,JMC.G4,JMC.EN,JMC. A4,JMC.EN,
46 JMC. C5,JMC.HN,JMC. E5,JMC.EN,JMC. C5,JMC.EN,

JMC. E5,JMC.HN,JMC.D5,JMC.QN,
48 JMC. C5,JMC.DHN

} ;
50

Phrase myPhrase = new Phrase (startTime) ;
52 myPhrase . addNoteList (phrase2data) ;

this . myPart . addPhrase (myPhrase) ;
54 this . myPart . setInstrument (instrument) ;

110 CHAPTER 6. STRUCTURING MUSIC USING LINKED LISTS

}
56

// Here are the two methods needed to make a linked l i s t o f elements
58 public void setNext (AmazingGraceSongElement nextOne){

this . next = nextOne ;
60 }

62 public AmazingGraceSongElement next () {
return this . next ;

64 }

66 // We could jus t access myPart d i r e c t l y
// but we can CONTROL access by using a method

68 // (cal led an accessor)
// We ’ l l use i t in showFromMeOn

70 // (So maybe i t doesn ’ t need to be Public ?)
public Part part () {

72 return this . myPart ;
}

74

// Why do we need th i s ?
76 // I f we want one piece to s t a r t a f t e r another , we need

// to know when the las t one ends .
78 // Notice : I t ’ s the phrase that knows the end time .

// We have to ask the part for i t s phrase (assuming only one)
80 // to get the end time .

public double getEndTime () {
82 return this . myPart . getPhrase (0) . getEndTime () ;

}
84

// We need setChannel because each part has to be in i t s
86 // own channel i f i t has d i f f e r e n t s t ar t times .

// So , we ’ l l s e t the channel when we assemble the score .
88 // (But i f we only need i t f or showFromMeOn, we could

// make i t PRIVATE . . .)
90 public void setChannel (int channel){

myPart . setChannel (channel) ;
92 }

94 public void showFromMeOn() {
// Make the score that we ’ l l assemble the elements into

96 Score myScore = new Score (”Amazing Grace ”) ;
myScore . setTimeSignature (3 , 4) ;

98

// Each element wi l l be in i t s own channel
100 int channelCount = 1;

102 // Start from this element (th i s)
AmazingGraceSongElement current = this ;

104 // While we ’ re not through . . .

6.5. MAKING THE SONG SOMETHING TO EXPLORE 111

while (current != null)
106 {

// Set the channel , increment the channel , then add i t in .
108 current . setChannel (channelCount) ;

channelCount = channelCount + 1;
110 myScore . addPart (current . part ()) ;

112 // Now, move on to the next element
// which we already know isn ’ t null

114 current = current . next () ;
} ;

116

// At the end , l e t ’ s see i t !
118 View . notate (myScore) ;

120 }

122 }

So, imagine that we want to play the first part as a flute, and the second
part as a piano. Here’s how we do it.
Welcome to DrJava.
> import jm.JMC;
> AmazingGraceSongElement part1 = new AmazingGraceSongElement();
> part1.addPhrase1(0.0,JMC.FLUTE);
> AmazingGraceSongElement part2 = new AmazingGraceSongElement();
> part2.addPhrase2(part1.getEndTime(),JMC.PIANO);
> part1.setNext(part2);
> part1.showFromMeOn()

That’s an awful lot of extra effort just to do this, but here’s the cool
part. Let’s do several other variations on Amazing Grace without writing
any more programs. Say that you have a fondness for banjo, fiddle, and
pipes for Amazing Grace (Figure 6.9).

> AmazingGraceSongElement banjo1 = new AmazingGraceSongElement();
> banjo1.addPhrase1(0.0,JMC.BANJO);
> AmazingGraceSongElement fiddle1=new AmazingGraceSongElement();
> fiddle1.addPhrase1(0.0,JMC.FIDDLE);
> banjo1.setNext(fiddle1);
> banjo1.getEndTime()
22.0
> AmazingGraceSongElement pipes2=new AmazingGraceSongElement();
> pipes2.addPhrase2(22.0,JMC.PIPES);
> fiddle1.setNext(pipes2);
> banjo1.showFromMeOn();

But now you’re feeling that you want more of an orchestra feel. How
about if we throw all of this together? That’s easy. AmazingGraceSongElement part1

112 CHAPTER 6. STRUCTURING MUSIC USING LINKED LISTS

Figure 6.9: AmazingGraceSongElements with 3 pieces

is already linked to part2. AmazingGraceSongElement pipes1 isn’t linked to
anything. We’ll just link part1 onto the end–very easy, to do a new experi-
ment.

> pipes2.setNext(part1);
> banjo1.showFromMeOn();

Now we have a song with five pieces (Figure 6.10). “But wait,” you
might be thinking. “The ordering is all wrong!” Fortunately, the score
figures it out for us. The starting times are all that’s needed. The notion
of a next element is just for our sake, to structure which pieces we want
where.

Figure 6.10: AmazingGraceSongElements with 3 pieces

At this point, you should be able to see how to play with lots of different
pieces. What if you have a flute echo the pipes, just one beat behind? What

6.6. MAKING ANY SONG SOMETHING TO EXPLORE 113

if you want to have several difference instruments playing the same thing,
but one measure (three beats) behind the previous? Try them out!

Computer Science Idea: Layering software makes it easier to change
Notice that Phrase and Part has disappeared here. All that we’re manip-
ulating are song elements. A good layer allows you to ignore the layers
below.

6.6 Making Any Song Something to Explore

What makes AmazingGraceSongElement something specific to the song Amaz-
ingGrace? It’s really just those two addPhrase methods. Let’s think about
how we might generalize (abstract) these to make them usable to explore
any song.

First, let’s create a second version (cunningly called AmazingGraceSongElement2)
where there is only one addPhrase method, but you decide which phrase you
want as an input. We’ll also clean up some of our protections here, while
we’re revising.

Program
Example #31Example Java Code: Amazing Grace as Song Elements, Take 2

import jm . music . data . ∗ ;
2 import jm .JMC;

import jm . u t i l . ∗ ;
4 import jm . music . t oo l s . ∗ ;

6 public class AmazingGraceSongElement2 {
// Every element knows i t s next element and i t s part (o f the score)

8 private AmazingGraceSongElement2 next ;
private Part myPart ;

10

// When we make a new element , the next part i s empty , and ours i s a blank new part
12 public AmazingGraceSongElement2 () {

this . next = null ;
14 this . myPart = new Part () ;

}
16

// setPhrase takes a phrase and makes i t the one for th i s element
18 // at the desired s tar t time with the given instrument

public void setPhrase (Phrase myPhrase , double startTime , int instrument){
20

//Phrases get returned from phrase1 () and phrase2 () with default (0 . 0) starTime
22 // We can s e t i t here with whatever setPhrase ge ts as input

114 CHAPTER 6. STRUCTURING MUSIC USING LINKED LISTS

myPhrase . setStartTime (startTime) ;
24 this . myPart . addPhrase (myPhrase) ;

// In MVAmazingGraceSong , we did th i s when we i n i t i a l i z e d
26 // the part . But we CAN do i t l a t e r

this . myPart . setInstrument (instrument) ;
28 }

30 // Firs t phrase of Amazing Grace
public Phrase phrase1 () {

32 double [] phrase1data =
{JMC.G4, JMC.QN,

34 JMC. C5, JMC.HN, JMC. E5,JMC.EN, JMC. C5,JMC.EN,
JMC. E5,JMC.HN,JMC.D5,JMC.QN,

36 JMC. C5,JMC.HN,JMC. A4,JMC.QN,
JMC.G4,JMC.HN,JMC.G4,JMC.EN,JMC. A4,JMC.EN,

38 JMC. C5,JMC.HN,JMC. E5,JMC.EN,JMC. C5,JMC.EN,
JMC. E5,JMC.HN,JMC.D5,JMC.EN,JMC. E5,JMC.EN,

40 JMC.G5,JMC.DHN} ;

42 Phrase myPhrase = new Phrase () ;
myPhrase . addNoteList (phrase1data) ;

44 return myPhrase ;
}

46

public Phrase phrase2 () {
48 double [] phrase2data =

{JMC.G5,JMC.HN,JMC. E5,JMC.EN,JMC.G5,JMC.EN,
50 JMC.G5,JMC.HN,JMC. E5,JMC.EN,JMC. C5,JMC.EN,

JMC. E5,JMC.HN,JMC.D5,JMC.QN,
52 JMC. C5,JMC.HN,JMC. A4,JMC.QN,

JMC.G4,JMC.HN,JMC.G4,JMC.EN,JMC. A4,JMC.EN,
54 JMC. C5,JMC.HN,JMC. E5,JMC.EN,JMC. C5,JMC.EN,

JMC. E5,JMC.HN,JMC.D5,JMC.QN,
56 JMC. C5,JMC.DHN

} ;
58

Phrase myPhrase = new Phrase () ;
60 myPhrase . addNoteList (phrase2data) ;

return myPhrase ;
62 }

64 // Here are the two methods needed to make a linked l i s t o f elements
public void setNext (AmazingGraceSongElement2 nextOne){

66 this . next = nextOne ;
}

68

public AmazingGraceSongElement2 next () {
70 return this . next ;

}
72

6.6. MAKING ANY SONG SOMETHING TO EXPLORE 115

// We could jus t access myPart d i r e c t l y
74 // but we can CONTROL access by using a method

// (cal led an accessor)
76 private Part part () {

return this . myPart ;
78 }

80 // Why do we need th i s ?
// I f we want one piece to s tar t a f t e r another , we need

82 // to know when the l as t one ends .
// Notice : I t ’ s the phrase that knows the end time .

84 // We have to ask the part for i t s phrase (assuming only one)
// to get the end time .

86 public double getEndTime () {
return this . myPart . getPhrase (0) . getEndTime () ;

88 }

90 // We need setChannel because each part has to be in i t s
// own channel i f i t has d i f f e r e n t s tar t times .

92 // So , we ’ l l s e t the channel when we assemble the score .
private void setChannel (int channel){

94 myPart . setChannel (channel) ;
}

96

public void showFromMeOn() {
98 // Make the score that we ’ l l assemble the elements into

// We ’ l l s e t i t up with the time signature and tempo we l i k e
100 Score myScore = new Score (”Amazing Grace ”) ;

myScore . setTimeSignature (3 , 4) ;
102 myScore . setTempo (1 2 0 . 0) ;

104 // Each element wi l l be in i t s own channel
int channelCount = 1;

106

// Start from this element (th i s)
108 AmazingGraceSongElement2 current = this ;

// While we ’ re not through . . .
110 while (current != null)

{
112 // Set the channel , increment the channel , then add i t in .

current . setChannel (channelCount) ;
114 channelCount = channelCount + 1;

myScore . addPart (current . part ()) ;
116

// Now, move on to the next element
118 // which we already know isn ’ t null

current = current . next () ;
120 } ;

122 // At the end , l e t ’ s see i t !

116 CHAPTER 6. STRUCTURING MUSIC USING LINKED LISTS

View . notate (myScore) ;
124

}
126

}

We can use this to do the flute for the first part and a piano for the
second in much the same way as we did last time.
> import jm.JMC;
> AmazingGraceSongElement2 part1 = new AmazingGraceSongElement2();
> part1.setPhrase(part1.phrase1(),0.0,JMC.FLUTE);
> AmazingGraceSongElement2 part2 = new AmazingGraceSongElement2();
> part2.setPhrase(part2.phrase2(),22.0,JMC.PIANO);
> part1.setNext(part2);
> part1.showFromMeOn();

Let’s go one step further, then make sure we understand what showFromMeOn
is doing.

> AmazingGraceSongElement2 part3 = new AmazingGraceSongElement2();
> part3.setPhrase(part3.phrase1(),0.0, JMC.TRUMPET);
> part1.setNext(part3);
> part3.setNext(part2);
> part1.showFromMeOn();

How it works: What we are doing here is to create a new part, part3, and
to insert it between part1 and part2. We might think of the result as looking
like this.

What is happening when we execute part1.showFromMeOn()? Let’s trace
it slowly.

• First, we start out with current pointing at this, which is our part1.
I like to think about traversing a linked list as being like pulling
myself hand-over-hand on a ladder. Your right hand is current, and
it’s now holding on to the node1 rung of the ladder.

6.6. MAKING ANY SONG SOMETHING TO EXPLORE 117

• Since current is not null (our right hand is holding something), we go
ahead and process it.

• We now feel out with our left hand for the rung connected to our
current rung—that is a way of thinking about what current.next() is
doing. Once we find the next rung with our left hand, we grab it with
our right hand. We now have a new current node to process.

118 CHAPTER 6. STRUCTURING MUSIC USING LINKED LISTS

• This one isn’t null either, so we process it.

• Moving our left hand out to the next rung, then grabbing that new
rung with our right, we have a new current node to process.

6.6. MAKING ANY SONG SOMETHING TO EXPLORE 119

• Still not null, so let’s process it.

• Now we reach out again with our left hand and find...nothing! We
grab that nothing (null) with our right hand now, too. We’re past the
end of the ladder, er, linked list!

120 CHAPTER 6. STRUCTURING MUSIC USING LINKED LISTS

• We check at the top of the loop—yup, we’re done.

Now let’s make a few observations about this code. Notice the part2.phrase2()
expression. What would have happened if we did part1.phrase2() there in-
stead? Would it have worked? (Go ahead, try it. We’ll wait.) It would
because both objects know the same phrase1() and phrase2() methods.

That doesn’t really make a lot of sense, does it, in terms of what each
object should know? Does every song element object need to know how
to make every other song elements’ phrase? We can get around this by
creating a static method. Static methods are known to the class, not to the
individual objects (instances). We’d write it something like this:

// Firs t phrase of Amazing Grace
static public Phrase phrase1 () {

double [] phrase1data =
{JMC.G4, JMC.QN,

JMC. C5, JMC.HN, JMC. E5,JMC.EN, JMC. C5,JMC.EN,
JMC. E5,JMC.HN,JMC.D5,JMC.QN,
JMC. C5,JMC.HN,JMC. A4,JMC.QN,

6.6. MAKING ANY SONG SOMETHING TO EXPLORE 121

JMC.G4,JMC.HN,JMC.G4,JMC.EN,JMC. A4,JMC.EN,
JMC. C5,JMC.HN,JMC. E5,JMC.EN,JMC. C5,JMC.EN,
JMC. E5,JMC.HN,JMC.D5,JMC.EN,JMC. E5,JMC.EN,
JMC.G5,JMC.DHN} ;

Phrase myPhrase = new Phrase () ;
myPhrase . addNoteList (phrase1data) ;
return myPhrase ;

}
We’d actually use this method like this:

> import jm.JMC;
> AmazingGraceSongElement2 part1 = new AmazingGraceSongElement2();
> part1.setPhrase(AmazingGraceSongElement2.phrase1(),0.0,JMC.FLUTE);

Now, that makes sense in an object-oriented kind of way: it’s the class
AmazingGraceSongElement2 that knows about the phrases in the song
Amazing Grace, not the instances of the class–not the different elements.
But it’s not really obvious that it’s important for this to be about Amazing
Grace at all! Wouldn’t any song elements have basically this structure?
Couldn’t these phrases (now that they’re in static methods) go in any class?

Generalizing SongElement and SongPhrase
Let’s make a generic SongElement class, and a new class SongPhrase that
we could stuff lots of phrases in.

Program
Example #32Example Java Code: General Song Elements and Song Phrases

import jm . music . data . ∗ ;
2 import jm .JMC;

import jm . u t i l . ∗ ;
4 import jm . music . t oo l s . ∗ ;

6 public class SongElement {
// Every element knows i t s next element and i t s part (o f the score)

8 private SongElement next ;
private Part myPart ;

10

// When we make a new element , the next part i s empty , and ours i s a blank new part
12 public SongElement () {

this . next = null ;
14 this . myPart = new Part () ;

}
16

// setPhrase takes a phrase and makes i t the one for th i s element
18 // at the desired s tar t time with the given instrument

122 CHAPTER 6. STRUCTURING MUSIC USING LINKED LISTS

public void setPhrase (Phrase myPhrase , double startTime , int instrument){
20 myPhrase . setStartTime (startTime) ;

this . myPart . addPhrase (myPhrase) ;
22 this . myPart . setInstrument (instrument) ;

}
24

26 // Here are the two methods needed to make a linked l i s t o f elements
public void setNext (SongElement nextOne){

28 this . next = nextOne ;
}

30

public SongElement next () {
32 return this . next ;

}
34

// We could jus t access myPart d i r e c t l y
36 // but we can CONTROL access by using a method

// (cal led an accessor)
38 private Part part () {

return this . myPart ;
40 }

42 // Why do we need th i s ?
// I f we want one piece to s t a r t a f t e r another , we need

44 // to know when the las t one ends .
// Notice : I t ’ s the phrase that knows the end time .

46 // We have to ask the part for i t s phrase (assuming only one)
// to get the end time .

48 public double getEndTime () {
return this . myPart . getPhrase (0) . getEndTime () ;

50 }

52 // We need setChannel because each part has to be in i t s
// own channel i f i t has d i f f e r e n t s t ar t times .

54 // So , we ’ l l s e t the channel when we assemble the score .
private void setChannel (int channel){

56 myPart . setChannel (channel) ;
}

58

public void showFromMeOn() {
60 // Make the score that we ’ l l assemble the elements into

// We ’ l l s e t i t up with a default time signature and tempo we l i k e
62 // (Should probably make i t poss ib l e to change these −− maybe with inputs ?)

Score myScore = new Score (”My Song”) ;
64 myScore . setTimeSignature (3 , 4) ;

myScore . setTempo (1 2 0 . 0) ;
66

// Each element wi l l be in i t s own channel
68 int channelCount = 1;

6.6. MAKING ANY SONG SOMETHING TO EXPLORE 123

70 // Start from this element (th i s)
SongElement current = this ;

72 // While we ’ re not through . . .
while (current != null)

74 {
// Set the channel , increment the channel , then add i t in .

76 current . setChannel (channelCount) ;
channelCount = channelCount + 1;

78 myScore . addPart (current . part ()) ;

80 // Now, move on to the next element
// which we already know isn ’ t null

82 current = current . next () ;
} ;

84

// At the end , l e t ’ s see i t !
86 View . notate (myScore) ;

88 }

90 }

import jm . music . data . ∗ ;
2 import jm .JMC;

import jm . u t i l . ∗ ;
4 import jm . music . t oo l s . ∗ ;

6 public class SongPhrase {

8 // Firs t phrase o f Amazing Grace
static public Phrase AG1() {

10 double [] phrase1data =
{JMC.G4, JMC.QN,

12 JMC. C5, JMC.HN, JMC. E5,JMC.EN, JMC. C5,JMC.EN,
JMC. E5,JMC.HN,JMC.D5,JMC.QN,

14 JMC. C5,JMC.HN,JMC. A4,JMC.QN,
JMC.G4,JMC.HN,JMC.G4,JMC.EN,JMC. A4,JMC.EN,

16 JMC. C5,JMC.HN,JMC. E5,JMC.EN,JMC. C5,JMC.EN,
JMC. E5,JMC.HN,JMC.D5,JMC.EN,JMC. E5,JMC.EN,

18 JMC.G5,JMC.DHN} ;

20 Phrase myPhrase = new Phrase () ;
myPhrase . addNoteList (phrase1data) ;

22 return myPhrase ;
}

24 // Second phrase o f Amazing Grace
static public Phrase AG2() {

26 double [] phrase2data =
{JMC.G5,JMC.HN,JMC. E5,JMC.EN,JMC.G5,JMC.EN,

124 CHAPTER 6. STRUCTURING MUSIC USING LINKED LISTS

28 JMC.G5,JMC.HN,JMC. E5,JMC.EN,JMC. C5,JMC.EN,
JMC. E5,JMC.HN,JMC.D5,JMC.QN,

30 JMC. C5,JMC.HN,JMC. A4,JMC.QN,
JMC.G4,JMC.HN,JMC.G4,JMC.EN,JMC. A4,JMC.EN,

32 JMC. C5,JMC.HN,JMC. E5,JMC.EN,JMC. C5,JMC.EN,
JMC. E5,JMC.HN,JMC.D5,JMC.QN,

34 JMC. C5,JMC.DHN
} ;

36

Phrase myPhrase = new Phrase () ;
38 myPhrase . addNoteList (phrase2data) ;

return myPhrase ;
40 }

42 }

We can use this like this:

> import jm.JMC;
> SongElement part1 = new SongElement();
> part1.setPhrase(SongPhrase.AG1(),0.0,JMC.FLUTE);
> SongElement part2 = new SongElement();
> part2.setPhrase(SongPhrase.AG2(),22.0,JMC.PIANO);
> part1.setNext(part2);
> part1.showFromMeOn();

We now have a structure to do more songs and more general explo-
rations.

Adding More Phrases

Program
Example #33 Example Java Code: More phrases to play with

import jm . music . data . ∗ ;
2 import jm .JMC;

import jm . u t i l . ∗ ;
4 import jm . music . t oo l s . ∗ ;

6 public class SongPhrase {

8 // Firs t phrase of Amazing Grace
static public Phrase AG1() {

10 double [] phrase1data =
{JMC.G4, JMC.QN,

12 JMC. C5, JMC.HN, JMC. E5,JMC.EN, JMC. C5,JMC.EN,

6.6. MAKING ANY SONG SOMETHING TO EXPLORE 125

JMC. E5,JMC.HN,JMC.D5,JMC.QN,
14 JMC. C5,JMC.HN,JMC. A4,JMC.QN,

JMC.G4,JMC.HN,JMC.G4,JMC.EN,JMC. A4,JMC.EN,
16 JMC. C5,JMC.HN,JMC. E5,JMC.EN,JMC. C5,JMC.EN,

JMC. E5,JMC.HN,JMC.D5,JMC.EN,JMC. E5,JMC.EN,
18 JMC.G5,JMC.DHN} ;

20 Phrase myPhrase = new Phrase () ;
myPhrase . addNoteList (phrase1data) ;

22 return myPhrase ;
}

24 // Second phrase o f Amazing Grace
static public Phrase AG2() {

26 double [] phrase2data =
{JMC.G5,JMC.HN,JMC. E5,JMC.EN,JMC.G5,JMC.EN,

28 JMC.G5,JMC.HN,JMC. E5,JMC.EN,JMC. C5,JMC.EN,
JMC. E5,JMC.HN,JMC.D5,JMC.QN,

30 JMC. C5,JMC.HN,JMC. A4,JMC.QN,
JMC.G4,JMC.HN,JMC.G4,JMC.EN,JMC. A4,JMC.EN,

32 JMC. C5,JMC.HN,JMC. E5,JMC.EN,JMC. C5,JMC.EN,
JMC. E5,JMC.HN,JMC.D5,JMC.QN,

34 JMC. C5,JMC.DHN
} ;

36

Phrase myPhrase = new Phrase () ;
38 myPhrase . addNoteList (phrase2data) ;

return myPhrase ;
40 }

42 // House of the r i s ing sun
static public Phrase house () {

44 double [] phrasedata =
{JMC. E4,JMC.EN,JMC. A3,JMC.HN,JMC. B3,JMC.EN,JMC. A3,JMC.EN,

46 JMC. C4,JMC.HN,JMC.D4,JMC.EN,JMC.DS4,JMC.EN,
JMC. E4,JMC.HN,JMC. C4,JMC.EN,JMC. B3,JMC.EN,

48 JMC. A3,JMC.HN,JMC. E4,JMC.QN,
JMC. A4,JMC.HN, JMC. E4, JMC.QN,

50 JMC.G4,JMC.HN, JMC. E4,JMC.EN,JMC.D4,JMC.EN,JMC. E4,JMC.DHN,
JMC. E4,JMC.HN,JMC.GS4,JMC.EN,JMC.G4,JMC.EN,

52 JMC. A4,JMC.HN,JMC. A3,JMC.QN,
JMC. C4,JMC.EN,JMC. C4,JMC.DQN,JMC. E4,JMC.QN,

54 JMC. E4,JMC.EN,JMC. E4,JMC.EN,JMC. E4,JMC.QN,JMC. C4,JMC.EN,JMC. B3,JMC.EN,
JMC. A3,JMC.HN,JMC. E4,JMC.QN,

56 JMC. E4,JMC.HN,JMC. E4,JMC.EN,
JMC. E4,JMC.EN,JMC.G3,JMC.QN,JMC. C4,JMC.EN,JMC. B3,JMC.EN,

58 JMC. A3,JMC.DHN} ;

60 Phrase myPhrase = new Phrase () ;
myPhrase . addNoteList (phrasedata) ;

62 return myPhrase ;

126 CHAPTER 6. STRUCTURING MUSIC USING LINKED LISTS

}
64

// L i t t l e Rif f1
66 static public Phrase r i f f 1 () {

double [] phrasedata =
68 {JMC.G3,JMC.EN,JMC. B3,JMC.EN,JMC. C4,JMC.EN,JMC.D4,JMC.EN} ;

70 Phrase myPhrase = new Phrase () ;
myPhrase . addNoteList (phrasedata) ;

72 return myPhrase ;
}

74

// L i t t l e Rif f2
76 static public Phrase r i f f 2 () {

double [] phrasedata =
78 {JMC.D4,JMC.EN,JMC. C4,JMC.EN,JMC. E4,JMC.EN,JMC.G4,JMC.EN} ;

80 Phrase myPhrase = new Phrase () ;
myPhrase . addNoteList (phrasedata) ;

82 return myPhrase ;
}

84

86 // L i t t l e Rif f3
static public Phrase r i f f 3 () {

88 double [] phrasedata =
{JMC. C4,JMC.QN,JMC. E4,JMC.EN,JMC.G4,JMC.EN,JMC. E4,JMC.SN,

90 JMC.G4,JMC.SN,JMC. E4,JMC.SN,JMC.G4,JMC.SN,JMC. C4,JMC.QN} ;

92 Phrase myPhrase = new Phrase () ;
myPhrase . addNoteList (phrasedata) ;

94 return myPhrase ;
}

96

// L i t t l e Rif f4
98 static public Phrase r i f f 4 () {

double [] phrasedata =
100 {JMC. C4,JMC.QN,JMC. E4,JMC.QN,JMC.G4,JMC.QN,JMC. C4,JMC.QN} ;

102 Phrase myPhrase = new Phrase () ;
myPhrase . addNoteList (phrasedata) ;

104 return myPhrase ;
}

106

108 }

* * *

6.6. MAKING ANY SONG SOMETHING TO EXPLORE 127

> SongElement house = new SongElement();
> house.setPhrase(SongPhrase.house(),0.0,JMC.HARMONICA);
> house.showFromMeOn();

> SongElement riff1 = new SongElement();
> riff1.setPhrase(SongPhrase.riff1(),0.0,JMC.HARMONICA);
> riff1.showFromMeOn();
> SongElement riff2 = new SongElement();
> riff2.setPhrase(SongPhrase.riff2(),0.0,JMC.TENOR_SAX);
> riff2.showFromMeOn();

But music is really about repetition and playing off pieces and varia-
tions. Try something like this (Figure 6.11).

> SongElement riff1 = new SongElement();
> riff1.setPhrase(SongPhrase.riff1(),0.0,JMC.HARMONICA);
> riff1.showFromMeOn();
-- Constructing MIDI file from’My Song’... Playing with JavaSound ... Completed MIDI playback --------
> SongElement riff2 = new SongElement();
> riff2.setPhrase(SongPhrase.riff2(),0.0,JMC.TENOR_SAX);
> riff2.showFromMeOn();
-- Constructing MIDI file from’My Song’... Playing with JavaSound ... Completed MIDI playback --------
> riff2.getEndTime()
2.0
> SongElement riff4 = new SongElement();
> riff4.setPhrase(SongPhrase.riff1(),2.0,JMC.TENOR_SAX);
> SongElement riff5 = new SongElement();
> riff5.setPhrase(SongPhrase.riff1(),4.0,JMC.TENOR_SAX);
> SongElement riff6 = new SongElement();
> riff6.setPhrase(SongPhrase.riff2(),4.0,JMC.HARMONICA);
> SongElement riff7 = new SongElement();
> riff7.setPhrase(SongPhrase.riff1(),6.0,JMC.JAZZ_GUITAR);
> riff1.setNext(riff2);
> riff2.setNext(riff4);
> riff4.setNext(riff5);
> riff5.setNext(riff6);
> riff6.setNext(riff7);
> riff1.showFromMeOn();

Computing phrases
If we need some repetition, we don’t have to type things over and over
again–we can ask the computer to do it for us! Our phrases in class SongPhrase
don’t have to come from constants. It’s okay if they are computed phrases.

We can use steel drums (or something else, if we want) to create rhythm.

> SongElement steel = new SongElement();
> steel.setPhrase(SongPhrase.riff1(),0.0,JMC.STEEL_DRUM);
> steel.showFromMeOn();

128 CHAPTER 6. STRUCTURING MUSIC USING LINKED LISTS

Figure 6.11: Playing some different riffs in patterns

Program
Example #34 Example Java Code: Computed Phrases

//Larger Rif f1
static public Phrase pattern1 () {

double [] r i f f1data =
{JMC.G3,JMC.EN,JMC. B3,JMC.EN,JMC. C4,JMC.EN,JMC.D4,JMC.EN} ;
double [] r i f f2data =
{JMC.D4,JMC.EN,JMC. C4,JMC.EN,JMC. E4,JMC.EN,JMC.G4,JMC.EN} ;

int counter1 ;
int counter2 ;

Phrase myPhrase = new Phrase () ;
// 3 of r i f f 1 , 1 o f r i f f 2 , and repeat a l l o f i t 3 times
for (counter1 = 1; counter1 <= 3; counter1 ++)
{for (counter2 = 1; counter2 <= 3; counter2 ++)

myPhrase . addNoteList (r i f f 1data) ;
myPhrase . addNoteList (r i f f2data) ;
} ;

return myPhrase ;
}

//Larger Rif f2

6.6. MAKING ANY SONG SOMETHING TO EXPLORE 129

static public Phrase pattern2 () {
double [] r i f f1data =

{JMC.G3,JMC.EN,JMC. B3,JMC.EN,JMC. C4,JMC.EN,JMC.D4,JMC.EN} ;
double [] r i f f 2data =
{JMC.D4,JMC.EN,JMC. C4,JMC.EN,JMC. E4,JMC.EN,JMC.G4,JMC.EN} ;

int counter1 ;
int counter2 ;

Phrase myPhrase = new Phrase () ;
// 2 of r i f f 1 , 2 o f r i f f 2 , and repeat a l l o f i t 3 times
for (counter1 = 1; counter1 <= 3; counter1 ++)
{for (counter2 = 1; counter2 <= 2; counter2 ++)

myPhrase . addNoteList (r i f f 1data) ;
for (counter2 = 1; counter2 <= 2; counter2 ++)

myPhrase . addNoteList (r i f f 2data) ;
} ;

return myPhrase ;
}

//Rhythm Ri f f
static public Phrase rhythm1 () {

double [] r i f f1data =
{JMC.G3,JMC.EN,JMC.REST,JMC.HN,JMC.D4,JMC.EN} ;
double [] r i f f 2data =
{JMC. C3,JMC.QN,JMC.REST,JMC.QN} ;

int counter1 ;
int counter2 ;

Phrase myPhrase = new Phrase () ;
// 2 of rhythm r i f f 1 , 2 of rhythm r i f f 2 , and repeat a l l o f i t 3 times
for (counter1 = 1; counter1 <= 3; counter1 ++)
{for (counter2 = 1; counter2 <= 2; counter2 ++)

myPhrase . addNoteList (r i f f 1data) ;
for (counter2 = 1; counter2 <= 2; counter2 ++)

myPhrase . addNoteList (r i f f 2data) ;
} ;

return myPhrase ;
}

> import jm.JMC;
> SongElement sax1 = new SongElement();
> sax1.setPhrase(SongPhrase.pattern1(),0.0,JMC.TENOR_SAX);
> sax1.showFromMeOn();
-- Constructing MIDI file from’My Song’... Playing with JavaSound ... Completed MIDI playback --------
> SongElement sax2 = new SongElement();
> sax2.setPhrase(SongPhrase.pattern2(),0.0,JMC.TENOR_SAX);

130 CHAPTER 6. STRUCTURING MUSIC USING LINKED LISTS

> sax2.showFromMeOn()
-- Constructing MIDI file from’My Song’... Playing with JavaSound ... Completed MIDI playback --------
> sax1.setNext(sax2);
> sax1.showFromMeOn();
-- Constructing MIDI file from’My Song’... Playing with JavaSound ... Completed MIDI playback --------
> sax1.setNext(null); // I decided I didn’t like it.
> SongElement rhythm1=new SongElement();
> rhythm1.setPhrase(SongPhrase.rhythm1(),0.0,JMC.STEEL_DRUM);
> sax1.setNext(rhythm1); // I put something else with the sax
> sax1.showFromMeOn();
-- Constructing MIDI file from’My Song’... Playing with JavaSound ... Completed MIDI playback --------

Here’s what the sax plus rhythm looked like (Figure 6.12).

Figure 6.12: Sax line in the top part, rhythm in the bottom

Computer Science Idea: Layering software makes it easier to change,
Part 2
Notice that all our Editor Pane interactions now are with SongPhrase. We
don’t have to change SongElements anymore–they work, so now we can
ignore them. We’re not dealing with Phrases and Parts anymore, either. As
we develop layers, if we do it right, we only have to deal with one layer at
a time (Figure 6.13).

If we’re computing phrases, how about if we compute from random
notes on up?

Program
Example #35 Example Java Code: 10 random notes SongPhrase

/∗
∗ 10 random notes
∗∗/

static public Phrase random () {
Phrase ranPhrase = new Phrase () ;
Note n = null ;

6.6. MAKING ANY SONG SOMETHING TO EXPLORE 131

Figure 6.13: We now have layers of software, where we deal with only one
at a time

for (int i =0; i < 10; i ++) {
n = new Note ((int) (128∗Math . random ()) , 0 . 1) ;
ranPhrase . addNote (n) ;

}
return ranPhrase ;

}

How it works: Math.random() returns a number between 0.0 and 1.0. There
are 128 possible notes in MIDI. Multiplying 128∗Math.random() gives us a
note between 0 and 127. These are 10 completely random notes.

Complete randomness isn’t the most pleasant thing to listen to. We can
control the randomness a bit, mathematically.

Program
Example #36Example Java Code: 10 slightly less random notes

/∗
∗ 10 random notes above middle C
∗∗/

static public Phrase randomAboveC () {
Phrase ranPhrase = new Phrase () ;
Note n = null ;

for (int i =0; i < 10; i ++) {
n = new Note ((int) (60+(5∗Math . random ())) , 0 . 2 5) ;
ranPhrase . addNote (n) ;

}
return ranPhrase ;

}

132 CHAPTER 6. STRUCTURING MUSIC USING LINKED LISTS

How it works: Here, we generate a random number between 0 and 4 by
multiplying Math.random() by 5. Recall that note 60 is middle C. If we add
our random number to 60, we play one of the five notes just above middle
C.

We obviously can keep going from there. Perhaps we might generate a
random number, then use it to choose (as if flipping a coin) between some
different phrases to combine. Or perhaps we use arithmetic to only choose
among certain notes (not necessarily in a range—perhaps selected from
an array) that we want in our composition. It is really possible to have a
computer “compose” music driven by random numbers.
6.7 Exploring Music

What we’ve built for music exploration is okay, but not great. What’s
wrong with it?

• It’s hard to use. We have to specify each phrase’s start time and
instrument. That’s a lot of specification, and it doesn’t correspond to
how musicians tend to think about music structure. More typically,
musicians see a single music part as having a single instrument and
start time (much as the structure of the class Part in the underlying
JMusic classes).

• While we have a linked list for connecting the elements of our songs,
we don’t use the linked list for anything. Because each element has
its own start time, there is no particular value to having an element
before or after any other song element.

The way we’re going to address these problems is by a refactoring. We
are going to move a particular aspect of our design to another place in our
design. Currently, every instance of SongElement has its own Part instance–
that’s why we specify the instrument and start time when we create the
SongElement. What if we move the creation of the part until we collect all
the SongElement phrases? Then we don’t have to specify the instrument
and start time until later. What’s more, the ordering of the linked list will
define the ordering of the note phrases.

Computer Science Idea: Refactoring refines a design.
We refactor designs in order to improve them. Our early decisions about
where to what aspect of a piece of software might prove to be inflexible
or downright wrong (in the sense of not describing what we want to de-
scribe) as we continue to work. Refactoring is a process of simplifying and
improving a design.

6.7. EXPLORING MUSIC 133

* * *

There is a cost to this design. There will be only one instrument and
start time associated with a list of song elements. We’ll correct that prob-
lem in the next section.

We’re going to rewrite our SongElement class for this new design, and
we’re going to give it a fairly geeky, abstract name–in order to make a
point. We’re going to name our class SongNode to highlight that each el-
ement in the song is now a node in a list of song elements. Computer
scientists typically use the term node to describe pieces in a list or tree.

Program
Example #37Example Java Code: SongNode class

import jm . music . data . ∗ ;
2 import jm .JMC;

import jm . u t i l . ∗ ;
4 import jm . music . t oo l s . ∗ ;

6 public class SongNode {
/∗∗

8 ∗ the next SongNode in the l i s t
∗/

10 private SongNode next ;
/∗∗

12 ∗ the Phrase containing the notes and durations associated with th i s node
∗/

14 private Phrase myPhrase ;

16 /∗
∗ When we make a new element , the next part i s empty , and ours i s a blank new part

18 ∗/
public SongNode () {

20 this . next = null ;
this . myPhrase = new Phrase () ;

22 }

24 /∗
∗ setPhrase takes a Phrase and makes i t the one for th i s node

26 ∗ @param thisPhrase the phrase for th i s node
∗/

28 public void setPhrase (Phrase thisPhrase){
this . myPhrase = thisPhrase ;

30 }

32

/∗

134 CHAPTER 6. STRUCTURING MUSIC USING LINKED LISTS

34 ∗ Creates a link between the current node and the input node
∗ @param nextOne the node to l ink to

36 ∗/
public void setNext (SongNode nextOne){

38 this . next = nextOne ;
}

40

/∗
42 ∗ Provides public access to the next node .

∗ @return a SongNode instance (or null)
44 ∗/

public SongNode next () {
46 return this . next ;

}
48

/∗
50 ∗ Accessor for the node ’ s Phrase

∗ @return internal phrase
52 ∗/

private Phrase getPhrase () {
54 return this . myPhrase ;

}
56

/∗
58 ∗ Accessor for the notes inside the node ’ s phrase

∗ @return array of notes and durations inside the phrase
60 ∗/

private Note [] getNotes () {
62 return this . myPhrase . getNoteArray () ;

}
64

/∗
66 ∗ Col l e c t a l l the notes from this node on

∗ in an part (then a score) and open i t up for viewing .
68 ∗ @param instrument MIDI instrument (program) to be used in playing th i s l i s t

∗/
70 public void showFromMeOn(int instrument){

// Make the Score that we ’ l l assemble the elements into
72 // We ’ l l s e t i t up with a default time signature and tempo we l i k e

// (Should probably make i t poss ib l e to change these −− maybe with inputs ?)
74 Score myScore = new Score (”My Song”) ;

myScore . setTimeSignature (3 , 4) ;
76 myScore . setTempo (1 2 0 . 0) ;

78 // Make the Part that we ’ l l assemble things into
Part myPart = new Part (instrument) ;

80

// Make a new Phrase that wi l l contain the notes from a l l the phrases
82 Phrase c o l l e c t o r = new Phrase () ;

6.7. EXPLORING MUSIC 135

84 // Start from this element (th i s)
SongNode current = this ;

86 // While we ’ re not through . . .
while (current != null)

88 {
c o l l e c t o r . addNoteList (current . getNotes ()) ;

90

// Now, move on to the next element
92 current = current . next () ;

} ;
94

// Now, construct the part and the score .
96 myPart . addPhrase (c o l l e c t o r) ;

myScore . addPart (myPart) ;
98

// At the end , l e t ’ s see i t !
100 View . notate (myScore) ;

102 }

104 }

We can use this new class to do some of the things that we did before
(Figure 6.14).
> SongNode first = new SongNode();
> first.setPhrase(SongPhrase.riff1());
> import jm.JMC; // We’ll need this!
> first.showFromMeOn(JMC.FLUTE); // We can play with just one node
-- Constructing MIDI file from’My Song’... Playing with JavaSound
... Completed MIDI playback --------
> SongNode second = new SongNode();
> second.setPhrase(SongPhrase.riff2());
> first.next(second); // OOPS!
Error: No ’next’ method in ’SongNode’ with arguments: (SongNode)
> first.setNext(second);
> first.showFromMeOn(JMC.PIANO);

Remember the documentation for the JMusic classes that we saw ear-
lier in the book? That documentation can actually be automatically gen-
erated from the comments that we provide. Javadoc is the name for the
specialized commenting structure and the tool that generates HTML doc-
umentation from that structure. The commenting structure is: (XXX-TO-
DO See DrJava docs for now.) (Figure 6.15

Now Let’s Play!
Now we can really play with repetition and weaving in at regular intervals–
stuff of real music! Let’s create two new methods: One that repeats an in-

136 CHAPTER 6. STRUCTURING MUSIC USING LINKED LISTS

Figure 6.14: First score generated from ordered linked list

Figure 6.15: Javadoc for the class SongNode

put phrase several times, and one that weaves in a phrase every n nodes.

Program
Example #38 Example Java Code: Repeating and weaving methods

/∗
2 ∗ copyNode returns a copy of th i s node

∗ @return another song node with the same notes
4 ∗/

public SongNode copyNode () {
6 SongNode returnMe = new SongNode () ;

returnMe . setPhrase (this . getPhrase ()) ;
8 return returnMe ;

6.7. EXPLORING MUSIC 137

}
10

/∗∗
12 ∗ Repeat the input phrase for the number of times s p e c i f i e d .

∗ I t always appends to the current node , NOT ins e r t .
14 ∗ @param nextOne node to be copied in to l i s t

∗ @param count number of times to copy i t in .
16 ∗/

public void repeatNext (SongNode nextOne , int count) {
18 SongNode current = this ; // Start from here

SongNode copy ; // Where we keep the current copy
20

for (int i =1; i <= count ; i ++)
22 {

copy = nextOne . copyNode () ; // Make a copy
24 current . setNext (copy) ; // Set as next

current = copy ; // Now append to copy
26 }

}
28

/∗∗
30 ∗ Inser t the input SongNode AFTER this node ,

∗ and make whatever node comes NEXT become the next o f the input node .
32 ∗ @param nextOne SongNode to ins e r t a f t e r th i s one

∗/
34 public void insertAfter (SongNode nextOne)

{
36 SongNode oldNext = this . next () ; // Save i t s next

this . setNext (nextOne) ; // Inser t the copy
38 nextOne . setNext (oldNext) ; // Make the copy point on to the r e s t

40 }

42 /∗∗
∗ Weave the input phrase count times every skipAmount nodes

44 ∗ @param nextOne node to be copied into the l i s t
∗ @param count how many times to copy

46 ∗ @param skipAmount how many nodes to skip per weave
∗/

48 public void weave (SongNode nextOne , int count , int skipAmount)
{

50 SongNode current = this ; // Start from here
SongNode copy ; // Where we keep the one to be weaved in

52 SongNode oldNext ; // Need th i s to ins e r t properly
int skipped ; // Number skipped current ly

54

for (int i =1; i <= count ; i ++)
56 {

copy = nextOne . copyNode () ; // Make a copy
58

138 CHAPTER 6. STRUCTURING MUSIC USING LINKED LISTS

//Skip skipAmount nodes
60 skipped = 1;

while ((current . next () != null) && (skipped < skipAmount))
62 {

current = current . next () ;
64 skipped ++;

} ;
66

i f (current . next () == null) // Did we actual ly get to the end early ?
68 break ; // Leave the loop

70 oldNext = current . next () ; // Save i t s next
current . insertAfter (copy) ; // Inser t the copy a f t e r th i s one

72 current = oldNext ; // Continue on with the r e s t
}

74 }

First, let’s make 15 copies of one pattern (Figure 6.16).

> import jm.JMC;
> SongNode first = new SongNode();
> SongNode riff1 = new SongNode();
> riff1.setPhrase(SongPhrase.riff1());
> first.repeatNext(riff1,15);
> first.showFromMeOn(JMC.FLUTE);

Figure 6.16: Repeating a node several times

Now, let’s weave in a second pattern every-other (off by 1) node, for
seven times (Figure 6.17).

> SongNode riff2 = new SongNode();
> riff2.setPhrase(SongPhrase.riff2());
> first.weave(riff2,7,1);
> first.showFromMeOn(JMC.PIANO);

And we can keep weaving in more.

> SongNode another = new SongNode();
> another.setPhrase(SongPhrase.rhythm1());
> first.weave(another,10,2);
> first.showFromMeOn(JMC.STEEL_DRUMS);

6.7. EXPLORING MUSIC 139

Figure 6.17: Weaving a new node among the old

Now, repeatNext is not the most polite method in the world. Consider
what happens if we call it on node1 and node1 already has a next!. The rest
of the list simply gets blown away! But now that we have insertAfter, we
can produce a more friendly and polite version, repeatNextInserting, which
preserves the rest of the list.

Program
Example #39Example Java Code: RepeatNextInserting

/∗∗
∗ Repeat the input phrase for the number of times s p e c i f i e d .
∗ But do an insert ion , to save the r e s t o f the l i s t .
∗ @param nextOne node to be copied into the l i s t
∗ @param count number of times to copy i t in .
∗∗/

public void repeatNextInserting (SongNode nextOne , int count){
SongNode current = this ; // Start from here
SongNode copy ; // Where we keep the current copy

for (int i =1; i <= count ; i ++)
{

copy = nextOne . copyNode () ; // Make a copy
current . insertAfter (copy) ; // INSERT a f t e r current
current = copy ; // Now append to copy

}
}

Linked Lists versus Arrays
What are the advantages of using linked lists here, rather than arrays?
They are not all in the favor of linked lists!

How complicated is it to traverse a linked list (visit all the elements)
versus an array? Here’s a linked list traversal:

//TRAVERSING A LIST
// Start from this element (th i s)

AmazingGraceSongElement2 current = this ;

140 CHAPTER 6. STRUCTURING MUSIC USING LINKED LISTS

// While we ’ re not through . . .
while (current != null)
{

// Set the channel , increment the channel , then add i t in .
//BLAH BLAH BLAH (Ignore th i s part for now)

// Now, move on to the next element
current = current . next () ;
} ;

Basically, we’re walking hand-over-hand across all the nodes in the list.
Think of current as your right hand.

• We put our right hand (current) on the node at this.

• Is our right hand empty? while (current= null)!?

• Process our right hand.

• Then with your left hand feel down the next link to the next node—
that’s what current.next() is doing.

• Now, grab with your right hand whatever your left hand was holding—
current = current.next().

• Back to the top of the loop to see if our right hand is empty.

• When we reach the end of the list, our right hand is holding nothing.

Traversing an array is much easier: it’s just a for loop.

> // Now, traverse the array and gather them up.
> Phrase myphrase = new Phrase()
> for (int i=0; i<100; i++)

{myphrase.addNote(someNotes[i]);}

But what if we want to change something in the middle? That’s where
linked lists shine. Here’s inserting something into the middle of a linked
list:

> part1.setNext(part3);
> part3.setNext(part2);
> part1.showFromMeOn();

You know that those setNext calls are just a single line of code.
How about inserting into the middle of an array? We saw that in the

last chapter and below. This code is not only long and complicated, but it
is also slow. Insertion into a linked list is O(1)—it always takes the same
amount of time, no matter how big the things are being inserted. Insertion
into the middle of an array (presuming that you move things over to make
room, like the insertion in the linked list does) is O(n). That will always
be slower.

6.7. EXPLORING MUSIC 141

public void insertAfter (Sound inSound , int start){

SoundSample current=null ;
// Find how long insound i s
int amtToCopy = inSound . getLength () ;
int endOfThis = this . getLength ()−1;
// I f too long , copy only as much as wi l l f i t
i f (s tart + amtToCopy > endOfThis)
{amtToCopy = endOfThis−start −1;} ;

// ∗∗ First , c l ear out room .
// Copy from endOfThis−amtToCopy up to endOfThis
for (int i =endOfThis−amtToCopy ; i > start ; i−−)
{

current = this . getSample (i) ;
current . setValue (this . getSampleValueAt (i +amtToCopy)) ;

}

//∗∗ Second , copy in inSound up to amtToCopy
for (int target=start , source =0;

source < amtToCopy ;
target ++, source ++) {

current = this . getSample (target) ;
current . setValue (inSound . getSampleValueAt (source)) ;

}
}

Which one is more memory efficient, that is, stores the same informa-
tion in less memory? Arrays are more efficient, certainly. For every ele-
ment in the linked list, there is additional memory needed to keep track of
“And here’s the next one.” It is really quite clear which note follows which
other note in an array.

On the other hand, if you do not know the size of the thing that you
want before you get started—if maybe you will have dozens of notes one
time, and hundreds the next—then linked lists have a distinct advantage.
Arrays cannot grow, nor shrink. They simply are the size that they are.
Typically, then, you make your arrays larger than you think that you will
need—which is a memory inefficiency of its own. Linked lists can grow or
shrink as needed.

Creating a Music Tree

Now, let’s get back to the problem of having multiple parts, something we
lost when we went to the ordered linked list implementation. We’ll create
a SongPart class that will store the instrument and the start of a SongPhrase
list. Then we’ll create a Song class that will store multiple parts–two parts,
each a list of nodes. This structure is a start toward a tree structure.

142 CHAPTER 6. STRUCTURING MUSIC USING LINKED LISTS

* * *
Program
Example #40 Example Java Code: SongPart class

import jm . music . data . ∗ ; import jm .JMC; import jm . u t i l . ∗ ; import
2 jm . music . t oo l s . ∗ ;

4 public class SongPart {

6 /∗
∗ SongPart has a Part

8 ∗/
public Part myPart ;

10 /∗
∗ SongPart has a SongNode that i s the beginng of i t s

12 ∗/
public SongNode myList ;

14

/∗∗
16 ∗ Construct a SongPart

∗ @param instrument MIDI instrument (program)
18 ∗ @param startNode where the song l i s t s t a r t s from

∗/
20 public SongPart (int instrument , SongNode startNode)

{
22 myPart = new Part (instrument) ;

myList = startNode ;
24 }

26 /∗∗
∗ Col l e c t parts o f th i s SongPart

28 ∗/
public Phrase c o l l e c t () {

30 return this . myList . c o l l e c t () ; // delegate to SongNode ’ s c o l l e c t
}

32

/∗∗
34 ∗ Col l e c t a l l notes in th i s SongPart and open i t up for viewing .

∗/
36 public void show () {

// Make the Score that we ’ l l assemble the part into
38 // We ’ l l s e t i t up with a default time signature and tempo we l i k e

// (Should probably make i t poss ib l e to change these −− maybe with inputs ?)
40 Score myScore = new Score (”My Song”) ;

myScore . setTimeSignature (3 , 4) ;
42 myScore . setTempo (1 2 0 . 0) ;

44 // Now, construct the part and the score .

6.7. EXPLORING MUSIC 143

this . myPart . addPhrase (this . c o l l e c t ()) ;
46 myScore . addPart (this . myPart) ;

48 // At the end , l e t ’ s see i t !
View . notate (myScore) ;

50

}
52

}

Program
Example #41Example Java Code: Song class–root of a tree-like music structure

import jm . music . data . ∗ ; import jm .JMC; import jm . u t i l . ∗ ; import
2 jm . music . t oo l s . ∗ ;

4 public class Song {
/∗∗

6 ∗ f i r s t Channel
∗/

8 public SongPart f i r s t ;

10 /∗∗
∗ second Channel

12 ∗/
public SongPart second ;

14

/∗∗
16 ∗ Take in a SongPart to make the f i r s t channel in the song

∗/
18 public void setF irs t (SongPart channel1){

f i r s t = channel1 ;
20 f i r s t . myPart . setChannel (1) ;

}
22

/∗∗
24 ∗ Take in a SongPart to make the second channel in the song

∗/
26 public void setSecond (SongPart channel2){

second = channel2 ;
28 f i r s t . myPart . setChannel (2) ;

}
30

public void show () {
32 // Make the Score that we ’ l l assemble the parts into

// We ’ l l s e t i t up with a default time signature and tempo we l i k e

144 CHAPTER 6. STRUCTURING MUSIC USING LINKED LISTS

34 // (Should probably make i t poss ib l e to change these −− maybe with inputs ?)
Score myScore = new Score (”My Song”) ;

36 myScore . setTimeSignature (3 , 4) ;
myScore . setTempo (1 2 0 . 0) ;

38

// Now, construct the part and the score .
40 f i r s t . myPart . addPhrase (f i r s t . c o l l e c t ()) ;

second . myPart . addPhrase (second . c o l l e c t ()) ;
42 myScore . addPart (f i r s t . myPart) ;

myScore . addPart (second . myPart) ;
44

// At the end , l e t ’ s see i t !
46 View . notate (myScore) ;

48 }

50

}

While our new structure is very flexible, it’s not the easiest thing to use.
We don’t want to have to type everything into the Interactions Pane every
time. So, we’ll create a class that has its main method that will run on
its own. You can execute it using RUN DOCUMENT’S MAIN METHOD (F2)
in the TOOLS menu. Using MySong, we can get back to having multi-part
music in a single score (Figure 6.18).

Program
Example #42 Example Java Code: MySong class with a main metho0d

import jm . music . data . ∗ ;
2 import jm .JMC;

import jm . u t i l . ∗ ;
4 import jm .JMC;

6 public class MyFirstSong {
public static void main (String [] args) {

8 Song songroot = new Song () ;

10 SongNode node1 = new SongNode () ;
SongNode r i f f 3 = new SongNode () ;

12 r i f f 3 . setPhrase (SongPhrase . r i f f 3 ()) ;
node1 . repeatNext (r i f f 3 , 1 6) ;

14 SongNode r i f f 1 = new SongNode () ;
r i f f 1 . setPhrase (SongPhrase . r i f f 1 ()) ;

16 node1 . weave (r i f f 1 , 7 , 1) ;
SongPart part1 = new SongPart (JMC.PIANO, node1) ;

6.7. EXPLORING MUSIC 145

18

songroot . se tF irs t (part1) ;
20

SongNode node2 = new SongNode () ;
22 SongNode r i f f 4 = new SongNode () ;

r i f f 4 . setPhrase (SongPhrase . r i f f 4 ()) ;
24 node2 . repeatNext (r i f f 4 , 2 0) ;

node2 . weave (r i f f 1 , 4 , 5) ;
26 SongPart part2 = new SongPart (JMC.STEEL DRUMS, node2) ;

28 songroot . setSecond (part2) ;
songroot . show () ;

30 }
}

Figure 6.18: Multi-part song using our classes

The point of all of this is to create a structure which enables us easily to
explore music compositions, in the ways that we will most probably want to
explore. We imagine that most music composition exploration will consist
of defining new phrases of notes, then combining them in interesting ways:
defining which come after which, repeating them, and weaving them in
with the rest. At a later point, we can play with which instruments we
want to use to play our parts.

Exercises

1. The Song structure that we’ve developed on top of JMusic is actually
pretty similar to the actual implementation of the classes Score, Part,
and Phrase within the JMusic system. Take one of the music exam-
ples that we’ve built with our own linked list, and re-implement it
using only the JMusic classes.

2. Add into Song the ability to record different starting times for the
composite SongParts. It’s the internal Phrase that remembers the
start time, so you’ll have to pass it down the structure.

146 CHAPTER 6. STRUCTURING MUSIC USING LINKED LISTS

3. The current implementation of repeatAfter in SongNode append’s the
input node, as opposed to inserting it. If you could insert it, then
you could repeat a bunch of a given phrase between two other nodes.
Create a repeatedInsert method that does an insertion rather than an
append.

4. The current implementation of Song implements two channels. Chan-
nel nine is the MIDI Drum Kit where the notes are different percus-
sion instruments (Figure 6.2). Modify the Song class take a third
channel, which gets assigned to MIDI channel 9 and plays a percus-
sion SongPart.

35 Acoustic Bass Drum 51 Ride Cymbal 1
36 Bass Drum 1 52 Chinese Cymbal
37 Side Stick 53 Ride Bell
38 Acoustic Snare 54 Tambourine
39 Hand Clap 55 Splash Cymbal
40 Electric Snare 56 Cowbell
41 Lo Floor Tom 57 Crash Cymbal 2
42 Closed Hi Hat 58 Vibraslap
43 Hi Floor Tom 59 Ride Cymbal 2
44 Pedal Hi Hat 60 Hi Bongo
45 Lo Tom Tom 61 Low Bongo
46 Open Hi Hat 62 Mute Hi Conga
47 Low -Mid Tom Tom 63 Open Hi Conga
48 Hi Mid Tom Tom 64 Low Conga
49 Crash Cymbal 1 65 Hi Timbale
50 Hi Tom Tom 66 Lo Timbale

Table 6.2: MIDI Drum Kit Notes

5. Using the methods developed in class to play with linked list of mu-
sic, create a song.

• You must use weave and repeatNext (or repeatNextInserting) to
create patterns in your music. You probably want to use the
SongNode and SongPhrase classes.

• You must use weave and either of the repeats at least five in
your piece. In other words, repeat a set of nodes, then repeat
another set, then repeat another set. Then weave in nodes with
one pattern, then weave in nodes with another pattern. That
would be five. Or do one repeat to create a basic tempo, then
four weaves to bring in other motifs.

• You must use at least four unique riffs from SongPhrase. (It’s
okay for you to make all four of them yourself.)

6.7. EXPLORING MUSIC 147

• You must also create your own riffs in SongPhrase. You can sim-
ply type in music, or you can compute your riff any way you
want to do it is fine. Just create at least one phrase (of more
than a couple notes) that is interesting and unique.

• All told, you must have at least 10 nodes in your final song.

You will create a class (with some cunning name like MyWovenSong)
with a main that will assemble your song, then open it with showFromMeOn
(or showwhatever you need to do open up the notation View on your
masterpiece).
Here’s the critical part: Draw a picture of your resultant list struc-
ture. Show us where all the nodes are in your final composition. You
can do this by drawing with a tool like Paint or Visio or even Power-
Point, or you can draw it on paper then scan it in. You can turn in
JPEG, TIFF, or PPT files.

7 Structuring Images using
Linked Lists

Chapter Learning Objectives
The villagers and wildebeests scenes are not single images. They are

collections of many images–not just of the villagers and wildebeests them-
selves, but of the elements of the scene, too. How do we structure these
images? We could use arrays, but that doesn’t give us enough flexibility to
insert new pictures, make things disappear (delete them from the scene),
and move elements around. To do that, we will need linked lists of images.
The computer science goals for this chapter are:

• To use and manipulate linked lists (of images).

• To use an abstract superclass to create a single linked list of multiple
kinds of objects.

The media learning goals for this chapter are:

• To use different interpretations of the linearity of linked lists: to rep-
resent left-to-right ordering, or to represent front-to-back ordering
(or layering).

We know a lot about manipulating individual images. We know how to
manipulate the pixels of an image to create various effects. We’ve encap-
sulated a bunch of these in methods to make them pretty easy to use. The
question is how to build up these images into composite images. How do
we create scenes made up of lots of images?

When computer graphics and animation professionals construct com-
plicated scenes such as in Toy Story and Monsters, Inc., they go beyond
thinking about individual images. Certainly, at some point, they care
about how Woody and Nemo are created, how they look, and how they
get inserted into the frame–but all as part of how the scene is constructed.

How do we describe the structure of a scene? How do we structure
our objects in order to describe scenes that we want to describe, but what’s
more, how do we describe them in such a way that we can change the scene
(e.g., in order to define an animation) in the ways that we’ll want to later?
Those are the questions of this chapter.

149

150 CHAPTER 7. STRUCTURING IMAGES USING LINKED LISTS

7.1 Simple arrays of pictures

The simplest thing to do is to simply list all the pictures we want in array.
We then compose them each into a background (Figure 7.1).
> Picture [] myarray = new Picture [5] ;
> myarray [0]=new Picture (FileChooser . getMediaPath (” katie . jpg ”)) ;
> myarray [1]=new Picture (FileChooser . getMediaPath (” barbara . jpg ”)) ;
> myarray [2]=new Picture (FileChooser . getMediaPath (” flower1 . jpg ”)) ;
> myarray [3]=new Picture (FileChooser . getMediaPath (” flower2 . jpg ”)) ;
> myarray [4]=new Picture (FileChooser . getMediaPath (” but ter f ly . jpg ”)) ;
> Picture background = new Picture (400 ,400)
> for (int i = 0 ; i < 5; i ++)

{myarray [i] . sca le (0 . 5) . compose (background , i ∗10 , i ∗10) ;}
> background . show () ;

Figure 7.1: Array of pictures composed into a background

7.2 Listing the Pictures, Left-to-Right

We met a linked list in the last chapter. We can use the same concept for
images.

Let’s start out by thinking about a scene as a collection of pictures that
lay next to one another. Each element of the scene is a picture and knows
the next element in the sequence. The elements form a list that is linked
together–that’s a linked list.

7.2. LISTING THE PICTURES, LEFT-TO-RIGHT 151

We’ll use three little images drawn on a blue background, to make them
easier to chromakey into the image (Figure 7.2).

Figure 7.2: Elements to be used in our scenes

Program
Example #43Example Java Code: Elements of a scene in position order

public class PositionedSceneElement {
2

/∗∗
4 ∗ the pic ture that th i s element holds

∗∗/
6 private Picture myPic ;

8 /∗∗
∗ the next element in the l i s t

10 ∗∗/
private PositionedSceneElement next ;

12

/∗∗
14 ∗ Make a new element with a pic ture as input , and

∗ next as null .
16 ∗ @param heldPic Picture for element to hold

∗∗/
18 public PositionedSceneElement (Picture heldPic){

myPic = heldPic ;
20 next = null ;

}
22

/∗∗
24 ∗ Methods to s e t and get next elements

∗ @param nextOne next element in l i s t
26 ∗∗/

public void setNext (PositionedSceneElement nextOne){

152 CHAPTER 7. STRUCTURING IMAGES USING LINKED LISTS

28 this . next = nextOne ;
}

30

public PositionedSceneElement getNext () {
32 return this . next ;

}
34

/∗∗
36 ∗ Returns the pic ture in the node .

∗ @return the pic ture in the node
38 ∗∗/

public Picture getPicture () {
40 return this . myPic ;

}
42

/∗∗
44 ∗ Method to draw from this node on in the l i s t , using bluescreen .

∗ Each new element has i t ’ s lower−l e f t corner at the lower−r ight
46 ∗ of the previous node . Starts drawing from l e f t−bottom

∗ @param bg Picture to draw drawing on
48 ∗∗/

public void drawFromMeOn(Picture bg) {
50 PositionedSceneElement current ;

int currentX =0 , currentY = bg . getHeight ()−1;
52

current = this ;
54 while (current != null)

{
56 current .drawMeOn(bg , currentX , currentY) ;

currentX = currentX + current . getPicture () . getWidth () ;
58 current = current . getNext () ;

}
60 }

62 /∗∗
∗ Method to draw from this picture , using bluescreen .

64 ∗ @param bg Picture to draw drawing on
∗ @param l e f t x pos i t ion to draw from

66 ∗ @param bottom y pos i t ion to draw from
∗∗/

68

private void drawMeOn(Picture bg , int l e f t , int bottom) {
70 // Bluescreen takes an upper l e f t corner

this . getPicture () . bluescreen (bg , l e f t ,
72 bottom−this . getPicture () . getHeight ()) ;

}
74 }

* * *

7.2. LISTING THE PICTURES, LEFT-TO-RIGHT 153

To construct a scene, we create our PositionedSceneElement objects from
the original three pictures. We connect the elements in order, then draw
them all onto a background (Figure 7.3).
> PositionedSceneElement tree1 =

new PositionedSceneElement(new Picture(FileChooser.getMediaPath("tree-blue.jpg")));
> PositionedSceneElement tree2 =

new PositionedSceneElement(new Picture(FileChooser.getMediaPath("tree-blue.jpg")));
> PositionedSceneElement tree3 =

new PositionedSceneElement(new Picture(FileChooser.getMediaPath("tree-blue.jpg")));
> PositionedSceneElement doggy =

new PositionedSceneElement(new Picture(FileChooser.getMediaPath("dog-blue.jpg")));
> PositionedSceneElement house =

new PositionedSceneElement(new Picture(FileChooser.getMediaPath("house-blue.jpg")));
> Picture bg = new Picture(FileChooser.getMediaPath("jungle.jpg"));
> tree1.setNext(tree2); tree2.setNext(tree3); tree3.setNext(doggy); doggy.setNext(house);
> tree1.drawFromMeOn(bg);
> bg.show();
> bg.write("D:/cs1316/first-house-scene.jpg");

Figure 7.3: Our first scene

This successfully draws a scene, but is it easy to recompose into new
scenes? Let’s say that we decide that we actually want the dog between
trees two and three, instead of tree three and the house. To change the
list, we need tree2 to point at the doggy element, doggy to point at tree3, and
tree3 to point at the house (what the doggy used to point at). Then redraw
the scene on a new background (Figure 7.4).

> tree3.setNext(house); tree2.setNext(doggy); doggy.setNext(tree3);
> bg = new Picture(FileChooser.getMediaPath("jungle.jpg"));
> tree1.drawFromMeOn(bg);

154 CHAPTER 7. STRUCTURING IMAGES USING LINKED LISTS

> bg.show();
> bg.write("D:/cs1316/second-house-scene.jpg");

Figure 7.4: Our second scene

Generalizing moving the element
Let’s consider what happened in this line:

> tree3.setNext(house); tree2.setNext(doggy); doggy.setNext(tree3);

The first statement, tree3.setNext(house);, gets the doggy out of the list.
tree3 used to point to (setNext) doggy. The next two statements put the doggy
after tree2. The second statement, tree2.setNext(doggy);, puts the doggy after
tree2. The last statement, doggy.setNext(tree3);, makes the doggy point at
what tree2 used to point at. All together, the three statements in that line:

• Remove the item doggy from the list.

• Insert the item doggy after tree2.

We can write methods to allow us to do this removing and insertion
more generally.

Program
Example #44 Example Java Code: Methods to remove and insert elements in a list

/∗∗ Method to remove node from l i s t , f i x ing l inks appropriately .
2 ∗ @param node element to remove from l i s t .

∗∗/

7.2. LISTING THE PICTURES, LEFT-TO-RIGHT 155

4 public void remove (PositionedSceneElement node){
i f (node==this)

6 {
System . out . pr int ln (” I can ’ t remove the f i r s t node from the l i s t . ”) ;

8 return ;
} ;

10

PositionedSceneElement current = this ;
12 // While there are more nodes to consider

while (current . getNext () != null)
14 {

i f (current . getNext () == node){
16 // Simply make node ’ s next be th i s next

current . setNext (node . getNext ()) ;
18 // Make th i s node point to nothing

node . setNext (null) ;
20 return ;

}
22 current = current . getNext () ;

}
24 }

26 /∗∗
∗ Inser t the input node a f t e r th i s node .

28 ∗ @param node element to ins e r t a f t e r th i s .
∗∗/

30 public void insertAfter (PositionedSceneElement node){
// Save what ” th i s ” current ly points at

32 PositionedSceneElement oldNext = this . getNext () ;
this . setNext (node) ;

34 node . setNext (oldNext) ;
}

The first method allows us to remove an element from a list, like this:
> tree1.setNext(tree2); tree2.setNext(tree3); tree3.setNext(doggy); doggy.setNext(house);
> tree1.remove(doggy);
> tree1.drawFromMeOn(bg);

The result is that doggy is removed entirely (Figure 7.5).
Now we can re-insert the doggy wherever we want, say, after tree1 (Fig-

ure 7.6):

> bg = new Picture(FileChooser.getMediaPath("jungle.jpg"));
> tree1.insertAfter(doggy);
> tree1.drawFromMeOn(bg);

156 CHAPTER 7. STRUCTURING IMAGES USING LINKED LISTS

Figure 7.5: Removing the doggy from the scene

Figure 7.6: Inserting the doggy into the scene

7.3 Listing the Pictures, Layering

In the example from last section, we used the order of the elements in the
linked list to determine position. We can decide what our representations
encode. Let’s say that we didn’t want to just have our elements be in a
linear sequence–we wanted them to each know their positions anywhere
on the screen. What, then, would order in the linked list encode? As we’ll
see, it will encode layering.

7.3. LISTING THE PICTURES, LAYERING 157

* * *
Program
Example #45Example Java Code: LayeredSceneElements

public class LayeredSceneElement {
2

/∗∗
4 ∗ the pic ture that th i s element holds

∗∗/
6 private Picture myPic ;

8 /∗∗
∗ the next element in the l i s t

10 ∗∗/
private LayeredSceneElement next ;

12

/∗∗
14 ∗ The coordinates for th i s element

∗∗/
16 private int x , y ;

18 /∗∗
∗ Make a new element with a pic ture as input , and

20 ∗ next as null , to be drawn at given x , y
∗ @param heldPic Picture for element to hold

22 ∗ @param xpos x pos i t ion desired for element
∗ @param ypos y pos i t ion desired for element

24 ∗∗/
public LayeredSceneElement (Picture heldPic , int xpos , int ypos){

26 myPic = heldPic ;
next = null ;

28 x = xpos ;
y = ypos ;

30 }

32 /∗∗
∗ Methods to s e t and get next elements

34 ∗ @param nextOne next element in l i s t
∗∗/

36 public void setNext (LayeredSceneElement nextOne){
this . next = nextOne ;

38 }

40 public LayeredSceneElement getNext () {
return this . next ;

42 }

44 /∗∗
∗ Returns the pic ture in the node .

158 CHAPTER 7. STRUCTURING IMAGES USING LINKED LISTS

46 ∗ @return the pic ture in the node
∗∗/

48 public Picture getPicture () {
return this . myPic ;

50 }

52 /∗∗
∗ Method to draw from this node on in the l i s t , using bluescreen .

54 ∗ Each new element has i t ’ s lower−l e f t corner at the lower−r ight
∗ of the previous node . Starts drawing from l e f t−bottom

56 ∗ @param bg Picture to draw drawing on
∗∗/

58 public void drawFromMeOn(Picture bg) {
LayeredSceneElement current ;

60

current = this ;
62 while (current != null)

{
64 current .drawMeOn(bg) ;

current = current . getNext () ;
66 }

}
68

/∗∗
70 ∗ Method to draw from this picture , using bluescreen .

∗ @param bg Picture to draw drawing on
72 ∗∗/

74 private void drawMeOn(Picture bg) {
this . getPicture () . bluescreen (bg , x , y) ;

76 }

78 /∗∗ Method to remove node from l i s t , f i x ing l inks appropriately .
∗ @param node element to remove from l i s t .

80 ∗∗/
public void remove (LayeredSceneElement node){

82 i f (node==this)
{

84 System . out . pr int ln (” I can ’ t remove the f i r s t node from the l i s t . ”) ;
return ;

86 } ;

88 LayeredSceneElement current = this ;
// While there are more nodes to consider

90 while (current . getNext () != null)
{

92 i f (current . getNext () == node){
// Simply make node ’ s next be th i s next

94 current . setNext (node . getNext ()) ;
// Make th i s node point to nothing

7.3. LISTING THE PICTURES, LAYERING 159

96 node . setNext (null) ;
return ;

98 }
current = current . getNext () ;

100 }
}

102

/∗∗
104 ∗ Inser t the input node a f t e r th i s node .

∗ @param node element to ins e r t a f t e r th i s .
106 ∗∗/

public void insertAfter (LayeredSceneElement node){
108 // Save what ” th i s ” current ly points at

LayeredSceneElement oldNext = this . getNext () ;
110 this . setNext (node) ;

node . setNext (oldNext) ;
112 }

}

Our use of LayeredSceneElement is much the same as the PositionedSceneElement,
except that when we create a new element, we also specify its position on
the screen.

> Picture bg = new Picture(400,400);
> LayeredSceneElement tree1 = new LayeredSceneElement(
new Picture(FileChooser.getMediaPath("tree-blue.jpg")),10,10);
> LayeredSceneElement tree2 = new LayeredSceneElement(
new Picture(FileChooser.getMediaPath("tree-blue.jpg")),100,10);
> LayeredSceneElement tree3 = new LayeredSceneElement(
new Picture(FileChooser.getMediaPath("tree-blue.jpg")),200,100);
> LayeredSceneElement house = new LayeredSceneElement(
new Picture(FileChooser.getMediaPath("house-blue.jpg")),175,175);
> LayeredSceneElement doggy = new LayeredSceneElement(
new Picture(FileChooser.getMediaPath("dog-blue.jpg")),150,325);
> tree1.setNext(tree2); tree2.setNext(tree3); tree3.setNext(doggy); doggy.setNext(house);
> tree1.drawFromMeOn(bg);
> bg.show();
> bg.write("D:/cs1316/first-layered-scene.jpg");

The result (Figure 7.7) shows the house in front of a tree and the dog.
In the upper left, we can see one tree overlapping the other.
How it works: Let’s talk about how one piece of this class works, the

removal of a node.

/∗∗ Method to remove node from l i s t , f i x ing l inks appropriately .
∗ @param node element to remove from l i s t .
∗∗/

public void remove (LayeredSceneElement node){

160 CHAPTER 7. STRUCTURING IMAGES USING LINKED LISTS

Figure 7.7: First rendering of the layered sene

i f (node==this)
{

System . out . pr int ln (” I can ’ t remove the f i r s t node from the l i s t . ”) ;
return ;

} ;

LayeredSceneElement current = this ;
// While there are more nodes to consider
while (current . getNext () != null)
{

i f (current . getNext () == node){
// Simply make node ’ s next be th i s next
current . setNext (node . getNext ()) ;
// Make th i s node point to nothing
node . setNext (null) ;
return ;

}
current = current . getNext () ;

}
}

You might be wondering what that @param is about in the comments.
This is a note to JavaDoc that the method remove takes a parameter. What
comes after @param is a the parameter name, and then a comment explain-
ing the parameter. This comment will appear in the JavaDoc to explain

7.3. LISTING THE PICTURES, LAYERING 161

Figure 7.8: A doubly-linked list

what the method does and how to use it.
The first thing we do in remove is to check to see if the node to be re-

moved is the same node that we asked to do the remove, this. Typically,
you call remove on the first node in the list. Currently, our implemention
of lists doesn’t allow us to remove the first node in the list. If we execute
hisOnethisOne.removet, how could we change thisOne to point at anything
else? We’ll see how to fix that later.

We then traverse the list, checking for current.getNext()= null!. That’s
a little unusual—typically, we’re checking for current= null! when we tra-
verse a list. Why the difference? Because we want to find the node before
the one we’re removing. We need to connect the nodes around the node
that that’s already there. Once we find the node to remove, we want to
make the one before it point to whatever the removed node currently points
to. That essentially routes the linked list around the node to be removed—
and poof! it’s gone. If we stopped when we found the node we were looking
for, as opposed to current.getNext() being the node we are looking for, we
will have gone too far. This is a key idea in linked lists: there is no link
from a node back to the node that is pointing to it. If you have a pointer to
a node, you don’t know who points to that node.

That does not have to be true. One can have linked lists where a
node points both to its next and to its previous (Figure 7.8). We call those
doubly−linked lists. They are powerful for finding and replacing nodes,
since you can traverse them forwards and backwards. They are more com-
plicated, though—inserting and deleting involves patching up both next
links and previous links. They also waste more space than a singly-linked
list. With a singly-linked list, each piece of data in a node also has a next
link associated with it. Compared to an array, a singly-linked list requires
an extra reference for every data element. A doubly-linked list gives up
two references for each data element.

Reordering elements in a list

Now, let’s reorder the elements in the list, without changing the elements–
not even their locations. We’ll reverse the list so that we start with the
house, not the first tree. (Notice that we set the tree1 element to point to
null–if we didn’t do that, we’d get an infinite loop with tree1 pointing to
itself.)

162 CHAPTER 7. STRUCTURING IMAGES USING LINKED LISTS

The resultant figure (Figure 7.9) has completely different layering. The
trees in the upper left have swapped, and the tree and dog are now in front
of the house.

> house.setNext(doggy); doggy.setNext(tree3); tree3.setNext(tree2); tree2.setNext(tree1);
> tree1.setNext(null);
> bg = new Picture(400,400);
> house.drawFromMeOn(bg);
> bg.show();
> bg.write("D:/cs1316/second-layered-scene.jpg");

Figure 7.9: Second rendering of the layered sene

Have you ever used a drawing program like Visio or even PowerPoint
where you brough an object forward, or sent it to back? What you were
doing is, quite literally, exactly what we’re doing when we’re changing the
order of elements in the list of PositionedSceneElements. In tools such as
Visio or PowerPoint, each drawn object is an element in a list. To draw the
screen, the program literally walks the list (traverses the list) and draws
each object. We call the re-creation of the scene through traversing a data
structure a rendering of the scene. If the list gets reordered (with bringing
an object forward or sending it to the back), then the layering changes.
“Bringing an object forward” is about moving an element one position fur-
ther back in the list–the things at the end get drawn last and thus are on
top.

7.4. REVERSING A LIST 163

One other observation: Did you notice how similar both of these ele-
ments implementations are?

7.4 Reversing a List

In the last example, we reversed the list “by hand” in a sense. We took
each and every node and reset what it pointed to. What if we had a lot
of elements, though? What if our scene had dozens of elements in it? Re-
versing the list would take a lot of commands. Could we write down the
process of reversing the list, so that we can encode it?

There are actually several different ways of reversing a list. Let’s do it
in two different ways here. The first way we’ll do it is by repeatedly getting
the last element of the original list, removing it from the list, then adding
it to the new reversed list. That will work, but slowly. To find the last
element of the list means traversing the whole list. To add an element to
the end of the list means walking to the end of the new list and setting the
last element there to the new element.

Here’s a method that implements that process.

Program
Example #46Example Java Code: Reverse a list

/∗∗
2 ∗ Reverse the l i s t s tar t ing at this ,

∗ and return the l as t element o f the l i s t .
4 ∗ The la s t element becomes the FIRST element

∗ of the l i s t , and THIS points to null .
6 ∗∗/

public LayeredSceneElement reverse () {
8 LayeredSceneElement reversed , temp ;

10 // Handle the f i r s t node outside the loop
reversed = this . l a s t () ;

12 this . remove (reversed) ;

14 while (this . getNext () != null)
{

16 temp = this . l a s t () ;
this . remove (temp) ;

18 reversed . add (temp) ;
} ;

20

// Now put the head of the old l i s t on the end of
22 // the reversed l i s t .

reversed . add (this) ;
24

// At th i s point , reversed

164 CHAPTER 7. STRUCTURING IMAGES USING LINKED LISTS

26 // i s the head of the l i s t
return reversed ;

28 }

The core of this program is:

while (this . getNext () != null)
{

temp = this . l a s t () ;
this . remove (temp) ;
reversed . add (temp) ;

} ;

So how expensive is this loop?
• We go through this loop once for each element in the list.

• For each element in the list, we find the last () (which requires an-
other complete traversal)

• And when we add(), which we know requires another last () which is
another traversal.

The bottom line is, that for each node in the list, we touch every other
node. We call that an O(n2) algorithm—as the data grows larger (n), the
number of steps to execute (the running time) increases as a square of the
data size (n2). For a huge list of lots images (maybe wildebeests running
down a ridge?), that’s very expensive.

How would you do it in real life? Imagine that you have a bunch of
cards laid out in a row, and you need to reverse them. How would you do
it? One way to do it is to pile them up, and then set them back out. A pile
(called a stack in computer science) has an interesting property in that the
last thing placed on the pile is the first one to remove from the pile–that’s
called LIFO, Last-In-First-Out. We can use that property to reverse the
list. We can define a Stack class to represent the abstract notion of a pile,
then use it to reverse the list. We will see that in the next chapter.

7.5 Animation

Any movie (including animated scenes) consist of a series of images (typi-
cally called frames) played in a sequence fast enough to trick our eyes into
seeing a continuous image. How would you create an animation using data
structures? We can come up with a different definition than “a sequence
of frames” now. We can think of an animation as “Modify the structure
describing your scene, then render it (turn it into an image), and repeat!”

We can do that even with our simple linked lists. We will create an
animation of a doggy at the beginning of a grove of trees, then running
between the trees. At the end, he turns around and runs back.

7.5. ANIMATION 165

* * *
Program
Example #47Example Java Code: Create a simple animation of a dog running

public class AnimatedPositionedScene {
2

/∗∗
4 ∗ A FrameSequence for s tor ing the frames

∗∗/
6 FrameSequence frames ;

8 /∗∗
∗ We ’ l l need to keep track

10 ∗ of the elements o f the scene
∗∗/

12 PositionedSceneElement tree1 , tree2 , tree3 , house , doggy , doggyf l ip ;

14 // Set up the whole animation
public void setUp () {

16 frames = new FrameSequence (”C : / Temp/ ”) ;

18 //FileChooser . setMediaPath (”C:/ cs1316/mediasources / ”) ;
Picture p = null ; // Use th i s to f i l l elements

20

p = new Picture (FileChooser . getMediaPath (” tree−blue . jpg ”)) ;
22 tree1 = new PositionedSceneElement (p) ;

24 p = new Picture (FileChooser . getMediaPath (” tree−blue . jpg ”)) ;
tree2 = new PositionedSceneElement (p) ;

26

p = new Picture (FileChooser . getMediaPath (” tree−blue . jpg ”)) ;
28 tree3 = new PositionedSceneElement (p) ;

30 p = new Picture (FileChooser . getMediaPath (” house−blue . jpg ”)) ;
house = new PositionedSceneElement (p) ;

32

p = new Picture (FileChooser . getMediaPath (” dog−blue . jpg ”)) ;
34 doggy = new PositionedSceneElement (p) ;

doggyf l ip = new PositionedSceneElement (p . f l i p ()) ;
36 }

38 // Render the whole animation
public void make() {

40 frames . show () ;

42 // Firs t frame
Picture bg = new Picture (FileChooser . getMediaPath (” jungle . jpg ”)) ;

44 tree1 . setNext (doggy) ; doggy . setNext (tree2) ; tree2 . setNext (tree3) ;
tree3 . setNext (house) ;

166 CHAPTER 7. STRUCTURING IMAGES USING LINKED LISTS

46 tree1 .drawFromMeOn(bg) ;
frames . addFrame(bg) ;

48

// Dog moving right
50 bg = new Picture (FileChooser . getMediaPath (” jungle . jpg ”)) ;

tree1 . remove (doggy) ;
52 tree2 . insertAfter (doggy) ;

tree1 .drawFromMeOn(bg) ;
54 frames . addFrame(bg) ;

56 bg = new Picture (FileChooser . getMediaPath (” jungle . jpg ”)) ;
tree1 . remove (doggy) ;

58 tree3 . insertAfter (doggy) ;
tree1 .drawFromMeOn(bg) ;

60 frames . addFrame(bg) ;

62 bg = new Picture (FileChooser . getMediaPath (” jungle . jpg ”)) ;
tree1 . remove (doggy) ;

64 house . insertAfter (doggy) ;
tree1 .drawFromMeOn(bg) ;

66 frames . addFrame(bg) ;

68 //Dog moving l e f t
bg = new Picture (FileChooser . getMediaPath (” jungle . jpg ”)) ;

70 tree1 . remove (doggy) ;
house . insertAfter (doggyf l ip) ;

72 tree1 .drawFromMeOn(bg) ;
frames . addFrame(bg) ;

74

bg = new Picture (FileChooser . getMediaPath (” jungle . jpg ”)) ;
76 tree1 . remove (doggyf l ip) ;

tree3 . insertAfter (doggyf l ip) ;
78 tree1 .drawFromMeOn(bg) ;

frames . addFrame(bg) ;
80

bg = new Picture (FileChooser . getMediaPath (” jungle . jpg ”)) ;
82 tree1 . remove (doggyf l ip) ;

tree2 . insertAfter (doggyf l ip) ;
84 tree1 .drawFromMeOn(bg) ;

frames . addFrame(bg) ;
86

bg = new Picture (FileChooser . getMediaPath (” jungle . jpg ”)) ;
88 tree1 . remove (doggyf l ip) ;

tree1 . insertAfter (doggyf l ip) ;
90 tree1 .drawFromMeOn(bg) ;

frames . addFrame(bg) ;
92

}
94

public void replay () {

7.6. LISTS WITH TWO KINDS OF ELEMENTS 167

96 frames . replay (5 0 0) ; //3 frames per second
}

98 }

This is definitely not a great animation (Figure 7.10. It looks more like
the trees are hopping out of the way of the dog, like the houses hopping
away from the Knight Bus in the Harry Potter novels. But this is our first
example of how a real computer-generated animation works: By using a
data structure, which gets changed and re-rendered in a loop.

Figure 7.10: A few frames from the AnimatedPositionedScene

7.6 Lists with Two Kinds of Elements

Why should we have to choose between having elements positioned for
us, left-to-right, or layered for us, back-to-front? That doesn’t seem like
a reasonable limitation for an animation designer — you may want some
images just lined up where you don’t care so much about the positioning
(e.g., trees in a forest, spectators in the audience) and other images you
want to be in very specific places (e.g., your main characters). We can
easily imagine having a list where we have both positioned and layered
elements. Some nodes we want to position left-to-right, and other nodes
we’d want to go at particular places, and nodes earlier in the list would be
understood to be rendered behind other nodes.

That turns out to be a new thing for us to do from a Java perspective.
Consider that PositionedSceneElement. It’s next has the type PositionedSceneElement.
How could the next element be anything but a PositionedSceneElement? If
the next element could be something else, we couldn’t use the same how
could we draw some things at their (x, y) position and others left-to-right?

There’s another reason to rewrite our existing scene element classes,
besides wanting to intermix different kinds of elements. The current im-
plementation has so much duplicated code. Check out last and add in

168 CHAPTER 7. STRUCTURING IMAGES USING LINKED LISTS

PositionedSceneElement and LayeredSceneElement. Basically the same thing–
why do we have to duplicate this code? Why can’t we tell the computer
“Here’s last–always use this definition for all linked lists, please!”?

The way to solve both of these problems (being able to intermix kinds of
elements and rewriting to reduce redundancy of code) is with a superclass.
We will create a superclass called SceneElement, then we will create a sub-
class for positioned and layered kinds of scene elements. We’ll call these
SceneElementLayered and SceneElementPositioned. This structure solves sev-
eral of the above problems.

• A variable that is declared the type of a superclass can also hold ob-
jects that have the type of a subclass. So, a variable of type SceneElement
can also reference a SceneElementLayered or SceneElementPositioned.
That’s how we’ll define next so that each element can point to any
other kind of SceneElement.

• Any methods in SceneElement are inherited by its subclasses. So if we
define last and add in SceneElement, any instances of SceneElementLayered
and SceneElementPositioned will automatically inherit those methods.
Every instance of SceneElementLayered and SceneElementPositioned will
know how to do add and last because the superclass SceneElement
knows how to do it.

• Where the subclasses need to be different, they can be made differ-
ent. So SceneElementPositioned will have an x and y for positioned, but
SceneElementLayered will not.

If one of the classes will have an (x, y) and the other one will not, each of
the subclasses will have to drawWith themselves differently. The drawWith
method for SceneElementPositioned will have to figure out where each el-
ement goes left-to-right, and same method for SceneElementLayered will
draw the element at its desired x and y.

Since SceneElement will not actually know how to draw itself, it is not
really a useful object. It is a useful class, though. A class whose main
purpose is to hold methods (behavior) and fields (data and structure) that
subclasses will inherit is referred to as an abstract class. Java even has a
keyword abstract that is used to identify abstrat classes.

An abstract class can also have abstract methods (also identified with
the abstract keyword). These are methods in an abstract class that do not
actually have implementations in the abstract class—there is no body for
the method. The point of defining an abstract method in an abstract class
is to tell Java, “All my subclasses will define this method and provide a
real body for this method. I’m just defining it here so that you know that
you can expect it—it’s okay for a variable declared to be me to call this
method.”

* * *

7.6. LISTS WITH TWO KINDS OF ELEMENTS 169

Program
Example #48 Example Java Code: Abstract method drawWith in abstract class SceneElement

/∗
∗ Use the given t u r t l e to draw onese l f
∗ @param t the Turtle to draw with
∗∗/

public abstract void drawWith (Turtle t) ;
// No body in the superclass

Okay, now that we know how to declare the abstract class and the ab-
stract method drawWith, we can consider how to implement the drawWith
method for each of the subclasses of SceneElement, SceneElementPositioned
and SceneElementLayered. The challenge of implementing drawWith is to
keep track of the next positioned element when you have to go draw a lay-
ered element at some particular (x, y). There are lots of ways of doing that,
like holding some nextX and nextY that remembers the next position even
when drawing a layered element. Here’s the one that we will use here:
We will use a turtle to keep track of where the element should be drawn.
Specifically, each subclass will implement drawWith taking a turtle as in-
put, and they will use that turtle as a pen to draw the picture in the node
at the right place.

Let’s define the SceneElement abstract class first. It knows its picture
and knows how to do all the basic list manipulations (Figure 7.11—yet
only knows “abstractly” how to draw. A key part of this class definition is
that next and all the methods that return an object are declared as class
SceneElement—which means that they can actually be any instance in the
hierarchy.

Figure 7.11: The abstract class SceneElement, in terms of what it knows
and can do

170 CHAPTER 7. STRUCTURING IMAGES USING LINKED LISTS

Program
Example #49 Example Java Code: SceneElement

/∗∗
2 ∗ An element that knows how to draw i t s e l f in a scene with a t u r t l e

∗∗/
4 public abstract class SceneElement{

6 /∗∗
∗ the pic ture that th i s element holds

8 ∗∗/
protected Picture myPic ;

10

/∗∗
12 ∗ the next element in the l i s t −− any SceneElement

∗∗/
14 protected SceneElement next ;

16

/∗∗
18 ∗ Methods to s e t and get next elements

∗ @param nextOne next element in l i s t
20 ∗∗/

public void setNext (SceneElement nextOne){
22 this . next = nextOne ;

}
24

public SceneElement getNext () {
26 return this . next ;

}
28

/∗∗
30 ∗ Returns the pic ture in the node .

∗ @return the pic ture in the node
32 ∗∗/

public Picture getPicture () {
34 return this . myPic ;

}
36

/∗∗
38 ∗ Method to draw from this node on in the l i s t .

∗ For posi t ioned elements , compute loca t ions .
40 ∗ Each new element has i t ’ s lower−l e f t corner at the lower−r ight

∗ of the previous node . Starts drawing from l e f t−bottom
42 ∗ @param bg Picture to draw drawing on

∗∗/
44 public void drawFromMeOn(Picture bg) {

7.6. LISTS WITH TWO KINDS OF ELEMENTS 171

SceneElement current ;
46

// Start the X at the l e f t
48 // Start the Y along the bottom

int currentX =0 , currentY = bg . getHeight ()−1;
50

Turtle pen = new Turtle (bg) ;
52 pen . setPenDown (true) ; // Pick the pen up

54 current = this ;
while (current != null)

56 { // Posi t ion the t u r t l e f or the next posi t ioned element
pen . moveTo (currentX , currentY−current . getPicture () . getHeight ()) ;

58 pen . setHeading (0) ;

60 current . drawWith (pen) ;
currentX = currentX + current . getPicture () . getWidth () ;

62

current = current . getNext () ;
64 }

}
66

/∗
68 ∗ Use the given t u r t l e to draw onese l f

∗ @param t the Turtle to draw with
70 ∗∗/

public abstract void drawWith (Turtle t) ;
72 // No body in the superclass

74 /∗∗ Method to remove node from l i s t , f i x ing l inks appropriately .
∗ @param node element to remove from l i s t .

76 ∗∗/
public void remove (SceneElement node){

78 i f (node==this)
{

80 System . out . pr int ln (” I can ’ t remove the f i r s t node from the l i s t . ”) ;
return ;

82 } ;

84 SceneElement current = this ;
// While there are more nodes to consider

86 while (current . getNext () != null)
{

88 i f (current . getNext () == node){
// Simply make node ’ s next be th i s next

90 current . setNext (node . getNext ()) ;
// Make th i s node point to nothing

92 node . setNext (null) ;
return ;

94 }

172 CHAPTER 7. STRUCTURING IMAGES USING LINKED LISTS

current = current . getNext () ;
96 }

}
98

/∗∗
100 ∗ Return the count of elements in th i s l i s t

∗∗/
102 public int count () {

SceneElement current = this ;
104 int count = 0;

while (current != null){
106 count = count + 1;

current = current . getNext () ; }
108 return count ;

}
110 /∗∗

∗ Inser t the input node a f t e r th i s node .
112 ∗ @param node element to ins e r t a f t e r th i s .

∗∗/
114 public void insertAfter (SceneElement node){

// Save what ” th i s ” current ly points at
116 SceneElement oldNext = this . getNext () ;

this . setNext (node) ;
118 node . setNext (oldNext) ;

}
120

/∗∗
122 ∗ Return the la s t element in the l i s t

∗∗/
124 public SceneElement las t () {

SceneElement current ;
126

current = this ;
128 while (current . getNext () != null)

{
130 current = current . getNext () ;

} ;
132 return current ;

}
134

/∗∗
136 ∗ Reverse the l i s t s tar t ing at this ,

∗ and return the las t element of the l i s t .
138 ∗ The la s t element becomes the FIRST element

∗ of the l i s t , and THIS goes to null .
140 ∗∗/

public SceneElement reverse () {
142 SceneElement reversed , temp ;

144 // Handle the f i r s t node outside the loop

7.6. LISTS WITH TWO KINDS OF ELEMENTS 173

reversed = this . l a s t () ;
146 this . remove (reversed) ;

148 while (this . getNext () != null)
{

150 temp = this . l a s t () ;
this . remove (temp) ;

152 reversed . add (temp) ;
} ;

154 // At th i s point , reversed
// i s the head of the l i s t

156 return reversed ;
}

158

/∗∗
160 ∗ Add the input node a f t e r the l as t node in th i s l i s t .

∗ @param node element to ins e r t a f t e r th i s .
162 ∗∗/

public void add (SceneElement node){
164 this . l a s t () . insertAfter (node) ;

}
166

}

The two subclasses, SceneElementPositioned and SceneElementLayered,
are really quite short. They only specify what’s different from the super-
class. The relationship between a superclass and a subclass is often called,
by object-oriented designers, a generalization-specialization relationship
(sometimes shortened to gen-spec). The SceneElement is the general form
of a scene element, that describes how scene elements generally work. The
two subclasses just specify how they are special, different from the general
case (Figure 7.12).

Program
Example #50Example Java Code: SceneElementPositioned

public class SceneElementPositioned extends SceneElement {
2

/∗∗
4 ∗ Make a new element with a pic ture as input , and

∗ next as null .
6 ∗ @param heldPic Picture for element to hold

∗∗/
8 public SceneElementPositioned (Picture heldPic){

myPic = heldPic ;
10 next = null ;

174 CHAPTER 7. STRUCTURING IMAGES USING LINKED LISTS

Figure 7.12: The abstract class SceneElement and its two subclasses

}
12

/∗∗
14 ∗ Method to draw from this pic ture .

∗ @param pen Turtle to use for drawing
16 ∗∗/

public void drawWith (Turtle pen) {
18 pen . drop (this . getPicture ()) ;

}
20 }

Program
Example #51 Example Java Code: SceneElementLayered

1 public class SceneElementLayered extends SceneElement {

3 /∗∗
∗ The coordinates for th i s element

5 ∗∗/
private int x , y ;

7

/∗∗
9 ∗ Make a new element with a pic ture as input , and

∗ next as null , to be drawn at given x , y
11 ∗ @param heldPic Picture for element to hold

∗ @param xpos x pos i t ion desired for element
13 ∗ @param ypos y pos i t ion desired for element

∗∗/

7.6. LISTS WITH TWO KINDS OF ELEMENTS 175

15 public SceneElementLayered (Picture heldPic , int xpos , int ypos){
myPic = heldPic ;

17 next = null ;
x = xpos ;

19 y = ypos ;
}

21

/∗∗
23 ∗ Method to draw from this pic ture .

∗ @param pen Turtle to draw with
25 ∗∗/

public void drawWith (Turtle pen) {
27 // We jus t ignore the pen ’ s pos i t i on

pen . moveTo (x , y) ;
29 pen . drop (this . getPicture ()) ;

}
31 }

This structure will only make sense when we try it out. Here’s a simple
example of a picture drawn with both kinds of scene elements in a single
linked list (Figure 7.13). Notice that the dog is under the flower, both of
which are out of the linear sequence across the bottom.

Program
Example #52Example Java Code: MultiElementScene

public class MultiElementScene {
2

public static void main (String [] args){
4 // Be sure to s e t the media path f i r s t .

//FileChooser . setMediaPath (”D:/ cs1316/mediasources / ”) ;
6

// We ’ l l use th i s for f i l l i n g the nodes
8 Picture p = null ;

10 p = new Picture (FileChooser . getMediaPath (”swan . jpg ”)) ;
SceneElement node1 = new SceneElementPositioned (p . scale (0 . 2 5)) ;

12

p = new Picture (FileChooser . getMediaPath (” horse . jpg ”)) ;
14 SceneElement node2 = new SceneElementPositioned (p . scale (0 . 2 5)) ;

16 p = new Picture (FileChooser . getMediaPath (” dog . jpg ”)) ;
SceneElement node3 = new SceneElementLayered (p . scale (0 . 2 5) , 5 0 , 5 0) ;

18

p = new Picture (FileChooser . getMediaPath (” flower1 . jpg ”)) ;
20 SceneElement node4 = new SceneElementLayered (p . scale (0 . 5) , 1 0 , 3 0) ;

176 CHAPTER 7. STRUCTURING IMAGES USING LINKED LISTS

Figure 7.13: A scene rendered from a linked list with different kinds of
scene elements

22 p = new Picture (FileChooser . getMediaPath (” graves . jpg ”)) ;
SceneElement node5 = new SceneElementPositioned (p . scale (0 . 2 5)) ;

24

node1 . setNext (node2) ; node2 . setNext (node3) ;
26 node3 . setNext (node4) ; node4 . setNext (node5) ;

28 // Now, l e t ’ s see i t !
Picture bg = new Picture (600 ,600) ;

30 node1 .drawFromMeOn(bg) ;
bg . show () ;

32 }
}

It is easier to see how a single turtle is being used to draw all of these
elements if we change how we traverse the list with drawFromMeOn in the
SceneElement class. We will simply traverse the list with the turtle’s pen
down.

7.6. LISTS WITH TWO KINDS OF ELEMENTS 177

* * *
Program
Example #53Example Java Code: Modified drawFromMeOn in SceneElement

/∗∗
∗ Method to draw from this node on in the l i s t .
∗ For posi t ioned elements , compute loca t ions .
∗ Each new element has i t ’ s lower−l e f t corner at the lower−r ight
∗ of the previous node . Starts drawing from l e f t−bottom
∗ @param bg Picture to draw drawing on
∗∗/

public void drawFromMeOn(Picture bg) {
SceneElement current ;

// Start the X at the l e f t
// Start the Y along the bottom
int currentX =0 , currentY = bg . getHeight ()−1;

Turtle pen = new Turtle (bg) ;
pen . setPenDown (true) ; // NOW, LEAVE THE PEN DOWN

current = this ;
while (current != null)
{ // Posi t ion the t u r t l e f or the next posi t ioned element

pen . moveTo (currentX , currentY−current . getPicture () . getHeight ()) ;
pen . setHeading (0) ;

current . drawWith (pen) ;
currentX = currentX + current . getPicture () . getWidth () ;

current = current . getNext () ;
}

}

The result is a picture showing the trace of where the turtle moved
throughout the traversal (Figure 7.14). The pen gets created in the center,
then travels down to the left corner to draw the swan, then moves right
(the width of the swan) to draw the horse. The turtle pen moves into posi-
tion for drawing the flower, but instead moves to the dog’s saved position
and draws there. The turtle moves back into place to draw the next posi-
tioned scene element, but again moves up to draw the flower (on top of a
corner of the dog picture). Finally, it moves to the next position and draws

178 CHAPTER 7. STRUCTURING IMAGES USING LINKED LISTS

Figure 7.14: Same multi-element scene with pen traced

the graves there.
Structuring Our Multi-Element Lists
One can imagine using our new kind of multi-element lists to create com-
plicated scenes.

• Imagine creating large sequences of objects next to one another, like
trees in a forest, or orcs about to enter into battle in The Lord of
the Rings. We could create these by inserting as many nodes as we
need with SceneElementPositioned. We wouldn’t want to position each
of these separately—we simply want to add them all into the list and
have them drawn at the right place.

• Now, you might want to position some specific characters at specific
positions in the scene, such as an elf and a dwarf to battle the orcs,
or a plastic spaceman getting ready to enter the scene.

A linear list is not the best way to present such a scene. You would want
to keep track of this band of orcs here, and that band of orcs there, with
a forest behind, and a few brave heroes getting ready to keep the horde
at bay. A linear list doesn’t give you an easy way of keeping track of the
various pieces. A linear list is just a long list of nodes.

7.6. LISTS WITH TWO KINDS OF ELEMENTS 179

It would be easier to structure and manipulate the scene if one part of
the linked list represented the Fifth Army of Orcs, and another part rep-
resented the forest, and the heroes were elsewhere–and if all those parts
were clearly labeled and manipulable. To keep track of just that kind of
structure, we are going to introduce a scene graph, a kind of tree. A tree
structures a linked list into a hierarchy or clusters. A scene graph is an im-
portant data structure in defining scenes in modern computer animations.
That’s where we’re heading next.

Ex. 2 — Create a method copyList that copies the list at this and returns
a new list with the same elements in it.

Ex. 3 — Create a method copyList(int n,m) that starts at this as the 0th
element in the list, goes to the nth element, and returns a new list from
the nth to the mth element.

Ex. 4 — Using any of the linked lists of pictures that we created (where
ordering represented linearity, or layering, or using turtles to walk the
list), implement three additional methods (where firstpicturnodeinlist is a
node, not actually a picture):

•firstnodeinlist .findAndReplaceRepeat(oldelement,newelement,n): Find oldelement
(it’s a node, not a picture, so you can look for an exact match), remove
oldelement from the list, and then insert at oldelement’s place n copies
of the node newelement. Imagine this as implementing the special ef-
fect where the witch disappears and gets replaced with three smaller
copies of the witch at the same place.

•firstnodeinlist .replaceWithModification(findelement,int type): Find the node
findelement (a node, not a picture, so you can do an exact match), then
replace it with a node containing a modified picture of the picture in
findelement. The type indicates the kind of modification. If 1, negate
the picture. If 2, mirror horizontal. If 3, mirror vertical. If 4, sunset.
If anything else, insert grayscale. This is about changing the image
in some predefined way for any node in the list.

•firstnodeinlist .replaceWithModifications(findelement,double[] types): Find
the node findelement (a node, not a picture, so you can do an exact
match), then replace it with nodes containing a modified picture of the
picture in findelement. Insert as many nodes as there are entries in
the types array, e.g., if there are 3 values in the array, insert 3 copies.
The value in the types array indicates the kind of image modification
for that element. If 1, negate the picture. If 2, mirror horizontal. If 3,
mirror vertical. If 4, sunset. If anything else, insert grayscale. So, if
the array was {1,2,5}, you would insert three copies of the picture in
findelement the first negated, the second mirrored horizontal, and the

180 CHAPTER 7. STRUCTURING IMAGES USING LINKED LISTS

third grayscaled. This is an example of taking a base wildebeest and
replacing it with several copies having different colors.

You can be sure that oldelement or findelement will never be equal to the
firstnodeinlist .
You must also provide a class named PictureTest that has a main() method
which utilizes all three of your new methods. When the grader executes
the main(), it should (a) show a background with three or more pictures in
it, (b) then show a new picture after using findAndReplaceRepeat, and (c)
a third picture after using replaceWithModification, then (d) a final fourth
picture after using replaceWithModifications.

Ex. 5 — Create a class with a main method that sets up a scene with
LayeredSceneElement, then change the layering of just a single element us-
ing remove and insertAfter—much as we did to make the doggy run in our
first animation using PositionedSceneElement.

Ex. 6 — Take any linked list implementation that we have created thus
far, and recreate it as a doubly-linked list. Make sure that insertAfter and
remove work, and implement insertBefore as well.

8 Abstract Data Types:
Separating the Meaning from
the Implementation

Chapter Learning Objectives
One of the most powerful ideas in computer science is that the defini-

tion of a data structure can be entirely separated from the implementation
of the data structure. This idea is powerful because it allows us to design
and implement other code that uses the given data structure (1) without
knowing the implementation of the data structure and (2) even if the im-
plementation of the data structure changes.
The computer science goals for this chapter are:

• To explain the separation of definition and implementation.

• To explain the definition of the queue and offer two implementations
of those.

• To explain the definition of the stack and offer two implementations
of those.

The media learning goals for this chapter are:

• To have a faster way of reversing the elements in a list by using a
stack.

8.1 Introducing the Stack

A stack is a data structure that corresponds to how a stack (literally!) of
plates work. Imagine a stack of fine plates (Figure 8.1). You only put new
plates on a stack from the top. You can insert plates in the middle, but
not easily, and you risk scraping the plates. You only remove plates from a
stack from the top. Removing from the middle or (worse yet) the bottom is
dangerous and risks damaging the whole stack.

Those basic notions of how a physical stack work correspond to how
the stack data structure works. Think of a stack as a list of elements—
just a sequence of items. (Are the items in a linked list? An array? We

181

182
CHAPTER 8. ABSTRACT DATA TYPES: SEPARATING THE

MEANING FROM THE IMPLEMENTATION

Figure 8.1: A pile of plates—only put on the top, never remove from the
bottom

are explicitly not saying at this point.) The first item pushed on the stack
stays at the bottom of the stack. Later items are put at the top of the stack
(Figure 8.2).

Figure 8.2: Later items are at the head (top) of stack

New items are added at the head of the stack (Figure 8.3). When a new
item is removed from the stack, it is always the last, newest item in the list
which is removed first (Figure 8.4). For that reason, a stack is sometimes
also called a LIFO list—Last In, First Out. The last item inserted into the
stack is the first one back out.

8.1. INTRODUCING THE STACK 183

Figure 8.3: New items are inserted at the top (head) of the stack

Figure 8.4: Items are removed from the top (head) of a stack

Defining an Abstract Data Type
A stack is an example of an Abstract Data Type. An abstract data type
defines the operations, structure, and behavior of a data structure with-
out specifying how those operations, structure, and behavior are actually
implemented. By separating the concerns of what is supposed to happen
from how it is supposed to happen, the task of programming with that data
type is made easier.

There are formal ways of defining an abstract data type (ADT). These
formal methods use symbols and logical equations to define behavior and
structure without getting into the implementation. Those aren’t our focus
here. Instead, we will focus on a general notion of how the ADT works.

What should someone be able to do with a stack data structure? Here
is a list of basic operations for a stack with a brief description of what
each does. If we got these right, these should mesh with the intuitive
understanding of stacks described previously.

• push(anObject): Tack a new object onto the top of the stack

• pop(): Pull the top (head) object off the stack.

• peek(): Get the top of the stack, but dont remove it from the stack.

• size () : Return the size of the stack

• empty(): Returns true if the size of the stack is zero—nothing is left
in the stack.

184
CHAPTER 8. ABSTRACT DATA TYPES: SEPARATING THE

MEANING FROM THE IMPLEMENTATION

Computer Science Idea: Separation of Concerns
By separating the definition of the data structure from the implementa-
tion, we can use the new data structure in programs without regard for
implementation. An important implication is that the implementation can
be changed (improved, upgraded, whatever) and the programs that use the
data structure need not change at all!

For example, here is a program that uses a stack, PictureStack, that
contains SceneElement nodes.

Program
Example #54 Example Java Code: Testing program for a PictureStack

public class PictureStackTest {
public static void main (String [] args){

PictureStack stack = new PictureStack () ;
SceneElementPositioned element = null ;

// Push 3 pic tures on the stack : Swan, temple , horse
element=new SceneElementPositioned (

new Picture (FileChooser . getMediaPath (”swan . jpg ”))) ;
stack . push (element) ;
element=new SceneElementPositioned (

new Picture (FileChooser . getMediaPath (” temple . jpg ”))) ;
stack . push (element) ;
element=new SceneElementPositioned (

new Picture (FileChooser . getMediaPath (” horse . jpg ”))) ;
stack . push (element) ;

//Pop one −− should be the horse
stack . pop () . getPicture () . show ()

//Push another −− the t u r t l e
element=new SceneElementPositioned (

new Picture (FileChooser . getMediaPath (” tur t l e . jpg ”))) ;
stack . push (element) ;

//Pop another −− should be the t u r t l e
stack . pop () . getPicture () . show () ;

//Pop another −− should be the temple
stack . pop () . getPicture () . show () ;

}

8.1. INTRODUCING THE STACK 185

}

Given that we’re pushing and popping instances of SceneElementPositioned,
you have probably guessed that the internal implementation is a linked
list. It need not be. The PictureStack could be implemented as an array of
SceneElement. The important point is this: It doesn’t matter! No matter
how PictureStack is implemented, the above example should just work, as
long as it meets the definition of a stack.

The idea of separation of concerns is actually built into Java as a con-
struct. In Java, one can define an Interface. An interface is akin to an
abstract class in that it defines a set of methods and no one can instanti-
ate an interface. An interface is just the definition of the operations of an
abstract data type, like those we just defined for a stack. A particular class
can declare that it implements a given interface. That implementation is
then a promise, a contract with programs that use the particular class—
that the methods in the interface are implemented and implemented prop-
erly so that the operation of the data type works.
Implementation of a Stack

At this point, our discussion of abstract data types is rather abstract—it’s
all definition and no implementation. Let’s implement PictureStack to see
how it might work. First, let’s define the basic structure of the class.

Program
Example #55Example Java Code: PictureStack

public class PictureStack {

/∗∗ Where we s to r e the elements ∗/
private SceneElement elements=null ;

/// Constructor ////
public PictureStack () {

// I f our SceneElement had an empty f i r s t
// node , we ’d create i t here .

}

// Methods go here
}

We can already see that we are going to have some kind of linked list of
SceneElement instances. Let’s define those basic methods.

186
CHAPTER 8. ABSTRACT DATA TYPES: SEPARATING THE

MEANING FROM THE IMPLEMENTATION

* * *
Program
Example #56 Example Java Code: PictureStack—push, peek, and pop

//// Methods ///
public void push (SceneElement element){

i f (elements == null)
{// Firs t new element on the stack

// becomes the one that we point at
elements = element ;}

else
{ // New elements go at the front

//The r e s t get added to the front
//by making the new one point to the
//r e s t o f the l i s t , then change
//the pointer to the new front .
element . setNext (elements) ;
elements = element ;}

}

//Top element i s the f i r s t one
public SceneElement peek () {

return elements ;
}

// Get the f i r s t one to return ,
// then point to the second one
public SceneElement pop () {

SceneElement toReturn = this . peek () ;
elements=elements . getNext () ;
return toReturn ;

}

We are going to use the variable elements to point to the head of the list.
To push a new element on the list is to make the new item point to the
rest of the list, and to make elements point to the new element. To peek is
simply to return whatever elements points at. Pop is a matter of getting the
peek, making elements point to the next element (elements.getNext()), and
returning what was previously peeked.

The other two methods needed to match the definition of a stack follow.

* * *

8.1. INTRODUCING THE STACK 187

Program
Example #57 Example Java Code: PictureStack—size and empty

public int s ize () { return elements . count () ; }

/∗∗ Empty? ∗/
public boolean empty () {return this . s i ze () == 0;}

Given this definition, our PictureStackTest class should work correctly
now. However, there were more ways to implement the stack. It’s worth-
while understanding more than one way to define the stack.
Multiple Implementations of a Stack
Just to make it simpler for us to trace, let’s consider the implementation
of a class Stack that stores simple strings. If we implement Stack correctly,
the below should work:

Welcome to DrJava.
> Stack stack = new Stack()
> stack.push("This")
> stack.push("is")
> stack.push("a")
> stack.push("test")
> stack.size()
4
> stack.peek()
"test"
> stack.pop()
"test"
> stack.pop()
"a"
> stack.pop()
"is"
> stack.pop()
"This"
> stack.pop()
java.util.NoSuchElementException:

Should that last pop, when there was nothing left in the stack, have
generated that error? If not, what error should it have generated? Java
does give us the opportunity to define our own exceptions and throw that
exception (e.g., cause it to stop execution and appear in the Interactions
Pane or console). We will explore exceptions in a later chapter.

The two most common implementations of stacks use linked lists and
arrays. Let’s look at each of those. First, we will use a stack implementa-
tion with a linked list, where we will use Java’s provided implementation

188
CHAPTER 8. ABSTRACT DATA TYPES: SEPARATING THE

MEANING FROM THE IMPLEMENTATION

of a linked list. Yes, Java has a linked list! How is it implemented? Is
it a singly or doubly linked list? We don’t know and we don’t care—that’s
separation of concerns. A bigger question is why we haven’t been using
Java’s linked list all along. We’ll explain that when we get to simulations.

Program
Example #58 Example Java Code: Stack implementation with a linked list

import java . u t i l . LinkedList ; // Need for LinkedList

public class Stack {

/∗∗ Where we s to r e the elements ∗/
private LinkedList elements ;

/// Constructor ////
public Stack () {

elements = new LinkedList () ;
}

//// Methods ///
public void push (Object element){

// New elements go at the front
elements . addFirst (element) ;

}

public Object peek () {
return elements . getFirst () ;

}

public Object pop () {
Object toReturn = this . peek () ;
elements . removeFirst () ;
return toReturn ;

}

public int s ize () { return elements . s i ze () ; }

/∗∗ Empty? ∗/
public boolean empty () {return this . s i ze () == 0;}

}

How it works: In this implementation, we have decided that the head of
the stack is the first item in the linked list. Java’s linked list implementa-
tion provides a getFirst and a addFirst method—the former is the heart of
peek and the latter is how we push. Since we have removeFirst too, that’s

8.1. INTRODUCING THE STACK 189

how we pop. It is interesting that the definition of empty is identical in both
implementations we have seen of stacks.

Java’s linked list implementation can actually store any object at all.
Its implementation works around the class Object. Every class (even if it
declares no superclass) is a subclass of Object. Thus, an Object variable can
hold anything at all.

If we use this implementation of Stack in the example earlier, it will
work as expected. Here’s a different implementation, using an array. We
will use an array of Object instances, so that we can store anything we want
in our stack. In this example, the class Stack2 (use it just like Stack) has
an index in the array for a top.

Program
Example #59Example Java Code: Stack implementation with an array

/∗∗
∗ Implementation of a stack as an array
∗∗/

public class Stack2 {

private static int ARRAYSIZE = 20;

/∗∗ Where we ’ l l s t o r e our elements ∗/
private Object [] elements ;

/∗∗ Index where the top of the stack i s ∗/
private int top ;

/// Constructor ////
public Stack2 () {

elements = new Object [ARRAYSIZE] ;
top = 0;

}
//METHODS GO HERE

}

Here, the variable elements is an array of objects. We have a static
variable that declares that our array will have at most 20 elements in it.
To create a Stack2, we create an array of Objects, and set the top at element
index zero.

Program
Example #60Example Java Code: Stack implementation with an array—methods

190
CHAPTER 8. ABSTRACT DATA TYPES: SEPARATING THE

MEANING FROM THE IMPLEMENTATION

//// Methods ///
public void push (Object element){

// New elements go at the top
elements [top]= element ;
// then add to the top
top ++;
i f (top==ARRAYSIZE){

System . out . pr int ln (” Stack overflow ! ”) ;
}

}

public Object peek () {
i f (top ==0){

System . out . pr int ln (” Stack empty ! ”) ;
return null ;

} else{
return elements [top−1];}

}

public Object pop () {
Object toReturn = this . peek () ;
top−−;
return toReturn ;

}

/∗∗ Size i s simply the top index ∗/
public int s ize () { return top ;}

/∗∗ Empty? ∗/
public boolean empty () {return this . s i ze () == 0;}

How it works: In this implementation, the variable top is an index to the
next empty element in the array. The size is then the same as the index. To
insert a new element, we set the value at elements[top] and increment top.
The top value is at elements[top−1]. To remove an element, we decrement
top.

We can now test Stack2 and find that it works remarkably like our Stack.
When we first create an instance of Stack2, it looks like Figure 8.5. After
we push ’ ’Matt’’ on the stack, it looks like Figure 8.6—the variable top
always points at the next element on the stack. We then push ’ ’Katie’ ’ and
’ ’ Jenny’’, then pop ’ ’ Jenny’’, resulting in Figure 8.7—Jenny is still in the
array, but since top points at that element, Jenny will be over-written with
the next push().

Welcome to DrJava.
> Stack2 stack = new Stack2();
> stack.push("Matt")
> stack.push("Katie")

8.1. INTRODUCING THE STACK 191

Figure 8.5: An empty stack as an array

Figure 8.6: After pushing Matt onto the stack-as-an-array

> stack.push("Jenny")
> stack.size()
3
> stack.peek()
"Jenny"
> stack.pop()
"Jenny"
> stack.pop()
"Katie"
> stack.pop()
"Matt"
> stack.pop()
Stack empty!
null

There are problems with Stack2 as an implementation of a stack. For
example, what happens if you need more than 20 elements in your stack?
And actually, it’s 19 elements—top always points at an unused cell. How-
ever, within the limitations of Stack2 (e.g., as long as you have fewer than
20 elements in the stack), it is a perfectly valid implementation of a stack.
Both Stack and Stack2 are implementations of the same stack ADT.

192
CHAPTER 8. ABSTRACT DATA TYPES: SEPARATING THE

MEANING FROM THE IMPLEMENTATION

Figure 8.7: After pushing Katie and Jenny, then popping Jenny

Uses of a Stack

We haven’t seen enough algorithms yet to be able to describe many uses
of stacks, though they are quite useful. For example, the process of con-
verting an equation like 4 ∗ sin(x/2) into operations that a computer can
execute uses a stack. There is one use of a stack that we have already seen
a need for—reversing a list.

Below is the method that we wrote previously for reversing a list.

Program
Example #61 Example Java Code: Reverse a list–repeated

/∗∗
∗ Reverse the l i s t s tar t ing at this ,
∗ and return the las t element of the l i s t .
∗ The la s t element becomes the FIRST element
∗ of the l i s t , and THIS points to null .
∗∗/

public LayeredSceneElement reverse () {
LayeredSceneElement reversed , temp ;

// Handle the f i r s t node outside the loop
reversed = this . l a s t () ;
this . remove (reversed) ;

while (this . getNext () != null)
{

temp = this . l a s t () ;
this . remove (temp) ;
reversed . add (temp) ;

} ;

// Now put the head of the old l i s t on the end of
// the reversed l i s t .
reversed . add (this) ;

8.1. INTRODUCING THE STACK 193

// At th i s point , reversed
// i s the head of the l i s t
return reversed ;

}

It’s awfully inefficient. To get each item in the list, it goes to the last ()
(which requires touching every element in the list), removes it (which in-
volves touching every node in order to find the one before the one we want
to remove), and then adds it to the end of the reversed list (by walking all
the elements of the reversed list to get the last). Overall, touching each
node of n nodes requires touching every other node at least once, meaning
that it’s an O(n2) algorithm.

We can do this much faster with a stack. We simply walk the list push-
ing everything onto the stack. We pop them off again, and they assemble
in reversed order.

Program
Example #62Example Java Code: Reverse with a stack

/∗∗
∗ Reverse2 : Push a l l the elements on
∗ the stack , then pop a l l the elements
∗ o f f the stack .
∗∗/

public LayeredSceneElement reverse2 () {
LayeredSceneElement reversed , current , popped ;
Stack stack = new Stack () ;

// Push a l l the elements on the l i s t
current=this ;
while (current != null)
{

stack . push (current) ;
current = current . getNext () ;

}

// Make the las t element (current top of stack) into new f i r s t
reversed = (LayeredSceneElement) stack . pop () ;

// Now, pop them a l l onto the l i s t
current = reversed ;
while (stack . s i ze () >0) {

popped=(LayeredSceneElement) stack . pop () ;
current . insertAfter (popped) ;
current = popped ;

}

194
CHAPTER 8. ABSTRACT DATA TYPES: SEPARATING THE

MEANING FROM THE IMPLEMENTATION

return reversed ;
}

You will notice that we have to cast the popped elements. Our Stack
returns instances of Object. To get them to be able to access methods like
getNext() and insertAfter(), we have to tell Java that these are actually our
linked list nodes. So we cast, like popped=(LayeredSceneElement) stack.pop();.

There is a big difference in time of execution here. Each node is touched
exactly twice—once going on the stack, and once coming off. There is no
last nor remove here to cause us extra traversals of the list. This is an O(n)
algorithm—much faster than the last one.

Does that time really matter? If you really needed to reverse a linked
list, does O(n) or O(n2) matter? Couldn’t you just recreate the linked list,
even, rather than reverse it? There are situations where the size of the list
does matter.

Consider a scene from Pixar’s The Incredibles, where the monorail en-
ters the bad guy’s lair through a waterfall that parts (incredible!) to allow
the monorail entry. Each droplet in that scene was modeled as an object
that was nearly transparent—it showed up only 1 millionth of a bit of color.
Thus, everwhere that looks white (which is nearly everywhere in a water-
fall scene) is actually over one million objects stacked up at that spot on
the screen.

Now, imagine that those droplets are stored in a linked list, and the
director says “Ooh! Oooh! Now, let’s show the waterfall from the inside as
the monorail passes through!” At that point, you have to reverse the linked
list. You could recreate the list—but that is a big list to recreate. If your
algorithm is O(n), that’s a million steps per screen element. That’s a lot
of processing, but not insurmountable. If your algorithm is O(n2), that’s
a million-squared operations per screen element—one trillion operations
per pixel. Computers are fast. Computers are not infinitely fast.
8.2 Introduction to Queues

A queue is another useful abstract data type. A queue models what the
British call “a queue,” and what we in the United States call “a line.” A
queue is a FIFO list, First In First Out list. The first one in the line is the
first one served. When someone new comes into the line, the bouncer at
the front of the line yells out, “Get in the back of the line!” New elements
enter at the end, not at the front, never in the middle (that’s called “cutting
in the line”.

Unlike a stack, which just has a head or top, a queue has both a head
and a tail (Figure 8.8). Elements are popped from the head (Figure 8.9).
When a new element comes in, it gets pushed onto the queue at the tail
(Figure 8.10).

The basic operations of a queue are pretty similar to those of a stack.

8.2. INTRODUCTION TO QUEUES 195

Figure 8.8: A basic queue

Figure 8.9: Elements are removed from the top or head of the queue

Figure 8.10: New elements are pushed onto the tail of the queue

• push(anObject): Tack a new object onto the tail of the queue

• pop(): Pull the top (head) object off the queue.

• peek(): Get the head of the queue, but dont remove it from the queue.

• size () : Return the size of the queue

• empty(): Return true or false, if the size of the queue is zero.

We should be able to use a queue like this:

> Queue line = new Queue();
> line.push("Fred");
> line.push("Mary");
> line.push("Jose");
> line.size()

196
CHAPTER 8. ABSTRACT DATA TYPES: SEPARATING THE

MEANING FROM THE IMPLEMENTATION

3
> line.peek()
"Fred"
> line.pop()
"Fred"
> line.peek()
"Mary"
> line.pop()
"Mary"
> line.peek()
"Jose"
> line.pop()
"Jose"
> line.pop()
java.util.NoSuchElementException:

Implementing a Queue
We can implement a queue using either a linked list, or an array—just like
a stack. A linked list implementation of a queue is again made very easy
by Java’s LinkedList implementation.

Program
Example #63 Example Java Code: Queue implemented as a linked list

import java . u t i l . ∗ ; // LinkedList representat ion

/∗∗
∗ Implements a simple queue
∗∗/

public class Queue {
/∗∗ Where we ’ l l s t o r e our elements ∗/
public LinkedList elements ;

/// Constructor
public Queue () {

elements = new LinkedList () ;
}

/// Methods

/∗∗ Push an o b j e c t onto the Queue ∗/
public void push (Object element){

elements . addFirst (element) ;
}

/∗∗ Peek at , but don ’ t remove , top of queue ∗/
public Object peek () {

8.2. INTRODUCTION TO QUEUES 197

return elements . getLast () ; }

/∗∗ Pop an o b j e c t from the Queue ∗/
public Object pop () {

Object toReturn = this . peek () ;
elements . removeLast () ;
return toReturn ;

}

/∗∗ Return the s i z e o f a queue ∗/
public int s ize () { return elements . s i ze () ; }

/∗∗ Empty? ∗/
public boolean empty () {return this . s i ze () == 0;}

}

How it works: In this implementation of a queue, the elements are stored
in an instance of Java’s LinkedList. The front of the linked list is the tail.
The last of the linked list is the head. (That may seem backwards, but any
arrangement of head/tail to front/back is arbitrary. That one might find an
implementation confusing is yet another good reason for separating the
concerns.) To pop the stack then requires removing the last (removeLast),
and to push is adding to the first (addFirst).

The critical issue in implementing a queue is that, from the perspec-
tive of the use of the queue, the implementation doesn’t matter. As long
as those same basic operations are available, the implementation of the
queue can be swapped out, improved, made faster (or slower, for that
matter)—and it just doesn’t matter to the program using the queue.

An obvious alternative to the linked list implementation seen above is
an implementation based on an array. Implementing a queue using an
array to store the elements is much the same as implementing a stack
with an array except that, as before, we need both a head and a tail.

Program
Example #64Example Java Code: Queue implemented as an array

/∗∗
∗ Implements a simple queue
∗∗/

public class Queue2 {

private static int ARRAYSIZE = 20;

/∗∗ Where we ’ l l s t o r e our elements ∗/
private Object [] elements ;

198
CHAPTER 8. ABSTRACT DATA TYPES: SEPARATING THE

MEANING FROM THE IMPLEMENTATION

/∗∗ The indices o f the head and t a i l ∗/
private int head ;
private int t a i l ;

/// Constructor
/∗∗ Both the head and the t a i l point at the same empty c e l l ∗∗/
public Queue2 () {

elements = new Object [ARRAYSIZE] ;
head = 0;
t a i l = 0 ;

}

/∗∗ Push an o b j e c t onto the Queue ∗/
public void push (Object element){

i f ((t a i l + 1) >= ARRAYSIZE) {
System . out . pr int ln (”Queue underlying implementation f a i l e d ”) ;

}
else {

// Store at the ta i l ,
// then increment to a new open pos i t i on

elements [t a i l] = element ;
t a i l ++; } }

/∗∗ Peek at , but don ’ t remove , top of queue ∗/
public Object peek () {

return elements [head] ; }

/∗∗ Pop an o b j e c t from the Queue ∗/
public Object pop () {

Object toReturn = this . peek () ;
i f (((head + 1) >= ARRAYSIZE) | |

(head > t a i l)) {
System . out . pr int ln (”Queue underlying implementation f a i l e d . ”) ;
return toReturn ;

}
else {

// Increment the head forward , too .
head++;
return toReturn ;}}

/∗∗ Return the s i z e o f a queue ∗/
public int s ize () { return ta i l−head ;}

/∗∗ Empty? ∗/
public boolean empty () {return this . s i ze () == 0;}

}

* * *

8.2. INTRODUCTION TO QUEUES 199

Figure 8.11: When the queue-as-array starts out, head and tail are both
zero

Figure 8.12: Pushing Matt onto the queue moves up the head to the next
empty cell

Figure 8.13: Pushing Katie on moves the head further right

How it works: Each of the head and tail variables holds in index number
on the underlying array. The size of the queue is the difference between
the head and the tail. When the queue is first created, both the head
and the tail are zero, the first cell in the array (Figure 8.11). When we
push something on, the tail increments to the next empty cell in the array
(which has been implemented as the head variable in this implementation,
Figure 8.12 and Figure 8.13). Popping from the head increments it (again,
variable tail in this implementation, Figure 8.14).

The problems of implementing queues as arrays are even greater than
the ones with implementing stacks as arrays, because now we have both a

200
CHAPTER 8. ABSTRACT DATA TYPES: SEPARATING THE

MEANING FROM THE IMPLEMENTATION

Figure 8.14: Popping Matt moves the tail up to Katie

head and a tail to keep track of. Notice that the head and tail keep mov-
ing along the array, so the implementation can’t even store 20 elements at
once. It can only store 20 elements ever—once we get past 20, both head
and tail are at the end of the array. There are implementations of queues
in arrays that are smarter than this one. For example, there’s no reason
why we can’t wrap around the queue—once we increment past the end,
just start re-using cells at the beginning of the array. It’s a little trick-
ier to make sure that the head and tail don’t overlap one another. Then,
the 20 element limitation is just the number of items at once, which isn’t
unreasonable.

We haven’t seen uses of the queue yet. Queues will become very im-
portant when we create discrete event simulations. When several agents
want the same resource (e.g., when customers line up at the cashier sta-
tion, when moviegoers line up at the ticket office), they form a line. We
will need queues for modeling those lines.

Ex. 7 — Change the implementation of the queue as an array so that the
head and tail variables match the head and tail concepts.

Ex. 8 — Change the implementation of the queue as a linked list so that
the head is at the front and the tail is at the end.

Ex. 9 — Reimplement the queue in an array with wraparound—when the
head or tail get to the end of the array, they wrap around to the front.

Part III

Trees: Hierarchical Structures
for Media

201

9 Trees of Images

Chapter Learning Objectives
Having worked with linked lists of images, we are in a position to think

about non-linear lists of images. By moving to trees, we can represent
structure and hierarchy.
The computer science goals for this chapter are:

• To create and use trees to represent collections of images.

• To construct and traverse trees.

The media learning goals for this chapter are:

• To introduce the structure of a scene graph, which is a common ani-
mation data structure.

• To use trees to create an animation.

9.1 Representing scenes with trees

A list can only really represent a single dimension–either a linear place-
ment on the screen, or a linear layering front-to-back. A full scene has
multiple dimensions. More importantly, a real scene has an organization
to it. There’s the village over there, and the forest over here, and the
squadron of Orcs emerging from the scary cave mouth to the north. Real
scenes cluster—there is structure and organization to them.

Where we left our efforts to create a dynamic data structure for rep-
resenting scenes, we had implemented a special kind of tree where some
nodes layered themselves at a particular (x, y), and other nodes just laid
themselves out left-to-right. One problem with this structure is that it’s
linear—none of the structure or organization we would want to model is
available in a linear linked list. A second problem is an issue of responsi-
bility. Should a picture know where it is going to be drawn? Shouldn’t it
just be drawn wherever it’s told to be drawn—whether that’s in a long lin-

203

204 CHAPTER 9. TREES OF IMAGES

ear list like long lines of Orcs in The Lord of the Rings movies1, or whether
it’s particularly positioned like a specific house, tree, or Hobbit.

Computer Science Idea: Distribution of Responsibility
A key idea in object-oriented programming is distributing responsibility
throughout the collection of objects in a model. Each object should only
know what it needs to know do its job, and its methods should just be
sufficient to implement that job.

We can represent an entire scene with a tree. Computer scientists call
the tree that is rendered to generate an entire scene a scene graph. Scene
graphs are a common data structure representing three-dimensional scenes.
An interesting aspect of scene graphs is that they typically embed opera-
tions within the branches of the tree which effect rendering of their chil-
dren. Figure 9.1 is a simple scene graph2 with branches that rotate in
three dimensions their children elements. Figure 9.2 is a more sophisti-
cated scene graph3 based on the Java 3-D libraries—you’ll see that it also
represents more sophisticated aspects of rendering the scene, like where
the lighting is and implementing translations that move the drawing of
the children to a particular place on the screen.

Figure 9.1: A simple scene graph

We are going to use scene graphs to represent a simple two-dimensional
movie. A scene graph is a kind of tree. We are going to use our tree to
cluster and organize our scene, and we will use operations in the branches
of the tree to help define how the scene should be rendered.

1Do you think someone positioned each of those thousands of Orcs by hand? Or something
auto-positioned them?

2From http://www.gamedev.net/reference/articles/article2028.asp
3Used with permission from http://ocw.mit.edu/OcwWeb/

Civil-and-Environmental-Engineering/1-124JFall2000/LectureNotes/
detail/java_3d_lecture.htm

9.2. OUR FIRST SCENE GRAPH: ATTACK OF THE KILLER WOLVIES205

Figure 9.2: A more sophisticated scene graph based on Java 3-D

9.2 Our First Scene Graph: Attack of the Killer
Wolvies

Here is the story that we will be rendering with our first scene graph.
The peaceful village in the forest rests, unsuspecting that a pack of three
blood-thirsty doggies, er, fierce wolvies are sneaking up on it (Figure 9.3).
Closer they come, until the hero bursts onto the scene (Figure 9.4)! The
fear-stricken wolvies scamper away (Figure 9.5).

Figure 9.3: The nasty wolvies sneak up on the unsuspecting village in the
forest

This scene is described as a scene graph (Figure 9.6). There is a root
object, of class Branch. Each of the individual pictures are instances of
BlueScreenNode which are kinds of PictNode (Picture Nodes) that use chro-
makey (“blue screen”) for rendering themselves onto the screen. The po-

206 CHAPTER 9. TREES OF IMAGES

Figure 9.4: Then, our hero appears!

Figure 9.5: And the nasty wolvies scamper away

sition of nodes is done with MoveBranch branches. Some of the objects are
laid out vertically (like the wolvies) using a VBranch instance, and others
horizontally (like the forest) using a HBranch instance.

This scene graph underlying this scene is quite clearly a tree (Fig-
ure 9.7). There is a root at the top of the tree that everything is connected
to. Each node has at most one parent node. There are branch nodes that
have children nodes connected to them. At the ends of each branch, there
are leaf nodes that have no children. In our scene graph, the leaves are all
nodes that draw something. The branches collect the children, and thus,
structure the scene. In addition, the branches in the scene graph do some-
thing.

9.3. THE CLASSES IN THE SCENEGRAPH 207

Figure 9.6: Mapping the elements of the scene onto the scene graph

Figure 9.7: Stripping away the graphics—the scene graph is a tree

9.3 The Classes in the SceneGraph

The heart of the classes in this scene graph implementation is DrawableNode.
All nodes and branches inherit from DrawableNode (Figure 9.8), an ab-
stract superclass. The class DrawableNode defines how to be a node in a
linked list—it defines next, and it defines how to add, insertAfter, and the
other linked list operations. Most importantly, DrawableNode defines how
to draw the node—albeit, abstractly.

DrawableNode defines how to drawOn a given background picture (Pro-
gram Program
Example #66 (page 208)). It simply creates a turtle and draws the node
with the turtle (drawWith). The method drawWith is abstract. The defini-
tion of how any particular node actually draws itself is left to the super-

208 CHAPTER 9. TREES OF IMAGES

Figure 9.8: Hierarchy of classes used in our scene graph

classes.

Program
Example #65 Example Java Code: The drawing part of DrawableNode

/∗∗
∗ Use the given t u r t l e to draw onese l f
∗ @param t the Turtle to draw with
∗∗/

abstract public void drawWith (Turtle t) ;
// No body in the superclass

/∗∗
∗ Draw on the given pic ture
∗∗/

public void drawOn(Picture bg){
Turtle t = new Turtle (bg) ;
t . setPenDown (false) ;
this . drawWith (t) ;

}

9.3. THE CLASSES IN THE SCENEGRAPH 209

* * *

Common Bug: Class structure 6= object structure
It’s easy to get confused between the tree of classes in Figure 9.8 and the
tree of objects in Figure 9.7. The tree of classes describes which classes
inherit from which other classes, where DrawableNode is the root of the
tree, the superclass or parent class of all the other classes in hierarchy.
Objects created from these classes do form a tree (that’s why we made
those classes), just not the same tree. The trees don’t represent the same
things. The tree in Figure 9.7 represents a scene—it doesn’t say anything
about inheritance. A key observation is that there are several instances of
the same class in the scene graph Figure 9.7, though each class appears
only once in the class hierarchy Figure 9.8.

DrawableNode has two child classes—Branch and PictNode. Branch and
its subclasses know how to deal with children. A Branch knows how to
tell all of its children to draw, and then ask its siblings to draw. PictNode
and its subclass, BlueScreenNode know how to deal with drawing pictures,
the leaves of the trees. A PictNode holds a picture, and draws its picture
by simply asking the turtle pen to drop the picture on the background.
A BlueScreenNode has a picture, via inheritance from PictNode, but uses
chromakey to put the picture onto the background.

Subclasses of Branch are about positioning and ordering the children of
the branch.

• A MoveBranch positions the pen to a particular place before asking
the children to draw. The MoveBranch knows x and y variables for
where it should start drawing. An instance of MoveBranch is useful
for positioning part of the scene.

• The branches VBranch and HBranch do automatic positioning of the
children. A VBranch lays out its children vertically, and a HBranch
lays out its children horizontally. Both add a gap variable for how
much space to skip between children.

Thus, a MoveBranch with a PictNode or BlueScreenNode essentially does
what a SceneElementLayered instance does—draw a particular picture at a
particular place on the frame. First elements drawn appear below later
elements in the tree. A VBranch or HBranch instance with picture nodes
lets you do what a SceneElementPositioned instance does—automatic posi-
tioning of a picture. Our scene graph implementation, then, has all the
capabilities of our earlier linked list, with the addition of structuring.

210 CHAPTER 9. TREES OF IMAGES

9.4 Building a scene graph

Let’s walk through the WolfAttackMovie class, to show an example of using
these classes to construct a scene graph and then create a movie that is so
bad that not even the “Rotten Tomatoes” website would review it.

Program
Example #66 Example Java Code: Start of WolfAttackMovie class

public class WolfAttackMovie {
/∗∗
∗ The root o f the scene data s tructure
∗∗/

Branch sceneRoot ;

/∗∗
∗ FrameSequence where the animation
∗ i s created
∗∗/

FrameSequence frames ;

/∗∗
∗ The nodes we need to track between methods
∗∗/

MoveBranch wolfentry , wolfretreat , hero ;

It makes sense that an instance of WolfAttackMovie will need to know the
root of its scene graph, sceneRoot, and that it would be an instance of
Branch. It also makes sense that a WolfAttackMovie instance will need to
know a FrameSequence instance for storing and playing back the frames of
the memory. What probably does not make sense is why there are three
MoveBranch instances defined as instance variables for WolfAttackMovie.

It’s not good object-oriented programming practice—rather, we placed
the variables there to deal with scope between methods. Within WolfAttackMovie,
we have a method setUp which creates the scene graph, and a later method
renderAnimation which creates all the frames. To change the position of
some elements in the scene, we will change the (x, y) position of the cor-
responding MoveBranch instances. How do we find the right MoveBranch
instances to, for example, move the wolves closer to the village. Option one
is to acceess the right branch through the root: searching the children and
nexts to find it. Option two is to store the MoveBranch reference in an in-
stance variable that is then within scope of both setUp and renderAnimation,
so that we can create it in setUp and change it in renderAnimation. We’re
using option two here. It’s not a great idea to use instance variables to

9.4. BUILDING A SCENE GRAPH 211

simply solve scoping problems. The advantage of option two is that it is
simple.

The setUp method is large in WolfAttackMovie. It involves creating all
the branches that we will need in the tree, which is a larger task than
simply creating the first scene.

Program
Example #67Example Java Code: Start of setUp method in WolfAttackMovie

/∗∗
∗ Set up a l l the p i eces o f the t r e e .
∗∗/

public void setUp () {
Picture wolf = new Picture (FileChooser . getMediaPath (” dog−blue . jpg ”)) ;
Picture house = new Picture (FileChooser . getMediaPath (” house−blue . jpg ”)) ;
Picture tree = new Picture (FileChooser . getMediaPath (” tree−blue . jpg ”)) ;
Picture monster = new Picture (FileChooser . getMediaPath (” monster−face3 . jpg ”)) ;

//Make the f o r e s t
MoveBranch fo res t = new MoveBranch (10 ,400) ; // f o r e s t on the bottom
HBranch trees = new HBranch (5 0) ; // Spaced out 50 p i x e l s between
BlueScreenNode treenode ;
for (int i =0; i < 8; i ++) // inse r t 8 t r e e s
{ treenode = new BlueScreenNode (tree . scale (0 . 5)) ;

trees . addChild (treenode) ; }
f o res t . addChild (trees) ;

// Make the c l u s t e r o f attacking ” wolves ”
wolfentry = new MoveBranch (10 ,50) ; // star t ing pos i t ion
VBranch wolves = new VBranch (2 0) ; // space out by 20 p i x e l s between
BlueScreenNode wolf1 = new BlueScreenNode (wolf . scale (0 . 5)) ;
BlueScreenNode wolf2 = new BlueScreenNode (wolf . scale (0 . 5)) ;
BlueScreenNode wolf3 = new BlueScreenNode (wolf . scale (0 . 5)) ;
wolves . addChild (wolf1) ; wolves . addChild (wolf2) ; wolves . addChild (wolf3) ;
wolfentry . addChild (wolves) ;

How it works: The method setUp creates the pictures that we will need
in the movie, then defines the forest branch of the tree (Figure 9.9). The
code above creates the MoveBranch instance stored in the variable forest
It creates an HBranch named trees that will hold all the trees. Each of
the BlueScreenNode instances for each tree is created and named treenode.
As the trees are created, they are added as children of the trees branch.
Finally, the trees branch is added as a child of the forest.

Next, we create the wolves. There’s a critical difference between creat-
ing the MoveBranch for the wolfentry versus the MoveBranch for the forest.

212 CHAPTER 9. TREES OF IMAGES

Figure 9.9: The forest branch created in setUp—arrows point to children

* * *

Common Bug: Declaring it hides the instance variable
By declaring the variable forest as a MoveBranch, we make forest a vari-
able local to the method setUp. That means that the variable forest will
not exist in renderAnimation. The variable wolfentry is not declared, so the
reference in setUp is actually referencing the instance variable wolfentry.
If we had declared wolfentry as a MoveBranch, the setUp would work still.
However, renderAnimation would be referencing the wolfentry defined as an
instance variable, which has no variable, and won’t actually do anything.
The wolves would never move. Declaring the variable in setUp makes it
impossible to reach the instance variable with the same name.

The wolfentry branch is constructed much like the forest branch. There
is a MoveBranch instance for positioning, then a VBranch for storing the
wolves, then three BlueScreenNode instances for storing the actual wolves.

Program
Example #68 Example Java Code: Rest of setUp for WolfAttackMovie

9.4. BUILDING A SCENE GRAPH 213

// Make the c l u s t e r o f r e t r ea t ing ” wolves ”
wolfretreat = new MoveBranch (400 ,50) ; // star t ing pos i t ion
wolves = new VBranch (2 0) ; // space them out by 20 p ix e l s between
wolf1 = new BlueScreenNode (wolf . sca le (0 . 5) . f l i p ()) ;
wolf2 = new BlueScreenNode (wolf . sca le (0 . 5) . f l i p ()) ;
wolf3 = new BlueScreenNode (wolf . sca le (0 . 5) . f l i p ()) ;
wolves . addChild (wolf1) ; wolves . addChild (wolf2) ; wolves . addChild (wolf3) ;
wol fretreat . addChild (wolves) ;

// Make the v i l l a g e
MoveBranch v i l l a g e = new MoveBranch(300 ,450) ; // Vil lage on bottom
HBranch hhouses = new HBranch (4 0) ; // Houses are 40 p ix e l s apart across
BlueScreenNode house1 = new BlueScreenNode (house . scale (0 . 2 5)) ;
BlueScreenNode house2 = new BlueScreenNode (house . scale (0 . 2 5)) ;
BlueScreenNode house3 = new BlueScreenNode (house . scale (0 . 2 5)) ;
VBranch vhouses = new VBranch(−50); // Houses move UP, 50 p ix e l s apart
BlueScreenNode house4 = new BlueScreenNode (house . scale (0 . 2 5)) ;
BlueScreenNode house5 = new BlueScreenNode (house . scale (0 . 2 5)) ;
BlueScreenNode house6 = new BlueScreenNode (house . scale (0 . 2 5)) ;
vhouses . addChild (house4) ; vhouses . addChild (house5) ; vhouses . addChild (house6) ;
hhouses . addChild (house1) ; hhouses . addChild (house2) ; hhouses . addChild (house3) ;
hhouses . addChild (vhouses) ; // Yes , a VBranch can be a child of an HBranch!
v i l l a g e . addChild (hhouses) ;

// Make the monster
hero = new MoveBranch(400 ,300) ;
BlueScreenNode heronode = new BlueScreenNode (monster . scale (0 . 7 5) . f l i p ()) ;
hero . addChild (heronode) ;

//Assemble the base scene
sceneRoot = new Branch () ;
sceneRoot . addChild (f o res t) ;
sceneRoot . addChild (v i l l a g e) ;
sceneRoot . addChild (wolfentry) ;

}

How it works: The rest of setUp works similarly. We create a branch for
wolfretreat, which is amazingly similar to wolfentry except that the wolves
are flipped—they face away from the village. The village is a bit more com-
plicated. There is an HBranch that contains three BlueScreenNode houses
and a VBranch (with three more houses) as children. When the village is
rendered, it will draw one house, then another, then the third, and then,
at the spot where a fourth house would go, there is a vertical line of three
more houses going straight up.

At the very end of setUp, we add into the sceneRoot the three branches
that appear in the first scene: the forest, the village, and the wolfentry.
Where is the wolfretreat and the hero branches? They are not in the initial

214 CHAPTER 9. TREES OF IMAGES

scene. They appear later, when we render the whole thing.

Program
Example #69 Example Java Code: Rendering just the first scene in WolfAttackMovie

/∗∗
∗ Render jus t the f i r s t scene
∗∗/

public void renderScene () {
Picture bg = new Picture (500 ,500) ;
sceneRoot . drawOn(bg) ;
bg . show () ;

}

When developing a movie, it’s important to see if the basic setUp worked.
When we were creating this first movie, we would often create a WolfAttackMovie
instance, set it up, then renderScene to see how the first scene looked. We
would then adjust positions of the forest and the village, and repeat until
we were happy with the basic set up.

Now that we have our basic scene graph created, we can render our
movie.

Program
Example #70 Example Java Code: renderAnimation in WolfAttackMovie

/∗∗
∗ Render the whole animation
∗∗/

public void renderAnimation () {
frames = new FrameSequence (”C : / Temp/ ”) ;
frames . show () ;
Picture bg ;

// First , the nasty wolvies come c l o s e r to the poor v i l l a g e
// Cue the scary music
for (int i =0; i <25; i ++)
{

// Render the frame
bg = new Picture (500 ,500) ;
sceneRoot . drawOn(bg) ;
frames . addFrame(bg) ;

// Tweak the data s tructure
wolfentry . moveTo (wolfentry . getXPos ()+5 , wolfentry . getYPos () + 1 0) ;

}

9.4. BUILDING A SCENE GRAPH 215

// Now, our hero arr ives !
this . root () . addChild (hero) ;
// Render the frame
bg = new Picture (500 ,500) ;
sceneRoot . drawOn(bg) ;
frames . addFrame(bg) ;

// Remove the wolves entering , and ins e r t the wolves re t r ea t ing
this . root () . chi ldren . remove (wolfentry) ;
this . root () . addChild (wol fretreat) ;
// Make sure that they r e t r e a t from the same place that they were at
wolfretreat . moveTo (wolfentry . getXPos () , wolfentry . getYPos ()) ;
// Render the frame
bg = new Picture (500 ,500) ;
sceneRoot . drawOn(bg) ;
frames . addFrame(bg) ;

// Now, the cowardly wolves hightai l i t out o f there !
// Cue the triumphant music
for (int i =0; i <10; i ++)
{

// Render the frame
bg = new Picture (500 ,500) ;
sceneRoot . drawOn(bg) ;
frames . addFrame(bg) ;

// Tweak the data s truc ture
wolfretreat . moveTo (wol fretreat . getXPos ()−10 , wol fretreat . getYPos ()−20) ;

}
}

How it works: Rendering a frame from the scene graph is basically these
three lines:

// Render the frame
bg = new Picture (500 ,500) ;
sceneRoot . drawOn(bg) ;
frames . addFrame(bg) ;

The rest of renderAnimation is changing the scene graph around this
rendering.

• During the first 25 frames, the evil wolves are sneaking up on the
poor, unsuspecting village. Between each frame, the wolves are moved
by changing the position of the wolventry branch, with a horizontal (x)
velocity of 5 pixels per frame and a vertical velocity of 10 pixels per
frame.

wolfentry . moveTo (wolfentry . getXPos ()+5 , wolfentry . getYPos () + 1 0) ;

216 CHAPTER 9. TREES OF IMAGES

• And then, the hero arrives! We insert the hero branch into the code
and render.

• Now, we remove the wolfentry branch and insert the wolfretreat branch.
We carefully make sure that the wolves are retreating from where
they last stopped entering, with the line:

// Make sure that they r e t r e a t from the same place that they were at
wolfretreat . moveTo (wolfentry . getXPos () , wolfentry . getYPos ()) ;

• The wolves then scamper away, at a faster rate than when they en-
tered.

We run the movie like this:

Welcome to DrJava.
> WolfAttackMovie wam = new WolfAttackMovie(); wam.setUp(); wam.renderScene();
> wam.renderAnimation();
There are no frames to show yet. When you add a frame it will be shown
> wam.replay();

Common Bug: When you run out of memory, within DrJava
Rendering large movies can easily eat up all available memory. You can
make DrJava give your Interactions Pane more memory to execute, which
would allow you to run large movie code from within DrJava. You can
insert the options −Xms128m −Xmx512m in the PREFERENCES (under the
EDIT menu) to take effect for all uses of the Interactions Pane (Figure 9.10).

Common Bug: Increasing memory at the command line
If you are not running DrJava, or you are so tight on memory that you don’t
even want DrJava in memory, you still have options if you are running out
of memory. You can run your movies from the command line and specify
the amount of memory you need.

First, you have to be able to run Java from the command line, which
means being able to use the java and javac (Java compiler) commands. We
have found that some Java installations do not have these set up right.
Make sure that your Java JDK bin directory is in your class PATH. For
Windows, you use the SYSTEM control panel to change environment vari-
ables. To use javac to compile your programs, you may need to change
the CLASSPATH in System environment variables to point to your JAVA-
SOURCE directory. If you have javac set up right, you should be able to

9.5. IMPLEMENTING THE SCENE GRAPH 217

Figure 9.10: Reserving more memory for the Interactions Pane in DrJava’s
Preferences pane

compile your class files from outside of DrJava—at a command prompt,
type javac (YourMovieClassNameHere).java.

To run it, type java −Xms128m −Xmx512m (YourMovieClassNameHere) −Xms128m
says, “At the very least, give this program 128 megabytes to run.” −Xmx512m
says, “And give it up to 512 megabytes.”

Now, when you run java like this, you’re actually executing the public static void main
method. Here’s what we added to WolfAttackMovie to make it work from the
command line:

public static void main (String [] args){
WolfAttackMovie wam = new WolfAttackMovie () ;
wam. setUp () ;
wam. renderAnimation () ;
wam. replay () ;

}

9.5 Implementing the Scene Graph

Recall lesson from the last chapter, that the way we think about a data
structure does not have to match the way that it is implemented. While it
is useful to think about branches having several children, we do not have
to implement multiple references between (say) the forest branch and the
tree nodes. Branches must have a way of adding and getting children—
that’s part of the definition of a tree. How it’s implemented is up to us.

Our scene graphs are actually implemented as lists of lists. All sib-
lings are connected through next links. Each branch is connected to its
first child, and only the first child, through its children link. The class

218 CHAPTER 9. TREES OF IMAGES

Figure 9.11: The implementation of the scene graph overlaid on the tree
abstraction

Figure 9.12: The actual implementation of the scene graph

Branch defines children, so all branches have the children link by inheri-
tance. Figure 9.11 shows the abstraction of the scene graph tree (as seen
in Figure 9.7), overlaid with the actual implementation.

We can think of our notion of parent nodes with children nodes as an
abstraction. It is a useful way of thinking about trees. There are many ways
of implementing that abstraction, though. Figure 9.12 shows the actual
implementation of our scene graph.

The advantage of a list-of-lists implementation is that we are introduc-
ing no new data structure implementation ideas. It’s all linked lists. There
is one special kind of link, the children, both other than that, it’s all next
links and the same methods we’ve used all along.

9.5. IMPLEMENTING THE SCENE GRAPH 219

* * *

Common Bug: Can’t remove the first child
There is a bug in our implementation of linked lists up to this point in
the book, and that same bug extends to our implementation of children in
branches. We cannot remove the first item in a list. We will fix this bug in a
few chapters, but for now, it dictates the order in which we add children to
a branch. Notice that we add the forest as a child of the sceneRoot first. In
general, forests don’t move (Macbeth excepted) and don’t disappear (rain
forests excepted). Therefore, we won’t have to remove the forest branch to
the root, so it’s safe to add first. If we would have added wolfentry as the
first child of the sceneRoot, we would never have been able to remove it.

Implementing the abstract superclass for the scene graph:
DrawableNode

The heart of our scene graph (literally, the base of the class hierarchy for
these classes) is DrawableNode. It’s actually not complicated at all. It’s
mostly the same as SceneElement or any of the other linked lists we’ve seen
so-far.

Program
Example #71Example Java Code: DrawableNode

/∗∗
∗ Stuf f that a l l nodes and branches in the
∗ scene t r e e know .
∗∗/

abstract public class DrawableNode {
/∗∗
∗ The next branch/node/whatever to process
∗∗/

public DrawableNode next ;

/∗∗
∗ Constructor for DrawableNode jus t s e t s
∗ next to null
∗∗/

public DrawableNode () {
next = null ;

}

/∗∗
∗ Methods to s e t and get next elements
∗ @param nextOne next element in l i s t

220 CHAPTER 9. TREES OF IMAGES

∗∗/
public void setNext (DrawableNode nextOne){

this . next = nextOne ;
}

public DrawableNode getNext () {
return this . next ;

}

/∗∗
∗ Use the given t u r t l e to draw onese l f
∗ @param t the Turtle to draw with
∗∗/

abstract public void drawWith (Turtle t) ;
// No body in the superclass

/∗∗
∗ Draw on the given pic ture
∗∗/

public void drawOn(Picture bg){
Turtle t = new Turtle (bg) ;
t . setPenDown (false) ;
this . drawWith (t) ;

}

/∗∗ Method to remove node from l i s t , f i x ing l inks appropriately .
∗ @param node element to remove from l i s t .
∗∗/

public void remove (DrawableNode node){
i f (node==this)
{

System . out . pr int ln (” I can ’ t remove the f i r s t node from the l i s t . ”) ;
return ;

} ;

DrawableNode current = this ;
// While there are more nodes to consider
while (current . getNext () != null)
{

i f (current . getNext () == node){
// Simply make node ’ s next be th i s next
current . setNext (node . getNext ()) ;
// Make th i s node point to nothing
node . setNext (null) ;
return ;

}
current = current . getNext () ;

}
}

9.5. IMPLEMENTING THE SCENE GRAPH 221

/∗∗
∗ Inser t the input node a f t e r th i s node .
∗ @param node element to ins e r t a f t e r th i s .
∗∗/

public void insertAfter (DrawableNode node){
// Save what ” th i s ” current ly points at
DrawableNode oldNext = this . getNext () ;
this . setNext (node) ;
node . setNext (oldNext) ;

}

/∗∗
∗ Return the l as t element in the l i s t
∗∗/

public DrawableNode las t () {
DrawableNode current ;

current = this ;
while (current . getNext () != null)
{

current = current . getNext () ;
} ;
return current ;

}

/∗∗
∗ Add the input node a f t e r the la s t node in th i s l i s t .
∗ @param node element to ins e r t a f t e r th i s .
∗∗/

public void add (DrawableNode node){
this . l a s t () . insertAfter (node) ;

}

}

How it works: Class DrawableNode has two main functions.

• The first is to be an abstract superclass for defining linked lists. For
that reason, it has a next variable, operations for getting and setting
next, and list operations like add and remove.

• The second is to be “drawable.” Every DrawableNode subclass instance
must know how to drawOn and drawWith.

222 CHAPTER 9. TREES OF IMAGES

Implementing the leaf nodes: PictNode and
BlueScreenNode

Leaf nodes in the scene graphs are the pictures themselves. In WolfAttackMovie,
these are the trees, houses, wolves, and hero. The class PictNode simply
drops pictures—we don’t actually use it in WolfAttackMovie. It is the su-
perclass for BlueScreenNode, the leaf node class that we use in the example
movie.

Program
Example #72 Example Java Code: PictNode

/∗
∗ PictNode i s a c lass represent ing a drawn pic ture
∗ node in a scene t r e e .
∗∗/

public class PictNode extends DrawableNode {
/∗∗
∗ The pic ture I ’m associated with
∗∗/

Picture myPict ;

/∗
∗ Make me with th i s pic ture
∗ @param pic t the Picture I ’m associated with
∗∗/

public PictNode (Picture p i c t){
super () ; // Call superclass constructor
myPict = p i c t ;

}

/∗∗
∗ Method to return a str ing with informaiton
∗ about th i s node
∗/

public String toString ()
{

return ” PictNode (with picture : ”+myPict+” and next : ”+next ;
}

/∗
∗ Use the given t u r t l e to draw onese l f
∗ @param pen the Turtle to draw with
∗∗/

public void drawWith (Turtle pen){
pen . drop (myPict) ;

}
}

9.5. IMPLEMENTING THE SCENE GRAPH 223

Figure 9.13: How we actually got some of the bluescreen pictures in this
book, such as our hero in WolfAttackMovie

How it works: Class PictNode is really quite simple. It has an instance
variable, myPict that represents the picture to be shown for the node. The
heart of the class is the drawWith method which only asks the input turtle
to drop the picture.

The class BlueScreenNode inherits from PictNode and is only slightly
more complicated. Instead of dropping the picture, it uses chromakey to
remove the blue background for the image. (Figure 9.13 shows how that
blue background got there in the first place.)

Program
Example #73Example Java Code: BlueScreenNode

/∗
∗ BlueScreenNode i s a PictNode that composes the
∗ pic ture using the bluescreen () method in Picture
∗∗/

public class BlueScreenNode extends PictNode {

/∗
∗ Construct does nothing fancy
∗∗/

public BlueScreenNode (Picture p){
super (p) ; // Call superclass constructor

}

224 CHAPTER 9. TREES OF IMAGES

/∗∗
∗ Method to return a str ing with informaiton
∗ about th i s node
∗/

public String toString ()
{

return ” BlueScreenNode (with picture : ”+myPict+” and next : ”+next ;
}

/∗
∗ Use the given t u r t l e to draw onese l f
∗ Get the t u r t l e ’ s picture , then bluescreen onto i t
∗ @param pen the Turtle to draw with
∗∗/

public void drawWith (Turtle pen){
Picture bg = pen . getPicture () ;
myPict . bluescreen (bg , pen . getXPos () , pen . getYPos ()) ;

}
}

How it works: The method drawWith in BlueScreenNode is a little tricky.
It asks the turtle that comes in as input “What’s your picture?”, e.g., Picture bg = pen.getPicture();.
It then calls the Picture method bluescreen to draw the picture, on the back-
ground from the turtle, at the turtle’s x, y, i.e., myPict.bluescreen(bg,pen.getXPos(),pen.getYPos());.

An interesting side comment to make here is that both of these classes
know how to toString, that is, return a string representation of themselves.
Each simply returns the printable representation of its string and its next.
For a brand new node, the next is simply null.
> BlueScreenNode bsn = new BlueScreenNode(
new Picture(FileChooser.pickAFile()))
> bsn
BlueScreenNode (with picture: Picture, filename /home/guzdial/cs1316/MediaSources/Student10.jpg
height 333 width 199 and next: null

Implementing the branches: Branch, MoveBranch,
VBranch, and HBranch
The branch classes (the class Branch and its subclasses) have children links.
Because they inherit from DrawableNode, they also have next links. Thus,
branch instances link to both children and siblings—that’s what makes
them into branches of trees.

Notice that the type of the children link is DrawableNode. That means
that any other kind of node can be a child of any branch—either leaf nodes
or other other branches. Thus, a tree can be of any depth (the maximum
number of nodes visited to get from the root to a leaf node) or complexity.

9.5. IMPLEMENTING THE SCENE GRAPH 225

* * *
Program
Example #74Example Java Code: Branch

public class Branch extends DrawableNode {
/∗
∗ A l i s t o f children to draw
∗/

public DrawableNode children ;

/∗
∗ Construct a branch with children and
∗ next as null
∗∗/

public Branch () {
super () ; // Call superclass constructor
children = null ;

}

/∗∗
∗ Method to return a str ing with informaiton
∗ about th i s branch
∗/

public String toString ()
{

String chi ldStr ing = ”No children ” , nextString=”No next ” ;
i f (chi ldren != null)
{ chi ldStr ing = children . toString () ; }
i f (next != null)
{nextString = next . toString () ; }

return ”Branch (with chi ld : ”+chi ldStr ing+” and next : ”+
nextString+”) ” ;

}

/∗∗
∗ Method to add nodes to children
∗∗/

public void addChild (DrawableNode chi ld){
i f (chi ldren != null)
{ children . add (chi ld) ; }

else
{ children = chi ld ;}

}

/∗
∗ Ask a l l our children to draw ,
∗ then l e t next draw .
∗ @param pen Turtle to draw with

226 CHAPTER 9. TREES OF IMAGES

∗∗/
public void drawWith (Turtle pen){

DrawableNode current = children ;

// Tel l the children to draw
while (current != null){

current . drawWith (pen) ;
current = current . getNext () ;

}

// Tel l my next to draw
i f (this . getNext () != null)
{ current = this . getNext () ;

current . drawWith (pen) ;
}

}
}

How it works: The most important responsibility of branches is to man-
age their children. Instances of Branch (and its subclasses) know their
children reference. A branch adds a child (addChild) by first seeing if children
is null—if it is, then the new addition is what children is set to; if it is not,
then we add the new addition to the children list.

Branches also know how to drawWith. The definition of drawWith says:
• First, ask all my children to draw.

DrawableNode current = children ;

// Tel l the children to draw
while (current != null){

current . drawWith (pen) ;
current = current . getNext () ;

}

• Then, tell my next that it can draw.
// Tel l my next to draw
i f (this . getNext () != null)
{ current = this . getNext () ;

current . drawWith (pen) ;
}

There is a similar algorithm going on in the definition of toString, to
convert a branch to a printable representation. The algorithm is to collect
all the string representations of the children, then of the next, and then
return all those pieces.

This means that we can actually watch the construction of a branch,
by printing it at each step. Below we see a BlueScreenNode, Branch, and

9.5. IMPLEMENTING THE SCENE GRAPH 227

PictNode created and connected. The BlueScreenNode shows up first, and
when we add the PictNode, it appears as the next of the BlueScreenNode.

> BlueScreenNode bsn = new BlueScreenNode(new Picture(FileChooser.pickAFile()))
> bsn
BlueScreenNode (with picture: Picture, filename /home/guzdial/cs1316/MediaSources/Student10.jpg
height 333 width 199 and next: null
> Branch b = new Branch()
> b.addChild(bsn)
> b
Branch (with child: BlueScreenNode (with picture:
Picture, filename /home/guzdial/cs1316/MediaSources/student1.jpg
height 369 width 213 and next: null and next: No next)
> PictNode pn = new PictNode(new Picture(FileChooser.pickAFile()))
> b.addChild(pn)
> b
Branch (with child: BlueScreenNode (with picture:
Picture, filename /home/guzdial/cs1316/MediaSources/student1.jpg
height 369 width 213 and next: PictNode (with picture:
Picture, filename /home/guzdial/cs1316/MediaSources/Student7.jpg
height 422 width 419 and next: null and next: No next)

The two branch subclasses that position their children automatically,
HBranch and VBranch, only provide two methods: a constructor for stor-
ing the gap between children, and a new drawWith which moves the turtle
appropriately between drawings of children.

Program
Example #75Example Java Code: HBranch

public class HBranch extends Branch {

/∗∗
∗ Horizontal gap between children
∗∗/

int gap ;

/∗
∗ Construct a branch with children and
∗ next as null
∗∗/

public HBranch(int spacing){
super () ; // Call superclass constructor
gap = spacing ;

}

/∗∗
∗ Method to return a str ing with information
∗ about th i s branch

228 CHAPTER 9. TREES OF IMAGES

∗/
public String toString ()
{

return ” Horizontal ”+super . toString () ;
}

/∗
∗ Ask a l l our children to draw ,
∗ then l e t next draw .
∗ @param pen Turtle to draw with
∗∗/

public void drawWith (Turtle pen){
DrawableNode current = children ;

// Have my children draw
while (current != null){

current . drawWith (pen) ;
pen . moveTo (pen . getXPos ()+ gap , pen . getYPos ()) ;
current = current . getNext () ;

}

// Have my next draw
i f (this . getNext () != null)
{ current = this . getNext () ;

current . drawWith (pen) ; }
}

}

Program
Example #76 Example Java Code: VBranch

public class VBranch extends Branch {

/∗∗
∗ Ver t i ca l gap between children
∗∗/

int gap ;

/∗
∗ Construct a branch with children and
∗ next as null
∗∗/

public VBranch (int spacing){
super () ; // Call superclass constructor
gap = spacing ;

}

9.5. IMPLEMENTING THE SCENE GRAPH 229

/∗∗
∗ Method to return a str ing with informaiton
∗ about th i s branch
∗/

public String toString ()
{

return ” Vert i ca l ”+super . toString () ;
}

/∗
∗ Ask a l l our children to draw ,
∗ then l e t next draw .
∗ @param pen Turtle to draw with
∗∗/

public void drawWith (Turtle pen){
DrawableNode current = children ;

// Have my children draw
while (current != null){

current . drawWith (pen) ;
pen . moveTo (pen . getXPos () , pen . getYPos ()+ gap) ;
current =current . getNext () ;

}

// Have my next draw
i f (this . getNext () != null)
{ current = this . getNext () ;

current . drawWith (pen) ; }
}

}

The class MoveBranch differs in that it keeps track of an x, y position

Program
Example #77Example Java Code: MoveBranch

public class MoveBranch extends Branch {

/∗∗
∗ Posi t ion where to draw at
∗∗/

int x , y ;

/∗∗
∗ Construct a branch with children and
∗ next as null

230 CHAPTER 9. TREES OF IMAGES

∗∗/
public MoveBranch (int x , int y){

super () ; // Call superclass constructor
this . x = x ;
this . y = y ;

}

/∗∗
∗ Accessors
∗∗/

public int getXPos () {return this . x ;}
public int getYPos () {return this . y ;}
public void moveTo (int x , int y){

this . x = x ; this . y = y ;}

/∗∗
∗ Method to return a str ing with informaiton
∗ about th i s branch
∗/

public String toString ()
{

return ”Move (”+x+” , ”+y+”) ”+super . toString () ;
}

/∗
∗ Set the locat ion , then draw
∗ @param pen Turtle to draw with
∗∗/

public void drawWith (Turtle pen){
pen . moveTo (this . x , this . y) ;
super . drawWith (pen) ; // Do a normal branch now

}
}

What would happen if we decided that the moveTo of the pen in MoveBranch’s
drawWith should occur after processing the children and before processing
the next? What would happen if all the branches processed the next be-
fore the children? These aren’t unreasonable possibilities. They describe
different kinds of traversals that one can make of the data structure.
The Line between Structure and Behavior

Here’s a thought experiment: Where is the program in our scene graph?

• Is the program the class DrawableNode and its subclasses? That can’t
be it—by themselves, they don’t do anything at all. The DrawableNode
class hierarchy defines the behavior, but not how that behavior is
structured and executed.

9.6. EXERCISES 231

• Is the program in the class WolfAttackMovie? It is true that WolfAttackMovie
assembles all the pieces from the DrawableNode classes in order to de-
fine the movie. The class WolfAttackMovie defines the structure of the
movie from those classes.

• However, the actual scenes are not defined in WolfAttackMovie. In-
stead, the scenes emerge from executing that movie. The actual lay-
out of the trees and village houses is not specified in WolfAttackMovie.
Instead, it’s determined by the branches in the tree when the tree is
rendered. The actual data structure and its use blends structure and
behavior.

9.6 Exercises

Ex. 10 — Implement one different traversal of the scene graph, as de-
scribed at the end of the branch subsection above. Does it make a differ-
ence in how the scene looks?

Ex. 11 — Most of renderAnimation in WolfAttackMovie is about changing
the location of MoveBranch instances. Create a new class RelativeMoveBranch
which is created with a starting location (x, y) and a horizontal velocity
and vertical velocity. Each time that an instance of a RelativeMoveBranch is
told to update, it automatically updates its current location by its velocity.
Rewrite WolfAttackMovie to use this new kind of branch.

Ex. 12 — Both PictNode and BlueScreenNode presume that a character is
represented by a single image, just a single picture, e.g., if our wolves
moved, changed position of their head and paws, or even appeared to walk.
The animation would be improved considerably if the characters changed.
Create a new class, CharacterNode that maintains a list of pictures (your
choice if the implementation is an array, vector, or linked list of pictures)
for a given character. Each time an instance of CharacterNode is asked to
drawWith, the current character image is incremented (perhaps randomly
among the list of pictures), so that the next rendering draws a different
image for the character.

Ex. 13 — Create an animation of at least 20 frames with sounds associ-
ated with frames.
Here’s how you need to do it:

•Create a tree of images that describe your scene. I’ll refer to this as
the scene structure.
•Create another list with the sounds to be played during the animation
of this tree. (Sounds could be a rest!)

232 CHAPTER 9. TREES OF IMAGES

•Here’s the key part! When you animate your scene (for at least 20
scenes!) and play your sounds, YOU CANNOT MAKE ANY NEW
SOUNDS! You must play your sounds out of your list of sounds. In
other words, the sounds must be pre-made and assembled in a struc-
ture before you start your animation.

You can use and modify any of the data structures that we’ve described in
class. You can create new data structures if you’d like.
You will also need to create a class (call it AnimationRunner). We should be
able to use it by creating an instance of the class
(AnimationRunner ar = new AnimationRunner()),
and then...

•The method setUp() sent to the instance (ar.setUp()) should set up the
two data structures.
•The method play() send to the instance should play the movie with
sound.
•The method replay() should replay the FrameSequence, but won’t do
the sound, too.

There are several ways to handle the animation.Here’s one:
•Render the first frame to a FrameSequence instance.
•For each frame that you want to generate (There must be at least 20
frames):

–Make a change in the scene structure. Any change you want is
acceptable.

–Render the scene structure.
–Play the sound in the frame list element. Use blockingPlay() in-
stead of play() on your sound to make the processing wait (syn-
chronize) until the sound is done before moving on. (Hint: If your
sound is over 1/10 of a second long, you can’t get 10 frames per
second! These will be short sounds! Want something to play over
two frames? Play the first half in one frame, and the second half
in the next frame.) Note: You don’t have to use blockingPlay(). You
can use a mixture of play() and blockingPlay() to get better response
while still maintaining synchrony.

10 Lists and Trees for Structuring
Sounds

Chapter Learning Objectives
In the past chapters, we used linked lists and trees to structure im-

ages and music. In this chapter, we’ll add a new medium to our repertoire
for dynamic data structures, sampled sounds (e.g., .WAV files). But we’ll
use recursion for the traversals, which provides us a more compact way of
describing our traversals.
The computer science goals for this chapter are:

• To iterate across linked lists and trees using recursion.

• To replace elements in a data structure, and to define what the “same”
node means.

• To explore different kinds of traversals. We will take an operation
embedded in a branch, and choose to apply it to the next branch or to
the children branch.

The media learning goals for this chapter are:

• To use our new, dynamic ways of structuring media to describe sound
patterns and music.

10.1 Composing with Sampled Sounds and Linked
Lists: Recursive Traversals

We originally started down this path of linked lists and trees in order to
create a way of composing music flexibly. Our original efforts was with
MIDI. However, one might also want to compose sound using sampled or
recorded sound. In this chapter, we use the same data structures that we
have developed in the previous few chapters in the service of supporting
flexible composition of sampled sounds in linked lists.

It’s pretty straight forward for us to define a simple linked list structure
now. The below definition of a linked list node, SoundElement, that has a
Sound instance within it has little new for us.

233

234 CHAPTER 10. LISTS AND TREES FOR STRUCTURING SOUNDS

* * *
Program
Example #78 Example Java Code: SoundElement

/∗∗
∗ Sounds for a linked l i s t
∗∗/

public class SoundElement {

/∗∗
∗ The sound th is element i s associated with
∗∗/

Sound mySound ;

/∗∗
∗ The next element to process
∗∗/

public SoundElement next ;

/∗∗
∗ Constructor s e t s next to null
∗ and re f e r ences the input sound .
∗∗/

public SoundElement (Sound aSound){
next = null ;
mySound = aSound ;

}

/∗∗
∗ Return my sound
∗∗/

public Sound getSound () { return mySound;}

/∗∗
∗ Play JUST me, blocked .
∗∗/

public void playSound () {mySound . blockingPlay () ; }
public void blockingPlay () {mySound . blockingPlay () ; }

/∗∗
∗ Provide a printable representat ion of me
∗∗/

public String toString () {
return ”SoundElement with sound : ”+mySound+” (and next : ”+next+”) . ” ;

}

/∗∗
∗ Methods to s e t and get next elements

10.1. COMPOSING WITH SAMPLED SOUNDS AND LINKED LISTS:
RECURSIVE TRAVERSALS 235

∗ @param nextOne next element in l i s t
∗∗/

public void setNext (SoundElement nextOne){
this . next = nextOne ;

}

public SoundElement getNext () {
return this . next ;

}

/∗∗
∗ Play the l i s t o f sound elements
∗ a f t e r me
∗∗/

public void playFromMeOn () {
this . c o l l e c t () . play () ;

}

/∗∗
∗ Col l e c t a l l the sounds from me on ,
∗ r e curs iv e l y .
∗∗/

public Sound c o l l e c t () {
i f (this . getNext () == null)
{return mySound;}
else
{return mySound . append (this . getNext () . c o l l e c t ()) ; }

}

/∗∗ Method to remove node from l i s t , f i x ing l inks appropriately .
∗ @param node element to remove from l i s t .
∗∗/

public void remove (SoundElement node){
i f (node==this)
{

System . out . pr int ln (” I can ’ t remove the f i r s t node from the l i s t . ”) ;
return ;

} ;

SoundElement current = this ;
// While there are more nodes to consider
while (current . getNext () != null)
{

i f (current . getNext () == node){
// Simply make node ’ s next be th i s next
current . setNext (node . getNext ()) ;
// Make th i s node point to nothing
node . setNext (null) ;
return ;

}

236 CHAPTER 10. LISTS AND TREES FOR STRUCTURING SOUNDS

current = current . getNext () ;
}

}

/∗∗
∗ Inser t the input node a f t e r th i s node .
∗ @param node element to ins e r t a f t e r th i s .
∗∗/

public void insertAfter (SoundElement node){
// Save what ” th i s ” current ly points at
SoundElement oldNext = this . getNext () ;
this . setNext (node) ;
node . setNext (oldNext) ;

}

/∗∗
∗ Return the la s t element in the l i s t
∗∗/

public SoundElement las t () {
SoundElement current ;

current = this ;
while (current . getNext () != null)
{

current = current . getNext () ;
} ;
return current ;

}

/∗∗
∗ Add the input node a f t e r the l a s t node in th i s l i s t .
∗ @param node element to ins e r t a f t e r th i s .
∗∗/

public void add (SoundElement node){
this . l a s t () . insertAfter (node) ;

}

How it works: There are two interesting elements in this linked list im-
plementation. Both of them involve the use of recursion for traversing a
data structure.

Look at how we define toString for SoundElement.

return ”SoundElement with sound : ”+mySound+” (and next : ”+next+”) . ” ;

That’s really straightforward, isn’t it? Display “SoundElement with...”,
then the printable representation of the sound, and then the printable
representation of the next. When the next is just null, that makes perfect

10.1. COMPOSING WITH SAMPLED SOUNDS AND LINKED LISTS:
RECURSIVE TRAVERSALS 237

sense how it would work.
> Sound s = new Sound("D:/cs1316/mediasources/shh-a-h.wav");
> Sound t = new Sound("D:/cs1316/mediasources/croak-h.wav");
> Sound u = new Sound("D:/cs1316/mediasources/clap-q.wav");
> SoundElement e1 = new SoundElement(s);
> SoundElement e2 = new SoundElement(t);
> SoundElement e3 = new SoundElement(u);
> e1.playFromMeOn();
> e1
SoundElement with sound: Sound file:
D:/cs1316/mediasources/shh-a-h.wav
number of samples: 11004 (and next: null).

That makes sense. The interesting thing is that this works, still, when
we have additional SoundElement instances in it.

> e1.setNext(e2)
> e1
SoundElement with sound:
Sound file: D:/cs1316/mediasources/shh-a-h.wav
number of samples: 11004 (and next:
SoundElement with sound: Sound file:
D:/cs1316/mediasources/croak-h.wav
number of samples: 8808 (and next: null).).
> e2.setNext(e3)
> e1
SoundElement with sound: Sound file: D:/cs1316/mediasources/shh-a-h.wav
number of samples: 11004 (and next:
SoundElement with sound:
Sound file: D:/cs1316/mediasources/croak-h.wav
number of samples: 8808 (and next:
SoundElement with sound:
Sound file: D:/cs1316/mediasources/clap-q.wav
number of samples: 4584 (and next: null).).).

Where did all that text come from? When we try to print next and it
is not null, then the object that next refers to is asked to convert itself
to a string (toString). If that next object is also a SoundElement (as in the
above examples), then the same toString method is executed (the one in
SceneElement). The difference in the next call is that the object being asked
to convert itsef (this) is different.

In the above example, e1 starts executing toString, which then tries to
print next—which is e2. The node e2 is then asked toString, and when it
gets to next, the node e3 is asked to convert itself toString. When e3 is done
(since it’s next is null), e3.toString() ends, then e2.toString() ends, and finally
the original call to print e1 ends. This process is called a recursive traversal
of the linked list—we are traversing (walking along, visiting) each node of
the linked list, by using the same method which repeatedly calls itself. In

238 CHAPTER 10. LISTS AND TREES FOR STRUCTURING SOUNDS

Figure 10.1: The initial SoundElement list

Figure 10.2: As we start executing playFromMeOn()

the case of toString, the calls are implicit—they happen when we try to
print out next.

Tracing a Recursive Traversal
In the above example, if we then asked e1.playFromMeOn(), another recur-
sive traversal would occur. Let’s trace what happens. When we start the
execution, the linked list looks like Figure 10.1.

The method playFromMeOn() is really short—it only says this. collect (). play(); .
The method collect () does all the hard work. It collects the sounds from all
the individual nodes into one big Sound instance, so that the big sound can
finally be played. So, the interest work occurs in collect () .

So we start out by asking e1 (Figure 10.2), to execute the below code.

public Sound c o l l e c t () {
i f (this . getNext () == null)
{return mySound;}

Clearly, getNext() is not null, so we end up making the recursive call.

else
{return mySound . append (this . getNext () . c o l l e c t ()) ; }

10.1. COMPOSING WITH SAMPLED SOUNDS AND LINKED LISTS:
RECURSIVE TRAVERSALS 239

Figure 10.3: Calling e2.collect()

Figure 10.4: Finally, we can return a sound

Our call to e1. collect () is now frozen. It’s not ended, but it can’t go any
further yet. It now has to process this.getNext().collect () .

We are now asking e2 (which is what this.getNext() means) to collect ()
(Figure 10.3). The question of “Where is e1?” isn’t relevant. From e2’s
perspective, e1 doesn’t exist. We’re simply asking e2. collect () .

The node e2 also has a next, so we execute else return mySound.append(this.getNext().collect());.
Now, we have the execution of e2. collect () frozen. Neither e1. collect () nor
e2. collect () can end yet—they’re waiting in limbo.

Now, we execute e3. collect () (Figure 10.4). Finally the first part of
collect () is true—next is null. We return the sound in e3.

Now we can unfreeze e2. collect () (Figure 10.5). Now that we have this.getNext().collect () ,
we can append to it the sound of e2 and return back to e1. collect () .

Finally, e1. collect () gets the sounds from e2 and e3 appended together,
from its execution of this.getNext().collect () . The sound from e1 gets ap-
pended to the rest, and we finally return from e1. collect () . We return “shh-
a-h.wav” appended with “croak-h.wav” appended with “clap-q.wav.” That’s

240 CHAPTER 10. LISTS AND TREES FOR STRUCTURING SOUNDS

Figure 10.5: Ending e2.collect()

what finally gets played.

Making It Work Tip: Tracing your program
It is very important for you to be able to do what we just did in this section.
You should be able to trace through your programs when you need to. You
don’t always have to be able to trace through your programs in this much
detail, but when something goes wrong, it helps enormously to be able to
do this.

Testing and Replacing

Below is a program that constructs a linked list from the SoundElement
class.

Program
Example #79 Example Java Code: SoundListText: Constructing a SoundElement

list

public class SoundListTest {
SoundElement root ;

public SoundElement root () { return root ;}

public void setUp () {
Sound s = new Sound (FileChooser . getMediaPath (” scratch−h . wav”)) ;

root = new SoundElement (s) ;

s = new Sound (FileChooser . getMediaPath (” gonga−2.wav”)) ;
SoundElement one = new SoundElement (s) ;
root . repeatNext (one , 1 0) ;

10.1. COMPOSING WITH SAMPLED SOUNDS AND LINKED LISTS:
RECURSIVE TRAVERSALS 241

s = new Sound (FileChooser . getMediaPath (” scr i tch−q . wav”)) ;
SoundElement two = new SoundElement (s) ;
root . weave (two , 3 , 3) ;
s = new Sound (FileChooser . getMediaPath (” clap−q . wav”)) ;
SoundElement three = new SoundElement (s) ;
root . weave (three , 5 , 2) ;

root . playFromMeOn () ;
}

Go ahead and try it. You’ll notice that you get sounds between other sounds
because of the use of repeatNext and weave for SoundElement. It looks much
like the code that we developed back for MIDI.

Program
Example #80Example Java Code: RepeatNext for SoundElement

/∗∗
∗ Repeat the input phrase for the number of times s p e c i f i e d .
∗ I t always appends to the current node , NOT ins e r t .
∗ @param nextOne node to be copied in to l i s t
∗ @param count number of times to copy i t in .
∗/

public void repeatNext (SoundElement nextOne , int count) {
SoundElement current = this ; // Start from here
SoundElement copy ; // Where we keep the current copy

for (int i =1; i <= count ; i ++)
{

copy = nextOne . copyNode () ; // Make a copy
current . setNext (copy) ; // Set as next
current = copy ; // Now append to copy

}
}

Program
Example #81Example Java Code: Weave for SoundElement

/∗∗
∗ Weave the input sound count times every skipAmount elements
∗ @param nextOne SoundElement to be copied into the l i s t
∗ @param count how many times to copy

242 CHAPTER 10. LISTS AND TREES FOR STRUCTURING SOUNDS

∗ @param skipAmount how many nodes to skip per weave
∗/

public void weave (SoundElement nextOne , int count , int skipAmount)
{

SoundElement current = this ; // Start from here
SoundElement copy ; // Where we keep the one to be weaved in
SoundElement oldNext ; // Need th i s to in s e r t properly
int skipped ; // Number skipped current ly

for (int i =1; i <= count ; i ++)
{

copy = nextOne . copyNode () ; // Make a copy

//Skip skipAmount nodes
skipped = 1;
while ((current . getNext () != null) && (skipped < skipAmount))
{

current = current . getNext () ;
skipped ++;

} ;

oldNext = current . getNext () ; // Save i t s next
current . insertAfter (copy) ; // Inser t the copy a f t e r th i s one
current = oldNext ; // Continue on with the r e s t
i f (current == null) // Did we actual ly get to the end early ?

break ; // Leave the loop
}

}

In both of these methods, we create a copy of the input node, using the
method copyNode. How does that work? What does it mean to copy a
SoundElement node?

Program
Example #82 Example Java Code: copyNode for SoundElement

/∗∗
∗ copyNode returns a copy of th i s element
∗ @return another element with the same sound
∗/

public SoundElement copyNode () {
Sound copySound ;
i f (this . mySound . getFileName () == null)
{copySound = this . mySound . scale (1 . 0) ; } // Does nothing −− copies
else
{copySound = new Sound (this . mySound . getFileName ()) ; } // Copy from f i l e

10.1. COMPOSING WITH SAMPLED SOUNDS AND LINKED LISTS:
RECURSIVE TRAVERSALS 243

SoundElement returnMe = new SoundElement (copySound) ;
return returnMe ;

}

How it works: What does it mean for one node to be a copy of another
node? The most critical thing is for the node to have the same sound. It
turns out that Sound instances have more than just a bunch of samples
associated with them—they also know their filename. Sometimes they
do. If a Sound instance is not created from a file, perhaps created from
manipulating some other sound (by scaling or appending, for example),
then the sound has no filename associated with it.

So, if we want a SoundElement node to have an identical structure, all
the way down to the structure of its Sound, then we have to deal with two
cases: (a) if there is no filename, and (b) if there is. If there is a filename,
then creating the right sound is easy—we simply go create a new sound
from the same filename. If there is no filename, we need some way to get a
copy of that sound. This method uses one way: scale by 1.0. Scaling by 1.0
is simply a copy of the original sound.

A Problem and Its Solution: Removing a node without recreating the
list
You should try that example in SoundListTest. It’s really annoying. There
are 10 gongs in there that seemingly keep going on and on and on. How
can we get rid of them?

The obvious thing to do is to modify the SoundListTest class to use fewer
(or zero!) gongs, recompile, and re-run it. What if we couldn’t? Imagine
that you have a long linked list that has been created through many dif-
ferent operations, and it would take too long or be too hard to recreate
it.

What we can do is to walk through the list, find the gongs, and re-
place the sounds in those nodes with some other sound. We’ll call it “de-
gonging.”

Program
Example #83Example Java Code: De-gonging the list

public void degong () {
Sound gong = new Sound (FileChooser . getMediaPath (” gonga−2.wav”)) ;
Sound snap = new Sound (FileChooser . getMediaPath (” snap−tenth . wav”)) ;
root . replace (gong , snap) ;

244 CHAPTER 10. LISTS AND TREES FOR STRUCTURING SOUNDS

}

We know how to write replace. We’re simply going to iterate through
the list, find the nodes that have the gong, and replace it with the snap.
However, it’s not quite that easy. How do you know which sounds contain
the gong sound? That’s the trick. The gong sound in the SoundElement is
not the same object as is input (e.g., it’s not == to the sound gong above).
We have to figure out what it means for two objects (the input sound and
the sound in a node) to be equivalent even if they’re not the exact same
object.

Program
Example #84 Example Java Code: replace for SoundElement

/∗∗
∗ Replace the one sound with the other sound
∗ in a l l the elements from me on .
∗ Decide two sounds are equal i f come from same filename
∗ @param oldSound sound to be replaced
∗ @param newSOund sound to put in i t s place
∗∗/

public void replace (Sound oldSound , Sound newSound){
i f (mySound . getFileName () != null)
{ i f (mySound . getFileName () . equals (oldSound . getFileName ()))
{mySound = newSound;}}

i f (next != null)
{next . replace (oldSound , newSound) ; }
}

How it works: For our purposes, we’ll use a very simply notion of equiv-
alence. If the sound in the node has the same fileName as the input sound,
it’s the same. Obviously, this is a poor approach, e.g., if you have cre-
ated the sound that you’re looking for, you won’t possibly make it. It will
work for our de-gonging method, though, since we want to find and remove
sounds made from the “gong” file.

Notice that, since we’re comparing two strings (the filenames), we use
the equals method. We can’t use == method because that checks if two
objects are equal, the exact same object. It’s not the case that the two
strings are the same. We need to check if the two strings have the same
characters—that’s what the equals method does. We have to check first
that there’s a fileName string at all. If there isn’t (e.g., the Sound instance
was created via scale or some other method that returns a Sound instance

10.1. COMPOSING WITH SAMPLED SOUNDS AND LINKED LISTS:
RECURSIVE TRAVERSALS 245

that was never associated with a file), then the fileName is null—and null
does not understand equals.

The replace method has no explicit loop—no for, no while. Instead,
it traverses the list using recursion. We call the method replace on each
segment of the linked list that we want to check. Let’s walk through how
that works. Imagine that we execute e1.replace(croak,clap) on the list in
Figure 10.6.

Figure 10.6: Starting out with e1.replace(croak,clap)

We start out executing the method replace in Figure 10.7:
public void replace (Sound oldSound , Sound newSound){

i f (mySound . getFileName () != null)
{ i f (mySound . getFileName () . equals (oldSound . getFileName ()))
{mySound = newSound;}}

Figure 10.7: Checking the first node

It is clear that the “croak” sound is not the same as the “shh” sound, so
we continue on.
i f (next != null)

{next . replace (oldSound , newSound) ; }
Now, e2 is asked to replace(croak,clap) (Figure 10.8). Node e2 does contain

“croak” so we replace it with a “clap.” Since the next of e2 is not null, we go
on to call e3.replace(croak,clap).

246 CHAPTER 10. LISTS AND TREES FOR STRUCTURING SOUNDS

Figure 10.8: Replacing from e2 on

Figure 10.9: Finally, replace on node e3

The node e3 does not contain the “croak” sound, so we don’t replace
anything (Figure 10.9). The next value on e3 is null, so we return.

While it is invisible to us (no additional code is executed), after e3.replace(croak,clap)
ends, the method execution for e2.replace(croak,clap) also ends. Finally,
e1.replace(croak,clap) ends. Those other method executions were awaiting
the completion of the later method executions—they could be thought of
as being “frozen” or “in limbo.”

10.2. USING TREES TO STRUCTURE SAMPLED SOUNDS 247

Figure 10.10: Our first sampled sound tree

10.2 Using Trees to Structure Sampled Sounds

Just as with MIDI phrases and images, we may want to structure our sam-
pled sounds in compositions with a sense of clusters or hierarchy. A long,
linear list of sampled sounds is hard to manipulate and think about. We
naturally think about sound in clusters: motif expositions and recapitula-
tions, or verses and chorus. So, just like with MIDI phrases and images,
we can explore the use of trees to structure our sampled sounds.

Just like with our MIDI phrases and images, we might also embed op-
erations in our branches. We might have branches that reverse the sound
collected from the children (all appended together), or scale the children’s
sounds, or normalize the volume of the children’s sound. Thus, we can
created trees of sampled sounds that combine structure and behavior.

We are going to use an implementation of trees that is similar to the
one that we created for images, the structure called a linked list of lists.
All nodes will have a next, and branches will also have a children link
(Figure 10.10). We will create a normal branch, and a ScaleBranch which
changes the frequency of the sounds that are children of the branch.

We would create and play this example sound tree like this:

Welcome to DrJava.
> SoundTreeExample tree = new SoundTreeExample();
> tree.setUp();
> tree.play()

We might then change the scaling factor in our ScaleBranch, then replay
the tree:

> tree.playScaled(2.0);
> tree.play();

248 CHAPTER 10. LISTS AND TREES FOR STRUCTURING SOUNDS

Here’s what our class SoundTreeExample looks like.

Program
Example #85 Example Java Code: SoundTreeExample

public class SoundTreeExample {

// Declared here because
// needed between methods
ScaleBranch scaledBranch ;

SoundBranch root ;
public SoundBranch root () {return root ;}

public void setUp () {
Sound clap = new Sound (

FileChooser . getMediaPath (” clap−q . wav”)) ;
Sound chirp = new Sound (

FileChooser . getMediaPath (” chirp−2.wav”)) ;
Sound rest = new Sound (

FileChooser . getMediaPath (” rest −1.wav”)) ;
Sound snap = new Sound (

FileChooser . getMediaPath (” snap−tenth . wav”)) ;
Sound cl ink = new Sound (

FileChooser . getMediaPath (” clink−tenth . wav”)) ;
Sound clave = new Sound (

FileChooser . getMediaPath (” clave−twentieth . wav”)) ;
Sound gong = new Sound (

FileChooser . getMediaPath (” gongb−2.wav”)) ;
Sound bassoon = new Sound (

FileChooser . getMediaPath (” bassoon−c4 . wav”)) ;
Sound i s = new Sound (

FileChooser . getMediaPath (” i s . wav”)) ;
Sound aah = new Sound (

FileChooser . getMediaPath (”aah . wav”)) ;

// Build the root
root = new SoundBranch () ;
SoundNode sn ;

// Build the f i r s t branch
SoundBranch branch1 = new SoundBranch () ;
// One node , containing 3 sounds appended
// together to create ONE sound
sn = new SoundNode (clap .

append (rest) . append (snap)) ;
branch1 . addChild (sn) ;
sn = new SoundNode (aah .

10.2. USING TREES TO STRUCTURE SAMPLED SOUNDS 249

append (snap) . append (rest)) ;
branch1 . addChild (sn) ;

// Build our scaled branch
scaledBranch = new ScaleBranch (1 . 0) ;
sn = new SoundNode (c l ink .

append (clave) . append (gong)) ;
scaledBranch . addChild (sn) ;
sn = new SoundNode (i s .

append (chirp) . append (clap)) ;
scaledBranch . addChild (sn) ;

// Build a third branch , our second SoundBranch
SoundBranch branch2 =

new SoundBranch () ;
sn = new SoundNode (clap .

append (snap) . append (snap)) ;
branch2 . addChild (sn) ;
sn = new SoundNode (bassoon .

append (snap) . append (clap)) ;
branch2 . addChild (sn) ;

// Assemble the whole t r e e
root . addChild (branch1) ;
root . addChild (scaledBranch) ;
root . addChild (branch2) ;

}

public void play () {
root . playFromMeOn () ;

}

public void playScaled (double fac tor){
scaledBranch . setFactor (fac tor) ;
root . playFromMeOn () ;

}
}

How it works: There are a lot of similarities between this class and the
WolfAttackMovie class. Each create a root variable that holds the main
branch of the tree. Some branches that need to be accessed between meth-
ods are declared in variables in the class. The setUp() methods in both
classes have a very similar structure. Each creates a branch, creates the
nodes that go in that branch, and then loads the nodes into the branch.
SoundTreeExample may be a little confusing, in that each node only con-
tains a single Sound, but in this example, each node’s Sound is a collection
of three appended sounds. It’s still one Sound per SoundNode.

250 CHAPTER 10. LISTS AND TREES FOR STRUCTURING SOUNDS

Once we create our tree, we can explore the structure of the tree by sim-
ply printing it out. All the objects in the sound tree have toString methods.
Since we know the implementation of the tree, we can walk the children
and next links to explore the whole tree.
> tree // Not very useful in itself
SoundTreeExample@92b1a1
> tree.root() // Way useful
SoundBranch (with child:
SoundBranch (with child:
SoundNode (with sound: Sound number of samples: 28568 and next:
SoundNode (with sound: Sound number of samples: 46034 and next:
null and next:
ScaleBranch (1.0) SoundBranch (with child:
SoundNode (with sound: Sound number of samples: 47392 and next:
SoundNode (with sound: Sound number of samples: 32126 and next:
null and next:
SoundBranch (with child:
SoundNode (with sound: Sound number of samples: 8452 and next:
SoundNode (with sound: Sound number of samples: 28568 and next:
null and next: No next))) and next: No next)
> tree.root().children // All the children of the root
SoundBranch (with child:
SoundNode (with sound:
Sound number of samples: 28568 and next:
SoundNode (with sound:
Sound number of samples: 46034 and
next: null and next:
ScaleBranch (1.0) SoundBranch (with child:
SoundNode (with sound:
Sound number of samples: 47392 and next:
SoundNode (with sound:
Sound number of samples: 32126 and next: null and next:
SoundBranch (with child: SoundNode (with sound:
Sound number of samples: 8452 and next:
SoundNode (with sound:
Sound number of samples: 28568 and next: null and next: No next)))
> tree.root().children.getNext() // Second branch on
ScaleBranch (1.0) SoundBranch (with child:
SoundNode (with sound:
Sound number of samples: 47392 and next:
SoundNode (with sound:
Sound number of samples: 32126 and next: null and next:
SoundBranch (with child:
SoundNode (with sound:
Sound number of samples: 8452 and next:
SoundNode (with sound:
Sound number of samples: 28568 and
next: null and next: No next))
> tree.root().children.getNext().getNext() \\ 3rd Branch

10.2. USING TREES TO STRUCTURE SAMPLED SOUNDS 251

Figure 10.11: The core classes in the CollectableNode class hierarchy

SoundBranch (with child:
SoundNode (with sound:
Sound number of samples: 8452 and next:
SoundNode (with sound:
Sound number of samples: 28568 and next: null
and next: No next)
> tree.root().children.getNext().getNext().getNext() \\ 4th branch
null

Implementing a Sound Tree
How we build a tree of sounds is very much like how we built a tree of
pictures.

• Set up a general node abstract superclass that all other node and
branch classes inherit from. In our sound tree, this superclass is
CollectableNode—a node from which a sound can be collected.

• Create a leaf node class that will store our data of interest (sounds).
Here, that’s a SoundNode

• Create a branch node that will store collections of leaves and refer-
ences to other branches—a SoundBranch (Figure 10.11).

• Create (as we wish) branch nodes with operations that do things to
the children of this branch. We have one example of a branch with
operations, ScaleBranch (Figure 10.12).

Let’s go through these classes in turn. We should note that much of the
CollectableNode class hierarchy looks much like the code in the DisplayableNode
class hierarchy.

* * *

252 CHAPTER 10. LISTS AND TREES FOR STRUCTURING SOUNDS

Figure 10.12: Extending the class hierarchy with ScaleBranch

Program
Example #86Example Java Code: CollectableNode

/∗∗
∗ Stuf f that a l l nodes and branches in the
∗ sound t r e e know .
∗∗/

abstract public class CollectableNode {
/∗∗
∗ The next branch/node/whatever to process
∗∗/

public CollectableNode next ;

/∗∗
∗ Constructor for CollectableNode jus t s e t s
∗ next to null
∗∗/

public CollectableNode () {
next = null ;

}

/∗∗
∗ Methods to s e t and get next elements
∗ @param nextOne next element in l i s t
∗∗/

public void setNext (CollectableNode nextOne){
this . next = nextOne ;

}

public CollectableNode getNext () {

10.2. USING TREES TO STRUCTURE SAMPLED SOUNDS 253

return this . next ;
}

// All the r e s t o f the linked l i s t
// methods are there , too : i n s e r t A f t e r () , l a s t () . . .

/∗∗
∗ Play the l i s t o f sound elements
∗ a f t e r me
∗∗/

public void playFromMeOn () {
this . c o l l e c t () . play () ;

}

/∗∗
∗ Col l e c t a l l the sounds from me on
∗∗/

abstract public Sound c o l l e c t () ;

}

How it works: For the most part, CollectableNode is simply another linked
list node class. It has a next link and lots of linked list methods. In ad-
dition, it defines abstract methods for collect ()—the method for collect-
ing a Sound from the node. In the abstract superclass CollectableNode, the
method does nothing at all. The method playFromMeOn() is defined here,
too. It simply plays what gets collected.

Program
Example #87Example Java Code: SoundNode

/∗
∗ SoundNode i s a c lass represent ing a sound
∗ node in a sound t r e e .
∗∗/

public class SoundNode extends CollectableNode {
/∗∗
∗ The sound I ’m associated with
∗∗/

Sound mySound ;

/∗
∗ Make me with th i s sound
∗ @param sound the Sound I ’m associated with
∗∗/

public SoundNode (Sound sound){

254 CHAPTER 10. LISTS AND TREES FOR STRUCTURING SOUNDS

super () ; // Call superclass constructor
mySound = sound ;

}

/∗∗
∗ Method to return a str ing with informaiton
∗ about th i s node
∗/

public String toString ()
{

return ”SoundNode (with sound : ”+mySound+” and next : ”+next ;
}

/∗∗
∗ Col l e c t a l l the sounds from me on ,
∗ r e curs iv e l y .
∗∗/

public Sound c o l l e c t () {
i f (this . getNext () == null)
{return mySound;}
else
{return mySound . append (this . getNext () . c o l l e c t ()) ; }

}
}

How it works: The class SoundNode models leaf nodes in our sound trees.
Instances of SoundNode contains a Sound. The most interesting thing about
SoundNode is how it defines toString() and collect () .

• A SoundNode instance converts itself to a String by converting its
Sound and its next to a String. That’s easy to say, and that’s why
we define it that way. Tracing it takes some thinking about it.

• A SoundNode collects its sound by (a) if it has no next node (next is
null), then returning its sound; (b) else, returning its sound appended
with whatever its next will return when we ask it to collect () . Its this
last part that is recursive. Most powerfully, though, the definition
is easy to say and easy to understand—“When I’m told to collect , I
grab me and whatever my buddy has to return.” It’s exactly how you
collect papers when you’re told to hand them to the end of the row:
you stick yours on top of what your neighbor returns, then pass the
whole stack to the next person.

Program
Example #88 Example Java Code: SoundBranch

10.2. USING TREES TO STRUCTURE SAMPLED SOUNDS 255

public class SoundBranch extends CollectableNode {
/∗
∗ A l i s t o f children to draw
∗/

public CollectableNode children ;

/∗
∗ Construct a branch with children and
∗ next as null
∗∗/

public SoundBranch () {
super () ; // Call superclass constructor
children = null ;

}
/∗∗
∗ Method to add nodes to children
∗∗/

public void addChild (CollectableNode chi ld){
i f (chi ldren != null)
{ children . add (chi ld) ; }

else
{ children = chi ld ;}

}
/∗∗
∗ Method to return a str ing with informaiton
∗ about th i s branch
∗/

public String toString ()
{

String chi ldStr ing = ”No children ” , nextString=”No next ” ;
i f (chi ldren != null)
{ chi ldStr ing = children . toString () ; }
i f (next != null)
{nextString = next . toString () ; }

return ”SoundBranch (with chi ld : ”+chi ldStr ing+” and next : ”+
nextString+”) ” ;

}

/∗∗
∗ Col l e c t a l l the sound from our children ,
∗ then c o l l e c t from next .
∗∗/

public Sound c o l l e c t () {

Sound childSound ;

i f (chi ldren != null)
{childSound = children . c o l l e c t () ; }
else

256 CHAPTER 10. LISTS AND TREES FOR STRUCTURING SOUNDS

{childSound = new Sound (1) ; }

// Col l e c t from my next
i f (this . getNext () != null)
{childSound=childSound . append (this . getNext () . c o l l e c t ()) ; }

return childSound ;
}

How it works: The class SoundBranch is the generic class for branches in
a sound tree. Again, there is a similarity with the Branch class that we
used with images.

• The definition for adding a child (addChild) is exactly the same as in
Branch—if there’s no children link, set it; else, add() to the children.

• The definition of toString() is a little complicated by the fact that we
have to traverse both the children and next links to print a branch.
We explicitly ask each variable to convert to toString() (being careful
never to ask null to convert itself to a string—though it would be
glad to do so). Then we return the string of these pieces concatenated
together.

• How a SoundBranch collects all its sounds, in collect () , is straightfor-
ward to say. First, we want to collect all the children’s sounds. If
the node children is empty (null), we create a very small (1/22, 050th
of a second) sound to serve as a dummy, empty sound. If there are
chilren, collect () from the children. We then return the childSound
appended with the collection of sounds from next. In short form, a
SoundBranch collects sounds by collecting all of its children’s sounds
(if there are any children) and all of its sibling’s sounds, and return
them appended together.

Program
Example #89 Example Java Code: ScaleBranch

public class ScaleBranch extends SoundBranch {

/∗∗ Amount to scale ∗∗/
double fac tor ;

/∗∗
∗ Construct a branch with th i s fac to r
∗∗/

public ScaleBranch (double nufactor){

10.2. USING TREES TO STRUCTURE SAMPLED SOUNDS 257

super () ; // Call superclass constructor
this . f a c tor = nufactor ;

}

/∗∗ Accessors ∗∗/
public double getFactor () {return this . f a c tor ;}
public void setFactor (double nufactor) { this . f a c tor = nufactor ;}

/∗∗
∗ Col l e c t a l l the sound from our children ,
∗ then c o l l e c t from next . Scale the children
∗∗/

public Sound c o l l e c t () {

Sound childSound ;

i f (chi ldren != null)
{childSound = children . c o l l e c t () . scale (fac tor) ; }
else
{childSound = new Sound (1) ; }

// Col l e c t from my next
i f (this . getNext () != null)
{Sound nextSound=this . getNext () . c o l l e c t () ;
childSound = childSound . append (nextSound) ; }

return childSound ;
}

/∗∗
∗ Method to return a str ing with information
∗ about th i s branch
∗/

public String toString ()
{

return ” ScaleBranch (”+ fac tor+”) ”+super . toString () ;
}

}

How it works: The class ScaleBranch is a kind of SoundBranch, so it is a
branch that knows how to add children and how to collect those children’s
sounds. In addition, a ScaleBranch has a factor that it uses to scale the
sound from its children—scaling it up in frequency or down. This change
requires a slightly different constructor (for setting the scaling factor) and
accessors. The biggest change is in the collect () method. Now, when chil-
dren are gathered, they are also scaled:

258 CHAPTER 10. LISTS AND TREES FOR STRUCTURING SOUNDS

Figure 10.13: Starting out with tree.root().collect()

i f (chi ldren != null)
{childSound = children . c o l l e c t () . scale (fac tor) ; }
else
{childSound = new Sound (1) ; }

Tracing a Recursive Tree Traversal

We have now seen how we can build and use a tree of sounds, and how
that tree of sounds is implemented. In this section, we aim to understand
how the tree traversal occurs dynamically. How is it that this simple code
in the collect () methods traverses the whole tree?

We start from this code:

Welcome to DrJava.
> SoundTreeExample tree =

new SoundTreeExample();
> tree.setUp();
> tree.root().collect().play()

The object in tree has a root() (an instance of the class SoundBranch, as
we saw earlier) which is created in setUp(). We then ask the root to collect ()
all its sounds into one big Sound which we can then play(). How does that
sound get collected?

When we start executing tree.root (). collect () , the tree and this looks like
Figure 10.13. We start executing the below method for collect () with this
pointing at the root.

public Sound c o l l e c t () {
Sound childSound ;
i f (chi ldren != null)
{childSound = children . c o l l e c t () ; }
else
{childSound = new Sound (1) ; }

10.2. USING TREES TO STRUCTURE SAMPLED SOUNDS 259

Figure 10.14: Asking the root’s children to collect()

Figure 10.15: Asking the first SoundNode to collect()

Since the root clearly has children, we ask the children to collect () .
Figure 10.14. The call to root (). collect () is frozen, as we have to wait
to get children.collect () to return before the call to the root can complete.
The same code gets executed as with the root, and since this is also a
SoundBranch, the same code executes.

Again, this branch does have children, so we ask the children.collect ()
(Figure 10.15). Now, we’re executing a different collect () method, because
now this points at a SoundNode. So, we execute this version:

public Sound c o l l e c t () {
i f (this . getNext () == null)
{return mySound;}
else
{return mySound . append (this . getNext () . c o l l e c t ()) ; }

}
The current this does have a next, so we need to collect () from there

before we can finish this method. We move on to the next SoundNode (Fig-
ure 10.16). This one has no next, so we return “Aah, snap, rest” (all ap-

260 CHAPTER 10. LISTS AND TREES FOR STRUCTURING SOUNDS

Figure 10.16: Asking the next SoundNode to collect()

Figure 10.17: Collecting from the next of the SoundBranch

pended together as one Sound object).
At this point, we’re back in the position of Figure 10.15, but later in the

method collect () . We now have collected the sound from the next, so we can
append this sound. We now return “clap, snap, rest” with “aah, snap, rest.”

We’re now back at the position of Figure 10.14. We now have the chil-
dren’s sound, so we can finish the SoundBranch’s collect () method.

// Col l e c t from my next
i f (this . getNext () != null)
{Sound nextSound=this . getNext () . c o l l e c t () ;
childSound = childSound . append (nextSound) ; }

return childSound ;
}
This SoundBranch does have a next, so we again freeze this method in-

vocation while we ask this.getNext().collect () . We are now collecting from
the ScaleBranch that is next to the SoundBranch (Figure 10.17).

We know something about what will happen next. The collect () method

10.2. USING TREES TO STRUCTURE SAMPLED SOUNDS 261

Figure 10.18: Collecting from the last SoundBranch

in ScaleBranch will gather up the sound from the children list. Then that
resultant sound will be scaled.

public Sound c o l l e c t () {
Sound childSound ;
i f (chi ldren != null)
{childSound = children . c o l l e c t () . scale (fac tor) ; }
else
{childSound = new Sound (1) ; }

We can see from the tree that we will gather “clink, clave, gong” ap-
pended to “is, chirp, clap.” That will get scaled to whatever factor is in the
ScaleBranch. Then the ScaleBranch collect () method will finish:

// Col l e c t from my next
i f (this . getNext () != null)
{Sound nextSound=this . getNext () . c o l l e c t () ;
childSound = childSound . append (nextSound) ; }
return childSound ;

}
This is the same as in the collect () method of SoundBranch, so we know

what’s going to happen here. The ScaleBranch invocation of collect () stops
executing and waits for this.getNext().collect () to execute. We ask the last
SoundBranch to collect () (Figure 10.18).

It’s worthwhile to consider just what methods are paused, frozen, wait-
ing for other methods to finish. We call that list of methods that are cur-
rently pending the stack trace. These are quite literally in a stack. The
last one on must be the first one popped. So, as of Figure 10.18, we have
methods in play:

• The currently executing method, the call to collect () on the last SoundBranch.

• The call to collect () on the ScaleBranch is waiting for the collection
from its next.

262 CHAPTER 10. LISTS AND TREES FOR STRUCTURING SOUNDS

• The call to collect () on the first SoundBranch is waiting for the collec-
tion from the ScaleBranch.

• And the call that started it all—the root SoundBranch is waiting for
the collection from its children.

We know that calling collect () on the last SoundBranch will result from
collecting its children’s sounds: “clap, snap, snap” appended with “bassoon,
snap, clap” (Figure 10.18). This last SoundBranch has no next! So this call
simply returns the sound “clap, snap, snap, bassoon, snap, clap.”

We return to the state of Figure 10.17 and pop the method off the
stack. We can now finish the call to collect () on the ScaleBranch. We re-
turn back up “clink,clave,gong,is,chirp,clap” scaled by the factor, appended
with “clap, snap, snap, bassoon, snap, clap.”

We now pop the next method off the stack, and we’re at Figure 10.14.
We take the sound from the next (the ScaleBranch and the rest of the tree),
and append the sound from its children. So it returns “clap,rest,snap,aah,snap,rest”,
plus “clink,clave,gong,is,chirp,clap” scaled by the factor, plus “clap, snap,
snap, bassoon, snap, clap.”

We pop the last method off the stack—we’re at the collect () of the root.
Obviously, the root has no next, so we simply return the sound from the
root’s children: “clap,rest,snap,aah,snap,rest”, plus “clink,clave,gong,is,chirp,clap”
scaled by the factor, plus “clap, snap, snap, bassoon, snap, clap.” And that’s
the sound that plays.

What we just traced might be called an in-order traversal. We vis-
ited the children, did whatever the branch needed to do (e.g., scale), then
processed the next. There are different orderings of traversals. Imagine a
form of ScaleBranch that scaled the result from the next rather the children.
We will visit more of these traversals in the next chapter.

Where we’re going next
Take a look at DrawableNode and CollectableNode. Pretty darn similar, aren’t
they? Duplicated code is a bad idea for several reasons:

• Duplicated code is hard to maintain. Let’s say that we figured out a
better way to do add() or reverse(). Right now, we have nearly identical
code in two different classes, so we would need to fix both of those.
What are the odds that we make a mistake at some point and forget
to fix one of them when we fix the other?

• Duplicated code is a waste of space. Why should the exact same code
be in memory in two different places.

• Duplicated code strains our notion of responsibility-driven design that
is important for object-oriented programming. Whose responsibility
is it to provide add()? Is it the responsibility of both DrawableNode and

10.2. USING TREES TO STRUCTURE SAMPLED SOUNDS 263

CollectableNode? That seems odd. Rather, it should be the responsi-
bility of some third class, that both of these classes use. That’s where
we’re going in the next chapter.

In the next chapter, we will correct this problem, and make it easier to
create more linked lists and trees in the future. Later, we will find that
graphical user interfaces are also trees, and that different kinds of traver-
sals of the same graphical user interface tree creates different window
appearances.

Ex. 14 — Change the replace method so that it actually compares the sounds
(sample-by-sample) rather than simply comparing the filenames.

Ex. 15 — Implement a subclass of SoundBranch called ReverseBranch that
reverses the sound returned from collecting the children’s sounds. Build a
sound tree example using your new class.

Ex. 16 — Implement a subclass of SoundBranch called NormalizeBranch that
normalizes volume returned from collecting the children’s sounds. Build a
sound tree example using your new class.

Ex. 17 — Implement a subclass of SoundBranch called VolumeChangeBranch
that remembers a factor for use in increasing or decreasing the volume re-
turned from collecting the children’s sounds. Build a sound tree example
using your new class.

Ex. 18 — Create a new version of ScaleBranch that scales its next rather
than its children. Build a sound tree example using your new class.

Ex. 19 — Record some individual sounds (singing perhaps?) that repre-
sents verses and chorus of some song. Use a SoundTree to organize these
sounds into the complete song with the right structure.

11 Generalizing Lists and Trees

Chapter Learning Objectives
In the last two chapters, we used trees to create an animation (the

DrawableNode class hierarchy) and a complex sound structure (the CollectableNode
class hierarchy). In this chapter, we create a generalized class that repre-
sents any kind of linked list structure. We will then go on to explain how to
create generalized tree structures that are particularly efficient for some
tasks (like searching).
The computer science goals for this chapter are:

• To factor out common functionality from two classes to create a new
abstract superclass.

• To develop strategies for how to respond to Java compiler errors.

• To understand the relative characteristics of arrays, linked lists, and
trees for various manipulations.

• To use a binary tree structure and understand its value in a search
tree.

• To explore different kinds of traversals on binary trees.

11.1 Refactoring a General Linked List Node Class

We are going to remove the duplication between DrawableNode and CollectableNode
by creating a new class, LLNode, that has the responsibility of being a
linked list node. LLNode will be an abstract superclass—we’ll never want
just an LLNode (for one thing, it will have no data—it will just be a next).
There are several advantages to this structure:

• We remove the duplication of code between DrawableNode and CollectableNode.

• We push the responsibility of being a linked list node to a class that
bears just that responsibility.

• Once we create an LLNode class, we can create a linked list of any-
thing by simply subclassing LLNode.

265

266 CHAPTER 11. GENERALIZING LISTS AND TREES

Creating an LLNode class is pretty easy. Certainly, LLNode will need a
next instance variable. We’ll simply copy-paste the linked list code from
either of DrawableNode or CollectableNode, then change all the appropriate
variable types to LLNode.

Program
Example #90 Example Java Code: LLNode, a generalized linked list node class

abstract public class LLNode{
/∗∗
∗ The next branch/node/whatever to process
∗∗/

public LLNode next ;

/∗∗
∗ Constructor for LLNode jus t s e t s
∗ next to null
∗∗/

public LLNode () {
next = null ;

}

/∗∗
∗ Methods to s e t and get next elements
∗ @param nextOne next element in l i s t
∗∗/

public void setNext (LLNode nextOne){
this . next = nextOne ;

}

public LLNode getNext () {
return this . next ;

}

/∗∗ Method to remove node from l i s t , f i x ing l inks appropriately .
∗ @param node element to remove from l i s t .
∗∗/

public void remove (LLNode node)
{

i f (node==this)
{

System . out . pr int ln (” I can ’ t remove the f i r s t node from the l i s t . ”) ;
return ;

} ;

LLNode current = this ;
// While there are more nodes to consider

11.1. REFACTORING A GENERAL LINKED LIST NODE CLASS 267

while (current . getNext () != null)
{

i f (current . getNext () == node){
// Simply make node ’ s next be th i s next
current . setNext (node . getNext ()) ;
// Make th i s node point to nothing
node . setNext (null) ;
return ;

}
current = current . getNext () ;

}
}

/∗∗
∗ Inser t the input node a f t e r th i s node .
∗ @param node element to ins e r t a f t e r th i s .
∗∗/

public void insertAfter (LLNode node){
// Save what ” th i s ” current ly points at
LLNode oldNext = this . getNext () ;
this . setNext (node) ;
node . setNext (oldNext) ;

}

/∗∗
∗ Return the l as t element in the l i s t
∗∗/

public LLNode las t () {
LLNode current ;

current = this ;
while (current . getNext () != null)
{

current = current . getNext () ;
} ;
return current ;

}
/∗∗
∗ Return the count of the elements in the l i s t
∗∗/

public int count () {
LLNode current ;
int count = 1;

current = this ;
while (current . getNext () != null)
{

count ++;
current = current . getNext () ;

268 CHAPTER 11. GENERALIZING LISTS AND TREES

} ;
return count ;

}

/∗∗
∗ Add the input node a f t e r the l a s t node in th i s l i s t .
∗ @param node element to ins e r t a f t e r th i s .
∗∗/

public void add (LLNode node){
this . l a s t () . insertAfter (node) ;

}

/∗∗
∗ Reverse the l i s t s tar t ing at this ,
∗ and return the las t element of the l i s t .
∗ The la s t element becomes the FIRST element
∗ of the l i s t , and THIS goes to null .
∗∗/

public LLNode reverse () {
LLNode reversed , temp ;

// Handle the f i r s t node outside the loop
reversed = this . l a s t () ;
this . remove (reversed) ;

while (this . getNext () != null)
{

temp = this . l a s t () ;
this . remove (temp) ;
reversed . add (temp) ;

} ;

// Now put the head of the old l i s t on the end of
// the reversed l i s t .
reversed . add (this) ;

// At th i s point , reversed
// i s the head of the l i s t
return reversed ;

}

Here’s where it gets interesting. Can we now make CollectableNode and
DrawableNode subclasses of LLNode, rip out all the replicated linked list
code from CollectableNode and DrawableNode, and then make our WolfAttackMovie
animation and sound tree examples work again? The process we’re engag-
ing in is called refactoring—we are moving replicated code up in the class

11.1. REFACTORING A GENERAL LINKED LIST NODE CLASS 269

hierarchy, and making sure that everything still works afterward.
Making WolfAttackMovie work again
We’ll start with the animation. We change DrawableNode in two ways:

• We change the class definition to extend LLNode.

• We remove the linked list code. There’s a bit more to do here beyond
simply deleting methods like add(). For example, we remove the def-
inition of the next field, we change the constructor to simply call the
super.

Program
Example #91Example Java Code: DrawableNode, with linked list code factored

out

/∗∗
∗ Stuf f that a l l nodes and branches in the
∗ scene t r e e know .
∗∗/

abstract public class DrawableNode extends LLNode {

/∗∗
∗ Constructor for DrawableNode jus t s e t s
∗ next to null
∗∗/

public DrawableNode () {
super () ;

}

/∗∗
∗ Use the given t u r t l e to draw onese l f
∗ @param t the Turtle to draw with
∗∗/

abstract public void drawWith (Turtle t) ;
// No body in the superclass

/∗∗
∗ Draw on the given pic ture
∗∗/

public void drawOn(Picture bg){
Turtle t = new Turtle (bg) ;
t . setPenDown (false) ;
this . drawWith (t) ;

}

}

270 CHAPTER 11. GENERALIZING LISTS AND TREES

This new version of DrawableNode is much smaller and seems more ap-
propriate for its responsibility. If the class LLNode now has the responsbil-
ity of “Being a linked list node,” then class DrawableNode has the respon-
sibility of “Being a linked list node that can be drawn.” The amount of
code and the methods for that, as seen above, seems appopriate for that
responsibility.

When we click COMPILE now, it doesn’t work. We get a lot of errors.
Refactoring doesn’t come for free.

• We get two errors in HBranch. The first one looks like this:

HBranch.java:38: incompatible types
found : LLNode
required: DrawableNode

It turns out that there are two errors in the method that the above
error points at, and they’re both really the same thing.

public void drawWith (Turtle pen){
DrawableNode current = children ;

// Have my children draw
while (current != null){

current . drawWith (pen) ;
pen . moveTo (pen . getXPos ()+ gap , pen . getYPos ()) ;
current = current . getNext () ; // Error here , l ine 38

}

// Have my next draw
i f (this . getNext () != null)
{ current = this . getNext () ; // Error on th i s l ine , too

current . drawWith (pen) ; }
}

The problem is that we are going to try to call drawWith() with the
object referenced in current which comes from getNext(). The method
getNext() now returns type LLNode, yet current is of type DrawableNode.
We need current to be a DrawableNode—general linked lists don’t know
how to drawWith(). That’s what’s meant by INCOMPATIBLE TYPES:
getNext() returns an LLNode, and we’re stuffing it into a DrawableNode
variable. Now, we know that this will always work—all the nodes
linked up to a DrawableNode will, in fact, be kinds of DrawableNodes.
We have to tell Java that, by casting.

public void drawWith (Turtle pen){
DrawableNode current = children ;

// Have my children draw

11.1. REFACTORING A GENERAL LINKED LIST NODE CLASS 271

while (current != null){
current . drawWith (pen) ;
pen . moveTo (pen . getXPos ()+ gap , pen . getYPos ()) ;
current = (DrawableNode) current . getNext () ;

}

// Have my next draw
i f (this . getNext () != null)
{ current = (DrawableNode) this . getNext () ;

current . drawWith (pen) ; }
}

}

• The second set of errors is identical to the first, just now in VBranch
rather than in HBranch. (This does suggest that the drawWith code
in those two classes is nearly identical, and we could further refactor
these two classes.) We similarly have incompatible types in drawWith()
because our current variable is an instance of DrawableNode but getNext()
returns an LLNode. The fix is the same—we add casting.

No more compiler errors, so let’s try to make our animation.

> WolfAttackMovie wam = new WolfAttackMovie()
> wam.setUp()

We get a new error, at runtime.

NoSuchMethodError: DrawableNode.add(LDrawableNode;)V
at Branch.addChild(Branch.java:37)
at WolfAttackMovie.setUp(WolfAttackMovie.java:39)

That is undeniably a strange error. Let’s recompile Branch. Now, we get
an error that we have seen before:

Branch.java:53: incompatible types
found : LLNode
required: DrawableNode

It turns out to be the exact same error in the exact same place: drawWith()
uses a variable current of type DrawableNode, but getNext() returns an LLNode.
So, we have to add the casts here, too—same places, in fact. (Again, this
suggests the need for refactoring in the branch classes.)

We can try again with WolfAttackMovie, as we did in a previous chapter.
This time, we are rewarded with scenes of doggies attacking a village until
the brave hero appears. We have successfully refactored the DrawableNode
class hierarchy.

272 CHAPTER 11. GENERALIZING LISTS AND TREES

Making sound trees work again

Now, let’s shift our attention to sound trees. We start with class CollectableNode.
Just like with DrawableNode, we take two steps:

• We change the class definition to extend LLNode.

• We remove the linked list code.

Program
Example #92 Example Java Code: CollectableNode, with linked list code factored

out

/∗∗
∗ Stuf f that a l l nodes and branches in the
∗ sound t r e e know .
∗∗/

abstract public class CollectableNode extends LLNode {

/∗∗
∗ Constructor for CollectableNode jus t s e t s
∗ next to null
∗∗/

public CollectableNode () {
super () ;

}

/∗∗
∗ Play the l i s t o f sound elements
∗ a f t e r me
∗∗/

public void playFromMeOn () {
this . c o l l e c t () . play () ;

}

/∗∗
∗ Col l e c t a l l the sounds from me on
∗∗/

abstract public Sound c o l l e c t () ;
}

The new version of CollectableNode is even smaller than the new version
of DrawableNode. For the most part, all CollectableNode really does is to
define playFromMeOn() (which is only a single line) and declare the abstract
method collect () .

11.1. REFACTORING A GENERAL LINKED LIST NODE CLASS 273

Perhaps surprisingly, when we compile the new CollectableNode and
SoundTreeExample, no errors arise! The error occurs at runtime, when we
try to use it:
> SoundTreeExample ste = new SoundTreeExample()
> ste.setUp()
NoSuchMethodError: CollectableNode.add(LCollectableNode;)V

at SoundBranch.addChild(SoundBranch.java:37)
at SoundTreeExample.setUp(SoundTreeExample.java:27)

So, we open up SoundBranch and recompile that. Now, we get a compiler
error in SoundBranch—one we’ve seen before.

SoundBranch.java:58: incompatible types
found : LLNode
required: CollectableNode

The method at line 58 is in collect () .

public Sound c o l l e c t () {

Sound childSound ;
CollectableNode node ;

i f (chi ldren != null)
{childSound = children . c o l l e c t () ; }
else
{childSound = new Sound (1) ; }

// Col l e c t from my next
i f (this . getNext () != null)
{ node=this . getNext () ; // ERROR IS HERE

childSound=childSound . append (node . c o l l e c t ()) ; }

return childSound ;
}
The variable node has type CollectableNode, and getNext() (now) returns

an LLNode. We can repair this with a simple cast: node=(CollectableNode) this.getNext().
When we try to execute a sound tree example, we get the next error, at

runtime.

> SoundTreeExample ste=new SoundTreeExample()
> ste.setUp()
> ste.play()
NoSuchMethodError: SoundNode.getNext()LCollectableNode;

at SoundNode.collect(SoundNode.java:34)
at SoundBranch.collect(SoundBranch.java:52)

We’ll use a similar strategy as we did last time. The error suggests that
the error is in SoundNode. Let’s recompile that class. Yes, now we do get a
compile-time error.

274 CHAPTER 11. GENERALIZING LISTS AND TREES

SoundNode.java:37: incompatible types
found : LLNode
required: SoundNode

Line 37 is in collect () .
public Sound c o l l e c t () {

SoundNode nextNode ;
i f (this . getNext () == null)
{return mySound;}
else
{nextNode = this . getNext () ; // ERROR HERE

return mySound . append (nextNode . c o l l e c t ()) ; }
}
Same error here as we have seen before, with the same fix: nextNode = (SoundNode) this.getNext();

We try again with a compilation and an execution.

> SoundTreeExample ste=new SoundTreeExample()
> ste.setUp()
> ste.play()
NoSuchMethodError: ScaleBranch.getNext()LCollectableNode;

at ScaleBranch.collect(ScaleBranch.java:45)
at SoundBranch.collect(SoundBranch.java:59)

The error is in ScaleBranch to be sure, and we can probably guess where
the error will be. When we compile ScaleBranch, we get a slightly different
error:

ScaleBranch.java:46: cannot find symbol
symbol : method collect()
location: class LLNode

What this error says is that our code currently asks an LLNode to collect () .
CollectableNode instances know how to collect () , not LLNode instances. Here’s
what the actual line looks like.

public Sound c o l l e c t () {

Sound childSound ;

i f (chi ldren != null)
{childSound = children . c o l l e c t () . scale (fac tor) ; }
else
{childSound = new Sound (1) ; }

// Col l e c t from my next
i f (this . getNext () != null)
{Sound nextSound=(this . getNext ()) . c o l l e c t () ; // ERROR HERE
childSound = childSound . append (nextSound) ; }

return childSound ;
}

11.2. MAKING A NEW KIND OF LIST 275

This is actually a similar problem as we had earlier, and se need a
similar fix. this.getNext() returns an LLNode, and LLNode instances don’t
know how to collect () . We need a cast. Because of the statement, the cast
looks a little more complex. The working line with a cast looks like this:
Sound nextSound=((CollectableNode) this.getNext()).collect();.

Now, finally, we can execute:

> SoundTreeExample ste=new SoundTreeExample()
> ste.setUp()
> ste.play()

We are rewarded with a gong-ing mess of noise. We have successfully
refactored both class hierarchies. We have defined a generalized linked
list node, removed the linked list content from both class hierarchies, and
made everything work again.

11.2 Making a New Kind of List

Now that we have a generalized LLNode class, we can create new kinds of
linked lists easily. We never have to write add() or remove() again. Instead,
we simply subclass LLNode. Our subclass should define the data that we
want to store in the linked list.

As an example, let’s use the Student class that we defined back in Chap-
ter 2 and create a linked list of students. We define a StudentNode class that
extends LLNode and stores a Student instance for each node.

Program
Example #93Example Java Code: StudentNode class

public class StudentNode extends LLNode {

// Constructor
public StudentNode (Student pupil){

super () ;
this . setStudent (pupil) ;

}

private Student me;

public Student getStudent () {
return me;

}

public void setStudent (Student someone){
me = someone ;

}

276 CHAPTER 11. GENERALIZING LISTS AND TREES

public static void main (String [] args){
// Make our f i r s t student
Student fred = new Student (” Fred ”) ;
// Create the students l i s t with the f i r s t student
StudentNode students = new StudentNode (fred) ;

/∗ Add several more students ∗/
students . add (new StudentNode (new Student (”Wilma”))) ;
students . add (new StudentNode (new Student (”Barney”))) ;
students . add (new StudentNode (new Student (” Betty ”))) ;

/∗ Print out f i r s t student ∗/
System . out . pr int ln (students . getStudent ()) ;
/∗ Print out third student ∗/
System . out . pr int ln (students . getNext () . getNext () . getStudent ()) ;

}
}

How it works: The class declaration was obvious: class StudentNode extends LLNode.
We declare a private variable me which has a type Student. Our construc-
tor for StudentNode sets the instance variable to the input student, using
the setter that we also define for manipulating the Student in the node.

The main() method simply creates a few nodes (with a few students),
then prints them out for testing. However, the simple code above won’t
work. When we compile it, we get the error:
StudentNode.java:33: cannot find symbol
symbol : method getStudent()
location: class LLNode

We have seen an error like this previously. It is saying that the class
LLNode does not understand getStudent(). That’s obvious—the question is,
“Where are we asking an LLNode to getStudent()?” The error is in the last
line of main():

System . out . pr int ln (students . getNext () . getNext () . getStudent ()) ;

While students has type StudentNode, we recall that getNext() is in LLNode.
It returns type LLNode. The solution, of course, is to cast. We need to
cast the result of students.getNext().getNext() to StudentNode. Here’s the re-
written line, spaced out over several lines to make the parentheses clear.

System . out . pr int ln ((
(StudentNode)

(students . getNext () . getNext ())
)
. getStudent ()) ;

11.3. THE USES AND CHARACTERISTICS OF ARRAYS, LISTS, AND
TREES 277

11.3 The Uses and Characteristics of Arrays, Lists,
and Trees

At this point, we can start to summarize some of the characteristics of the
various data elements that we have been discussing up until now. We have
learned about arrays, linked lists, and trees.

Arrays are more compact than linked lists or trees. Arrays are just
element after element after element in memory. There is no wasted space.
Linked lists use additional memory to hold references to the next elements.
Trees are even worse because they contain both next and children links.

If arrays are more compact, why would you ever want to use linked lists
or arrays? Here are several reasons:

• If you don’t know the maximum size of the collection of things a pri-
ori. A linked list or a tree can grow to any size—that’s why they are
often called dynamic data structures.

• If you want to be able to insert and delete into the middle of the
collection easily. It is complicated and computationally expensive (in
other words, it takes a lot of time) to move lots of elements around in
an array.

• You don’t need to have fast access to any particular element.

What applications have these characteristics? Lots!

• Order of elements on a slide in PowerPoint. You can SEND TO BACK
or BRING FORWARD to change the order of any element in the linked
list of elements on the screen.

• Order of video segments when you do non-linear video editing, as in
iMovie or Windows Movie Maker. Think about the amount of memory
required to store frames in a video—all those pixels, all that sound.
For you to be able to drag and drop groups of frames so easily, it
cannot be that all the frames are in a big array. It would take much
more time to move frames around if that were true.

• Items in a toolbar. Have you ever re-configured your toolbar in an
application? You simply drag and drop these icons into the list of
icons. As easily as they are rearranged, inserted, and deleted, it is
likely that items in a toolbar are stored in a linked list.

• Slides in a PowerPoint presentation. Just as it’s too easy to drag
segments of video around, it’s too easy to drag around sets of slides in
the slide organizer in Powerpoint. If slides were stored as an array,
you would expect more of a delay as all those pixels and text are
moved around, yet it takes not time at all. It’s likely that slides are
stored in a linked list.

278 CHAPTER 11. GENERALIZING LISTS AND TREES

The last point in that list of strengths of linked lists is particularly
important: arrays are fast for accessing any element. To access the fifth
element of an array is no faster than accessing the 105th. On the other
hand, accessing the nth element of a linked list requires O(n) accesses—
you have to just walk one element to its next.

How about searching? What if you want to find a particular item in
an array? If there is no order to the array or list, it is an O(n) process to
find the element—you simply search one piece after another. However, if
the array is in a sorted order, you can use a binary search. You probably
learned about a binary search in your first computing course.

Searching through a dictionary is a good way to depict a binary search.
If you want to find a word (“eggplant” for example), you could simply check
one page after the next. That’s an O(n) search—you just keep checking el-
ement after element for n elements. (On average, the word you are looking
for will be halfway through the dictionary.) There’s a smarter way.

• Open up the dictionary halfway through. Is the word you want on
those pages? If not, is it before or after the halfway point? We can
only answer this question because we know that a dictionary is in
sorted order—“A” is at the beginning and “Z” is at the end.

• Take the first or second half of the dictionary, whichever way the
desired word lays, and split that half in half. Ask the same questions:
On this page, before, or after?

In general, a binary search lets you find the word in O(log2n) tries.
Since you split n in half each time, it’s at most log2n tries to get all the way
down to the page where the word is. That’s a lot faster than O(n).

You can’t get any real efficiences in searching a linked list. Even if the
linked list is in sorted order, you can’t get to the middle one (for example)
any faster than just checking each node one-at-a-time from the beginning.
Thus, there’s no good answer for linked lists.

There is some hope for trees, however. If there is no order to the tree,
then searching a tree for some element is just as slow as a linked list.
There is a way of structuring trees so that they are as fast to search as a
binary search on an array. More on that in the next subsection.

Examples of Tree Uses

What are trees good for, if they are less compact than arrays and no faster
than linked lists? Trees have two huge benefits:

• Trees represent structure. Whether we consider that structure to
be a hierarchy or just clustering, the branching character of a tree
allows us to represent something that a linked list doesn’t.

11.3. THE USES AND CHARACTERISTICS OF ARRAYS, LISTS, AND
TREES 279

Figure 11.1: An example organization chart

• Branches in a tree can represent something apart from data, like the
operations in our sound and image trees. That is a powerful ability to
encode both structure and behavior in the same computational entity.

Some of the things that we can represent in a tree include:

• Representing how parts of music assemble to form a whole—we saw
that earlier.

• Representing the elements of a scene (a scene graph)—again, we saw
this earlier, and we know that that’s how professional 3-D animators
depict scenes.

• Representing the inheritance relationships among classes (a class hi-
erarchy). You may not have thought about that when we were de-
scribing our classes. Look again at the descriptions of the DrawableNode
or CollectableNode class hierarchies, and you see a clear tree structure.

• Files and directories on your hard disk—directories are essentially
branches, files are leaves.

• Elements in an HTML page. If you know HTML, you know that
a whole file splits into <head> and <body>. A <head> can contain
(for example), a <title>. A <body> can have any number of sub-
components, such as a <p> paragraph which can contain bold
text or <i> italicized text. Thus, a document has two main branches,
and sub-branches within those branches. That sounds like a tree.

• An organization chart (“orgchart”) is clearly a tree (Figure 11.1)—a
manager has some number of employees, and there are levels (hier-
archies) of management.

An example that might be surprising is that a tree can represent an
equation (Figure 11.2). Operators go in the branches and operands (num-
bers, variables) are in the leaves. In fact, this is how equations are often

280 CHAPTER 11. GENERALIZING LISTS AND TREES

Figure 11.2: An equation represented as a tree

represented internally within a computer. The nice thing about repre-
senting equations with trees is that a simple in-order traversal of the tree
recreates the equations and in the order that the operations should be per-
formed. For example, in Figure 11.2, we would do the multiplication before
the addition, which laws of mathematics would require us to do.

The links in a tree can have meanings. In the examples we have seen
already, the links from parent node to child node have different meanings.
In a class hierarchy, they indicate that the class represented by the parent
node is a superclass of the class represented by the child node. In an or-
ganization chart, they indicate the parent is the boss and the children are
the employees. In an equation tree, the links indicate that the result from
the children will be used in applying the operation in the parent.

We can also use trees to represent meaning, where the links represent
“the child is similar, but a specific case, of the parent.” Consider a tree
of words or phrases that represent meaning differences. Figure 11.3 rep-
resents a kind of taxonomy, an organization of meanings associated with
the concept of “price.” The same word “price” might represent what the
customer pays versus what another company might pay.

Where might you use such a tree of meanings? Imagine that you want
to create a website that “crawls” (visits and gathers information) various
shopping or catalog sites to gather prices, so that you can compare the
price of the same product at different sites. Maybe one store calls the price
the “price” and the other one calls it the “consumer cost,” and you want to
avoid the store that talks about “retail price.” A tree of meanings like this
can be used to work out how your web crawler program should respond to

11.3. THE USES AND CHARACTERISTICS OF ARRAYS, LISTS, AND
TREES 281

Figure 11.3: A tree of meanings

Figure 11.4: A sample sentence diagram

these different human terms.
For many of you readers, the notion of representing words in trees may

be familiar from sentence diagrams that you may have used in your pri-
mary schooling (Figure 11.4)1. A sentence diagram explicitly labels the
parts of the sentence (e.g., verb, object, subject, predicate phrase, and so
on) with the actual words at the leaves or root of the tree—the boundaries.

A sentence diagram actually has computational advantages, too. Imag-
ine that you work for an organization that is concerned with watching for

1There are a wide variety of sentence diagramming techniques and forms. The advantage
of this one is that it is certainly unlike any that anyone actually uses.

282 CHAPTER 11. GENERALIZING LISTS AND TREES

Figure 11.5: A query for a collection of sentence trees

signs of terrorist activity in the United States from captured text mes-
sages. Given the amount of captured text messages today, there are prob-
ably megabytes and volumes of messages. Do you just search for a phrase
like “is going to attack”? How do you deal with synonyms of the word?
What you really want to know is if the phrase refers to a location in the
United States (and what that location is) as opposed to “is going to attack
my homework this evening.”

This problem is actually solvable with trees of the form that we have
been talking about in this section. Imagine that you were able to take
those enormous text message collections and figure out the meanings of the
words so that you could build trees of all the sentences like Figure 11.4.
You might represent what you want to know also as a tree, as in Fig-
ure 11.5. This query says that you want to know if “someone” (and that
<angle brackets> indicates that you want to know whatever lands in this
spot) is going to “attack” somewhere in the United States. What if the ter-
rorists use another word for attack? That’s where meaning taxonomies as
in Figure 11.3 come in. As we find verbs that are similar to attack, we
can check them out in a taxonomy, and if the other pieces fit (e.g., that the
target is somewhere in the US), we declare a match.

Doing this kind of matching of pieces of various trees is called a unifica-
tion algorithm. Unification is very powerful. The programming language
Prolog is actually a language for specifying trees like these, functions as
rules on trees, and a powerful form of unification.

Here is one last tree that you use all the time, though you may not have
thought of it as a tree. A user interface in a modern computer window

11.4. BINARY SEARCH TREES: TREES THAT ARE FAST TO SEARCH283

Figure 11.6: A user interface is a tree

is a tree (Figure 11.6). The whole window is usually broken into parts
we call panels. Those panels might have a row of buttons (maybe for a
toolbar), and another may hold a text input area and a SAVE button. That
is actually a tree. You can actually take the same user interface tree and
create a variety of different appearances for the window. Different layout
managers will render the same user interface tree in different ways—we
will see that in the next chapter.

11.4 Binary Search Trees: Trees that are fast to
search

As we said in the previous section, we can structure arrays so that we can
search them for something particular (some element) in O(log2n). Lists are
always O(n) to search. We can structure trees in such a way that they are
also O(log2n) to search. We construct a binary search tree out of a binary
tree.

A binary tree is so-named because every branch has at most two chil-
dren (Figure 11.7). We explicitly label the links left and right. What data
is in each of these nodes is left completely open—maybe it’s some general
string, some objects, some images or sounds, whatever.

The really interesting thing about a binary tree, particularly compared
to our trees so-far, is that any node can be a branch. Every node has data
associated with it, and a left link, and a right link. That means that any
parent node can also be a child node (Figure 11.8). Any branch of a tree,
then, is also a tree. It’s always the same kinds of objects all the way down.
That level of consistency or uniformity can be quite powerful in computa-
tion.

Binary trees have a bunch of interesting characteristics that computer
scientists have studied over the years. Let’s say that you have n nodes in a

284 CHAPTER 11. GENERALIZING LISTS AND TREES

Figure 11.7: Simple binary tree

Figure 11.8: More complex binary tree

tree. What is the maximum number of levels or generations in that tree?
(Think of the number of levels or generations as the number of nodes you
pass through going from the root of the tree to its farthest away leaf.) Each
node could only be linked by the left links, or all by the right links — it’s
just a linked list. Then the number of levels is n. The minimum number
of levels, though, is log2n + 1. Try it—see if you can structure n nodes in
fewer levels.

A binary tree is a great example of an ADT. Given what we have seen
previously, you can probably imagine much of the definition of a binary
tree.

• There is really only one class to define—some kind of TreeNode, since
we know that all nodes are exactly the same, completely uniform,
throughout the tree.

11.4. BINARY SEARCH TREES: TREES THAT ARE FAST TO SEARCH285

• There must be some way to getLeft and setLeft, and similarly getRight
and setRight.

• There must be some way to getData and setData—whatever those data
might be. One would probably imagine that the constructor for the
node class would take data as input.

• Given that we are going to use this tree for storing data that we can
find quickly, we might imagine that there will be a insert method that
puts a piece of data into the right place in the tree—or maybe we
call it an insertInOrder method that thus makes it clear that the data
inserts in order. We would then (reflectively) expect a find method
that finds the node that has a particular piece of data.

Given the above, one could start writing programs right now that could
use a binary tree—even without seeing the implementation. There actu-
ally are several different kinds of implementations of trees. For example,
there is an implementation of trees that works in a plain old array by com-
puting indices in a crafty way2. The implementation doesn’t really matter,
as long as the above methods are there and work the way that you expect.

Of course, we are going to implement a binary tree as a TreeNode class
with object references.

Program
Example #94Example Java Code: TreeNode, a simple binary tree

public class TreeNode {
private String data ;
private TreeNode l e f t ;
private TreeNode right ;

public TreeNode (String something){
data = something ;
l e f t = null ;
r ight = null ;

}
// Accessors

public String getData () {return data ;}
public void setData (String something){ data = something ;}

public TreeNode getLeft () {return l e f t ;}
public TreeNode getRight () {return r ight ;}

public void setLeft (TreeNode newleft){ l e f t = newleft ;}
public void setRight (TreeNode newright){ r ight = newright ;}

2Basically, have an array of strings (for example), and store the left child of index n at 2n
and the right child at 2n + 1.

286 CHAPTER 11. GENERALIZING LISTS AND TREES

// Recursive t raversa l o f the t r e e
public String toString ()
{return

” This : ”+this . getData ()+
” Left : ”+this . getLeft () +
” Right : ”+this . getRight () ; }

}

Let’s test by building a small tree (just two nodes), and see if it prints
correctly.
> TreeNode node1 = new TreeNode("george");
> node1
This:george Left: null Right: null
> TreeNode node1b = new TreeNode("alvin")
> node1.setLeft(node1b)
> node1
This:george Left: This:alvin Left: null Right: null Right: null

That generally is what we would expect. Now, let’s use this binary tree
to structure data so that we can search and find things very quickly. The
structuring rule for a binary search tree is very simple: The left side data
is less than the data in the parent node, and the right side data is
greater than or equal to the data in the parent node. Structured like
that, a binary search tree is like our dictionary—at each branch, we split
the dictionary (tree) in half. At least, that’s true if the tree is well-formed.
We say more about a well-formed, balanced binary search tree a bit later.

Given the definition of how we want a binary search tree structured,
the algorithm for inserting a new piece of data into a binary search tree
is about searching for where the data should be, if it were there already,
then putting it into place. The method insertInOrder is recursive. Because
the whole tree is uniform (each parent node is a root of another tree, just
a sub-tree of the whole tree’s root), we can just pass the buck to the other
nodes to do the right thing. The result is that the code is quite short.
How it works: First we ask, “Is the value to insert less than the current

node’s value?” If that’s true, we look to see if there is a left branch. If
there is, we ask the left branch to insert the data into place—we make a
recursive call to insertInOrder. If there is no left branch, we know where to
put the data that we want to insert—we insert it on the left. If the value to
insert is greater than or equal to the current nodes value (which it must be
if it’s not less-than), then we check to see if there is something on the right
branch. If there is, we ask that right branch node to do the insertInOrder.
If there isn’t, bingo! We put the node on the right.

Since we are working on strings here, we are going to have to com-
pare strings in alphabetical order. There is a method on Strings to do this:
compareTo(). The method compareTo is sent to a string, and takes a sec-

11.4. BINARY SEARCH TREES: TREES THAT ARE FAST TO SEARCH287

ond string as input to the method. The method returns a zero if the two
strings are equal (have the same characters), positive if the input string
comes before the string that the method is called on, and negative if the
input string comes after. The value has to do with the number of letters
(characters) between the two strings.

> "abc".compareTo("abc")
0
> "abc".compareTo("aaa")
1
> "abc".compareTo("bbb")
-1
> "bear".compareTo("bear")
0
> "bear".compareTo("beat")
-2

Program
Example #95Example Java Code: insertInOrder for a binary search tree

// Inser t in order
public void insert (TreeNode newOne){

i f (this . data . compareTo (newOne . data) > 0){
i f (this . getLeft () == null)
{this . setLeft (newOne) ; }
else
{this . getLeft () . insert (newOne) ; }}

else {
i f (this . getRight () == null)
{this . setRight (newOne) ; }
else
{this . getRight () . insert (newOne) ; }

}
}

Let’s try it out:
> TreeNode node1 = new TreeNode("george");
> TreeNode node2 = new TreeNode("betty");
> TreeNode node3 = new TreeNode("joseph");
> TreeNode node4 = new TreeNode("zach");
> node1
This:george Left: null Right: null
> node1.insert(node2)
> node1
This:george Left: This:betty Left: null Right: null Right: null
> node1.insert(node3)

288 CHAPTER 11. GENERALIZING LISTS AND TREES

Figure 11.9: Tree formed by the names example

> node1
This:george Left: This:betty Left: null Right: null Right: This:joseph Left: null Right: null
> node1.insert(node4)
> node1
This:george Left: This:betty Left: null Right: null Right: This:joseph Left: null Right: This:zach Left: null Right: null

The printing of node1 at the very end describes the whole tree. It may
be hard to understand as such. You might compare it to the drawing of the
tree in Figure 11.9.

Now that we have a tree that is formed well for scripting, we can try
to write find() for this tree. The basic algorithm depends on the same
structuring that we talked about earlier: smaller things down the left side,
and bigger things down the right. Again, it’s recursive because it’s working
on the uniform structure of the tree.
How it works: The method find() takes an input string to find. The method

asks “Is the input less than ’me’ (this.getData())?” If so, then stop and re-
turn this node. If not, then we want to compare the input string to the
current data. If it’s less, we find() down the left branch, and it greater than
or equal, we search down the right branch. However, if the left or right
node isn’t there (e.g., we want to find() down the left and there is no left
node), then we return null to indicate that the data was not found.

Program
Example #96 Example Java Code: find, for a binary search tree

public TreeNode f ind (String someValue){

11.4. BINARY SEARCH TREES: TREES THAT ARE FAST TO SEARCH289

i f (this . getData () . compareTo (someValue) == 0)
{return this ;}
i f (this . data . compareTo (someValue) > 0){

i f (this . getLeft () == null)
{return null ;}
else
{return this . getLeft () . f ind (someValue) ; }}

else {
i f (this . getRight () == null)
{return null ;}
else
{return this . getRight () . f ind (someValue) ; }}

}

Let’s try it on the tree in Figure 11.9:
> node1.find("betty")
This:betty Left: null Right: null
> node1.find("mark")
null

If tree is well-ordered and well-structured, then searching in the tree
should be an O(log2(n)) process. Each decision splits the amount of data
in half. From the top to the bottom of the tree should not take more than
1 + log2(n) steps, so no more than that many checks.

We call that kind of tree as being balanced. A completely valid binary
search tree might not be balanced—that is, it’s unbalanced. Figure 11.10 is
completely a valid binary search tree: no node has more than two children,
left is less than the parent, and right is greater than the parent. This is
the same tree as in Figure 11.9. How many searches will it take to find
“zach” in this tree using find()? Just as many nodes as in the tree, n steps
(where n = 4 here). Since everything is on the right, we just keep checking
one node after the other—this is the same as searching a linked list.

What we want is a way of converting an unbalanced tree into a bal-
anced tree, where roughly half of each sub-tree is in the left branch of the
sub-tree and the other half is in the right branch of the sub-tree. We are
not going to build this algorithm here. The key idea is that we have to
rotate our nodes. If we were to rotate the right branch off “betty” in Fig-
ure 11.10, we would “rotate up” the node “joseph,” moving “george” to the
left and leaving “zach” on the right. That part isn’t hard to understand or
even implement. Completely balancing the tree involves rotating left and
right to go from Figure 11.10 to Figure 11.9—for example, notice that the
node “george” has to become the root of the tree, so another kind of rotation
occurs from Figure 11.11 from Figure 11.10.

290 CHAPTER 11. GENERALIZING LISTS AND TREES

Figure 11.10: An unbalanced form of the last binary search tree

Figure 11.11: Rotating the right branch off “betty”

Traversals of Trees

We can take a binary search tree and print it out in alphabetical order. We
use a process called inorder traversal—traverse the tree in (alphabetical)
order. It’s really pretty simple, if we are willing to do it recursively. From
each node, the left side has to come before the current (this) node, and then
the right side should be printed. That would be the order because left is
less than this data, and right is greater than this.

Program
Example #97 Example Java Code: traverse, a binary tree in-order

11.4. BINARY SEARCH TREES: TREES THAT ARE FAST TO SEARCH291

//In−Order Traversal
public String traverse () {

String returnValue = ” ” ;
// Vis i t l e f t
i f (this . getLeft () != null)
{returnValue += ” ”+this . getLeft () . traverse () ; }
// Vis i t me
returnValue += ” ”+this . getData () ;
// Vis i t r ight
i f (this . getRight () != null)
{returnValue += ” ”+this . getRight () . traverse () ; }
return returnValue ;}

Let’s try it on our binary tree from Figure 11.9:

> node1.traverse()
" betty george joseph zach"

Do we have to do it that way? Of course not! We could visit ourself,
then the left and then right. That’s called pre-order traversal. We could
also visit the left and then the right, and then ourself. That’s called post-
order traversal. We can think about other orderings as well.

Doing an in-order traversal of a tree makes sense. One can imagine
wanting a list of everything in a tree. When we are working with trees
of names, doing a pre-order or post-order traversal doesn’t make much
sense. However, it does make sense when there are certain other things in
the tree, like the equation tree we saw earlier (Figure 11.2).

Here’s an example of the power of different traversals on this kind of
tree. If you do an in-order traversal of the equation tree Figure 11.12,
you get (3 ∗ 4) + (x ∗ y). That is fine and useful—that is an equation that
makes sense. If you do a pre-order traversal of the same tree, you get
34 ∗ xy ∗ +. That may look like gibberish unless you have ever used a
reverse Polish notation (RPN) calculator, like some of Hewlett-Packard’s
popular calculators. The equation 34∗xy ∗+ means “Push a 3 on the stack,
then a 4, multiply two things on the stack and push the result back on the
stack. Push the value of x on the stack, then y, multiply the two things
on the stack and push the result back. Finally, add the two things on the
stack and push the result back on.” This turns out to be an efficient way of
doing the same computation. A pre-order traversal of the same equation
tree gives you the RPN form of the equation.

Trees can do anything
We now know a bunch of things that trees can do well:

• It is easy to do useful things with them.

292 CHAPTER 11. GENERALIZING LISTS AND TREES

Figure 11.12: An equation tree for different kinds of traversals

– Searching is quick.

– We can use them to evaluate equations.

• Operations on trees are easily written, small, and recursive.

• We know interesting facts about them.

Binary trees can actually do just about anything. A binary tree can
represent an n-ary tree, like the ones we used in earlier chapters. A binary
tree can even be a list.

Imagine that we want a list (an ordered group of items) where we can
add things to the front or end of the list. We can implement that with a
linked list, of course. We can also implement this same structure with a
binary tree. We make the structuring assumption that earlier items are to
the left, and later items go to the right—a similar assumption to how we
made a binary search tree. Here are the methods for doing that, addFirst()
and addLast().

Program
Example #98 Example Java Code: addFirst and addLast, treating a tree as a list

public void addFirst (TreeNode newOne){
i f (this . getLeft () == null)
{ this . setLeft (newOne) ; }
else
{ this . getLeft () . addFirst (newOne) ; }

}

public void addLast (TreeNode newOne){
i f (this . getRight () == null)
{ this . setRight (newOne) ; }
else
{ this . getRight () . addLast (newOne) ; }

}

11.4. BINARY SEARCH TREES: TREES THAT ARE FAST TO SEARCH293

* * *

> TreeNode node1 = new TreeNode("the")
> node1.addFirst(new TreeNode("George of"))
> node1.addLast(new TreeNode("jungle"))
> node1.traverse()
" George of the jungle"

While binary trees are simple, they are actually quite powerful. There
is great power in having a uniform structure—it allows us to write code in
short form that actually works. By simply choosing the meaning of our left
and right links, we can represent a wide variety of things. This chapter
explains some of these.

Ex. 20 — How would you rewrite VBranch and HBranch so that there is
less duplicated code between them? Could you have a general LayoutBranch
that calls some method for changing the (x, y) positions, then subclass that
to create VBranch and HBranch? Refactor these methods so that there is
less duplicated code.

Ex. 21 — Use the same approach for rewriting SoundBranch and ScaleBranch
so that there is less duplicated code.

Ex. 22 — (Advanced) Investigate the Java notion of a interface. Can you
come up with a LLBranch interface that all our branches (Branch, VBranch,
HBranch, SoundBranch, and ScaleBranch) might implement so as to reduce
the duplication of code? You might also investigate the design pattern
called “Visitor.” Can you use that to make tree traversals more common?

Ex. 23 — Trace out insertInOrder and how it walks through an example
tree in order to insert a new piece of data.

Ex. 24 — Trace out the right calls to insertInOrder for a set of 8 words that
result (a) in an unbalanced tree with all words down the right branch,
(b) in an unbalanced tree with all words down the left branch, and (c) a
balanced tree.

Ex. 25 — (Advanced) Write the method balance() for a generic binary search
tree that produces a balanced tree.

Ex. 26 — Write addFirst() and addLast() for LLNode so that all our linked
lists can add to the front or end.

12 Circular Linked Lists and
Graphs: Lists and Trees That
Loop

Chapter Learning Objectives
Lists can loop—a latter node can have as its next point to an earlier

node. We use a circular linked list sometimes to create circular lists, as
when you are representing the cells in an animation, such as in the Nin-
tendo vide game Mario Brothers.

Trees can also have loops, while children of different subtrees can be
linked together. We call those kinds of trees graphs.
The computer science goals for this chapter are:

• To create linked lists that have loops in them, and how to avoid the
dangerous parts of it.

• To explore the use of graphs, and how to traverse them.

The media learning goals for this chapter are:

• To create a looping cell animation, as used in older video games.

12.1 Making Cell Animation with Circular Linked
Lists

The older reader may recall Nintendo’s Super Mario Brothers (Figure 12.1).
The Mario Brothers characters seemed to run and jump under the control
of the user in exploring a virtual world. As Mario and Luigi “ran,” their
arms and legs seemed to move as they moved. The style of animation being
used in those style games is called cell animation.

In a cell animation, characters are represented by a series of still im-
ages. In one image, the right leg might be raised and in front of the body.
In the next image, the right leg might be on the ground. In a following
image, the left leg might be raised ahead of the body, and so on. By rapidly
showing different of these images, in sequence, the illusion of moving body
parts is created. By moving where the images are displayed, the illusion is

295

296
CHAPTER 12. CIRCULAR LINKED LISTS AND GRAPHS: LISTS AND

TREES THAT LOOP

Figure 12.1: Scenes from Super Mario Brothers

Figure 12.2: Three images to be used in a cell animation

created that the moving body parts are actually driving the character. In
the end, the character seems to run.

Let’s create a version of cell animation. The wildebeests in The Lion
King and the villagers in The Hunchback of Notre Dame are not exam-
ples of cell animation. In those cases, the body parts did move and were
controlled at a fine level of detail. However, a cell animation could have
been used to represent the characters whose positions are specified by a
simulation. It is a particularly easy mechanism to be used in your own
animations. Cell animations were invented for use on lower-powered pro-
cessors (like the early Nintendo video games), so if you were to do an an-
imation on a computer with little power (e.g., perhaps a cellphone), then
cell animation would be a reasonable choice.

In your MediaSources folder on the CD, you will find some pictures
of one of our daughter’s dolls. These pictures are positioned (as best we
could) to represent different positions in walking (Figure 12.2). We took
the pictures against a blue background so that they could be used with
chromakey.

We can arrange these images in a sequence to give the appearance of

12.1. MAKING CELL ANIMATION WITH CIRCULAR LINKED LISTS297

Figure 12.3: A sequence of images arranged to give the appearance of
walking

Figure 12.4: A circular linked list of images

walking, were they to be displayed one right after the other (Figure 12.3).
These images are particularly stiff and give more of the impression of
Frankenstein’s monster walking—hopefully the point is made. Imagine
these pictures in a flipbook, so that if you flipped the pages quickly, the
images would seem to move.

One structure for arranging these images in the right order for display
in a cell animation is a circular linked list. A circular linked list has at
least one node (typically, the last node) whose next refers to a node earlier
in the list (often, the first node). By arranging a series of picture nodes
in a circular linked list gives us a simple way of defining the sequence of
images for a cell animation (Figure 12.4).

A circular linked list is really useful for modeling lots of real things in
the world. There are many things that contain loops: electrical circuits,
pipe systems, maps of roads (e.g., there’s always more than one way to go
between two spots). The tricky aspect of a circular linked list is never to
try to traverse the circular linked list to “the end,” that is, where next is
null. In a circular linked list, there is no null references.

Here’s what we’ll execute to create a walking doll (Figure 12.5):

298
CHAPTER 12. CIRCULAR LINKED LISTS AND GRAPHS: LISTS AND

TREES THAT LOOP

Figure 12.5: Frames of the walking doll

> WalkingDoll gal = new WalkingDoll(); gal.setUp();
> gal.steps(10);

How it works: To make our WalkingDoll class work, we keep track of a
current node in the circular linked list and where the (x, y) position should
be. To take a step, we display the current node’s picture, then set the
current equal to its next and update the position instance variables. Now,
when the next step comes along, we will be displaying a new picture.

Program
Example #99 Example Java Code: WalkingDoll

public class WalkingDoll {

/∗∗
∗ Which character node pos i t ion are we at ?
∗∗/

public CharNode current ;

/∗∗
∗ Starting pos i t ion for new walking .
∗∗/

public CharNode start ;

/∗∗
∗ Posi t ion for the character
∗∗/

public int x , y ;

public int getX () {return x ;}
public int getY () {return y ;}
public void setLoc (int nux , int nuy){x=nux ; y=nuy ;}

/∗∗
∗ FrameSequence for the display
∗∗/

FrameSequence frames ;
/∗∗

12.1. MAKING CELL ANIMATION WITH CIRCULAR LINKED LISTS299

∗ We ’ l l do the l i s t setup in the constructor
∗∗/

public WalkingDoll () {
Picture p = null ; // For loading up images

p = new Picture (FileChooser . getMediaPath (” gal1−r ight face . jpg ”)) ;
s tart = new CharNode (p) ;
p = new Picture (FileChooser . getMediaPath (” gal1−right2 . jpg ”)) ;
CharNode r ight f oo t = new CharNode (p) ;
p = new Picture (FileChooser . getMediaPath (” gal1−r ight face . jpg ”)) ;
CharNode center = new CharNode (p) ;
p = new Picture (FileChooser . getMediaPath (” gal1−right1 . jpg ”)) ;
CharNode l e f t f o o t = new CharNode (p) ;
s tart . setNext (r i ght f oo t) ; r i gh t f oo t . setNext (center) ;
center . setNext (l e f t f o o t) ;
// Now the scary one
l e f t f o o t . setNext (s tart) ;

frames = new FrameSequence (”D: / Temp/ ”) ;
}

/∗∗
∗ Setup to display walking l e f t to r ight
∗∗/

public void setUp () {
x = 0; // Lef t s ide
y = 300; // 300 p ix e l s down
frames . show () ;
this . s tart () ;

}
/∗∗
∗ Start a walking sequence
∗∗/

public void start () {
current = start ;
this . draw () ;

}

/∗∗
∗ Draw the current character
∗∗/

public void draw () {
Picture bg = new Picture (400 ,400) ;
Turtle pen = new Turtle (bg) ;
pen . setPenDown (false) ; pen . moveTo (x , y) ;
current . drawWith (pen) ;
frames . addFrame(bg) ;

}
/∗∗
∗ Draw the next step

300
CHAPTER 12. CIRCULAR LINKED LISTS AND GRAPHS: LISTS AND

TREES THAT LOOP

Figure 12.6: A partial circular linked list

∗∗/
public void step () {

current = (CharNode) current . getNext () ;
x=x+10; // We ’ l l t ry th i s
this . draw () ;

}

/∗∗
∗ Draw a few steps
∗∗/

public void steps (int num){
for (int i =0; i < num; i ++) {this . step () ; } }

}

While this works, the walking doll looks terrible. Like we said, it looks
like Frankenstein’s monster. We could fix this problem with better images.
We might also remove the image where the legs come together between
steps. We can model this by a circular linked list where the loop doesn’t
go all the way back to the beginning (Figure 12.6). The list starts with a
single, standing image, then loops just on the movement of the legs.
12.2 Generalizing a Circular Linked List

Let’s create a class like LLNode that makes it easy to create circular linked
lists. The trick is never to look for null. This simple version simply refuses
to do the things that would normally require a traversal to the null at the
end of the list—no last and no remove.

> CharNode ch = new CharNode(new Picture(20,20));
> ch.last()
Don’t try to find last() from a circular list!

12.2. GENERALIZING A CIRCULAR LINKED LIST 301

CharNode with picture: Picture, filename null height 20 width 20
> ch.remove(new CharNode(new Picture(20,20)))
Very dangerous to try to remove a node from this list!

Program
Example #100Example Java Code: CharNode, a class for representing characters

in cell animations

/∗
∗ CharNode i s a c lass represent ing a drawn pic ture
∗ that i s one in a sequence o f Pictures to
∗ use for a given character . Don ’ t ever try to traverse th i s one !
∗∗/

public class CharNode extends LLNode {
/∗∗
∗ The pic ture I ’m associated with
∗∗/

public Picture myPict ;

/∗
∗ Make me with th i s pic ture
∗ @param p ic t the Picture I ’m associated with
∗∗/

public CharNode (Picture p i c t){
super () ; // Call superclass constructor
myPict = p i c t ;

}
/∗∗
∗ Don ’ t t ry to remove () from a c ircu lar l i s t !
∗∗/

public void remove (LLNode node){
System . out . pr int ln (” Very dangerous to try to remove a node from this l i s t ! ”) ;

}

/∗∗
∗ Don ’ t t ry to get the l as t () from a c ircu lar l i s t !
∗∗/

public LLNode las t () {
System . out . pr int ln (”Don ’ t try to f ind las t () from a c i r cu lar l i s t ! ”) ;
return this ;

}

/∗∗
∗ Method to return a str ing with information
∗ about th i s node . A NON−recurs ive one .
∗/

public String toString ()

302
CHAPTER 12. CIRCULAR LINKED LISTS AND GRAPHS: LISTS AND

TREES THAT LOOP

{
return ”CharNode with picture : ”+myPict ;

}

/∗
∗ Use the given t u r t l e to draw onese l f
∗ @param pen the Turtle to draw with
∗∗/

public void drawWith (Turtle pen){
// Assume that we ’ re at the lower−l e f t corner
pen . setHeading (0) ; pen . forward (myPict . getHeight ()) ;
Picture bg = pen . getPicture () ;
myPict . bluescreen (bg , pen . getXPos () , pen . getYPos ()) ;

}
}

How it works: While CharNode works, it works by taking the easy way
out. The methods last () , remove(), and toString in LLNode involve traversing
the whole list until next is null. CharNode simply prevents those methods
from executing, by overriding them and displaying error messages.

There are better ways of implementing circular linked lists. How can
we traverse a circular linked list without going on infinitely, looking for a
end to a circle? There are several ways to do it—here are a couple:

• We could add another instance variable, a boolean named visited. As
we visit a node, we mark it true. When we traverse the list, we mark
each node that we print or whatever by setting visited to true. Then,
rather than looking for next equal to null, we look for visited equal to
true. When that’s true, we’ve looped around and can stop. We need a
reset method, too, that sets all visited flags to false (and keeps going
until it finds a visited flag that is already false).

• We could have two next links in each node. One points to the next
node created, and the other points to the next node to be traversed
when displaying the cells. When we want to traverse all nodes (or
add() or remove()), we use the first next. When we want to draw, we
use the second next.

12.3 Graphs: Trees with Loops

In the previous sections, we have shown that there are some uses for linked
lists with loops in them. How about trees? Is it useful to have nodes that
link to previous nodes, e.g., children that point to their grandparents in the
tree? With that kind of data structure, we can model all kinds of interest
things that appear in the world.

12.3. GRAPHS: TREES WITH LOOPS 303

Figure 12.7: A map as a graph

We call these general structures where loops (or cycles) are allowed,
graphs. A graph is a series of points or vertices connected with lines or
edges. In some graphs, there is a directionality to the line or edge—node1
points to node3, but not vice-versa. We call those graphs a directed graph.
Without that directionality, we call the graph undirected.

From this perspective, a tree is an unusual kind of graph. It’s a graph
without cycles. A tree is a kind of an acyclic graph.

Graphs are useful to model structures in the real world that have loops
in them.

• Think about modeling a human circulatory system. There are clearly
cycles in this graph—your blood doesn’t flow to the end of your body
and then out your fingers and toes. Your blood cycles back to the
heart.

• A subway system is another example of a graph that has cycles. Each
station is a vertex. Subway lines between stations are edges. Clearly
there are cycles—on most subway systems, it’s possible to go out one
way and come back another way, or to find more than one way to get
from one place to another.

• A map is another kind of graph (Figure 12.7). Cities (or even inter-
sections or exits, depending on the detail you want) are vertices, and

304
CHAPTER 12. CIRCULAR LINKED LISTS AND GRAPHS: LISTS AND

TREES THAT LOOP

Figure 12.8: Apply weights to a graph—distances on a map

roads are edges. A map is a good example of a graph that has costs
associated with edges. For many uses of maps, you care about the
distance between any two vertices—that can be the cost of the edge
(Figure 12.8).

Traversing graphs (doing something to every node) is particularly hard
to do. As you can imagine from these examples, each node or vertex can
actually be associated with a number of edges, not just one (as in a linked
list) or two (as in binary tree). This means that a traversal has to make
sure that every vertex is included, which may involve traveling down every
ege.

The strategies for traversing graphs are similar to the strategies for
traversing circular linked lists. We can add a visited flag to tell us whether
or not we’ve visited a vertex. Then we can travel down every edge until
we are sure that every node has visited equal to true. We can also keep
a separate linked list of all the nodes so that we can check each node,
regardless of how it’s connected up into the graph.

A powerful tool for traversing a graph is to create a spanning tree. A
spanning tree is the same graph (i.e., includes all the same vertices) with-
out cycles. Once you have a spanning tree, you can visit all nodes using
standard tree traversal techniques—you don’t have to deal with the cycles.

One approach to computing a spanning tree is to use a greedy algo-
rithm. A greedy algorithm, when having to make a choice (say, between
which edge to follow from a given vertex) takes the shortest or easiest
paths. That’s being “greedy.” It turns out that a greedy algorithm for cre-
ating a spanning tree on a graph actually results in a minimal spanning
tree—a spanning tree that covers the least ground (has the lowest total
cost).

12.3. GRAPHS: TREES WITH LOOPS 305

Figure 12.9: Traversing a graph to create a spanning tree

Let’s imagine that something bad has happened in the United States—
an invasion or an outbreak of an epidemic disease. In Birmingham on our
map (Figure 12.7, there are troops or a vaccine. How do we visit all the
cities on the map as quickly as possible, traveling the shortest path as
possible. What we want is a minimal spanning tree.

The first step is obvious. We have to travel from Birmingham to Six
Flags (Figure 12.9). From Six Flags we have several choices. We add At-
lanta because it’s the cheapest (lowest cost, shortest) path out of Six Flags
(Figure 12.10). From Atlanta, we move to College Park as the next cheap-
est edge (Figure 12.11). We then have a problem. The only untraversed
link out of College Park goes to Six Flags, where we’ve already been. We
now backtrack, revisiting an earlier node to see if there are more paths
from there. We backtrack to Atlanta where we do have a next-cheapest
link (after the one to College Park) up to Tucker (Figure 12.12). From
Tucker, we add the link to Dunwoody since it’s obviously the cheapest (Fig-
ure 12.13). Dunwoody has no untraversed nodes (since we can’t add Six
Flags back in), so we backtrack again to Tucker, and then finish our mini-
mal spanning tree at Charlotte (Figure 12.14).

You might be wondering how the algorithm figures out to which node
to backtrack. It’s pretty easy—it’s another use for stacks. Each node, as
it is visited, is pushed onto the stack. If you can’t find another edge to
follow from the node you’re currently at, you pop off the top node from the
stack, then see if there are more edges that need exploring from that node.
You keep going until the stack is empty. The stack being empty is actually
when you know that the algorithm is done.

Ex. 27 — Implement the circular linked list where the loop doesn’t go all

306
CHAPTER 12. CIRCULAR LINKED LISTS AND GRAPHS: LISTS AND

TREES THAT LOOP

Figure 12.10: Choosing the cheapest path out of Six Flags

Figure 12.11: Going to College Park

12.3. GRAPHS: TREES WITH LOOPS 307

Figure 12.12: Backtracking to avoid re-visiting Six Flags

Figure 12.13: Adding Dunwoody, the obviously cheaper path

308
CHAPTER 12. CIRCULAR LINKED LISTS AND GRAPHS: LISTS AND

TREES THAT LOOP

Figure 12.14: Finishing up in Charlotte

the way back to the front of the loop.

Ex. 28 — Implement walkBackwards for WalkingDoll class, so that the x
position goes right to left, and the order of images swaps.

Ex. 29 — Implement walkToLeft for WalkingDoll class, where the images
are flipped and x position goes right-to-left.

Ex. 30 — Implement a better CharacterNode class that uses one of the
strategies described in this method to allow us to traverse a circular linked
list without simply blocking dangerous methods.

13 User Interface Structures

Chapter Learning Objectives
We are all familiar with the basic pieces of a graphical user interface

(GUI): windows, menus, lists, buttons, scrollbars, and the like. As pro-
grammers, we can see that these elements are actually constructed using
the lists and trees that we’ve seen in previous chapters. A window con-
tains panes that in turn contain components such as buttons and lists. It’s
all a hierarchy, as might be represented by a tree. Different layout man-
agers are essentially rendering the interface component tree via different
traversals.
The computer science goals for this chapter are:

• To learn to construct graphical user interfaces using the Swing Java
library.

• To recognize the structure of a user interface as a tree, and the role
of a layout manager as a renderer.

• To use Swing components to construct media tools.

• To run Java programs from a command line.

The media learning goals for this chapter are:

• To understand how the interfaces for the applications that media de-
velopers use are constructed.

• To use interface components to interact with media.

13.1 A Toolkit for Building User Interfaces

Graphical user interfaces (GUIs) have many different kinds of pieces of
them. A modern GUI has buttons (of different kinds, including radio but-
tons, check boxes, pushbuttons), text areas (with or without scroll bars),
lists for making selections (some containing text, others with graphics),
horizontal and vertical lines separating sections (or panes), images, and
so on. Programmers typically use libraries for user interfaces. (These li-
braries are sometimes also called toolkits.) These libraries provide the
components, which the programmers can simply reuse.

309

310 CHAPTER 13. USER INTERFACE STRUCTURES

Figure 13.1: Examples of Swing components: JFrame, JPanel, and JSplit-
Pane

The first toolkit for Java GUIs was call the Abstract Window Toolkit
(AWT). The AWT provided containers for structuring the components, such
as a Frame which was a main window with title and border, a Panel for
grouping components, and a Canvas for creating custom components (in
case you, as the programmer, really did want to build GUI components for
yourself). Components that you would put into these containers included
a Label (text that was only displayed, not editable), a Button, a TextField
for entry and display of text, a TextArea entry and display of multiple lines
of text, a List for selecting one or more items from a displayed list, and a
Choice for selecting a selection from a drop down list, like a menu.

AWT had many problems. Users did not like the look of AWT user
interfaces. AWT made all user interfaces look the same on all platforms
(e.g., Microsoft Windows, Apple Macintosh, Linux), as opposed to looking
like the windows on your platform. AWT was hard to program and fairly
inflexible. Still, AWT is available in Java and sometimes (rarely) will be
the right toolkit for a given program.

Sun released a new GUI toolkit called Swing which was available as
a library named javax.swing. Swing replaced many of AWT’s components,
and provided a structure for more flexible and usable user interface. A
Swing main window is called a JFrame (instead of a Frame), a group of
components within a JFrame is put in a JPanel, and a button is JButton.
Swing provided new components like a JTree for representing hierarchi-
cal structures, JSplitPane for have two groups of parallel components, and
JTable which knows how to display tabular data. (Examples of some of
these are in Figure 13.1.) Swing lets the programmer specify how the win-
dows should look, e.g., like Windows, Mac, or other styles.

Building the simplest possible Swing user interface
Here are the steps for simply creating a window with a piece of text in it.

• First, you create the window. The main window is an instance of
JFrame. You pass in the desired title to the constructor when you
create the instance.

JFrame frame = new JFrame(”FrameDemo”) ;

13.1. A TOOLKIT FOR BUILDING USER INTERFACES 311

• Next, you add components to the content pane. The content pane is
the part of the window that holds other pieces of the user interface—
the middle of the window, as opposed to the title bar or the close box.
For this example, we will create a simple text label (a instance of
JLabel) that will hold some text, then put that into the window.
When you add a component into a container, you can tell it where you
want the component to be. We are just going to put our text in the
center of the window for now. This is going to become more important
later in the chapter. We will explain BorderLayout, then.

JLabel label = new JLabel (” Hello World ”) ;
frame . getContentPane () . add (label , BorderLayout .CENTER) ;

• Now, we need to tell Java that we are done putting components into
the window (at least for now). We tell Java to pack the window and
figure out the minimal size for displaying on the screen.

frame . pack () ; // as big as needs to be to display contents

• Now, we’re ready to display the window.

frame . se tVis ib le (true) ; // display the frame

When you use Swing to create windows in your programs, you have to
decide how to think about and structure your user interface. There are at
least three ways to do it.

• Your first option is to think about your application object as a kind of
JFrame. You create your application class as a subclass (extends) of
JFrame. That is probably the easiest way to do it.

• Or, you can think about your application object as something that
owns or has a JFrame. In that case, you typically have an instance
variable that will hold the instance of JFrame, and you create that
instance in the constructor method of your application object.

• Or, you can make your application object as a kind of JPanel that will
simply get put into a JFrame in some other part of your program.
For example, you might build a StartApplication class whose construc-
tor method constructs your application object and inserts it into a
JFrame, and your main method might create the StartApplication ob-
ject. The advantage of building your object around a JPanel instead
of a JFrame is that a JPanel gives you more flexibility. It can be put
into a window, or an applet (a running Java program that runs inside
of a web page in a web browser, using the class JApplet), or even as
part of a larger application.

We are going to stick with the first option for now. We are going to aim
for simplicity rather than flexibility right now.

312 CHAPTER 13. USER INTERFACE STRUCTURES

13.2 Rendering of User Interfaces

In this section, we build a very simple user interface. We see how a user
interface is a tree, and explore how to render that tree in different ways.

Building a Simple User Interface

Let’s build the simplest possible user interface, using the same pattern
that we saw before: Making a JFrame and sticking a JLabel in it. Notice
that there’s more code here, but it is commented out right now.

Program
Example #101 Example Java Code: A Simple GUItree class

/∗∗
∗ A GUI that has various components in i t , to demonstrate
∗ UI components and layout managers (rendering)
∗∗/

import javax . swing . ∗ ; // Need th i s to reach Swing components

public class GUItree extends JFrame {

public GUItree () {
super (”GUI Tree Example”) ;

/∗ Put in a panel with a labe l in i t ∗/
JPanel panel1 = new JPanel () ;
this . getContentPane () . add (panel1) ;
JLabel label = new JLabel (” This i s panel 1! ”) ;
panel1 . add (label) ;

//NOTICE THAT THIS IS COMMENTED OUT!
/∗ Put in another panel with two buttons in i t
JPanel panel2 = new JPanel () ;
th i s . getContentPane () . add(panel2) ;
JButton button1 = new JButton (”Make a sound ”) ;
panel2 . add(button1) ;
JButton button2 = new JButton (”Make a pic ture ”) ;
panel2 . add(button2) ; ∗/

this . pack () ;
this . s e tV is ib le (true) ;

}
}

* * *

13.2. RENDERING OF USER INTERFACES 313

Figure 13.2: Simplest Possible GUI

How it works: Our class GUItree is a subclass of JFrame, meaning that
creating a GUItree instance creates a window. In our constructor, we ex-
plicitly call super(”GUI tree example”) in order to ask the class JFrame to
create a window with the title “GUI tree example.” We then create a panel
JPanel panel1, and add it into the window’s content pane. We create a label
saying “This is panel 1!” and put the label into the pane. We commented
out a bunch of code, then we pack and make visible the window.

Computer Science Idea: We’re building a tree
It might seem backward that we add the panel to the tree, and then add
the label to the panel. Shouldn’t we add the label to the panel, and then
the panel to the tree? It really doesn’t matter. We’re constructing a set of
relationships between parts of the GUI tree. The tree is used to make our
window visible when we pack it and setVisible(true). When the parts got to
the tree does not matter.

We run this program like this (in DrJava’s interactions pane):

Welcome to DrJava .
> GUItree gt = new GUItree () ;

We hope you are wondering about that code we commented out. Let’s
remove the comment characters so that we can run the whole code.

Program
Example #102Example Java Code: Slightly more complex GUItree class

public GUItree () {
super (”GUI Tree Example”) ;

/∗ Put in a panel with a labe l in i t ∗/
JPanel panel1 = new JPanel () ;

314 CHAPTER 13. USER INTERFACE STRUCTURES

this . getContentPane () . add (panel1) ;
JLabel label = new JLabel (” This i s panel 1! ”) ;
panel1 . add (label) ;

/∗ Put in another panel with two buttons in i t ∗/
JPanel panel2 = new JPanel () ;
this . getContentPane () . add (panel2) ;
JButton button1 = new JButton (”Make a sound ”) ;
panel2 . add (button1) ;
JButton button2 = new JButton (”Make a picture ”) ;
panel2 . add (button2) ;

this . pack () ;
this . s e tV is ib le (true) ;

}

How it works: This second version simply continues on from where the
last one left off. A second panel is created and added to the frame’s content
pane. Two buttons are created and added into the panel.

We run this version the same way. What we see might be surprising
(Figure 13.3). Where did the first panel and its label “This is panel 1!” go?

Figure 13.3: The slightly more complex GUItree, with two panes

Let’s build yet another version of our simple user interface. In this
version, we construct the exact same components in the exact same way.
However, we use a layout manager that will arrange the window in partic-
ular way when we render the user interface.

Program
Example #103 Example Java Code: A Flowed GUItree

/∗∗
∗ A GUI that has various components in i t , to demonstrate
∗ UI components and layout managers (rendering)
∗∗/

import javax . swing . ∗ ; // Need th i s to reach Swing components
import java . awt . ∗ ; // Need th i s to reach FlowLayout

13.2. RENDERING OF USER INTERFACES 315

Figure 13.4: Our GUItree, using a Flowed Layout Manager

public class GUItreeFlowed extends JFrame {

public GUItreeFlowed () {
super (”GUI Tree Flowed Example”) ;

this . getContentPane () . setLayout (new FlowLayout ()) ;
/∗ Put in a panel with a labe l in i t ∗/
JPanel panel1 = new JPanel () ;
this . getContentPane () . add (panel1) ;
JLabel label = new JLabel (” This i s panel 1! ”) ;
panel1 . add (label) ;

/∗ Put in another panel with two buttons in i t ∗/
JPanel panel2 = new JPanel () ;
this . getContentPane () . add (panel2) ;
JButton button1 = new JButton (”Make a sound ”) ;
panel2 . add (button1) ;

JButton button2 = new JButton (”Make a picture ”) ;
panel2 . add (button2) ;

this . pack () ;
this . s e tV is ib le (true) ;

}

}

We can see both panels in this version (Figure 13.4) because of the line:

this . getContentPane () . setLayout (new FlowLayout ()) ;

That line creates a new FlowLayout instance and assigns it as the layout
manager (via setLayout() for the frame’s content pane.

A layout manager defines how the window will be rendered—how it
will be drawn on the screen, and how it will behave when the window is
resized. In both of our last two examples, we were defining a tree as in
Figure 13.5. A graphical user interface is a tree. The frame is the root of
the tree, and it has a child of a content pane. (It has other children, too,
like a title bar, but those will not be visible in our simple examples.) The
content pane has two other children—each of the two panels. Those panels

316 CHAPTER 13. USER INTERFACE STRUCTURES

Figure 13.5: Diagram of components of GUI tree

Figure 13.6: Resizing the Flowed GUItree

contain other children: a label or the two buttons.
The difference between the last two user interfaces, then, is not in the

tree, but in how it is rendered. If you do not specify a layout manager, a
default renderer is used—one that is not particularly easy to use, one that
makes it particularly easy to overlay the same components (branches of
the tree) on top of one another. A flowed layout manager makes it easy to
lay out one element right after the other, as in Figure 13.4. When we resize
the window (Figure 13.6), the components move in reasonable positions—
that is also handled by the layout manager.
Java Swing Layout Managers: GUI tree renderers

A layout manager figures out how to lay out components within a window.
It is possible to specify exactly what position each element should main-
tain in a window. There is a layout manager that allows us to specify the
(x, y) position within the window where the component should be drawn,
and the height and width of the component. The method for doing that is

13.2. RENDERING OF USER INTERFACES 317

Figure 13.7: How a BorderLayout GUI is structured

setBounds(topLeftX,topLeftY,width,height). However, exact specification can
lead to errors, and does not define what should happen if the window is
resized.

The layout managers in Java Swing allow us to arrange components in
a logical manner. The layout manager then positions and even sizes the
components. The layout manager also handles resizing and repositioning
the components (as necessary) when the window is resized. We will see
that a layout manager can be assigned to a frame content pane or any
panel. Thus, a panel may arrange its components differently than the
overall frame (content pane) may arrange its components.

Different layout managers act on the exact same GUI component tree
in different ways. Changing the layout manager will change in how the
elements are positioned and sized. The same window will look differently
when the window is resized, depending on the layout manager used.

FlowLayout

We have already seen the FlowLayout manager. A FlowLayout manager
just places items one after the other, from left-to-right, with no extra space
between the components. We can see that in Figure 13.4 and Figure 13.6.
That may seem obvious—what else might you want? Turns out that there
are lots of ways to layout and render a GUI tree.

BorderLayout

A popular layout manager is the BorderLayout. Using a BorderLayout man-
ager, you specify the directions of where you want elements to be placed
(Figure 13.7). Elements placed in the “north” appear at the top of the win-
dow, and elements placed in the “west” appear at the left. (You do not have
to place elements in all the directions—as the programmer, you simply
specify the general direction in which the elements should be placed.) A
BorderLayout manager also resized elements, as well as placing them. It
always gives the most space to the “center” element.

318 CHAPTER 13. USER INTERFACE STRUCTURES

A BorderLayout manager lays out elements in a common user interface
style. Certainly you have seen user interfaces like this. Word processing
and image manipulation programs (as two examples) usually have a large
work area with toolbars or menus or lists of options around the edges.

We can change our FlowLayout GUItree into a BorderLayout GUItree
pretty simply. Instead of adding a new instance of FlowLayout as the layout
manager for our content pane, we add an instance of BorderLayout.

this . getContentPane () . setLayout (new BorderLayout ()) ;

One more change—as we add elements to our window, now, we specify
where they are going to go. BorderLayout defines a set of constants, like
BorderLayout.NORTH that allow us to specify where components should be
added.

this . getContentPane () . add (panel1 , BorderLayout .NORTH) ;

Program
Example #104 Example Java Code: A BorderLayout GUItree

/∗∗
∗ A GUI that has various components in i t , to demonstrate
∗ UI components and layout managers (rendering)
∗∗/

import javax . swing . ∗ ; // Need th i s to reach Swing components
import java . awt . ∗ ; // Need th i s to reach BorderLayout

public class GUItreeBordered extends JFrame {

public GUItreeBordered () {
super (”GUI Tree Bordered Example”) ;

this . getContentPane () . setLayout (new BorderLayout ()) ;
/∗ Put in a panel with a labe l in i t ∗/
JPanel panel1 = new JPanel () ;
this . getContentPane () . add (panel1 , BorderLayout .NORTH) ;
JLabel label = new JLabel (” This i s panel 1! ”) ;
panel1 . add (label) ;

/∗ Put in another panel with two buttons in i t ∗/
JPanel panel2 = new JPanel () ;
this . getContentPane () . add (panel2 , BorderLayout .SOUTH) ;
JButton button1 = new JButton (”Make a sound ”) ;
panel2 . add (button1) ;

JButton button2 = new JButton (”Make a picture ”) ;
panel2 . add (button2) ;

this . pack () ;
this . s e tV is ib le (true) ;

13.2. RENDERING OF USER INTERFACES 319

Figure 13.8: A BorderLayout GUItree

Figure 13.9: Resizing the BorderLayout GUItree

}
}

Now, when we create our window, we see Figure 13.8. Since we placed
panel1 in the NORTH and panel2 in the SOUTH, one is on top of the other. As
we resize the window (Figure 13.9), those relationships remain. Compare
this with the resizing of the FlowLayout GUItree (Figure 13.6)—the Bor-
derLayout keeps the elements at the top and bottom, where the FlowLay-
out leaves the elements in the middle, one right after the other.
BoxedLayout

There are several other layout managers in Swing, that each form a trade-
off between flexibility and complexity. We have already seen that tradeoff,
between the FlowLayout and BorderLayout managers. FlowLayout could
hardly be easier to use, but it only stacks components one right after the
other. A BorderLayout offers a bit more flexibility, in that the programmer
can specify how things should be clustered (top or bottom, left or right).
The tradeoff is that programmers must now specify where components

320 CHAPTER 13. USER INTERFACE STRUCTURES

Figure 13.10: Example of a GridBag layout

should be clustered.
The layout managers are at different points in the complexity and flex-

ibility spectrum. One layout manager is the default: None. It is perfectly
acceptable for the programmer to specify where each component goes—
that’s a lot of flexibility, and a lot of complexity. Another layout manager
is GridBag, which allows the programmer to specify a grid on which com-
ponents are to be layed out (Figure 13.10. After the grid is specified, the
programmer simply dumps them into the layout, as if into a “bag.” That
is a bit of complexity to set up the bag, which offers more flexibility than a
BorderLayout. After that, it’s as easy to use as a FlowLayout.

A more sophisticated (e.g., more complexity and more flexibility) lay-
out manager is BoxLayout. A BoxLayout allows the user to group ele-
ments along a horizontal or vertical axis. The flexibility and complexity of
BoxLayout is that the programmer can add in additional components that
have no user interface function other than to constrain the layout. The
programmer can create rigid areas that maintain a certain size and sim-
ply take up space, e.g., Box.createRigidArea(new Dimension(0,5)));. The pro-
grammer can also create glue areas that create constraints between com-
ponents, keeping them “stuck” together, e.g., Box.createHorizontalGlue());.

Using a BoxLayout is a little different than the previous layout man-
agers. Not only do we add the new instance of BoxLayout to the content
pane, but we also pass the content pane as an input to the constructor for
the BoxLayout. The reason for this is that the BoxLayout must be able to
access the pane, as well as vice-versa. We also specify the dimension along
which components are to be placed. Thus, we create the layout manager
with:

this . getContentPane () . setLayout (
new BoxLayout (this . getContentPane () ,

BoxLayout . Y AXIS)) ;

In our example for our GUItree here, we do not use spaces or glue.
The point is just to see how another layout manager renders the identical
GUItree. The base rendering by the BoxLayout (Figure 13.11) looks pretty
much like the BorderLayout rendering (Figure 13.8). The resizing behaves
a bit differently—the BoxLayout keeps things organized along the Y-axis
(Figure 13.12), but does not force the second panel to the bottom (“south”)

13.2. RENDERING OF USER INTERFACES 321

of the window as does the BorderLayout (Figure 13.9).

Program
Example #105Example Java Code: A BoxLayout GUItree

/∗∗
∗ A GUI that has various components in i t , to demonstrate
∗ UI components and layout managers (rendering)
∗∗/

import javax . swing . ∗ ; // Need th i s to reach Swing components

public class GUItreeBoxed extends JFrame {

public GUItreeBoxed () {
super (”GUI Tree Boxed Example”) ;

this . getContentPane () . setLayout (
new BoxLayout (this . getContentPane () ,

BoxLayout . Y AXIS)) ;
/∗ Put in a panel with a labe l in i t ∗/
JPanel panel1 = new JPanel () ;
this . getContentPane () . add (panel1) ;
JLabel label = new JLabel (” This i s panel 1! ”) ;
panel1 . add (label) ;

/∗ Put in another panel with two buttons in i t ∗/
JPanel panel2 = new JPanel () ;
this . getContentPane () . add (panel2) ;
JButton button1 = new JButton (”Make a sound ”) ;
panel2 . add (button1) ;
JButton button2 = new JButton (”Make a picture ”) ;
panel2 . add (button2) ;

this . pack () ;
this . s e tV is ib le (true) ;

}
}

Which layout manager should be used and when?
Because each panel (JPanel) can have its own layout manager, and pan-
els can be added within other panels, the programmer can actually use a
variety of layout managers to lay out different pieces in different ways.

Some suggestions on when to use which layout managers:

• If you want to fit the most components into the least space, and you
are okay with those components staying in the center of your pane

322 CHAPTER 13. USER INTERFACE STRUCTURES

Figure 13.11: Our GUItree rendered by the BoxLayout

Figure 13.12: Resizing the BoxLayout GUItree

(or frame), then use FlowLayout.

• If you want to fit the components into the least space and want them
not to be in the center, use a BorderLayout and put something in the
window to use up the extra space in the center.

• If you are building an application where users need a large workspace
(textual or graphical), the BorderLayout is designed just for that.

• If you want the elements to line up horizontally or vertically, use a
BoxLayout.

• In the end, if you want the most control over what goes where, use
the null layout.

13.3. A CAVALCADE OF SWING COMPONENTS 323

Figure 13.13: Example of use of JScrollPane

13.3 A Cavalcade of Swing Components

This section is focused on introducing a bunch1 of user interface compo-
nents found in Swing. The information presented here will not be enough
to write programs using these components. Rather, the goal here is to
identify a few useful components and for some of the most useful, provide
snippets of code in order to convey the general idea of how to use them. It
is hard to get started using Swing components if you don’t even know the
names of the appropriate classes—that is what we are trying to deal with
in this section. For detailed information on using any of these components,
you should consult a reference on the Swing components, such as at Sun’s
official Java website2.

• The class JScrollPane adds scrollbars to some other component, such
as a text area or a graphic image (Figure 13.13). Adding a JScrollPane
to a text area might look like this:

textArea = new JTextArea (5 , 30) ;
JScrollPane scrol lPane = new JScrollPane (textArea) ;
contentPane . add (scrollPane , BorderLayout .CENTER) ;

• In many user interfaces, different panels appear in the same window
with tabs at the top for selecting between them, like tabs on folders in
the same drawer. For example, Microsoft Office products often orga-
nize preferences or options in this way. The components for creating
that structure in Swing is called a JTabbedPane (Figure 13.14).

• Groups of tool buttons are clustered in the JToolbar component (Fig-
ure 13.15).

• Sometimes, a program needs to prompt the user with a dialog, a
small window that interrupts use of the normal window. The pur-
pose is usually to alert the user to an important piece of news or ask
the user for immediately needed information. The class for that kind
of window in Swing is JOptionPane (Figure 13.16).

• In Microsoft Windows applications (more than in Linux or Macin-
tosh), windows sometimes have internal windows. Those are con-
structed using the JInternalFrame class in Swing (Figure 13.17).

1A herd? A coven?
2As of this writing, Swing documentation can be found at http://java.sun.com/

javase/6/docs/technotes/guides/swing/

324 CHAPTER 13. USER INTERFACE STRUCTURES

Figure 13.14: Example of a JTabbedPane

Figure 13.15: Example of JToolbar

Figure 13.16: An example of JOptionPane

Figure 13.17: An example of JInternalFrame

13.3. A CAVALCADE OF SWING COMPONENTS 325

Figure 13.18: An example of a JComboBox

Figure 13.19: An example of a JSlider

• One of the most flexible components in Swing is JList. It represents
a list of items. These items can be text, or images, or both. A list can
allow the user to select one item, or many items. There are a lot of
options on JList.

• Offering the user a set of options where only one can be chosen can
also be created using a drop-down menu. The Swing drop-down menu
is implemented using a JComboBox (Figure 13.18).

// Sett ing up a combo box
JComboBox colorBox = new JComboBox(co l o rL i s t) ;
// Getting the t e x t in the s e l e c t e d item
String currColor = colorBox . getSelectedItem () ;

• Sometimes users need to input a value along a pre-defined set of val-
ues. A slider makes clear to the user what the valid range is for some
input value. A JSlider provides an implementation of a slider. The
below example creates the JSlider example in Figure 13.19.

// Create a s l i d e r with a range 100−−1000
// Starting at 400
% ∗∗∗∗∗∗∗∗∗∗BARB? IS THAT RIGHT? ! ?
s = new JSlider (100 , 1000 , 400) ;
// Make small l i n e s appear as t i c k marks
s . setPaintTicks (true) ;
// Where the spacing i s 100 apart
s . setMajorTickSpacing (1 0 0) ;
s . getValue () ; // get the current value from a s l i d e r

• Users like to get some signal that something is happening. A progress
bar can show the computer making progress on some task that is
otherwise invisible to the user. The example below (Figure 13.20)
creates a horizontal progress bar using JProgressBar whose apparent
value will change from zero to the length of some text, so that the
programmer might update the progress bar as each character in the
text is processed.

326 CHAPTER 13. USER INTERFACE STRUCTURES

Figure 13.20: An example of a JProgressBar

Figure 13.21: An example of JColorChooser

progressBar = new JProgressBar (JProgressBar .HORIZONTAL,
0 , text . length ()) ;

• A color chooser is a dialog that allows the user to make a selection
among a set of colors, then returns that color to the programmer.
The class JColorChooser provides that dialog in Java. Unlike the other
components discussed here, a JColorChooser is a separate window—it
is not added to any pane to use it.

Color newColor = JColorChooser . showDialog (
this , P i c k a new background c o l o r ,
this . getBackground ()) ;

• A common dialog used in programs is a file chooser. The Swing class
JFileChooser provides a flexible mechanism for creating a file chooser
(Figure 13.22). An instance of JFileChooser can be asked to only show
files of a certain type, for example.

// create the f i l e chooser
final JFileChooser f c = new JFileChooser () ;
// display the chooser as a dialog and get the return value
int returnVal = f c . showOpenDialog (frame) ;
// i f the return value shows that the user s e l e c t e d a f i l e
i f (returnVal == JFileChooser .APPROVE OPTION) {

Fi le f i l e = f c . getSelectedFi le () ;
}

There are several different ways of managing text in a user interface
in Swing. Some of the choices to make (which determine which component

13.3. A CAVALCADE OF SWING COMPONENTS 327

Figure 13.22: An example of JFileChooser

Figure 13.23: An example of a JTextField

to use) include how much text, whether the user should see the text, and
whether the text will be input or just diplayed.

• If you simply want to display some text (without the user entering
characters or changing the text), then the JLabel that we saw earlier
would work fine.

• If you need to accept a line of text as input from the user, you can use
JTextField (Figure 13.23). The below example sets up a text field of 40
characters, and gets the user input in a field into a String variable.

// To create the f i e l d
JTextField nameField = new JTextField (4 0) ;
// To get the t e x t from the f i e l d
String name = nameField . getText () ;

• If your program needs to query the user for a password, you need
to accept a line of text—but you do not want the text to be visible.
You do not want a passerby to be able to read the password on the
screen. The Swing component JPasswordField (Figure 13.24) serves
this purpose.

// Set up the f i e l d to accept 8 characters
JPasswordField passField = new JPasswordField (8) ;
// Get the t e x t from the f i e l d
String password = passField . getPassword () ;

• If you need to have the user type in several lines of text, then you
need the component JTextArea (Figure 13.25).

// Set up the component , f o r 2 l ine s and 30 characters
JTextArea commentArea = new JTextArea (2 , 3 0) ;

328 CHAPTER 13. USER INTERFACE STRUCTURES

Figure 13.24: An example of a JPasswordField

Figure 13.25: An example of a JTextArea

// Get the t e x t out o f i t
String comment = commentArea . getText () ;
// Set the t e x t to some String ’ s value
commentArea . setText (comment) ;

13.4 Creating an Interactive User Interface

The interfaces we have created thus far have been static. The buttons do
not do anything. While we could create some of components we just saw
in the calvacade, we have not yet seen how to respond to user interactions
with these components.

The key to creating interactive user interfaces is dealing with events,
user interface events. When a user does anything within a user interface,
the computer generates an event object. A keystroke on the keyboard, a
click of the mouse, or the click and drag on the thumb of a scrollbar are all
events. A program can listen for these events—that is, provide a piece of
code that will respond to a kind of event and take some action when that
event occurs.

Creating a listener is like signing up for the mailing list of your favorite
band. By signing up for the mailing list, you are saying to someone (in this
analogy, the fan club of the band), “Please let me know if the band is doing
anything interesting or coming to my town!” Creating a listener for a given
event is saying to something (in the user interface case, the user interface
event managing program), “I care about this particular event occurring—
please let me know if it ever does.”

Table 13.1 lists some of the most common user interface events and
their listeners. Typically, listeners are associated with (or attached to)
particular objects Thus, the listeners are triggered when the event associ-
ated with that object occurs. If you have five buttons in your user interface,

13.4. CREATING AN INTERACTIVE USER INTERFACE 329

Action Type Listener Type Example Event
ActionEvent ActionListener A user clicks a button
AdjustmentEvent AdjustmentListener Move a scrollbar
FocusEvent FocusListener Tab into a text area
ItemEvent ItemListener Checkbox checked
KeyEvent KeyListener Key stroke
MouseEvent MouseListener Mouse button clicked
MouseEvent MouseMotionListener Mouse is moved
TextEvent TextListener A text is changed
WindowEvent WindowListener A window is closed

Table 13.1: A selection of events and their listeners

each will typically have their own ActionListener that waits for the user to
click on the given button, and each will respond to a click on the associated
button.

Notice that there is some ambiguity in these events. The same user
interaction could correspond to many different events. Imagine moving a
mouse over a button, then clicking on that button. Is that a MouseEvent
or an ActionEvent? The answer is “Yes.” You can have listeners for both
kinds of events attached to the same button, and then both listeners will
be triggered when the corresponding events occur.

In Java terms, a listener is actually an interface. It’s not an actual class,
and you cannot create listeners of them. An interface is the definition of
a set of methods that perform some specific function or set of functions. A
class that claims to implement a given interface is agreeing to a contract—
the methods of that interface must be created in the class.

Swing provides a set of abstract classes called adapters that agree to
implement particular listeners. The adapter does provide all the necessary
methods, but most of them are just empty—they do nothing at all. You as
the programmer then create a subclass of the given adapter and override
the methods as you need in order to respond to events appropriately. For
example:

class MyMouseAdapter extends MouseAdapter
{

/∗∗ Method to handle the c l i c k of a mouse ∗/
public void mouseClicked (MouseEvent e)
{ }

}
If you think about all the buttons in a given interface, and having to

create a new class to listen to each kind of event for each kind of button—
you quickly find that there are a lot of classes to create. Java provides a
particular structure to remove the necessity for all those separate classes.
It’s called anonymous inner classes. The idea is that you can create a sub-

330 CHAPTER 13. USER INTERFACE STRUCTURES

class of a given class then instantiate it for use (as in a user interface) at
that moment that you define the class (hence, “inner class,” as it is created
inside some other class). You do not even have to name the class—hence,
”anonymous.” In the below bit of code, we are adding an object to listen for
a FocusEvent, and we create the class for that object right there—we define
the methods focusGained and focusLost in the middle of the method call for
addFocusListener.

b . addFocusListener (new FocusListener () {
public void focusGained (FocusEvent evt) {

}
public void focusLost (FocusEvent evt) {

}
}) ;

Common Bug: Anonymous inner classes may not access method vari-
ables
Even though the anonymous inner classes are created within another class’s
method, the anonymous inner class does not have access to any variables
in the method. That turns out to be non-intuitive. You create a variable,
and two lines later (in the same method, seemingly) you want to access
that variable—but you cannot. This requires some odd structures, like
creating class variables (which the anonymous inner class can access) for
access to objects that you would otherwise only reference locally within the
method.

Making our GUItree interaction
After creating many variations on the basic GUItree, it seems reasonable
to make that our first interactive interface. All we are really doing here is
making the “Play” button play some sound, and the “Show” button shows
some picture. Since we do not plan to do anything fancier with the but-
ton than let the user click it (e.g., we won’t be playing the sound as soon
as the mouse moves over the “Play” button), we will simply create an
ActionListener anonymous inner class that will listen for the button’s “ac-
tion” – the typical click on a button.

Program
Example #106 Example Java Code: An interactive GUItree

/∗∗
∗ A GUI that has various components in i t , to demonstrate

13.4. CREATING AN INTERACTIVE USER INTERFACE 331

∗ UI components and layout managers (rendering) .
∗ Now with I n t e r a c t i v i t y !
∗∗/

// Need th i s to reach Swing components
import javax . swing . ∗ ;
// Need th i s to reach FlowLayout
import java . awt . ∗ ;
// Need th i s for l i s t e n e r s and events
import java . awt . event . ∗ ;

public class GUItreeInteractive extends JFrame {

public GUItreeInteractive () {
super (”GUI Tree Interact ive Example”) ;

this . getContentPane () . setLayout (new FlowLayout ()) ;
/∗ Put in a panel with a labe l in i t ∗/
JPanel panel1 = new JPanel () ;
this . getContentPane () . add (panel1) ;
JLabel label = new JLabel (” This i s panel 1! ”) ;
panel1 . add (label) ;

/∗ Put in another panel with two buttons in i t ∗/
JPanel panel2 = new JPanel () ;
this . getContentPane () . add (panel2) ;
JButton button1 = new JButton (”Make a sound ”) ;
// Here ’ s adding the l i s t e n e r
button1 . addActionListener (

// Here ’ s where we ins tant ia t e a new anonymous
// inner c lass
new ActionListener () {

// Here ’ s the method we ’ re overriding
public void actionPerformed (ActionEvent e) {

Sound s = new Sound (
FileChooser . getMediaPath (” warble−h . wav”)) ;

s . play () ;
}

}
) ;
panel2 . add (button1) ;

/∗ Set up the second button ∗/
JButton button2 = new JButton (”Make a picture ”) ;
button2 . addActionListener (

// Here ’ s the l i s t e n e r
new ActionListener () {

// Here ’ s the method we ’ re overriding
public void actionPerformed (ActionEvent e) {

Picture p = new Picture (
FileChooser . getMediaPath (” shops . jpg ”)) ;

332 CHAPTER 13. USER INTERFACE STRUCTURES

p . show () ;
}

}
) ;
panel2 . add (button2) ;

this . pack () ;
this . s e tV is ib le (true) ;

}

}

How it works: Most of the code is identical to our FlowedGUItree. The
new parts are where we add a listener to each button, using the method
addActionListener. The method takes as input a object which will do the lis-
tening, i.e., provide a method that will take an ActionEvent with the method
actionPerformed. We could create a subclass of ActionListener, perhaps call-
ing it ShowButtonActionListener and instantiate it here. That is what we
are doing, but without the name. Our new subclass of ActionListener has
only a single method in it, actionPerformed. That’s where we do the showing
and playing.

Creating a Rhythm-Creation Tool

Now we know enough about creating user interfaces that we can build
some tool—a gadget that will allow some non-programming user to do
things that we have only been able to do by programming Java up until
now. In this section, we will create a tool to allow a user to specify a rhythm
by creating copies of some sound, weaving and repeating the copies into a
new sound (Figure 13.26).

Here are the parts of this window that we care about.

• There is a text field at the top of the window where we specify the
filename of a sound to be inserted into our sound sequence. As a
simplification, we will assume that all filenames are specified as base
names, and they refer to files in our mediaPath.

• There are buttons for REPEAT and WEAVE that insert the sound into
a sound sequence. These buttons take a numeric input—that’s the
field below the filename. When the REPEAT button is pressed, that
number of copies of the sound are repeated at the end of the sound
sequence. When the WEAVE button is pressed, that number of copies
of the sound are woven into the sound sequence. We again use a
simplification—we assume the weave is skip-one-insert-one.

13.4. CREATING AN INTERACTIVE USER INTERFACE 333

Figure 13.26: A tool for generating rhythms

• Finally, at the bottom, there is a PLAY button to hear the sound se-
quence that we are creating.

We can already see that there are connections between the different
parts of this user interface. For example, the repeat and the weave buttons
need to be able to get the value from the count field. There are good ways
for connecting objects, e.g., we could pass in the count field to the listener
for the two buttons, so that it could ask the count field its value. To sim-
plify the example, we will use an uglier but effective mechanism—we will
simply create a new instance variable that will hold the value needed in
more than one listener. That is not a good object-oriented solution. By cre-
ating the instance variable, we are saying, “All RhythmTool’s should know
their counts,” which doesn’t make obvious sense. At this point, though, we
are more interested in understanding how to build the user interface than
in how to design it well.

Let’s build the RhythmTool class in pieces.

Program
Example #107Example Java Code: Start of RhythmTool

/∗∗
∗ A Rhythm−construct ing t o o l
∗∗/

// Need th i s to reach Swing components
import javax . swing . ∗ ;
// Need th i s to reach FlowLayout
import java . awt . ∗ ;

334 CHAPTER 13. USER INTERFACE STRUCTURES

// Need th i s for l i s t e n e r s and events
import java . awt . event . ∗ ;

public class RhythmTool extends JFrame {

/∗ Base of sound that we ’ re creat ing ∗/
public SoundElement root ;
/∗ Sound that we ’ re creat ing to add in . ∗/
public SoundElement newSound ;
/∗ Declare these here so we can reach them inside l i s t e n e r s ∗/
private JTextField filename ;
private JTextField count ;
int num;

How it works: The import statements simply must be there, to access
the appropriate libraries in Java. Here are the declarations for the in-
stance fields (instance variables) that we need in our RhythmTool:

• The root variable will hold the sequence of sounds that we are creat-
ing, the linked list of SoundElement nodes.

• The newSound variable will hold the sound created from the filename
entered. We will be using this variable to make a connection between
the text field where the filename is entered to the buttons that will
need it.

• The filename and count variables actually hold the text fields.

• The num variable holds the integer version of the number entered
into the count text field (which we will originally fetch as a String).

Program
Example #108 Example Java Code: Starting the RhythmTool Window and Building

the Filename Field

public RhythmTool () {
super (”Rhythm Tool ”) ;

root = new SoundElement (new Sound (1)) ; // Nearly empty sound
newSound = new SoundElement (new Sound (1)) ; // Ditto

// Layout for the window overa l l
this . getContentPane () . setLayout (new BorderLayout ()) ;

/∗ Firs t panel has new sound f i e l d ∗/
JPanel panel1 = new JPanel () ;

13.4. CREATING AN INTERACTIVE USER INTERFACE 335

// Put panel one at the top
this . getContentPane () . add (panel1 , BorderLayout .NORTH) ;
// Create a space for entering a new sound filename
filename = new JTextField (” soundfilename . wav”) ;
filename . addActionListener (

new ActionListener () {
public void actionPerformed (ActionEvent e) {

/∗ When hi t return in filename f i e ld ,
∗ create a new sound with that name .
∗ Printing i s for debugging purposes .
∗∗/

newSound = new SoundElement (
new Sound (

FileChooser . getMediaPath (filename . getText ()))) ;
// For debugging purposes
System . out . pr int ln (”New sound from ”+

FileChooser . getMediaPath (filename . getText ())) ;
}

}
) ;
panel1 . add (filename) ;

How it works: All of the RhythmTool class content is in its constructor.
When we create an instance of RhythmTool, the window opens and is us-
able. Besides setting up the title and the layout manager, the start of the
constructor sets up a linked list of sound elements, using a one sample
sound as the root of the list.

The text field for the filename is then set up. It is in a panel that is
placed at the top (NORTH) of the window. Text fields can have ActionListeners,
too. The “action” that triggers the ActionEvent is hitting ENTER (or RE-
TURN) within the field. When that happens, we get the filename (filename.getText()),
get the complete filename from getMediaPath, and make a sound from that
file.

Common Bug: Declaring a variable makes it local
Notice that we do not declare the variable newSound. If we did, the vari-
able would be local to the method. Rather, we want to access the instance
variable declared at the top of the RhythmTool class.

Debugging Tip: Making the invisible visible
So that we know what’s going on here, we print out a message to the con-

336 CHAPTER 13. USER INTERFACE STRUCTURES

sole about the creation of the sound. Because the creation of the sound
happens invisibly, getting some feedback can be helpful in knowing what’s
going on. If you REPEAT the sound and nothing happens to the sound
sequence, we need to know if the repeat broke or if the sound was never
created.

Program
Example #109 Example Java Code: Creating the Count Field in the RhythmTool

/∗ Put in another panel with number f i e l d
∗ and repeat & weave buttons ∗/

JPanel panel2 = new JPanel () ;
// This layout i s for the PANEL, not the WINDOW
panel2 . setLayout (new BorderLayout ()) ;
// Add to MIDDLE of WINDOW
this . getContentPane () . add (panel2 , BorderLayout .CENTER) ;
// Add a f i e l d for arguments for Repeat and Weave
count = new JTextField (”10”) ;
num = 10; // Default value
count . addActionListener (

new ActionListener () {
public void actionPerformed (ActionEvent e) {

// Here ’ s how we convert a s tr ing to a number
num = Integer . parseInt (count . getText ()) ;

}
}
) ;
// Add to top of panel
panel2 . add (count , BorderLayout .NORTH) ;

How it works: Next, we create a panel that will hold the count field and
the two buttons. We create a separate layout manager just for this pane.
It will also be a BorderLayout, and the count field will go at the top (NORTH)
of this panel.

The count text field holds a “10” to start. The user triggers the action
of this field (by typing RETURN or ENTER). The action is to get the con-
tents of the field as a String (count.getText()), then convert it to a number
(Integer.parseInt). Again, we do not declare num because we want to access
it elsewhere through the instance variable.

* * *

13.4. CREATING AN INTERACTIVE USER INTERFACE 337

Program
Example #110 Example Java Code: RhythmTool’s Buttons

// Now do the Repeat button
JButton button1 = new JButton (” Repeat ”) ;
button1 . addActionListener (

new ActionListener () {
public void actionPerformed (ActionEvent e) {

// Repeat the number of times s p e c i f i e d
root . repeatNext (newSound ,num) ;

}
}

) ;
// Add to RIGHT of PANEL
panel2 . add (button1 , BorderLayout .EAST) ;

// Now do the Weave button
JButton button2 = new JButton (”Weave”) ;
button2 . addActionListener (

new ActionListener () {
public void actionPerformed (ActionEvent e) {

// We ’ l l weave 10 copies in
// every num times

root . weave (newSound,10 ,num) ;
}

}
) ;
// Add to LEFT of PANEL
panel2 . add (button2 , BorderLayout .WEST) ;

/∗ Put in another panel with the Play button ∗/
JPanel panel3 = new JPanel () ;
// Put in bottom of WINDOW
this . getContentPane () . add (panel3 , BorderLayout .SOUTH) ;
JButton button3 = new JButton (” Play ”) ;
button3 . addActionListener (

new ActionListener () {
// I f th i s ge ts tr iggered , play the composed sound
public void actionPerformed (ActionEvent e) {

root . playFromMeOn () ;
}

}
) ;
panel3 . add (button3) ; // No layout manager here

this . pack () ;
this . s e tV is ib le (true) ;

}

}

338 CHAPTER 13. USER INTERFACE STRUCTURES

* * *

How it works: Creating the three buttons (REPEAT, WEAVE, and PLAY)
are mostly repeated code. We create them and place them appropriate into
their panels. (PLAY gets its own, new panel. Most of the effort here is
setting up the window, not the actual execution of the tool. The actions
for each of these buttons is a simple method call that we have used many
times before. The variables for each call have been set up previously.

• REPEAT is simply root.repeatNext(newSound,num).

• WEAVE is simply root.weave(newSound,10,num).

• PLAY is simply root.playFromMeOn().

13.5 Running from the Command Line

What you might want to do here is to run your tool from the command line.
You can do this pretty easily. We can even accept input from the command
line, like the name of a filename to process.

Remember in our main methods, we specified String[] args as the input?
That array of strings actually represents all the words in the command line
when we execute our class from the command line, using the java command.
Here is a test class for playing with this, which we see executed in Fig-
ure 13.27. Why did it end in an error? Because our args array was shorter,
and we tried to reference words beyond the end of the line.

Program
Example #111 Example Java Code: Test program for String[] args

public class TestStringArgs {
public static void main (String [] args){

System . out . pr int ln (” 0 : ”+args [0]) ;
System . out . pr int ln (” 1 : ”+args [1]) ;
System . out . pr int ln (” 2 : ”+args [2]) ;

}
}

Imagine that we have a PictureTool class, rather than a RhythmTool, and
we want to execute the picture with some file specified as input. We could
create a class whose only job it is to run our picture tool with some input—
a filename which we access as args[0]. Executing this tool on a filename
looks like Figure 13.28.

* * *

13.5. RUNNING FROM THE COMMAND LINE 339

Figure 13.27: Exploring how String[] args works

Figure 13.28: Executing PictureTool from the command line

Program
Example #112 Example Java Code: RunPictureTool

public class RunPictureTool {
public static void main (String [] args) {

PictureTool pt = new PictureTool (args [0]) ;
}

}

Ex. 31 — Modify the RhythmTool to allow the user to SAVE the newly cre-
ated sound sequence.

340 CHAPTER 13. USER INTERFACE STRUCTURES

Ex. 32 — Create another button for RhythmTool to create a new sequence—
to clear out the current sequence.

Ex. 33 — Build a class named PictureTool whose constructor takes in a
filename as input. You’ll use it like this:

Welcome to DrJava.
> PictureTool pt = new PictureTool(FileChooser.getMediaPath(‘‘swan.jpg’’));

You should then (a) make a picture from that filename, (b) open the picture
and tool buttons. Your tool buttons will manipulate the picture. It may
look something like this:

You get to choose what tools that you provide, but there must be at least
five:

•Provide two buttons for manipulating the color: Reduce red, increase
red, make it grayscale, make it negative, darken, or lighten. Your
choice. (You can provide more than two if you want.)

•Provide a tool that takes a numeric input and uses that input to ma-
nipulate the picture. Maybe it’s a scaling tool and the input is amount
to scale (2.0? 0.5?)? Maybe it’s an amount to increase or decrease red?

•Provide a tool to do some kind of mirroring, either horizontal or verti-
cal.

•One other tool of any kind you want. Flip? Red eye removal? Compose
another figure scaled down into the bottom of the picture? Chromakey
the picture into a jungle?

•Provide a text area for entering a filename, and a ”Save” button that
should save the resultant picture with the filename entered in the text
area. (Suggestion: Only do this on copies of pictures that you want to
manipulate!)

Every time that we click one of these tools, the picture should be manip-
ulated and then the frame must be repainted! We want to see the change
after clicking the tool. (Hint: Call frame.repaint() after manipulating the
picture.)

13.5. RUNNING FROM THE COMMAND LINE 341

In case you weren’t aware—if you need to convert the String from a text
field into a Double (with a floating point, like for scaling), you can use
Double.parseDouble(String) like this:

> Double . parseDouble (” 3.45 ”)
3.45

For extra credit, provide UNDO and REDO buttons. With these two but-
tons, you can always go back and forth when you don’t like the change you
made on the picture. You only need to support up to one level of “memory”
of a previous event, so there’s no need to use a dynamic data structure to
implement this feature. Do note that the REDO button must be disabled
until after you click the UNDO button.

Ex. 34 — Before writing the program you will create subfolders in your
MediaSources folder with a number of topics (“flower”, “motorcycle”, “Brit-
ney Spears”, etc.). You should have 10–12 topics with about 3–5 pictures
for each and your directory structure should look like this (assuming your
MediaSources folder is c :/ cs1316/MediaSources):

•c :/ cs1316/MediaSources/baseball/1.jpg

•c :/ cs1316/MediaSources/baseball/2.jpg

•c :/ cs1316/MediaSources/baseball/3.jpg

•c :/ cs1316/MediaSources/speedy gonzalez/1.jpg

•c :/ cs1316/MediaSources/speedy gonzalez/2.jpg

•...
Notice that the topic is the subfolder and the images have a strict naming
system (this will make them easier to choose).
You are now ready to start building a collage generator. Your GUI will al-
low users to choose 3–5 of these words or phrases (via a list, or selection
of buttons, or typing them in, your choice but it must be in your user in-
terface). Your generator then randomly selects pictures from those direc-
tories, randomly applies filters for them, and randomly creates a collage
with those manipulated images. Finally, open it up as a picture.

Ex. 35 — Write a class TurtleEtchASketch3 that will create a version of the
classic “Etch-a-sketch” using a Turtle and present it visually using a GUI.
You will need to have a Turtle draw on a Picture canvas, with directional
buttons to control the movements of the Turtle.
Components you need to include:

•Directional buttons to control the Turtle.
–upButton and downButton to control vertical movement.

3Project created by Dawn Finney and Colin Potts.

342 CHAPTER 13. USER INTERFACE STRUCTURES

–leftButton and rightButton to control horizontal movement.
•An input area (JTextArea and JTextField are good choices) to define how
many pixels or steps the Turtle should move each time a directional
button is clicked. (The default number of pixels should be 5).
•A submitButton for the input area.
•Easy option: Create 3 buttons to change the color of the line the
Turtle draws or
•Harder option: Have a button to bring up a JColorChooser to change
the color.
•Use a JLabel to hold the Picture that will serve as the background for
the Turtle. The background Picture can be blank, but does not have to
be.
•Be sure to have a shakeButton that clears the whole screen.

Ex. 36 — Build a class named MidiTool that will create a graphical user
interface (GUI) for creating MIDI (music) sequences.
This GUI will have a string input area where the user can type in a se-
quence of letters. The letters will define a set of MIDI notes to define a
node. Only the letters c,d,e,f,g,a, and b are allowed, presumed all in the
third octave. Lowercase is an eighth note, uppercase is a quarter note. So
cEdEgC would be c3 eighth, e3 quarter, d3 eighth, e3 quarter, g3 eighth,
c3 quarter.
There should be buttons that allow users to create notes in a node, then
weave nodes into a sequence:

•MakeNode converts the current string into a node.
•PlayNode plays the node.
•ClearSequence clears the current sequence.
•RepeatInSequence takes a number in a text area (“3”, for example) and
repeats the currently made node that number of times onto the end of
the sequence.
•WeaveInSequence weaves the currently made node into the sequence
every-other node until the end of the sequence.
•PlaySequence plays the sequence.

Be sure to handle error conditions. What should happen if someone chooses
to repeat or weave a node into a sequence when no node has been made?
What should happen if illegal characters are entered into the string for a
node? These are decisions you can make. A Java runtime error, however,
is not an appropriate message to a user.
For extra credit, create a SaveSequence button that saves the sequence into
a MIDI file.

Part IV

Simulations: Problem Solving
with Data Structures

343

14 Using an Existing Simulation
Package

We may put a chapter here that uses Greenfoot or Gridworld. The idea is
to use a simulation package, before exploring how one is built and how to
pull an animation out of one.

345

15 Introducing UML and
Continuous Simulations

Chapter Learning Objectives
We’re now starting on the third major theme of this book. The first two

were programming media in Java and structuring media using dynamic
structures (e.g., linked lists and trees). The third theme is simulations, and
here’s where we use all of the above to create our villagers and wildebeests.

The problem being addressed in this chapter is how to model dynamic
situations, and then, how to simulate those models.
The computer science goals for this chapter are:

• To be able to use the basic terminology of simulations: Discrete event
vs. continuous, resources, and queues.

• To describe linked lists as a head and a tail (or rest).

• To learn generalization and aggregation as two mechanisms for mod-
elling with objects.

• To use UML class diagrams for describing the class structure of in-
creasingly sophisticated object models.

• To implement a simple predator-prey simulation.

• To write numeric data to a file for later manipulation.

The media learning goals for this chapter are:

• To describe (and modify) behavior of agents in order to create differ-
ent graphical simulations (like the Wildebeests and Villagers).

• To use spreadsheets (like Excel) for analyzing the results of graphical
simulations.

347

348
CHAPTER 15. INTRODUCING UML AND CONTINUOUS

SIMULATIONS

15.1 Introducing Simulations

A simulation is a representation of a system of objects in a real
or fantasy world. The purpose of creating a computer simula-
tion is to provide a framework in which to understand the sim-
ulated situation, for example, to understand the behavior of a
waiting line, the workload of clerks, or the timeliness of service
to customers. A computer simulation makes it possible to col-
lect statistics about these situations, and to test out new ideas
about their organization.

The above quote is by Adele Goldberg and Dave Robson from their 1989
book in which they introduced the programming language Smalltalk to the
world [Goldberg and Robson, 1989]. Smalltalk is important for being the
first language explicitly called “object-oriented,” and it was the language
in which the desktop user interface (overlapping windows, icons, menus,
and a mouse pointer) was invented. And Smalltalk was invented, in part,
in order to create simulations.

Simulations are representations of the world (models) that are exe-
cuted (made to behave like things in the world). The idea of objects in
Smalltalk were based on a programming language called Simula, which
was entirely invented to build simulations. Object-oriented programming
makes it easier to build simulations, because objects were designed to
model real-world objects.

• In the real world, things know stuff and they know how to do stuff.
We don’t mean to anthropomorphize the world, but there is a sense
in which real world objects know and know how. Blood cells know the
oxygen that they carry, and they know how to pass it through to other
cells through permeable membranes. Students know the courses that
they want, and Registrars know the course catalog.

• Objects get things done by asking each other to do things, not by
demanding or controlling other things. The important point is that
there is an interface between objects that defines how they interact
with each other. Blood cells don’t force their oxygen into other cells.
Students register for classes by requesting a seat from a registrar–
it’s not often that a student gets away with registering by placing
themselves on a class roll.

• Objects decide what they share and what they don’t share. The Regis-
trar doesn’t know what a student wants to enroll for, and the student
won’t get the class she wants until the desired course is shared with
the Registrar.

Object-oriented programming was invented to make simulations eas-
ier, but not just to build simulations. Alan Kay, who was one of the key

15.1. INTRODUCING SIMULATIONS 349

thinkers behind Smalltalk and object-oriented programming, had the in-
sight that simulations were a great way to think about all kinds of pro-
grams. A course registration system is actually a simulation of a model of
how a campus works. A spreadsheet is a simulation of the physical paper
books in which accountants would do their totals and account tracking.

There are two main kinds of simulations. Continuous simulations rep-
resent every moment of the simulated world. Most video games can be
thought of as continuous simulations. Weather simulations and simula-
tions of nuclear blasts tend to be continuous because you have to track ev-
erything at every moment. Discrete event simulations, on the other hand,
do not represent every moment of time in a simulation.

Discrete event simulations only simulate the moments when something
interesting happens. Discrete event simulations are often the most useful
in professional situations. If you want to use a simulation of a factory floor,
in order to determine the optimal number of machines and the layout of
those machines, then you really don’t care about simulating the product
when it’s in the stamping machine, cutter, or polisher. You only care about
noting when material enters and leaves those machines–and having some
way to measure how much the material was probably in the machine for.
Similarly, if you wanted to simulate Napoleon’s march to Russia (maybe
to explore what would have happened if they’d taken a different route, or
if the weather was 10 degrees warmer), you care about how many people
marched each day, and consider some notion of how many might succumb
to the cold each day. But you really don’t need to simulate every foot-
dragging, miserable moment–just the ones that really matter.

The real trick of a discrete event simulation, then, is to figure out when
you should simulate–when something interesting should happen, so that
you can jump right to those moments. We’re going to find that there are
several important parts of a discrete event simulation that will enable us
to do that. For example, we will have an event queue that will keep track
of what are the important points that we know about so-far, and when are
they supposed to happen.

Discrete event simulations (and sometimes continuous simulations) tend
to involve resources. Resources are what the active, working beings (or
agents) in the simulation strive for. A resource might be a book in a li-
brary, or a teller in a bank, or a car at a rental agency. We say that some
resources are fixed–there’s only so much of it (like cars in a rental car), and
no more is created even if more is needed. Other resources are produced
and consumed, like jelly beans or chips (just keep crunching, we’ll make
more).

We can also think of resources as points of coordination in a simula-
tion. Imagine that you are simulating a hospital where both doctors and
patients are agents being simulated. You want to simulate that, during
some procedure (say, an operation), both the doctor and patient have to be
at the same place and can’t do anything else until the procedure is done.
In that case, the operating table might be the coordinated resource, and

350
CHAPTER 15. INTRODUCING UML AND CONTINUOUS

SIMULATIONS

when both the doctor and patient access that resource, they’re both stuck
until done.

If an agent can’t get the resource it wants when it wants it, we say that
the agent enters a queue. In the United Kingdom, people know that word
well–in the United States, we simply call it “a line” and being in a queue is
“getting in line.” A queue is an ordered collection (that is, there is a first,
and a second, and eventually, a last) where the first one into the line is the
first one that comes out of the line (and the second one in is the second one
out, and so on). It’s a basic notion of “fairness.” We sometimes call a queue
a FIFO list–a list of items that are first-in-first-out. If an agent can’t get
the resource that she wants, she enters a queue waiting for more resource
to be produced or for a resource to be returned by some other agent (if it’s
a fixed resource).

The interesting question of any simulation is Is the model right? Do
the agents interact in the way that describes the real world correctly? Do
the agents request the right resources in the right way? And then, how
do we implement those models? To get started, let’s build one model and
simulate that model.

15.2 Our First Model and Simulation: Wolves and
Deer

We are going to explore a few different kinds of continuous simulations
in this chapter. We’ll be using our Turtle class to represent individuals
in our simulated worlds. The first simulation that we’re going to build
is a simulation of wolves chasing and eating deer (Figure 15.1). Wolves
and deer is an instance of a common form of continuous simulation called
predator and prey simulations.

Figure 15.1: An execution of our wolves and deer simulation

The name of this class is WolfDeerSimulation. We can start an execution
like this:
Welcome to DrJava .

15.2. OUR FIRST MODEL AND SIMULATION: WOLVES AND DEER351

> WolfDeerSimulation wds = new WolfDeerSimulation ()
> wds . run ()
>>> Timestep : 0
Wolves l e f t : 5
Deer l e f t : 20
>>> Timestep : 1
Wolves l e f t : 5
Deer l e f t : 20
<SIGH!> A deer died . . .
>>> Timestep : 2
Wolves l e f t : 5
Deer l e f t : 19
>>> Timestep : 3
Wolves l e f t : 5
Deer l e f t : 19
<SIGH!> A deer died . . .
>>> Timestep : 4
Wolves l e f t : 5
Deer l e f t : 18

What we see is Figure 15.1. Wolves (in gray) move around and (occa-
sionally) catch deer (in brown), at which point the deer turn red to indicate
their death (depicted above with a <SIGH!>). This is a very simple model,
but we’re going to grow it further in the book.

WolfDeerSimulation is a continuous simulation. Each moment in time
is simulated. There are no resources in this simulation. It is an example
of a predator-prey simulation, which is a common real world (ecological)
situation. In these kinds of simulations, there are parameters (variables
or rules) to change to explore under what conditions predators and prey
survive and in what numbers. You can see in this example that we are
showing how many wolves and deer survive at each time step–that is, after
each moment in the simulation’s notion of time. (It’s up to the modeler to
decide if a moment stands for a nanosecond or a hundred years.)

Modelling the Wolves and Deer
Simulations will require many more classes than the past projects that we
have done. Figure 15.2 describes the relationships in the Wolves and Deer
simulation.

• We are going to use our Turtle class to model the wolves and deer.
The class Wolf and the class Deer are subclasses of the class turtle.
Simulation agents will be told to act() once per timestep–it’s in that
method wolves and deer will do whatever they are told to do. Deer
instances also know how to die() , and Wolf instances also know how
to find the closest deer (in order to eat it).

• We will use the handy-dandy LLNode class in order to create a linked
list of agents (which are in our case kinds of Turtle) through the

352
CHAPTER 15. INTRODUCING UML AND CONTINUOUS

SIMULATIONS

Figure 15.2: The class relationships in the Wolves and Deer simulation

AgentNode class. The AgentNode class knows how to get and set its
agents (Turtle instances) and to remove an agent from the list. Re-
moving an agent from the list of agents is a little more complicated
than simply removing a node from a linked list–the first thing we
have to do is to find the node containing the input turtle and then
remove the node.

• The overall WolfDeerSimulation keeps track of all the wolves and deer.
It also knows how to run() the simulation. To run a simulation has a
few basic parts:

– The world must be set up and populated with wolves and deer.
– In a loop (often called a event loop or time loop), time is incre-

mented.
– At each moment in time, each agent in the world is told to do

whatever it needs to do (e.g., act()). Then the world display is
updated.

Now, while that may seem complex, the reality is that Figure 15.2
doesn’t capture all the relationships between the different classes in this
simulation. For example, how does the WolfDeerSimulation keep track of the
wolves and deer? You can probably figure out that it must have instance
variables that hold AgentNode instances. But this figure doesn’t reflect the
entire object model. Let’s talk about how to describe object models using
a software industry standard that captures more of the details in how the
classes in the simulation interact.

15.3 Modelling in Objects

As we said at the beginning of this chapter, object-oriented programming
was invented to make simulations easier to build. The individual objects

15.3. MODELLING IN OBJECTS 353

are clearly connected to real-world objects, but there are also techniques
for thinking about how classes and objects relate to one another that helps
to capture how objects in the real world relate to one another. Using these
techniques is referred to as modelling in terms of objects, or object mod-
elling. We call the process of studying a situation and coming up with the
appropriate object-oriented model object-oriented analysis.

Computer Science Idea: The relationship between objects is meant to
model reality
When an object modeler sets up relationships between objects, she is mak-
ing a statement about how she sees the real world works.

Two of the kinds of object relationships that we use in modelling are generalization-
specialization and aggregation.

• When we create a generalization-specialization relationship, we are
saying that one class “is a kind of” the other class. Generalization-
specialization relationships occur in the real world. Think of mus-
cle and blood cells as specializations of the general concept of a cell.
This relationship is typically implemented as a subclass-superclass
relationship. When we created the Student class by extending Person,
we were saying that a student is a kind of person. A student is a
specialization of a person. A person is a generalization of a student.

• Another common object relationship is aggregation. This is simply
the idea that objects exist within one another. Within you are organs
(heart, lungs, brain), and each of these are individualized cells. If
we were to model these organs and cells as objects, we would have
objects inside of other objects.

Expert object modelers make a further distinction in aggregation be-
tween what we might call “has-a” relationship (sometimes called an
association relationship or simply a reference relationship), in con-
trast with an aggregation where the parts make up the whole. Imag-
ine that you were modelling a human being. You could model the hu-
man as two arms and hands, two legs and feet, a torso, and neck and
head. In that case, all those parts make up the whole of a human–
that’s the latter kind of aggregation. On the other hand, if you were
modelling the cardiovascular system, you might model just hearts
and lungs for each human in your simulation–even though, we know
that humans have more than just hearts and lungs in them. A hu-
man “has-a” heart and two lungs, but that’s not all that they are.
Modelers sometimes call that an association relationship–humans is
associated with a heart object and two lung objects.

354
CHAPTER 15. INTRODUCING UML AND CONTINUOUS

SIMULATIONS

We can describe many kinds of object models with just these two kinds
of relationships. But if we were to spell out sentences like “A Person and
a Student have a generalization-specialization relationship” for every re-
lationship in our models, they would go on for pages. Just look at what
we wrote in the last section for the wolves and deer simulation, and that
wasn’t even all the relationships in that model!

Object modelers use graphical notations like the Unified Modelling
Language for describing their models. The Unified Modelling Language
(UML) has several different kinds of diagrams in it, such as diagrams for
describing the order of operations in different objects over time (a collab-
oration diagram or sequence diagram) or describing the different states
(values of variables) that an object can be in during a particular process (a
state diagram). The diagram that we’re going to use is the class diagram
that describes the relationships, methods, and fields in an object model.

+run()

-wolves
-deer

WolfDeerSimulation

+setAgent()
+getAgent()

AgentNode

+getNext()
+remove()
+count()
+add()

-next

LLNode

+act()
+getClosest()

Wolf
+forward()
+turn()
+turnToFace()

-xPos
-yPos
-heading

Turtle

+act()
+die()

Deer

*

-myTurtle1

*

-wolves1

*

-deer

1

-mySim

1

*

-mySim

1

*

Figure 15.3: A UML class diagram for the wolves and deer simulation

Figure 15.3 is a UML class diagram describing the classes in our wolves
and deer simulation. There are lots of relationships described in this dia-
gram. While it may look complex, there really are two only kinds of rela-
tionships going on here, and the rest are things that you already know a
lot about.

The boxes are the individual UML classes (Figure 15.4). They are split
into thirds. The top part lists the name of the class. The middle part lists
the instance variables (also called fields) for this class. Besides the name,

15.3. MODELLING IN OBJECTS 355

sometimes the type of the variable is also listed (e.g., what kind of objects
are stored in this variable?). The symbols in front of the names of the
fields indicate the accessibility. A ’+’ indicates a public field, a ’-’ indicates
a private field, and a ’#’ indicates a protected field. Finally, the bottom lists
the methods or operations for this class. Like the fields, the accessibility is
also indicated with a prefix on the method name.

Figure 15.4: One UML class

Some fields may not appear in the class box. Instead, they might ap-
pear as a name on a reference relationship. Figure 15.5 pulls out just the
reference relationship from the overall diagram. Reference relationships
(“has-a” relationship) have open arrow points, and they indicate that one
kind of object contains a reference to the other object. In this example,
we see that the class Wolf contains a reference to its WolfDeerSimulation.
The name of this reference is mySim. This means that Wolf contains an
additional field named mySim that doesn’t have to appear in the class
box. You’re also seeing a “1” on one end of the reference link, and a
“*” on the other end. This means that each Wolf references exactly one
WolfDeerSimulation, but many (that’s what “*” means – anywhere from 0 to
infinity) wolves might be in one simulation. The arrowhead could actually
be on both sides. If a WolfDeerSimulation referenced at least one Wolf, then
the arrows would go both way.

At this point, you might be wondering, “Huh? I thought that there were
wolves in this simulation?” There are other, but not direction from the sim-
ulation object to the wolf object. There are other objects in there. Follow
the lines in Figure 15.3. WolfDeerSimulation contains an AgentNode named
wolves. (See that “1” in there? Exactly one direct reference.) AgentNode
contains a turtle named myTurtle. That’s how a simulation contains wolves
and deer.

Because, odd as it seems, this diagram claims that wolves and deer are
kinds of turtles (Figure 15.6). The lines that have closed arrows at their
ends are depicting generalization-specialization (gen-spec) relationships.
The arrow points toward the generalization (superclass). Figure 15.6 says
that deers are kinds of turtles. (Are you imagining small turtles with
antlers pasted onto their heads? Or maybe with gray or brown fur glued
onto the shells?) This is what is sometimes called implementation inheri-
tance–we want Deer instances to behave like Turtles in terms of movement

356
CHAPTER 15. INTRODUCING UML AND CONTINUOUS

SIMULATIONS

+run()

-wolves
-deer

WolfDeerSimulation

+act()
+getClosest()

Wolf

-mySim

1

*

Figure 15.5: A Reference Relationship

+forward()
+turn()
+turnToFace()

-xPos
-yPos
-heading

Turtle

+act()
+die()

Deer

Figure 15.6: A Gen-Spec (Generalization-Specialization) relationship

and appearance. But from a modelling perspective, it’s pretty silly to say
that a deer is a kind of turtle. We’ll fix that later.

15.4 Implementing the Simulation Class

The whole WolfDeerSimulation can be found at Program Program
Example #141 (page 436). Let’s walk through the key parts here.

public class WolfDeerSimulation {

15.4. IMPLEMENTING THE SIMULATION CLASS 357

/∗ Linked l i s t s for tracking wolves and deer ∗/
private AgentNode wolves ;
private AgentNode deer ;

/∗∗ Accessors for wolves and deer ∗/
public AgentNode getWolves () { return wolves ;}
public AgentNode getDeer () { return deer ;}

Why do we declare our wolves and deer references to be private? Be-
cause we don’t want them to be access except through accessors that we
provide. Just imagine some rogue hacker wolf, gaining access to the posi-
tions of all the deer! No, of course, that’s not the idea. But access to data is
an important part of the model. Wolves can get deer’s positions–by seeing
them! If that’s the only way that wolves find deer in the real world, then
we should make sure that that’s the only way it happens in our model, and
we’ll hide information that the wolf shouldn’t have access to. If all the data
were public, then a programmer might accidentally access data that one
part of the model isn’t supposed to access.

Now let’s start looking at the run() method.

public void run ()
{

World w = new World () ;
w. setAutoRepaint (false) ;

// Start the l i s t s
wolves = new AgentNode () ;
deer = new AgentNode () ;

// create some deer
int numDeer = 20;
for (int i = 0 ; i < numDeer ; i ++)
{

deer . add (new AgentNode (new Deer (w, this))) ;
}

// create some wolves
int numWolves = 5;
for (int i = 0 ; i < numWolves ; i ++)
{

wolves . add (new AgentNode (new Wolf (w, this))) ;
}

The first part of this method is saying that we don’t want the World
doesn’t update (repaint) until we tell it to. Within a single time step, ev-
erything is supposed to be happening at the same moment, but we have
to tell each agent to act() separately. We won’t the World to update during
each turtle (er, wolf and deer) movement. So we’ll tell it to wait.

358
CHAPTER 15. INTRODUCING UML AND CONTINUOUS

SIMULATIONS

The rest of the example above is creating the wolves and deer lists. No-
tice that the deer variable references an AgentNode that is empty–there’s
no deer in there! Same for wolves. Then in the loops, we create each addi-
tional AgentNode with a Deer or a Wolf. Each Deer and Wolf takes as input
the world w and the simulation this. The new AgentNodes get added to the
respective linked lists.

Why the empty node at the front? This is actually a much more common
linked list structure than the one that we’ve used up until now. Figure 15.7
describes what the structure looks like. This is sometimes called a head-
tail or head-rest structure. What we’re doing is setting up a node for wolves
and deer to point at that does not itself contain a wolf or deer. Why? Recall
our remove() code for removing a node from a list–it can’t remove the first
node in the list. How could it–we can’t change what the variables wolves
and deer point at within the method. If the nodes that wolves and deer
reference actually contained a wolf and a deer, those would be invulnerable
objects–they could never die and thus be removed from the list of living
wolves or deer. The first node is immortal! Since that’s probably a highly
unusual situation to have immortal wolves and deer, we’ll use a head-tail
structure so that we can remove animals from our list.

Figure 15.7: The structure of the wolves linked list

Here’s the next part of the run() method, where we invite our wolves
and deer act.

// declare a wolf and deer
Wolf currentWolf = null ;
Deer currentDeer = null ;
AgentNode currentNode = null ;

// loop for a s e t number of t imesteps (50 here)
for (int t = 0 ; t < 50; t ++)
{

// loop through a l l the wolves
currentNode = (AgentNode) wolves . getNext () ;
while (currentNode != null)
{

currentWolf = (Wolf) currentNode . getAgent () ;
currentWolf . act () ;
currentNode = (AgentNode) currentNode . getNext () ;

}
// loop through a l l the deer
currentNode = (AgentNode) deer . getNext () ;
while (currentNode != null)

15.5. IMPLEMENTING A WOLF 359

{
currentDeer = (Deer) currentNode . getAgent () ;
currentDeer . act () ;
currentNode = (AgentNode) currentNode . getNext () ;

}
What’s going on in here is that, within a for loop that counts up to

50 time steps, we traverse the wolves and then deer linked lists, inviting
each one to act() . But the code probably looks more complicated than that,
because of the casting going on.

• currentNode = (AgentNode) wolves.getNext();–remember that AgentNode
is a subclass of LLNode. getNext() returns an LLNode, so we have to
cast it to an AgentNode to be able to do AgentNode-specific stuff, like
getting at the agent.

• currentWolf = (Wolf) currentNode.getAgent();–remember that AgentNodes
contain Turtles, but we need a Wolf to get it to act() . So, we have to
cast again.

Same things are going on in the Deer part of the loop.
Finally, the end of the run() method in WolfDeerSimulation.

// repaint the world to show the movement
w. repaint () ;

// Let ’ s f igure out where we stand . . .
System . out . pr int ln (”>>> Timestep : ”+t) ;
System . out . pr int ln (” Wolves l e f t : ”+wolves . getNext () . count ()) ;
System . out . pr int ln (” Deer l e f t : ”+deer . getNext () . count ()) ;

// Wait for one second
//Thread . s l eep (1000) ;

}
}
First, we tell the world “Everyone’s had a chance to update! Show the

world!” We then print the current statistics about the world–how many
deer and wolves are left, by counting. Our count() method is very simple
and doesn’t understand about head-tail structures, so we’ll call count() on
the tail (the getNext()) to avoid counting the empty head as one wolf or deer.
If you have a really fast computer and the world is updating faster than
you can really see (one can dream), you might want to uncomment the line
Thread.sleep(). That causes the execution to pause for 1000 milliseconds–a
whole second, so that you can see the screen before it updates again.

15.5 Implementing a Wolf

The complete Wolf class can be found at Program Program
Example #142 (page 439). Here’s how it starts.

360
CHAPTER 15. INTRODUCING UML AND CONTINUOUS

SIMULATIONS

import java . awt . Color ;
import java . u t i l .Random;
import java . u t i l . I terator ;

/∗∗
∗ Class that represents a wolf . The wolf c lass
∗ tracks a l l the l i v ing wolves with a linked l i s t .
∗
∗ @author Barb Ericson ericson@cc . gatech . edu
∗/

public class Wolf extends Turtle
{

/////////////// f i e l d s //////////////////////

/∗∗ c lass constant for the co lor ∗/
private static final Color grey = new Color (153 ,153 ,153) ;
/∗∗ c lass constant for probabi l i t y o f NOT turning ∗/
protected static final double PROB OF STAY = 1/10 ;
/∗∗ c lass constant for top speed (max num steps can move in a timestep) ∗/
protected static final int maxSpeed = 60;

/∗∗ My simulation ∗/
protected WolfDeerSimulation mySim;

/∗∗ random number generator ∗/
protected static Random randNumGen = new Random () ;

There’s a new term we’ve never seen here before: final. A final variable
is one that can’t actually ever vary–it’s value is stuck right from the begin-
ning. It’s a constant. You never have to say final, but there are advantages
to using it. Java can be more efficient in its use of memory and generate
even a little faster code if you declare things that will never change final.

Making It Work Tip: Names of constants are capitalized
Java discourse rules say that you capitalize values that are final, that will
never change, in order to highlight them and set them apart.

We’re using final values here to set the value of the wolves and the
probability that they will not turn in any given time step. We really only
need one copy of these variables for the whole class (e.g., we don’t need
another copy of the color grey for each and every wolf), so we’re declaring
them static, too. We declare them protected because we might want to
create new kinds of wolves (specializations of wolves) that will want to
access these. Remember that protected fields can be accessed by the class

15.5. IMPLEMENTING A WOLF 361

or any of its subclasses1.
In the past, when we needed a random value, we simply accessed the

method Math.random(). That method returns a double between 0 and 1
where all values are equally likely. That all numbers are “equally likely”
is called a uniform distribution. That’s a problem because relatively few
things are uniformly distributed. Think about heights in your room or in
your school. Let’s say that you have someone who is 6 foot 10 inches tall
and someone else 4 foot 11 inches tall. Does that mean that there are just
as many people 6-10 as there are 4-11, and 5-0, 5-1, 5-2, and so on? We
know that that’s not how heights work. Most of the people are near the
average height, and only a few people are at the maximum or minimum.
That’s a normal distribution, so-named because it is so, well, normal!

Instances of the class Random know how to generate random values on
a normal distribution, as well as on a uniform distribution. We’ll see those
methods later, but we’ll get started creating instances of Random now to
get ready for that.

The next part of Wolf are the constructors. The constructors for Wolf are
fairly complicated. They have to match Turtle’s constructors which have to
do with things like ModelDisplay which is an interface that World obeys. We
will also have them call init () in order to initialize the agent. Here’s what
they look like.

////////////////////////////// Constructors ////////////////////////

/∗∗
∗ Constructor that takes the model display (the or ig inal
∗ pos i t ion wi l l be randomly assigned)
∗ @param modelDisplayer thing that displays the model
∗ @param mySim my simulation
∗/

public Wolf (ModelDisplay modelDisplayer , WolfDeerSimulation thisSim)
{

super (randNumGen. nextInt (modelDisplayer . getWidth ()) ,
randNumGen. nextInt (modelDisplayer . getHeight ()) ,
modelDisplayer) ;

i n i t (thisSim) ;
}

/∗∗ Constructor that takes the x and y and a model
∗ display to draw i t on
∗ @param x the s tar t ing x pos i t ion
∗ @param y the s tar t ing y pos i t ion
∗ @param modelDisplayer the thing that displays the model
∗ @param mySim my simulation

1In Java, protected fields can actually be accessed from any class in the same package.
Did you notice us creating any new packages so far? No? Then by default, all the code we’ve
created can access any protected field. Not particularly protected, so we don’t use protected
much.

362
CHAPTER 15. INTRODUCING UML AND CONTINUOUS

SIMULATIONS

∗/
public Wolf (int x , int y , ModelDisplay modelDisplayer ,

WolfDeerSimulation thisSim)
{

// l e t the parent constructor handle i t
super (x , y , modelDisplayer) ;
i n i t (thisSim) ;

}
Initializing a Wolf is fairly simple.

////////////////// methods //

/∗∗
∗ Method to i n i t i a l i z e the new wolf o b j e c t
∗/

public void i n i t (WolfDeerSimulation thisSim)
{

// s e t the co lor o f th i s wolf
setColor (grey) ;

// turn some random direc t i on
this . turn (randNumGen. nextInt (3 6 0)) ;

// s e t my simulation
mySim = thisSim ;

}
Here, we are setting the wolf ’s color to grey, making it point in some

random direction, and setting its reference mySim back up to the simula-
tion that was passed in via the constructor. The method nextInt on Random
returns a random integer between 0 and one less than the number pro-
vided as input. So randNumGen.nextInt(360) then returns a random number
between 0 and 359.

Next comes a very important method, especially if you are a wolf. How
do we figure out if there’s a deer near enough to eat?

public AgentNode getClosest (double distance , AgentNode l i s t)
{

// get the head of the deer linked l i s t
AgentNode head = l i s t ;
AgentNode curr = head ;
AgentNode c l o s e s t = null ;
Deer thisDeer ;
double c losestDistance = 0;
double currDistance = 0;

// loop through the linked l i s t looking for the c l o s e s t deer
while (curr != null)

15.5. IMPLEMENTING A WOLF 363

{
thisDeer = (Deer) curr . getAgent () ;
currDistance = thisDeer . getDistance (

this . getXPos () , this . getYPos ()) ;
i f (currDistance < distance)
{

i f (c l o s e s t == null | | currDistance < c losestDistance)
{

c l o s e s t = curr ;
c losestDistance = currDistance ;

}
}
curr = (AgentNode) curr . getNext () ;

}
return c l o s e s t ;

}

The method getClosest() searches through the given list to see if there’s
a deer-agent in the list that is within distance (the input parameter) of this
wolf. Wolves can only see or hear or smell within some range or distance,
according to our model. So, we’ll look for the closest deer within the range.
If the closest deer is outside the range, this method will just return null.

For the most part, this is just a traversal of the linked list. We walk the
list of AgentNodes, and grab thisDeer out of the current node curr. We then
compute the distance between thisDeer and this wolf ’s position (this.getXPos(), this.getYPos()).
If the distance to this deer is within our range distance, then we con-
sider if it’s the closest. The two vertical bars (||) mean logical “or.” If
we have no closest deer yet (closest == null) or if this is closer than our
current closest deer (currDistance < closestDistance), then we say that the
current AgentNode is the closest, and that this currDistance is the new
closestDistance. At the end, we return the closest AgentNode.

Now that we know how wolves will go about finding something to eat,
we can see how they will actually behave when told to act() .

/∗∗
∗ Method to act during a time step
∗ pick a random direc t i on and move some random amount up to top speed
∗/

public void act ()
{

// get the c l o s e s t deer within some s p e c i f i e d distance
AgentNode closeDeer = getClosest (30 ,

(AgentNode) mySim. getDeer () . getNext ()) ;

i f (closeDeer != null)
{

Deer thisDeer = (Deer) closeDeer . getAgent () ;
this . moveTo (thisDeer . getXPos () ,

364
CHAPTER 15. INTRODUCING UML AND CONTINUOUS

SIMULATIONS

thisDeer . getYPos ()) ;
thisDeer . die () ;

}
else // i f we can ’ t eat , then move

{

// i f the random number i s > prob of NOT turning then turn
i f (randNumGen. nextFloat () > PROB OF STAY)
{

this . turn (randNumGen. nextInt (3 6 0)) ;
}

// go forward some random amount
forward (randNumGen. nextInt (maxSpeed)) ;

}
}
Here’s what our Wolf does:
• The very first thing a wolf does is to see if there’s something to eat!

It checks to see if there’s a close deer within its sensing range (30). If
there is, the wolf gets the deer out of the agent (via getAgent), move
to the position of that deer, and eat the deer (tell it to die).

• If the wolf can’t eat, it moves. It generates a random number (with
nextFloat() which returns a uniform number between 0 and 1), and
if that random number is greater than the probability of just keep-
ing our current heading (PROB OF STAY), then we turn some random
amount. We then move forward at some random value less than a
wolf ’s maximum speed.

15.6 Implementing Deer

The Deer class is at Program Program
Example #143 (page 442). There’s not much new in the declarations of
Deer (e.g., we declare a static final value for brown instead of grey) or in the
constructors. When Deer instances act() , they don’t eat anything in this
model, so they don’t have to hunt for closest anything. Instead, they just
run around randomly. Note that they don’t even look for wolves and try to
get away from them yet.

/∗∗
∗ Method to act during a time step
∗ pick a random direc t i on and move some random amount up to top speed
∗/

public void act ()
{

// i f the random number i s > prob of NOT turning then turn
i f (randNumGen. nextFloat () > PROB OF STAY)
{

15.7. IMPLEMENTING AGENTNODE 365

this . turn (randNumGen. nextInt (3 6 0)) ;
}

// go forward some random amount
forward (randNumGen. nextInt (maxSpeed)) ;

}
The interesting thing that Deer instances do in contrast to Wolf in-

stances is to die.

/∗∗
∗ Method that handles when a deer dies
∗/

public void die ()
{

// Leave a mark on the world where I died . . .
this . setBodyColor (Color . red) ;

// Remove me from the ” l i v e ” l i s t
mySim. getDeer () . remove (this) ;

// ask the model display to remove th i s
// Think of th i s as ” ask the viewable world to remove th i s t u r t l e ”
//th i s . getModelDisplay () . remove (th i s) ;

System . out . pr int ln (”<SIGH!> A deer died . . . ”) ;
}
When a Deer instance dies, we set its body color to Color.red. We then

remove the deer from the list of living deer. We could, if we wished, remove
the body of the dead deer from the screen, by removing the turtle from the
list of turtle’s in the world. That’s what this.getModelDisplay().remove(this);
does. Finally, we print the deer’s obituary to the screen.

15.7 Implementing AgentNode

The full class AgentNode is at Program Program
Example #144 (page 445). As we know from our earlier use of LLNode,
there’s not much to AgentNode–it’s fairly easy to create a linked list of
agents (Turtle instances) by subclassing LLNode.

The interesting part of AgentNode is the removal method that takes
a Deer as input and removes the AgentNode that contains the input Deer
instance.

/∗∗
∗ Remove the node where th i s t u r t l e i s found .
∗∗/

public void remove (Turtle myTurtle) {
// Assume we ’ re ca l l ing on the head
AgentNode head = this ;

366
CHAPTER 15. INTRODUCING UML AND CONTINUOUS

SIMULATIONS

AgentNode current = (AgentNode) this . getNext () ;

while (current != null) {
i f (current . getAgent () == myTurtle)
{// I f found the tur t l e , remove that node

head . remove (current) ;
}

current = (AgentNode) current . getNext () ;
}

}
In this method, we have a linked list traversal where we’re looking

for the node whose agent is the input Turtle–current.getAgent() == myTurtle.
Once we find the right node, we call the normal linked list remove() on that
node.

This is a generally useful method–it removes a node based on the con-
tent of the node. Could we add this method to LLNode? Do we have to
subclass and create AgentNode in order to make this work? Actually we
could create a general linked list class that could hold anything. There is
a class named Object that is the superclass of everything–even if you don’t
say extends, you are implicitly subclassing Object in Java. If you had an in-
stance variable that was declared Object, it could hold any kind of content:
A Picture, a Turtle, a Student–anything.

15.8 Extending the Simulation

There are lots of things that we might change in the simulation. We might
have wolves that are hungry sometimes and not hungry other times. We
could have wolves chase deer, and have deer run from wolves. We’ll imple-
ment these variations to see how we change simulations and implement
different models. That is how people use simulations to answer questions.
But to get answers, we need to do more than simply run the simulation
and watch the pictures go by. We need to be able to get data out of it. We’ll
do that by generating files that can be read into Excel and analyzed, e.g.,
with graphs.

Making Hungry Wolves
Let’s start out by creating a subclass of Wolf whose instances are sometimes
hungry and sometimes satisfied. What’s involved in making that happen?
The whole class is at Program Program
Example #145 (page 447).

/∗∗
∗ A class that extends the Wolf to have a Hunger l e v e l .
∗ Wolves only eat when they ’ re hungry
∗∗/

15.8. EXTENDING THE SIMULATION 367

public class HungryWolf extends Wolf {
/∗∗
∗ Number of c y c l e s be fore I ’ l l eat again
∗∗/

private int s a t i s f i e d ;

/∗∗ c lass constant for number of turns be fore hungry ∗/
private static final int MAX SATISFIED = 3;

Obviously, we need to subclass Wolf. We will also need to add another
field, satisfied, that will model how hungry or satisfied the HungryWolf
is. We will have a new constant that indicates just how satisfied the
HungryWolf instance is.

Here’s how we will model satisfaction or hunger. When a HungryWolf
eats, we will set the satisfied state to the MAX SATISFIED. But each time
that a time step passes, we decrement the satisfied state–making the wolf
less satisfied. The wolf will only eat, then, if the wolf ’s satisfaction drops
below zero.

The constructors for HungryWolf look just like Wolf’s, which is as they
must be.

/∗∗
∗ Constructor that takes the model display (the or ig inal
∗ pos i t ion wi l l be randomly assigned)
∗ @param modelDisplayer thing that displays the model
∗ @param mySim my simulation
∗/

public HungryWolf (ModelDisplay modelDisplayer , WolfDeerSimulation thisSim)
{

super (modelDisplayer , thisSim) ;
}

/∗∗ Constructor that takes the x and y and a model
∗ display to draw i t on
∗ @param x the s tar t ing x pos i t ion
∗ @param y the s tar t ing y pos i t ion
∗ @param modelDisplayer the thing that displays the model
∗ @param mySim my simulation
∗/

public HungryWolf (int x , int y , ModelDisplay modelDisplayer ,
WolfDeerSimulation thisSim)

{
// l e t the parent constructor handle i t
super (x , y , modelDisplayer , thisSim) ;

}
The initialization method for HungryWolf does not do much, but nor does

it need to. By simply calling upon its superclass, the HungryWolf only has
to do what it must do as a specialization–start out satisfied.

/∗∗

368
CHAPTER 15. INTRODUCING UML AND CONTINUOUS

SIMULATIONS

∗ Method to i n i t i a l i z e the hungry wolf o b j e c t
∗/

public void i n i t (WolfDeerSimulation thisSim)
{

super . i n i t (thisSim) ;

s a t i s f i e d = MAX SATISFIED;
}
How a HungryWolf acts must also change slightly compared with how

a Wolf. The differences require us to rewrite act()–we can’t simply inherit
and specialize as we did with init () .

/∗∗
∗ Method to act during a time step
∗ pick a random direc t i on and move some random amount up to top speed
∗/

public void act ()
{

// Decrease s a t i s f i e d time , unt i l hungry again
sa t i s f i ed −−;

// get the c l o s e s t deer within some s p e c i f i e d distance
AgentNode closeDeer = getClosest (30 ,

(AgentNode) mySim. getDeer () . getNext ()) ;

i f (closeDeer != null)
{ // Even i f deer c lose , only eat i t i f you ’ re hungry .

i f (s a t i s f i e d <= 0)
{Deer thisDeer = (Deer) closeDeer . getAgent () ;

this . moveTo (thisDeer . getXPos () ,
thisDeer . getYPos ()) ;

thisDeer . die () ;
s a t i s f i e d = MAX SATISFIED;

}
}

else
{

// i f the randome number i s > prob of turning then turn
i f (randNumGen. nextFloat () > PROB OF TURN)
{

this . turn (randNumGen. nextInt (3 6 0)) ;
}

// go forward some random amount
forward (randNumGen. nextInt (maxSpeed)) ;

}
}

15.8. EXTENDING THE SIMULATION 369

The difference between HungryWolf and Wolf instances is that hungry
wolves will eat, but satisfied ones will not. So after the HungryWolf finds a
close deer, it considers whether it’s hungry. If so, it eats the deer. If not,
that’s the end of act() for the HungryWolf. The Hungry Wolf only wanders
aimlessly if it finds no deer.

How do we make the simulation work with HungryWolf? We only have to
change the code in the run() method so that hungry wolves are created in-
stead of normal wolves. Everything else just works! Because a HungryWolf
is a kind of Wolf, all references to wolves work for hungry wolves.

// create some wolves
int numWolves = 5;
for (int i = 0 ; i < numWolves ; i ++)
{

wolves . add (new AgentNode (new HungryWolf (w, this))) ;
}

Writing results to a file
As we start making changes to our simulations, we would like to get a
sense for what effects our changes are making. Certainly, we can see the
number of wolves and deer left at the end of the simulation, but what if we
care about more subtle changes than that. What if we want to know, for
example, how quickly the deer die? Is it all at once, or over time? Is it all
at first, or all at the end?

But even more important than being able to compare different runs of
our simulation, we may care about the results of any given simulation.
Maybe we are ecologists who are trying to understand a particular setting
for wolves and deer. Maybe we are trying to make predictions about what
will happen in a given situation. If your simulation is a video game, you
just want to watch it go by. But if your simulation is answering a question
for you, you probably want to get the answers to your questions.

There are three parts to creating a file of data that we can open up and
analyze in Excel.

1. We need to open a stream to a file. A stream is a data structure that
efficiently handles data that flows – goes in only one direction.

2. We need to be able to write strings to that stream.

3. We need to be able to handle exceptional events, like the disk becom-
ing full or the filename being wrong.

Java handles all file input and output as a stream. It turns out that
streams are useful for more than just files. For example, you can create
large, sophisticated strings, say, of HTML, by assembling the string using
output streams. An input stream might be coming from a file, but might
also be coming from a network connection, for example.

370
CHAPTER 15. INTRODUCING UML AND CONTINUOUS

SIMULATIONS

It turns out that you’ve been using streams already. There is a stream
associated with where you can print known as System.out. Thus, when
you use the method System.out.println(), you are actually sending a string
to System.out by printing it using println. There is also a stream that you
might have used called System.err where errors are expected to be printed.
And as you might expect, there is a stream called System.in for taking in
input from the keyboard. All of this suggests one way of handling the
second task: We can get strings to our stream simply by using println. We
can also use a method named write().

To get a stream on a file, we use a technique called chaining. Basically,
it’s wrapping one object in another so that you get the kind of access you
want. To get a stream for reading from a file, you’ll need a BufferedReader
to create a stream, and a FileReader for accessing the file. It would look
something like new BufferedReader(new FileReader(fileName));.

Thus, there are three parts to writing to a file.

1. Open up the stream. writer = new BufferedWriter(new FileWriter(fileName));

2. We write to the stream. writer.write(data);

3. When done, we close the stream (and the file). writer.write(data);

Now, it’s not enough to have a stream. Java requires you to deal with
the exceptions that might arise when dealing with input and output (I/O).
Exceptions are disruptions in the normal flow of a program. There is ac-
tually a Java class named Exception that is used in handling exceptions.
Things can go wrong when dealing with output to a stream. What hap-
pens if the disk fills? What if the filename is bad? In other programming
languages, there are ways for programmers to check if something bad has
happened–and most programmers don’t check. Java requires the program-
mer handle exceptions. The programmer can be specific (e.g., “If the disk
fails, do this. If the filename is bad, do that.”) or general (e.g., “If anything
bad happens, here’s how to bail out.”).

There is a special Java statement just for handling exceptions. It’s
called try−catch. It looks something like this:

try {
\\ code that can cause exceptions
} catch (ExceptionClassName varName) {

\\ code to handle this exception
} catch (ExceptionClassName varName) {

\\ code to handle that exception
}

You can deal with (“catch”) several exceptions at once, of different types.
If you do try to distinguish between exceptions in a single statement like
that, put the most general one last, e.g., catch the general Exception, and
maybe one like FileNotFoundException (for trying to open a file for reading

15.8. EXTENDING THE SIMULATION 371

that doesn’t exist) earlier in the list. All those other exceptions are sub-
classes of Exception, so catching Exception will handle all others. A general
exception handling try−catch might look like this:

try {
\\ code that can throw the exception
} catch (Exception e) {

System . err . pr int ln (E x c e p t i o n : + e . getMessage ()) ;
System . err . pr int ln (S t a c k Trace i s :) ;
e . printStackTrace () ;

}
That e in the above code is a variable that will be a reference to the

exception object, if an exception occurs. Exceptions know how to do several
different methods. One returns (as a String) the error message associated
with the exception: e.getMessage(). Another prints out what all methods
were currently running and at what lines when the exception occurred:
e.printStackTrace().

There’s an interesting variant on the try−catch that you should know
about. You can specify a finally clause, that will always be executed whether
or not exceptions occur.

try {
\\ code that can cause the exception
} catch (FileNotFoundException ex) {

\\ code to handle when the f i l e i s n t found
} finally {

\\ code to always be executed
}

Putting it all together, here’s how you would read from a file in Java.

BufferedReader reader = null ;
String l ine = null ;

// try to read the f i l e
try {

// create the buffered reader
reader = new BufferedReader (new FileReader (fileName)) ;

// loop reading l ine s t i l l the l ine i s null (end of f i l e)
while ((l ine = reader . readLine ()) != null)
{
// do something with the l ine
}

// c l o s e the buffered reader
reader . c l ose () ;

} catch (Exception ex) {

372
CHAPTER 15. INTRODUCING UML AND CONTINUOUS

SIMULATIONS

// handle except ion
}

Now let’s add a file output capability to our simulation. We want to be
able to do this:

Welcome to DrJava.
> WolfDeerSimulation wds = new WolfDeerSimulation();
> wds.openFile("D:/cs1316/wds-run1.txt")
> wds.run();

The idea is that the simulation instance (named wds above) should be
able to run with or without an open file. If there is a file open, then text
lines should be written the text file–one per each time step. And after
running the simulation timing loop, the file should be automatically closed.

The first step is to create a new instance variable for WolfDeerSimulation
that knows a BufferedWriter instance. By default (in the constructor), the
output file should be null.

/∗ A BufferedWriter for writing to ∗/
public BufferedWriter output ;

/∗∗
∗ Constructor to s e t output to null
∗∗/

public WolfDeerSimulation () {
output = null ;

}
We’re going to use the idea of the output file being null to mean some-

thing. If the file is null, we’ll presume that there is no file to be written to.
While that may be obvious, it’s important to consider with respect to those
pesky exceptions discussed earlier in this section. What happens if we try
to write to the file but something bad happens? If anything happens un-
toward to the file processing, we’ll simply set output to file. Then, the rest
of the code will simply presume that there is no file to write–even though
there was one once.

For example, we’ll give WDSimulation instances the knowledge of how
to openFile()–but if anything bad happens, output goes back to null.

/∗∗
∗ Open the input f i l e and
∗ s e t the BufferedWriter to speak to i t .
∗∗/

public void openFile (String filename){
// Try to open the f i l e

try {

// create a writer
output = new BufferedWriter (

new FileWriter (filename)) ;

15.8. EXTENDING THE SIMULATION 373

} catch (Exception ex) {
System . out . pr int ln (

” Trouble opening the f i l e ” + filename) ;
// I f any problem , make i t null again
output = null ;

}
}
We need to change the bottom of the timing loop, too. We need to write

to the file. But we only write to the file if output is not null. If an exception
gets thrown, we set output back to null.

// Let ’ s write out where we stand . . .
System . out . pr int ln (”>>> Timestep : ”+t) ;
System . out . pr int ln (” Wolves l e f t : ”+wolves . getNext () . count ()) ;
System . out . pr int ln (” Deer l e f t : ”+deer . getNext () . count ()) ;

// I f we have an open f i l e , write the counts to i t
i f (output != null) {

// Try i t
try{

output . write (wolves . getNext () . count ()+
”\ t ”+deer . getNext () . count ()) ;

output . newLine () ;
} catch (Exception ex) {

System . out . pr int ln (” Couldn ’ t write the data ! ”) ;
System . out . pr int ln (ex . getMessage ()) ;
// Make output null so that we don ’ t keep trying
output = null ;

}
}

Check out the above for just a moment: Why are we saying wolves.getNext().count()?
Why aren’t we just saying wolves.count()? Remember that our count method
counts every node from this. We haven’t updated it yet for our head-rest
list structure. Since the head of the list is empty, we don’t want to include
it in our count, so we start from its next.

After the timing loop, we need to close the file (if output is not null).

// I f we have an open f i l e , c l o s e i t and null the variable
i f (output != null){

try{
output . c l ose () ; }

catch (Exception ex)
{System . out . pr int ln (” Something went wrong c los ing the f i l e ”) ; }
finally {

// No matter what , mark the f i l e as not−there
output = null ;}

}

374
CHAPTER 15. INTRODUCING UML AND CONTINUOUS

SIMULATIONS

Getting results from a simulation
We can use our newly developed ability to write out results of a simulation
a text file in order to analyze the results of the simulation. From DrJava,
using our new methods, we can write out a text file like this.

> WolfDeerSimulation wds = new WolfDeerSimulation();
> wds.openFile("D:/cs1316/wds-run1.txt")
> wds.run();

Our file is made up of lines with a number, a tab, and another number.
Excel can interpret that as two columns in a spreadsheet.

Exercises

1. Change the Deer so that there is no random amount that it moves–it
always zips around at maximum speed. Do you think that that would
make more Deer survive, since they’ll be moving so fast? Try it! Can
you figure out why it works the way that it does? Here’s a hint (that
gives away what you can expect): Notice where the dead deer bodies
pile up.

2. There is an inefficiency to this simulation, in that we return the clos-
est AgentNode, but then we just pull the Wolf or Deer out of it. And
then when a Deer dies, we get the Deer out of the AgentNode and call
remove()–but the first thing that AgentNode’s remove() does is to figure
out the node containing the input Deer! These kinds of inefficien-
cies can arise when designing programs, but once you take a global
perspective (considering what all the methods are and when they’re
getting called), we can improve the methods and make them less ef-
ficient. Try fixing both of these problems in this simulation.

3. Build the LinkedListNode class that can contain any kind of object.
Make sure that AgentNode’s remove works in that class.

4. The HungryWolf checks to see if there’s a close deer and then decides
whether or not it’s hungry. Doesn’t that seem silly? Change the
HungryWolf act() method so that it checks if it’s hungry first.

16 Abstracting Simulations:
Creating a Simulation Package

Chapter Learning Objectives
It has finally become time to make those wildebeests and villagers.

We’re going to do it in two steps:

• First, we create a set of classes to make it easier to build simulations.
We don’t want to go to all the effort of the last chapter for every
simulation we want to build. We’ll build a few simulations using
our new set of classes, to show both how easy it is to do and to show
how we can use simulations to explore a model.

• Then, we’ll map our turtles to characters in order to create simula-
tions, like the wildebeests charging over the ridge in Disney’s The
Lion King or the villagers in the square in Disney’s The Hunchback
of Notre Dame.

The computer science goals for this chapter are:

• To create a set of classes that make it easier to make new applica-
tions, through subclassing.

• To create a variety of different kinds of simulations, more easily than
creating simulations from scratch.

• To use pre-existing collection classes, rather than always building
our own.

• To use the Java switch statement.

The media learning goals for this chapter are:

• To make animations from simulations by creating a mapping from
turtle positions to animation images.

375

376
CHAPTER 16. ABSTRACTING SIMULATIONS: CREATING A

SIMULATION PACKAGE

16.1 Creating a Generalized Simulation Package

While the Wolf and Deer Simulation is fun and interesting to explore, it
was not easy to build. You might imagine that, if you wanted to build
a variety of simulations to explore different models for a particular phe-
nomenon, the effort to build simulations could dissuade you. You would
be less likely to explore simulations if each one took the effort of the last
chapter.

We can make it easier by providing a set of classes that define a basic,
default simulation. We can construct these classes such that we subclass
to create new, differentiated components. We override methods in order to
define new, differentiated behavior.

Packages of functionality are often defined in object-oriented languages
as a set of classes to be subclassed, extended, and differentiated. Object-
oriented programmers spend much of their development effort finding ap-
propriate classes and extending them in just this way—subclassing the
provided class, and overriding methods to define the specific functionality
that they need. In this chapter, we see both how a package of classes like
that work, and how to extend a set of classes.

First, we have to tell the truth about data structures.

Real Programmers Rarely Build Data Structures
Thank you for willingly suspending your beliefs about data structures up
until now. You may have been manipulating these linked lists and con-
structing these trees wondering, “I know lots of programmers, and they
don’t talk about doing things like this. Why am I doing this?”

The reality is that real programmers1 rarely build data structures from
basic objects and references as we have up until now. Very few program-
mers build arrays ever. Most programmers do not build lists, trees, hashta-
bles, heaps, stacks, or queues.

These basic data structures are typically provided in the programming
language. In the case of languages like Smalltalk and Python, some of
these data structures, such as hashtables, are so important that they are
a built-in feature of the language. A hashtable (also called a dictionary
in Python, or an associative array) can be thought of like an array where
the index can be something other than a number, often a string. Here’s a
short example from Python where person1 and person2 are each set up as
dictionaries (by setting them to “{}”), and then are given values indexed
by words like “name,” “husband,” and “wife.”

>>> person1={}
>>> person1 [”name”]= ”Mark”
>>> person2={}

1Where “real programmers” can mean “professional programmers” or “people who pro-
gram often” or even “people who already got through this class.”

16.1. CREATING A GENERALIZED SIMULATION PACKAGE 377

>>> person2 [”name”]= ”Barb”
>>> person1 [” wife ”]= person2
>>> person2 [”husband”]= person1
>>> person1 [”name”]
’Mark ’

>>> person1 [” wife ”] [”name”]
’ Barb ’

Hashtables are a key feature of Python and Smalltalk. The lists of
methods that classes know, and the lists of variables that objects know are
all implemented as a form of a hashtable. Python also builds in lists as a
pre-defined structure. Smalltalk requires users to use a particular class
(like OrderedCollection) for manipulating lists.

In other languages, such as Java, all the basic data structures are pro-
vided in a set of data structures called the Collection Classes. The var-
ious data structures (such as HashMap which is a Java hashtable, and
ArrayList which is a kind of list) are defined in classes that you then in-
stantiate like any other object in Java. These are particularly good im-
plementations that are designed to be as fast as possible and use as little
memory as possible.

> import java . u t i l .∗
> ArrayList v = new ArrayList ()
> v . add (1)
true
> v . add (2)
true
> v
[1 , 2]
> HashMap di c t = new HashMap()
> d i c t . put (”name” , ”Mark”)
null
> d i c t . get (”name”)
”Mark”

The bottom line is that few programmers, in any object-oriented lan-
guage, ever write data structures on their own. There are several good
reasons for this. First, it is difficult to implement these data structures
to make them as fast and efficient as possible. It serves everyone well to
use a single implementation that is very well constructed. Second, the
critical issues with which most programmers deal are about applications
and features that users need, not the low-level issues of how to make the
hashtable look up keys particularly fast.

Now, there are times when programmers build data structures. Some-
times, a programmer may need a particular data structure that is not de-
fined. Sometimes, a programmer may think of a data structure with partic-
ular features that would be appropriate for a given application. However,
these times rarely happen.

378
CHAPTER 16. ABSTRACTING SIMULATIONS: CREATING A

SIMULATION PACKAGE

Real Programmers Make Models and Choices
What real programmers2 do all the time is define models. for example,
what is the best way to represent the relationship between a hospital and
its rooms? Maybe this hospital is really defined in terms of clinics, and
the rooms are related to the clinics. How many of each are there? Are
all rooms the same, or are their types (classes?) of rooms? How about
clinics—all the same, or different types/classes? Figuring out how the real
world is constructed, in terms that allow us to construct models that we
can implement and manipulate on the computer, is what we do all the
time.

Real programmers use the same modelling techniques that we saw in
the last chapter. We use aggregation when we connect a hospital to its
rooms or its clinics. We use generalization-specialization when we define
types of rooms and clinics, then specialize them for particular kinds of
rooms or clinics.

While real programmers do not implement data structures from scratch
often, they are always making choices among data structures for the best
ones to use in implementing their models. For this reason, it is important
for a programmer to understand data structures, down to the level of how
they are implemented in scratch, in order to make these choices.

• Some of these choices are made on the basis of functionality. The line
of patients waiting for a particular test or treatment is probably best
modeled as a queue. Are the rooms in the hospital best modeled as
a long array or list of rooms? Or are they better clustered in terms
of floors or clinics? That sounds more like a tree. Or maybe they are
better listed by their room number that encodes floor, clinic, and room
like “2A-350,” and perhaps a hashtable is the best data structure to
model the structure.

• Some of these choices are made on the basis of speed. Those decisions
are typically made based on what we want to do with the model. We
could use an array or list to track all of the patients in our hospi-
tal, perhaps sorted by last name or patient identification number.
Imagine, though, that we need to match patients for possible blood
or tissue transportation. Matching may take place based on factors
such as blood type, tissue type, allergies or illnesses. Searching the
array or list based on all those factors may take too long. If we clus-
tered the patients using a tree, where branches represent different
blood types, then tissue types, and then other factors, we could find
similar patients quickly.

While you will rarely do exactly what we have been doing in these chap-
ters, you will often make decisions based on this knowledge. That is why

2There is some difference in nomenclature here. Some might call the job we are describing
here “systems analysis” or simply “being a computer scientist.” Any of those are fine with us.

16.1. CREATING A GENERALIZED SIMULATION PACKAGE 379

Figure 16.1: Sample of disease propagation simulation

we went through the process of constructing the data structures ourselves.
From here on, we will be using the data structures provided by Java in or-
der to create models for our simulations.

The Structure of the Simulation Package

To provide a goal for our simulation package, let’s work on defining three
different simulations:

• We should re-create our Wolves and Deer predator-prey simulation.
If you are working from an existing implementation to a more gen-
eralized implementation, it’s a useful exercise to make sure that you
can still create the original application.

• We will build a simulation of disease propagation (Figure 16.1). In
our simple form, one person is ill, and all the 60 people in the simu-
lation walk around aimlessly. If the sick person gets close to a healthy
person, the healthy person gets sick, too.

• We will build a simulation of political influence (Figure 16.2). Again,
in a simple form, there are people with one kind of political conviction
(“Reds”) and others with another conviction (“Blues”). Each has a
region of their own—to the left and to the right. Each moves around,
and there is an overlap area. If a Red gets surrounded by more Blues
than Reds, then the Red is argued down and converts to Blue. If
a Blue gets surrounded by more Reds than Blues, then the Blue is
converted to Red.

The general structure of the simulation package is described by the
UML diagram in Figure 16.3.

380
CHAPTER 16. ABSTRACTING SIMULATIONS: CREATING A

SIMULATION PACKAGE

Figure 16.2: A Political Influence Simulation

Figure 16.3: UML diagram of the base Simulation Package

• All of the actors in our simulations will be subclasses of the class
Agent, which is a subclass of Turtle. Instances of Agent will then track
their (x, y) position and heading within the world, as instances of
Turtle do. In addition, Agent instances know which simulation that
they are part of.

• Simulations are an instance of the class Simulation. Each simulation
defines the general way that simulations work, e.g., how many actors
and of what types enter the simulation, and when. An instance of
Simulation also knows a FrameSequence in order to create an anima-
tion from the simulation sequence of Turtle/Agent motions.

• Each instance of Simulation maintains a list of all the Agent instances
that are alive and active in the simulation. We will use an instance
of the Java collection class LinkedList to track these agents.

To build a simulation using our simulation package, we will subclass
Simulation to create our own simulation class, and we will subclass Agent
for each class of actors in our simulation. We will override methods that
are in the superclass in order to define the specifics of our simulation and

16.1. CREATING A GENERALIZED SIMULATION PACKAGE 381

the behavior of our actors. We do not have to override the methods. The
basic Simulation and Agent classes define perfectly reasonable simulations
and actors. Whenever we want to use that pre-defined behavior in our
overriding methods, we can call super (e.g., super.die()) to ask for the de-
fault behavior to occur.

The basic methods of Simulation are summarized in Table 16.1. When
you create a new subclass of Simulation, you will almost always override
setUp since you will want to put some agents in the simulation. The base
setUp method simply opens up a World, with no actors in it. You will over-
ride other methods as you need.

Method Meaning
getAgents(), add(), remove() Returns or manipulates the list of valid agents.
setUp() Define the simulation, e.g., the number of

agents.
openFile() Starts to write data to a file.
openFrames() Starts to write frames of an animation.
run() For a given number of timesteps, ask each liv-

ing agent to act
endStep() Processes the end of a time step.
lineForFile() Returns a string to write to a data file. By de-

fault, write out the number of agents.
closeFile() Close the data file for writing.

Table 16.1: Basic methods of Simulation class

The basic methods of Agent are listed in Table 16.2. The constructor for
Agent takes the World instance in which the turtle should be created and
the instance of the Simulation in which the actor lives. Often, a subclass of
Agent will override init in order to do something special with the creation
of the actor. Almost always, the subclass will override act in order to do
something specific to the simulation.

Note that getClosest and countInRange expect a LinkedList of Agents to
search. If an actor needs to search all the agents, then each instance can
use the simulation field and ask for simulation.getAgents() to get the list of
all agents. If, however, the simulation calls for checking just some agents,
then a LinkedList of just those agents needs to be maintained. We’ll see
that in two of our three example simulations.

Using a LinkedList from the Java Collection Classes

The Java API (Application Programmer Interface) documentation describes
what LinkedList instances know. Some of these methods are summarized
in Table 16.3. You will notice that these methods look like they could be

382
CHAPTER 16. ABSTRACTING SIMULATIONS: CREATING A

SIMULATION PACKAGE

Method Meaning
init(Simulation sim) Initialize a new agent, e.g., add it to the live

agents list.
act() At each time step, each agent is asked to act() .

By default, wander aimlessly.
setSpeed(int speed), getSpeed() Change the maximum speed of the agent in the

World.
die() Make the body red and remove from the agents

list.
getClosest(LinkedList agents) Return the agent from the list of agents closest

to this agent.
countInRange(double range, LinkedList agents) Count the number of agents within range of me.

Table 16.2: Basic methods of Agent class

provided for just about any data structure, including arrays and ArrayList
instances. In fact, these methods do work for just about every collection.

So why pick one collection versus another? You choose based on what
you expect to be doing with the collection, and how fast you want the
method to be. Will you be doing a lot of insertions into the middle of the
list, like with add(int index, Object element)? If so, then a LinkedList would
make an excellent choice. Will you be mostly getting a value from a given
index, as with get(int index)? Then you know that an array would be much
faster.

Do also notice that some of the methods that we have come to know
and love in our linked list implementations, like insertAfter are not in
Java’s LinkedList class. The Java Collection Classes, to the extent possi-
ble, have exactly the same methods for each class. The reason is to enable
the programmer to swap between different collection classes with minimal
changes required to your code. Not sure whether to use a LinkedList or an
ArrayList? Try each of them—your code using the collection (either one)
will stay the same.

On the other hand, there are some things that you might want to do
where you want to take advantage of the structure of the linked list. You
might want to do insertAfter. In those cases, you may want to use your own
linked list implementation. As a programmer, you have to consider the
trade-off between using a pre-existing, well-debugged, and efficient collec-
tion class and thus saving yourself using the development time, versus the
effort of developing your own version and being able to take advantage of
the special functionality or speed optimizations that you can implement
for yourself.

16.2. RE-MAKING THE WOLVES AND DEER WITH OUR
SIMULATION PACKAGE 383

Method Meaning
add(int index, Object element) Adds the element into the list at position

index—all other elements are pushed down to
make room.

add(Object element) Adds element to the end of the list
addAll(Collection c) Adds each element from the input collection to

the end of the list
addAll(int index, Collection c) Adds each element from the collection, starting

at the index
addFirst(Object element) Adds the element at the start of the list
addLast(Object element) Adds the element at the end of the list
clear() Removes all elements from the list
clone() Returns a copy of the list
contains(Object element) Returns true if element is in the list
get(int index) Returns the element at position index
getFirst(), getLast() Returns the element at the front, or end (re-

spectively), of the list
indexOf(Object element) Returns the index value where the (first, if

there are duplicates) element is in the list.
lastIndexOf(Object element) Returns the last index where the element is

found in the list
remove(int index) Removes the element at index
removeFirst(), removeLast() Removes the first or last element
set(int index, Object element) Puts the element into position index, replacing if

something else is there
size() Returns the number of elements in the list

Table 16.3: Methods understood by instances of LinkedList

16.2 Re-Making the Wolves and Deer with our
Simulation Package

A good test of our simulation package is making the wolves and deer sim-
ulation again, this time with the simulation package. If it is much easier
this time, while still getting the same functionality as we had before, then
that is a good indication that we are on the right path our package.

A UML diagram of the simulation package classes with the classes
needed for the Wolves and Deer simulation appears in Figure 16.4. All
that gets added here are the three classes at the bottom.

• WDSimulation is the subclass of Simulation that sets up the wolves and
deer. Notice that it has no instance variables and only two methods.
WDSimulation needs to setUp the wolves and deer, and it overrides

384
CHAPTER 16. ABSTRACTING SIMULATIONS: CREATING A

SIMULATION PACKAGE

Figure 16.4: UML class diagram for Wolves and Deer with the Simulation
Package

lineForFile in order to write out the number of wolves and deer sepa-
rately.

• WolfAgent redefines init in order to set up wolf-specific behavior and
fields (e.g., making them gray). One new static field is a LinkedList
of allWolves. WolfAgent also overrides act in order to define the wolf-
specific behavior of chasing and eating deer.

• DeerAgent redefines init and act in just the same ways, e.g., a static
field named allDeer keeps track of deer agents. DeerAgent also over-
rides die, in order to remove the dead deer from the allDeer list, as
well as the overall agents list.

Let’s see how WDSimulation is defined. Remember that we only need
two methods.

Program
Example #113 Example Java Code: WDSimulation’s setUp() method

/∗∗
∗ WDSimulation −− using the Simulation c lass
∗∗/

public class WDSimulation extends Simulation {

/∗∗
∗ F i l l the world with wolves and deer

16.2. RE-MAKING THE WOLVES AND DEER WITH OUR
SIMULATION PACKAGE 385

∗∗/
public void setUp () {

// Let the world be s e t up
super . setUp () ;

// Just for s tor ing the new deer and wolves
DeerAgent deer ;
WolfAgent wolf ;

// create some deer
int numDeer = 20;
for (int i = 0 ; i < numDeer ; i ++)
{

deer = new DeerAgent (world , this) ;
}

// create some wolves
int numWolves = 5;
for (int i = 0 ; i < numWolves ; i ++)
{

wolf = new WolfAgent (world , this) ;
}

}

How it works: The setUp method first calls the superclass (super.setUp())
in order to create the World. Then 20 deer and 5 wolves are created in the
world. Notice that the constructor for DeerAgent and WolfAgent echoes the
constructor for Agent. Each Agent instance needs to know its World instance
and its Simulation instance (this in this method).

Program
Example #114Example Java Code: WDSimulation’s lineForFile() method

/∗∗
∗ l ineForFi le −− write out number of wolves and deer
∗∗/

public String l ineForFi le () {
// Get the s i z e (an int) , make i t an Integer ,
// in order to turn i t into a s tr ing . (Whew!)
return (new Integer (DeerAgent . allDeer . s i ze ())) . toString ()+ ” / t ”+

(new Integer (WolfAgent . allWolves . s i ze ())) . toString () ;
}

* * *

386
CHAPTER 16. ABSTRACTING SIMULATIONS: CREATING A

SIMULATION PACKAGE

How it works: WDSimulation wants to write out the number of deer and
the number of wolves, separated by a tab, so that the numbers can be
put in Excel and graphed. What we see here is that each of the classes
DeerAgent and WolfAgent are asked for their list of live members, allDeer
and allWolves respectively. The size () of these lists is converted to a string
by making an Integer from the number (new Integer) and then converted
using toString. A tab character is inserted using “ / t,” and the pieces are
concatenated using “+.”

Next, we’ll tour each of WolfAgent and DeerAgent. From the UML class
diagram, we are only expecting to see five methods.

Program
Example #115 Example Java Code: DeerAgent’s init method

import java . awt . Color ; // Color for co l o r i z ing
import java . u t i l . LinkedList ;

/∗∗
∗ DeerAgent −− Deer as a subclass o f Agent
∗∗/

public class DeerAgent extends Agent {

/∗∗ c lass constant for the co lor ∗/
private static final Color brown = new Color (116 ,64 ,35) ;

/∗∗ c lass constant for how far deer can smell ∗/
private static final double SMELL RANGE = 50;

/∗∗ Col l ec t i on of a l l Deer ∗/
public static LinkedList allDeer = new LinkedList () ;

/∗∗
∗ I n i t i a l i z e , by adding to Deer l i s t
∗∗/

public void i n i t (Simulation thisSim){
// Do the normal i n i t i a l i z a t i o n s
super . i n i t (thisSim) ;

// Make i t brown
setColor (brown) ;

// Add to l i s t o f Deer
allDeer . add (this) ;

}

* * *

16.2. RE-MAKING THE WOLVES AND DEER WITH OUR
SIMULATION PACKAGE 387

How it works: We see many of the same variables that we saw in our
previous Deer class. A new static field is allDeer. We need this field to be
static because we want one list that is shared by all the deer. We do not
want each deer to have a normal instance variable allDeer—we do not want
to maintain the list (e.g., adding new deer, removing old deer) in each and
every DeerAgent instance. The method init does the normal initialization
of agents (super.init(thisSim)) which adds the agent to the list of all agents.
Then deer are made brown and members of the allDeer list.

Program
Example #116Example Java Code: DeerAgent’s die() method

/∗∗
∗ To die , do normal s tu f f , but
∗ also remove from deer l i s t
∗∗/

public void die () {
super . die () ;
allDeer . remove (this) ;
System . out . pr int ln (” Deer l e f t : ”+allDeer . s i ze ()) ;

}

How it works: When deer die, they do the normal things (e.g., turn red,
and be removed from the agents list so that they stop moving) via super.die().
Then, they get removed from the allDeer list. For interest’s sake, we’re
printing out the number of deer still alive whenever one dies.

Common Bug: Removing from only one list
What would happen if you forgot the super.die() in the above code? Then
the deer would still be removed from the allDeer list, but still be in the
simulation agents list. The deer would still be told to act, so the deer
would run around and flee from wolves. But since the deer wouldn’t be
on the allDeer list, the deer would never be found or eaten by wolves, since
that’s the list that wolves look at.

What would happen if you forgot the allDeer.remove(this) instead? Now,
the deer are not on the agents list, so they never are told to act and they
never move. However, wolves can still find them and eat them.

This is the trouble of maintaining multiple lists—you have to add and
remove from them in synchrony.

388
CHAPTER 16. ABSTRACTING SIMULATIONS: CREATING A

SIMULATION PACKAGE

* * *
Program
Example #117 Example Java Code: DeerAgent’s act() method

/∗∗
∗ How a DeerAgent acts
∗∗/

public void act ()
{

// get the c l o s e s t wolf within the smell range
WolfAgent closeWolf = (WolfAgent) getClosest (SMELL RANGE,

WolfAgent . allWolves) ;

i f (closeWolf != null) {
// Turn to face the wolf
this . turnToFace (closeWolf) ;
// Now d i r e c t l y in the opposi te d i r e c t i on
this . turn (1 8 0) ;
// How far to run? How about half o f current speed ??
this . forward ((int) (speed / 2)) ;

}
else {

// Run the normal act () −− wander aimlessly
super . act () ;

}
}

How it works: We know how deer are supposed to act, so we can com-
pare the above to our expectations. When a DeerAgent is told to act, it
checks to see if it can smell a wolf, by looking for the closest agent from
WolfAgent.allWolves (casted to a WolfAgent) within the SMELL RANGE. If
there is one, the deer faces the closest wolf, turns around, and runs away.
If there isn’t one, we simply do the default super.act() which involves wan-
dering aimlessly.

Program
Example #118 Example Java Code: DeerAgent’s constructors

////////////////////////////// Constructors ////////////////////////
// Copy th i s s e c t i on AS−IS into subclasses , but rename Agent to
// Your c lass .

/∗∗
∗ Constructor that takes the model display (the or ig inal
∗ pos i t ion wi l l be randomly assigned)

16.2. RE-MAKING THE WOLVES AND DEER WITH OUR
SIMULATION PACKAGE 389

∗ @param modelDisplayer thing that displays the model
∗ @param thisSim my simulation
∗/

public DeerAgent (ModelDisplay modelDisplayer , Simulation thisSim)
{

super (randNumGen. nextInt (modelDisplayer . getWidth ()) ,
randNumGen. nextInt (modelDisplayer . getHeight ()) ,
modelDisplayer , thisSim) ;

}

/∗∗ Constructor that takes the x and y and a model
∗ display to draw i t on
∗ @param x the s tar t ing x pos i t ion
∗ @param y the s tar t ing y pos i t ion
∗ @param modelDisplayer the thing that displays the model
∗ @param thisSim my simulation
∗/

public DeerAgent (int x , int y , ModelDisplay modelDisplayer ,
Simulation thisSim)

{
// l e t the parent constructor handle i t
super (x , y , modelDisplayer , thisSim) ;

}

How it works: These constructors must be there because Agent has them,
because Turtle needs a form of them. ModelDisplay is an interface that
World implements. The first constructor, then, we recognize as the one
we normally call when creating an Agent. The first form computes a ran-
dom horizontal and vertical location, based on the width and height of the
World, then calls the second one which places the agent at that (x, y) in the
World for the thisSim instance of Simulation.

In general, constructors of this form need to be in every subclass of
Agent. There is not much, if anything, to change with these. We will not
show these in other agents—you will need to have them, still, Just copy-
paste and change the name of the class.

Program
Example #119Example Java Code: WolfAgent’s init method

import java . awt . Color ;
import java . u t i l . LinkedList ;

/∗∗
∗ WolfAgent −− Wolf as a subclass o f Agent
∗∗/

390
CHAPTER 16. ABSTRACTING SIMULATIONS: CREATING A

SIMULATION PACKAGE

public class WolfAgent extends Agent {
/∗∗ c lass constant for how far wolf can smell ∗/
private static final double SMELL RANGE = 50;

/∗∗ c lass constant for how c lo s e be fore wolf can attack ∗/
private static final double ATTACK RANGE = 30;

/∗∗ Col l ec t i on of a l l Wolves ∗/
public static LinkedList allWolves = new LinkedList () ;

/∗∗
∗ I n i t i a l i z e , by adding to Wolf l i s t
∗∗/

public void i n i t (Simulation thisSim){
// Do the normal i n i t i a l i z a t i o n s
super . i n i t (thisSim) ;

// Make i t brown
setColor (Color . gray) ;

// Add to l i s t o f Wolves
allWolves . add (this) ;

}

How it works: There really is not anything new here. Like the class
Wolf, our WolfAgent has an ATTACK RANGE. The rest of the code is identical
to our DeerAgent—except, of course, that wolves are Color.gray rather than
brown.

Program
Example #120 Example Java Code: WolfAgent’s act() method

/∗∗
∗ Chase and eat the deer
∗∗/

/∗∗
∗ Method to act during a time step
∗ pick a random direc t i on and move some random amount up to top speed
∗/

public void act ()
{

// get the c l o s e s t deer within smelling range
DeerAgent closeDeer = (DeerAgent) getClosest (SMELL RANGE,

DeerAgent . allDeer) ;
i f (closeDeer != null)
{

16.2. RE-MAKING THE WOLVES AND DEER WITH OUR
SIMULATION PACKAGE 391

// Turn torward deer
this . turnToFace (closeDeer) ;
// How much to move? How about minimum of maxSpeed
// or distance to deer ?
this . forward ((int) Math . min(speed ,

closeDeer . getDistance (this . getXPos () , this . getYPos ()))) ;
}

// get the c l o s e s t deer within the attack distance
closeDeer = (DeerAgent) getClosest (ATTACK RANGE,

DeerAgent . allDeer) ;

i f (closeDeer != null)
{

this . moveTo (closeDeer . getXPos () ,
closeDeer . getYPos ()) ;

closeDeer . die () ;
}

else // Otherwise , wander aimlessly
{

super . act () ;
} // end e l s e

} // end act ()

How it works: Instances of the class WolfAgent act like the ones in Wolf.
First, the wolf smells if there is a deer nearby:

DeerAgent closeDeer = (DeerAgent) getClosest (SMELL RANGE,
DeerAgent . allDeer) ;

If there is, the wolf turns toward the deer, and moves the minimum
(Math.min) of the wolf ’s maximum speed and the distance to the deer. Why
the minimum? It may be obvious to you now, but it was not to us when we
first built this class. We had the wolf move full-speed toward the closest
smelled deer—and we noticed that few deer were getting eaten. Then we
noticed that the wolves would run toward the deer and run past them!
That was when we realized that we need the minimum of the full-speed
leap and the distance to the deer.

If there is no deer within the smell range, the wolf looks for a deer to
attack. If there is one, the wolf moves there and the deer dies. Otherwise,
the wolf wanders aimlessly via super.act().

We could run this simulation with a main method in WDSimulation, or
we might just do it from the INTERACTION PANE:

Welcome to DrJava .
> WDSimulation wd = new WDSimulation () ;

392
CHAPTER 16. ABSTRACTING SIMULATIONS: CREATING A

SIMULATION PACKAGE

Figure 16.5: UML Class Diagram of Disease Propagation Simulation

> wd. openFrames (”C : / temp / ”) ; // I f you want an animation
> wd. openFile (”C : / cs1316 / wds−data1 . txt ”) ; // I f you want an output f i l e .
> wd. run () ; // By default , run for 50 steps

If you simply want to run the simulation, without frames or data writ-
ten out, use:

WDSimulation wd = new WDSimulation () ;
wd. run () ; // By default , run for 50 steps

16.3 Making a Disease Propagation Simulation

Next, let us see how hard it is to implement a new simulation using our
package. Figure 16.5 describes the UML class diagram for the disease
propagation simulation. Notice that we need to create only two new classes
to implement the disease propagation simulation: DiseaseSimulation and
PersonAgent.

• DiseaseSimulation overrides the same two methods as WDSimulation.
It overrides setUp in order to create the simulation structure—here,
a bunch of people where one of them is sick. It overrides lineForFile
to separately list healthy and sick people. You will see that we get
these counts without separate lists for this simulation.

• PersonAgent overrides init and act, just like the wolf and deer agents.
PersonAgent has two other methods, that deal with infecting a person
and counting the infected persons. The instances of PersonAgent have
one additional field, a boolean (a variable that is only true or false)
indicating whether the person has the infection.

16.3. MAKING A DISEASE PROPAGATION SIMULATION 393

* * *
Program
Example #121 Example Java Code: DiseaseSimulation’s setUp method

/∗∗
∗ DiseaseSimulation −− using the Simulation c lass
∗∗/

public class DiseaseSimulation extends Simulation {
/∗∗

∗ F i l l the world with 60 persons , one s ick
∗∗/

public void setUp () {
// Let the world be s e t up
super . setUp () ;
// Or s e t i t up with a smaller world
//world = new World (300 ,300) ;
//world . setAutoRepaint (f a l s e) ;

PersonAgent moi ;

// 60 people
for (int num = 0; num < 60; num++) {

moi = new PersonAgent (world , this) ;
}

// I n f e c t the f i r s t one
moi = (PersonAgent) getAgents () . get (0) ;
moi . i n f e c t () ;

}

How it works: Basically, the setUp method makes 60 instances of PersonAgent.
It picks the first one (which could be anywhere in the World, since agents
are placed at random positions) via getAgents().get(0) and infects it. Notice
that we first set up the world with super.setUp(), but we also have code
there to create the World ourselves, but smaller than the default (640, 480)
world. We will play around with that later.

Program
Example #122Example Java Code: WDSimulation’s lineForFile method

/∗∗
∗ l ineForFi le −− write out number of in f e c t ed
∗∗/

public String l ineForFi le () {
PersonAgent f i r s t ;

394
CHAPTER 16. ABSTRACTING SIMULATIONS: CREATING A

SIMULATION PACKAGE

f i r s t = (PersonAgent) agents . get (0) ;
return (new Integer (f i r s t . in fec ted ())) . toString () ;

}

How it works: Unlike the wolf and deer simulation, our PersonAgent class
computes the number of different kinds of agents. In contrast, the wolf and
deer simulations keep track of the wolves versus deer agents in two sep-
arate lists. It’s an instance method that adds up the number of infected
people, infected, so we can just grab any agent and ask it for the number of
infected, then write it to a file.

Program
Example #123 Example Java Code: PersonAgent’s init method

import java . awt . Color ; // Color for co l o r i z ing
import java . u t i l . LinkedList ;

/∗∗
∗ PersonAgent −− Person as a subclass o f Agent
∗∗/

public class PersonAgent extends Agent {

public boolean in f e c t i on ;
/∗∗
∗ I n i t i a l i z e , by s e t t i n g co lor and making move f as t
∗∗/

public void i n i t (Simulation thisSim){
// Do the normal i n i t i a l i z a t i o n s
super . i n i t (thisSim) ;

// Make i t lightGray
setColor (Color . lightGray) ;

// Don ’ t need to see the t r a i l
setPenDown (false) ;

// Start out uninfected
in f e c t i on = false ;

// Make the speed large
speed = 100;

}

* * *

16.3. MAKING A DISEASE PROPAGATION SIMULATION 395

How it works: PersonAgent defines the infection variable as a boolean—it
is either true or false. By default, people are Color.gray and uninfected,
with a fairly fast speed. They also do not have their pens set down—while
that is the default condition for Agents, putting it in explicitly makes it
explicit that we can turn it on, too. Sometimes, it’s useful to see where the
infected people wander and who comes in touch with them.

Program
Example #124Example Java Code: PersonAgent’s act method

/∗∗
∗ How a Person acts
∗∗/

public void act ()
{

// Is there a person within i n f e c t i o n range of me?
PersonAgent closePerson = (PersonAgent) getClosest (10 ,

simulation . getAgents ()) ;

i f (closePerson != null) {
// I f th i s person i s infec ted , and I ’m not in f e c t ed
i f (closePerson . in f e c t i on && ! this . i n f e c t i on) {

// I become in f e c t ed
this . i n f e c t () ;

}
}

// Run the normal act () −− wander aimlessly
super . act () ;

}

How it works: PersonAgent’s act method is the heart of the disease prop-
agation simulation. This method is what each person does, once per time
step. In this method, the infection range is 10. If there is a person within 10
steps (closePerson= null!), and this close person is infected (codePerson.infection)
and I am not infected (this.infection!), then I become infected (this.infect ()).

Program
Example #125Example Java Code: PersonAgent’s infect method

/∗∗
∗ Become in f e c t ed
∗∗/

public void i n f e c t () {

396
CHAPTER 16. ABSTRACTING SIMULATIONS: CREATING A

SIMULATION PACKAGE

this . i n f e c t i on = true ;
this . setColor (Color . red) ;

// Print out count o f number in f e c t ed
System . out . pr int ln (”Number infected : ”+ infected ()) ;

}

How it works: This is the method called when a person becomes infected.
The boolean field infection is set to true—the person now has an infection.
The person’s color becomes Color.red. Purely for the fun of tracking, we
print out the number infected.

Program
Example #126 Example Java Code: PersonAgent’s infected method

/∗∗
∗ Count in f e c t ed
∗∗/

public int in fec ted () {
int count = 0;
LinkedList agents = simulation . getAgents () ;
PersonAgent check ;

for (int i = 0 ; i<agents . s i ze () ; i ++){
check = (PersonAgent) agents . get (i) ;
i f (check . in f e c t i on) {count ++;}

}

return count ;
}

How it works: This is a straightforward count (called “enumeration”) of
elements meeting a particular criteria. We start with our count variable at
zero. We get the list of all agents, and then using a for loop to increment
an index variable i, we increment the count if the infection is true for the
agent at index i. At the end, we return the count of infected persons.

A Problem and Its Solution: Enumerating elements of a particular type
We have now seen two ways of counting a particular kind of agent. With
the wolves and deer, we kept two separate lists, and when needed, took
the size of the lists. With persons who are infected or not, we instead have
a flag (the boolean variable) in each person indicating infection, and keep

16.3. MAKING A DISEASE PROPAGATION SIMULATION 397

Figure 16.6: A graph of infection in the large world

just a single list of all the persons. When we need to count (enumerate)
the sick persons, we go through the list of all persons and count up those
for whom the flag is true. Which is better? It depends on what you need
to do. If you just want to count, then keeping the single list is easiest.
Maintaining separate lists is more complex, as we saw in how we added to
the lists and removed (in the case of deer dying). In the wolves and deer
case, we needed separate lists of each (for looking for near members), so it
was worthwhile to go to the extra effort.

Now, we can run our disease propagation simulation, with code like
this:

DiseaseSimulation ds2 = new DiseaseSimulation () ;
ds2 . openFile (‘ ‘C : / cs1316 / disease−f u l l s i z e . txt ’ ’) ;
ds2 . run () ;

Exploring Scenarios in Disease Propagation
There are lots of interesting scenarios to explore in disease propagation
simulations. One of them is already set up in the code. When we run our
simulation using some code like the above, we get a file with the number
of infected people written out, one number per line, one line for each time
step. That is perfect for reading into Microsoft Excel, Open Office Spread-
sheet, or just about any other graphing tool.

First, we should look at what a typical run of our simulation looks like.
Figure 16.6 shows a graph of one run of the simulation, set up exactly
as described in this chapter. We see a steady increase in the number of
infected people until we reach about timestep 43, at which point everyone
is infected.

* * *

398
CHAPTER 16. ABSTRACTING SIMULATIONS: CREATING A

SIMULATION PACKAGE

A Problem and Its Solution: How do we determine typical behavior?
No two runs of any of our simulations should ever be identical, not if Java’s
random number generator is working well. Since the decision for each
agent to turn (or not) and how much to travel is driven by the random
number generator, and the initial positions are all chosen randomly, and
all other decisions in our simulations are based on agent locations, then
our simulation results should be quite different for each run. How do we
know, then, if a given result (e.g., of so many people infected in such an
amount of time) is typical? If we ran the last scenario again, could it be
that not everyone gets infected, or that everyone gets infected much sooner.
This is exactly where statistics enter the picture. The goal of a hypothesis
test (like a t-test or chi-square test is exactly to enter the question, “Did
our study get a reasonable number of subjects? What are the odds that
we happen to pick n oddball samples to study, and these are not at all
typical?” We are not going to answer that question here. Instead, we point
you to your next classes and to the connections between computer science,
simulations, and probability and statistics.

Now, in DiseaseSimulation method setUp(), let us change how the world
is setup. Change the commenting at the start so that it looks like this:

// Let the world be s e t up
//super . setUp () ;
// Or s e t i t up with a smaller world
world = new World (300 ,300) ;
world . setAutoRepaint (false) ;

The two uncommented lines do the same thing as super.setUp(), but
with a much smaller world—300x300 instead of 640x480. Does that matter?
Figure 16.7 is a graph of a run with the smaller world. It looks like it
matters very much. In the smaller world, everyone is infected by timestep
25. Perhaps this is why diseases tend to spread much more quickly in
tight-knit groups or in urban settings. If there are as many people, but
everyone travels in a smaller area, people are more likely to bump into
one another.

When we explore this simulation in class, we often run experiments like
this exploration of greater or smaller space in the simulation. Sometimes
we vary the number of people in the space, sometimes we have agents
avoid visibly infected agents, and other times we change aspects of the dis-
ease. One semester, a student suggested a change to the disease where it
kills infected people after three days, but their bodies would still lie around
infecting others. (We might note that this was a particularly morbid stu-
dent.) What was the impact on the infection rate? Surprising to all of us
in the class, the infection rate dropped dramatically. When we mentioned
this result to mathematical biologists, they were not at all surprised. That
finding has been well-known by mathematical biologists. That is why the

16.4. MAKING A POLITICAL INFLUENCE SIMULATION 399

Figure 16.7: A graph smaller world disease propagation simulation

Ebola virus has not reached the general populace, we were told. When a
disease agent kills rapidly, it also eliminates the opportunity for the in-
fected people to spread the disease further.
16.4 Making a Political Influence Simulation

Simulations can also be used to explore social science questions. In this
simulation, we explore ways in which political influence might spread among
members of different political affiliations. Figure 16.8 presents a UML
class diagram for the political simulation that we will be developing in
this chapter. The simulation only requires two new classes.

• PoliticalSimulation has a setUp for the simulation (creating Red and
Blue agents, and moving them to their home sides), and special meth-
ods for lineForFile and endStep.

• PoliticalAgent has a new instance field called politics that describes
the agent’s current affiliation. It overrides init and act, and provides
a new method for setPolitics .

Remember that there are two sets of PoliticalAgents, Red and Blue. Both
wander aimlessly, but within constraints. Blue is only to the right, and Red
is only to the left. There is an overlap in their areas of influence for 200
pixels in the middle. If a Blue gets surrounded (argued down?) by more
Red supporters than Blue supporters, the Blue turns Red, and the reverse
is also true.

Program
Example #127Example Java Code: PoliticalSimulation’s setUp method

import java . awt . Color ;
/∗∗

400
CHAPTER 16. ABSTRACTING SIMULATIONS: CREATING A

SIMULATION PACKAGE

Figure 16.8: UML class diagram of political simulation

∗ Poli t icalSimulation −− using the Simulation c lass
∗∗/

public class Pol i t i ca lSimulat ion extends Simulation {

/∗∗
∗ F i l l the world with 60 persons
∗∗/

public void setUp () {
// Let the world be s e t up
super . setUp () ;

Pol i t i ca lAgent moi ;

// 60 people
for (int num = 0; num < 60; num++) {

moi = new Pol i t i ca lAgent (world , this) ;
// Firs t 30 are red
i f (num < 30) {

moi . p o l i t i c s = Color . red ;
moi . moveTo(100 ,100) ;
Pol i t i ca lAgent . redParty . add (moi) ;

}
else {

moi . p o l i t i c s = Color . blue ;
moi . moveTo(500 ,100) ;
Pol i t i ca lAgent . blueParty . add (moi) ;

}
moi . setColor (moi . p o l i t i c s) ;

} // for loop

16.4. MAKING A POLITICAL INFLUENCE SIMULATION 401

} // setUp ()

How it works: The basic PoliticalSimulation has 60 people, the first 30 of
whom are Color.red and the next 30 are Color.blue. The politics variable
for each is a color. Each is created at the home base for the party. No-
tice that each are added to a LinkedList that is static (accessed through
PoliticalAgent) for the redParty or the blueParty.

Because the world is 640 across, not 600, the Blue party has more space.
Is that an advantage? Does that improve their odds of having more Blue
members?

Program
Example #128Example Java Code: PoliticalSimulation’s lineForFile and endStep

methods

/∗∗
∗ l ineForFi le −− write out number of each party
∗∗/

public String l ineForFi le () {

return (new Integer (Pol i t i ca lAgent . redParty . s i ze ())) . toString ()+ ” \ t ”+
(new Integer (Pol i t i ca lAgent . blueParty . s i ze ())) . toString () ;

}

/∗∗
∗ EndStep , count the number of each
∗∗/

public void endStep (int t){
super . endStep (t) ;

System . out . pr int ln (”Red : ”+Pol i t i ca lAgent . redParty . s i ze ()+ ” Blue : ”+
Pol i t i ca lAgent . blueParty . s i ze ()) ;

}

How it works: Each of these is about tracking the number of number
of members of each party. lineForFile writes out each of the sizes of the
LinkedList’s holding those party members. EndStep displays on the console
the number of each, at the end of each timestep.

Program
Example #129Example Java Code: PoliticalAgent’s init method

402
CHAPTER 16. ABSTRACTING SIMULATIONS: CREATING A

SIMULATION PACKAGE

import java . awt . Color ; // Color for co l o r i z ing
import java . u t i l . LinkedList ;

/∗∗
∗ Pol i t i ca lAgent −− Red or Blue Stater as a subclass o f Agent
∗∗/

public class Pol i t i ca lAgent extends Agent {

// Red or Blue
public Color p o l i t i c s ;

public static LinkedList redParty = new LinkedList () ;
public static LinkedList blueParty = new LinkedList () ;

/∗∗
∗ I n i t i a l i z e
∗∗/

public void i n i t (Simulation thisSim){
// Do the normal i n i t i a l i z a t i o n s
super . i n i t (thisSim) ;

// Don ’ t need to see the t r a i l
setPenDown (false) ;

// Speed i s 100
speed = 100;

}

How it works: Notice that the politics field is actually of type Color. The
class PoliticalAgent also defines the two LinkedList static fields that list the
members of each party. We are using the separate list method because we
are going to want to count the number of one party surrounding the other.
The rest of the init method is completely ordinary.

Program
Example #130 Example Java Code: PoliticalAgent’s setPolitics method

/∗∗
∗ Set p o l i t i c s
∗∗/

public void s e t P o l i t i c s (Color pref){
System . out . pr int ln (” I am ”+ p o l i t i c s +” converting to ”+pref) ;

i f (pref == Color . red) {
blueParty . remove (this) ;

16.4. MAKING A POLITICAL INFLUENCE SIMULATION 403

redParty . add (this) ;
this . p o l i t i c s = pref ;}

else {
blueParty . add (this) ;
redParty . remove (this) ;
this . p o l i t i c s = pref ;

}
this . setColor (pref) ;

}

How it works: The setPolitics method does three things, after figuring
out which party an agent currently belongs to. It removes the agent from
the party list of the old party, adds the agent to the new party’s list, then
sets the politics field. At the end, the color of the agent is to the politics
color.

Program
Example #131Example Java Code: PoliticalAgent’s act method

/∗∗
∗ How a Pol i t i ca lAgent acts
∗∗/

public void act ()
{

// What are the number of blues and red near me?
int numBlue = countInRange (30 , blueParty) ;
int numRed = countInRange (30 , redParty) ;

i f (p o l i t i c s ==Color . red){
// I f I ’m red , and there are more blue than red near me, convert
i f (numBlue > numRed){

s e t P o l i t i c s (Color . blue) ; }
}
i f (p o l i t i c s ==Color . blue){

// I f I ’m blue , and there are more red than blue near me, convert
i f (numRed > numBlue) {
s e t P o l i t i c s (Color . red) ; }

}

// Run the normal act () −− wander aimlessly
super . act () ;

// But don ’ t l e t them wander too far !
// Let them mix only in the middle
i f (p o l i t i c s ==Color . red) {

404
CHAPTER 16. ABSTRACTING SIMULATIONS: CREATING A

SIMULATION PACKAGE

i f (this . getXPos () > 400) { // Did I go too far r ight ?
this . moveTo(200 , this . getYPos ()) ; }

}
i f (p o l i t i c s ==Color . blue) {

i f (this . getXPos () < 200) { // Did I go too far l e f t ?
this . moveTo(400 , this . getYPos ()) ; }

}

}

How it works: The PoliticalAgent act method is one of the more compli-
cated we have seen. (If you want to change any of the political influence
rules of this simulation, here is where to do it!) The first step is to count
the number of Red and Blue party members near this agent. Then, there
is a series of nested if statements to figure out which political party this
agent is affiliated with, and if the numbers require a change.

After considering the change, all agents wander aimlessly (super.act()).
Then, we consider whether the political agent has wandered into the en-
emy’s camp. If so, the agent is moved to the edge of the overlap zone that
is closest to that party’s home base. (Would it change anything if the agent
was moved to the far edge, rather than the edge of the boundary zone?)

Obviously, this is a highly simplified model of political influence. One
might increasingly add more conditions. Perhaps Red members are more
stubborn and it takes more Blue members to convert a Red than Red mem-
bers to convert a blue. Perhaps a newly converted Blue is immune to con-
version for a couple of weeks (14 timesteps?). Some agents are probably
more persuasive and charismatic than others—they might have different
influences. These are some of the scenarios that might be explored in a
simulation like this.
16.5 Walking through the Simulation Package

We are not going to walk through all of the simulation package in this
chapter. For the most part, it looks like the Wolves and Deer Simulation of
the last chapter. What is useful to understand is how the overriding works.
When do methods get called in Simulation, Agent, a particularly Simulation
subclass, and a particular Agent subclass?

Let’s trace the execution of the disease propagation simulatoin from:

DiseaseSimulation ds = new DiseaseSimulation () ;
ds . run () ;

The first line executes the constructor for the class. Since DiseaseSimulation
does not have its own constructor, we will call the one in Simulation:

public Simulation () {
// By default , don ’ t write to a f i l e .
output = null ;

16.5. WALKING THROUGH THE SIMULATION PACKAGE 405

// And there i s no FrameSequence
frames = null ;

}
The method run is in the Simulation package. Note that there is a run()

that accepts no inputs, and a run(int timeRange) that defines the number of
steps to execute. Executing ds.run() calls the first method:

/∗∗
∗ Run for a default o f 50 steps
∗∗/

public void run () {
this . run (5 0) ;
this . c l o seF i l e () ;

}
And it in turn executes the second version. Here are the first few lines

of that method.

/∗∗
∗ Ask a l l agents to run for the number of input
∗ s teps
∗∗/

public void run (int timeRange)
{

// A frame , i f we ’ re making an animation
Picture frame ;

// For stor ing the current agent
Agent current = null ;

// Set up the simulation
this . setUp () ;

When we get to this step in Simulation’s run method, we ask this (which
is our DiseaseSimulation instance in variable ds) to setUp(). DiseaseSimulation
does have a setUp() method, so we will call that.

/∗∗
∗ F i l l the world with 60 persons , one s ick
∗∗/

public void setUp () {
// Let the world be s e t up
super . setUp () ;

PersonAgent moi ;

// 60 people
for (int num = 0; num < 60; num++) {

moi = new PersonAgent (world , this) ;
}

406
CHAPTER 16. ABSTRACTING SIMULATIONS: CREATING A

SIMULATION PACKAGE

// I n f e c t the f i r s t one
moi = (PersonAgent) getAgents () . get (0) ;
moi . i n f e c t () ;

}
The very first line in this method, though, calls super.setUp() which ex-

ecutes Simulation’s setUp() method.

public void setUp () {
// Set up the World
world = new World () ;
world . setAutoRepaint (false) ;

}
After executing this method, we return to the rest of DiseaseSimulation’s

setUp() method, which creates the 60 people, one ill. We are now back
in Simulation’s run(int timeRange) method. We just finished the setUp()
method, so we go on to the time loop:

// Set up the simulation
this . setUp () ;

// loop for a s e t number of t imesteps
for (int t = 0 ; t < timeRange ; t ++)
{

// loop through a l l the agents , and have them
// act ()
for (int index =0; index < agents . s i ze () ; index ++) {

current = (Agent) agents . get (index) ;
current . act () ;

}
Each of current in this loop is a PersonAgent. Does PersonAgent have an

act() method? Sure does!

public void act ()
{

// Is there a person within i n f e c t i o n range of me?
PersonAgent closePerson = (PersonAgent) getClosest (20 ,

simulation . getAgents ()) ;

i f (closePerson != null) {
// I f th i s person i s infec ted , and I ’m not in f e c t ed
i f (closePerson . in f e c t i on && ! this . i n f e c t i on) {

// I become in f e c t ed
this . i n f e c t () ;

}
}

// Run the normal act () −− wander aimlessly
super . act () ;

}

16.5. WALKING THROUGH THE SIMULATION PACKAGE 407

Note that at the end of this method, we call super.act(). This means that
Agent’s act() method will then execute. This is the method that implements
wandering aimlessly.

public void act ()
{

// Default act ion : wander aimlessly
// i f the random number i s > prob of NOT turning then turn
i f (randNumGen. nextFloat () > PROB OF STAY)
{

this . turn (randNumGen. nextInt (3 6 0)) ;
}
// go forward some random amount
forward (randNumGen. nextInt (speed)) ;

} // end act ()

We then return to Simulation’s run(int timeRange) method. After each
agent is asked to act() , the world gets updated (world.repaint()). If there is
a simulation, a frame gets written out.

// repaint the world to show the movement
world . repaint () ;
i f (frames != null){

// Make a frame from the world , then
// add the frame to the sequence
frame = new Picture (world . getWidth () , world . getHeight ()) ;
world . drawOn(frame) ;
frames . addFrame(frame) ;

}

// Do the end of step processing
this . endStep (t) ;

// Wait for one second
//Thread . s l eep (1000) ;

}
We then execute the endStep method. Since DiseaseSimulation does not

have one, we call Simulation’s endStep method.

public void endStep (int t){
// Let ’ s f igure out where we stand . . .
System . out . pr int ln (”>>> Timestep : ”+t) ;

// I f we have an open f i l e , write the counts to i t
i f (output != null) {

// Try i t
try{

output . write (this . l ineForFi le ()) ; // NOTE THIS LINE!
output . newLine () ;

} catch (Exception ex) {
System . out . pr int ln (” Couldn ’ t write the data ! ”) ;

408
CHAPTER 16. ABSTRACTING SIMULATIONS: CREATING A

SIMULATION PACKAGE

System . out . pr int ln (ex . getMessage ()) ;
// Make output null so that we don ’ t keep trying
output = null ;
}

}
} // endStep ()

But wait! In the middle of that method is a call to this.lineForFile().
DiseaseSimulation does have a lineForFile() method!

public String l ineForFi le () {
PersonAgent f i r s t ;
f i r s t = (PersonAgent) agents . get (0) ;
return (new Integer (f i r s t . in fec ted ())) . toString () ;

}
That ends the execution for one call to an act() method for one agent

in one timestep. This process of calling between the different classes and
methods happen for every agent for every timestep. Fortunately, processors
are really fast.

You do not really have to know what is inside of Simulation nor Agent to
use the package. The important thing to know is what methods to override,
and how (and when) your methods will be called. This walkthrough should
give you a better sense of how the code in your subclasses gets called, and
when the methods in the superclass gets used.

16.6 Finally! Making Wildebeests and Villagers

After hundreds of pages, we can finally create an animation that is gen-
erated from a simulation! This is a similar method to what is used in
Disney’s The Lion King when the wildebeest’s charged over the ridge or
in The Hunchback of Notre Dame when the villagers milled about in the
square.

The basic process is quite simple. We write a simulation, using the
same approach seen previously in the chapter. Each agent should repre-
sent one character in our simulation. At each timestep, we create a new
frame and draw our character images in the frame. We will use exactly
this approach in creating our movie about the birdlike beings investigat-
ing the mysterious egg (Figure 16.9).

Here is the story of this movie. The turtle-like curious bird-things3

wander, slowly, toward the mysterious egg. As they get up close to it-it
opens its eyes and shows its fangs! They scamper away while the monster
shifts around and looks to the left and right.

Your first reaction is likely, “How is this unlike the wolvies attacking
the village movie?” Yes, it is quite similar. However, in this version, the

3We made these quickly, unsure whether we wanted turtles or birds. Since then, we have
left them in their quasimodo state because they serve as a low bar for future movie makers.
Certainly, anyone can make better looking characters than these!

16.6. FINALLY! MAKING WILDEBEESTS AND VILLAGERS 409

Figure 16.9: Mapping from agent (turtle) positions on the left to character
positions on the right

Figure 16.10: Frames from the Egg-Bird Movie

positions of the investigating birds are not scripted. They emerge from the
random number generator. We could easily run the simulation again to
get a different movie—we can have as many “takes” as we may like.

There are three classes in this simulation:

• BirdSimulation sets up the birds and the egg. The real work of the
mapping occurs in the method endStep().

• BirdAgent defines the behavior of the birds.

• EggAgent defines the behavior of the egg.

We are going to make a couple of changes to Agent and Simulation as we
go along, in order to make the mapping work more easily to the animation.
These changes do not interfere with the previous simulations in this chap-
ter. In fact, the Java class files that you have been using (assuming you
have been experimenting all along here) already have all of these changes.
One change creates a character image for mapping to the agent, and an-
other change allows us to get a time step number in act() in case we want
to do something in a particular frame.

410
CHAPTER 16. ABSTRACTING SIMULATIONS: CREATING A

SIMULATION PACKAGE

* * *
Program
Example #132 Example Java Code: BirdSimulation’s setUp method

/∗∗
∗ BirdSimulation
∗ A f l o ck of 10 birds inves t i ga t e a mysterious egg ,
∗ which suddenly shows i t s e l f to be a monster !
∗∗/

public class BirdSimulation extends Simulation {

public EggAgent egg ; // We ’ l l need to get th i s l a t e r in BirdAgent
FrameSequence myFrames ; // Need a separate one from Simulations

/∗∗
∗ Set up the world with 10 birds and the mysterious egg
∗∗/

public void setUp () {
// Set up the world
super . setUp () ;
// We ’ l l need frames for the animation
myFrames = new FrameSequence (” / home / guzdial / temp / ”) ;
myFrames . show () ;

BirdAgent tweetie ;
// 10 of ’em
for (int num = 0; num < 10; num++) {

tweetie = new BirdAgent (world , this) ; }

// And the egg
egg = new EggAgent (world , this) ;

}

How it works: After seeing three simulations previous to this one, it’s
pretty clear what’s going on here. We create 10 birds and one egg. One
difference is the creation of a FrameSequence for storing our simulation
frames.

Program
Example #133 Example Java Code: BirdSimulation’s endStep method

public void endStep (int t) {
// Do the normal f i l e processing (i f any)
super . endStep (t) ;

16.6. FINALLY! MAKING WILDEBEESTS AND VILLAGERS 411

// But now, make a 640x480 frame , and copy
// in pic tures from a l l the agents
Picture frame = new Picture (640 ,480) ;
Agent drawMe = null ;
for (int index =0; index<this . getAgents () . s i ze () ; index ++) {

drawMe = (Agent) this . getAgents () . get (index) ;
drawMe. myPict . bluescreen (frame ,drawMe. getXPos () ,

drawMe. getYPos ()) ;
}
myFrames . addFrame(frame) ;

}

How it works: This method does the mapping process. At the end of
each time step, we create a picture to store our frame. For each agent, we
get its picture (drawMe.myPict) and then use bluescreen to draw the picture
at the position drawMe.getXPos(), drawMe.getYPos() of the turtle/agent. We
then add the frame to the frame FrameSequence.

We modified Agent to have this new field:

public class Agent extends Turtle
{

/////////////// f i e l d s //////////////////////
// NEW − f o r copying onto frame
public Picture myPict ;

The other change we need is to get the frame number passed into act,
if the agent wants it. This is a fairly tricky change. We want the Agent
subclasses to get the frame number (time step number—same thing) if
it wants it, but we do not want to require an input to act() . Here’s how
we solve it: We change the run method in Simulation to pass a time step
number, but we also provide an implementation in Agent that accepts a
time step number and calls act() without an input. In this way, if the time
step is not needed, the other version of act() gets called.

Program
Example #134Example Java Code: Changing Simuation’s run() method for a time

step input to act()

// loop through a l l the agents , and have them
// act ()
for (int index =0; index < agents . s i ze () ; index ++) {

current = (Agent) agents . get (index) ;
current . act (t) ; // NEW −− pass in timestep

}

412
CHAPTER 16. ABSTRACTING SIMULATIONS: CREATING A

SIMULATION PACKAGE

* * *

Program
Example #135 Example Java Code: Changing Agent to make time step inputs op-

tional

/∗∗
∗ act () with a timestep
∗∗/

public void act (int t){
// By default , don ’ t act on i t
this . act () ;

}

Now we can build our agents.

Program
Example #136 Example Java Code: BirdAgent’s init method

/∗∗
∗ BirdAgents use the bird character JPEGs
∗∗/

public class BirdAgent extends Agent{

public static Picture bird1 , bird2 , bird3 , bird4 , bird5 , bird6 ;

/∗∗
∗ Set up the birds
∗∗/

public void i n i t (Simulation thisSim){
i f (bird1 == null) {

// Do we have the bird characters defined ye t ?
bird1 = new Picture (FileChooser . getMediaPath (” bird1 . jpg ”)) ;

bird2 = new Picture (FileChooser . getMediaPath (” bird2 . jpg ”)) ;
bird3 = new Picture (FileChooser . getMediaPath (” bird3 . jpg ”)) ;
bird4 = new Picture (FileChooser . getMediaPath (” bird4 . jpg ”)) ;
bird5 = new Picture (FileChooser . getMediaPath (” bird5 . jpg ”)) ;
bird6 = new Picture (FileChooser . getMediaPath (” bird6 . jpg ”)) ;

}

// Start out with myPict as bird1
myPict = bird1 ;

// Do the normal i n i t i a l i z a t i o n s

16.6. FINALLY! MAKING WILDEBEESTS AND VILLAGERS 413

Figure 16.11: The individual images for the bird characters

super . i n i t (thisSim) ;

// Move a l l the birds to the far r ight corner
this . setPenDown (false) ;
this . moveTo(600 ,400) ;

// Set speed to r e l a t i v e l y slow
this . setSpeed (4 0) ;

}

How it works: Since all our bird characters will look the same (Figure 16.11)4,
we simply load them all into a set of static variables. No, they do not have
to be static, but we also do not need to waste the space since they will all
look the same. We use a trick here to load the six images. When the first
bird is created, bird1 will be null. We then load all six images. The rest of
the birds will check if bird1 is null, but of course, it won’t be. All birds will
start out with the first image, and down in the lower right hand corner of
the world.

Program
Example #137Example Java Code: BirdAgent’s act method

/∗∗
∗ act (t) For f i r s t 20 steps , walk toward the egg ,
∗ +/− 30 degrees .
∗ Then walk AWAY from the egg , and with MORE wandering (panic) .
∗∗/

public void act (int t){
// First , handle motion
i f (t <= 20) {

// Tel l i t that th i s r ea l l y i s a BirdSimulation
BirdSimulation mySim = (BirdSimulation) simulation ;
// which has an egg
this . turnToFace (mySim. egg) ;

4See previous explanation for the birds’ look-and-feel

414
CHAPTER 16. ABSTRACTING SIMULATIONS: CREATING A

SIMULATION PACKAGE

this . turn (randNumGen. nextInt (60)−30);
forward (randNumGen. nextInt (speed)) ;

} else {
// Run away ! !
this . turnToFace (640 ,480) ; // Far right corner
this . turn (randNumGen. nextInt (80)−40);
forward (randNumGen. nextInt (speed)) ;

}
// Next , s e t a new character

int c e l l = randNumGen. nextInt (6)+1 ; // 0 to 5 , + 1 => 1 to 6
switch (c e l l) {

case 1:
myPict = bird1 ;
break ;

case 2:
myPict = bird2 ;
break ;

case 3:
myPict = bird3 ;
break ;

case 4:
myPict = bird4 ;
break ;

case 5:
myPict = bird5 ;
break ;

case 6:
myPict = bird6 ;
break ;

} // end switch
} // end act

How it works: This is an act method that takes a time step as an input,
t. The birds act different in the first 20 frames, and the rest of the movie.
During the first 20 frames, the birds always head toward the egg (which
we will see is in the upper left-hand corner). They turn a bit while head-
ing there. The formula randNumGen.nextInt(60)−30 means that a random
number between 0 and 59 will be generated, then 30 will be subtracted
from that. The result is a value between −30 and 29. The birds will gen-
erally be meandering toward the egg. The birds then move forward at a
random value based on their speed.

Once the egg becomes scary in frame 20, the birds face the opposite
corner. The range of variance is larger for turning, from −40 to 39—they
are more choatic running away.

No matter what the frame is, the birds consider changing their look
with every frame. A die is thrown, using randNumGen.nextInt(6)+1 to store

16.6. FINALLY! MAKING WILDEBEESTS AND VILLAGERS 415

a value between 1 and 6 in the variable cell . A switch statement is used to
make a choice.

Think of a switch statement as a shortcut for a bunch of if statements.
Read:

switch (c e l l) {
case 1:

myPict = bird1 ;
break ;

case 2:
myPict = bird2 ;
break ;

as:

i f (c e l l == 1)
{myPict = bird1 ;}

else i f (c e l l == 2)
{myPict = bird2 ;}

The break says “Only one case is going to match, so skip to the end of
the switch statement now.”

Program
Example #138Example Java Code: EggAgent’s init method

/∗∗
∗ EggAgent −− big scary egg that s i t s there unt i l t =15 ,
∗ then emerges as a monster !
∗∗/

public class EggAgent extends Agent {

public static Picture egg1 , egg2 , egg3 , egg4 ;

/∗∗
∗ To i n i t i a l i z e , s e t i t up as the Egg in the upper lefthand corner
∗∗/

public void i n i t (Simulation thisSim){
i f (egg1 == null) { // I n i t i a l i z e

egg1 = new Picture (FileChooser . getMediaPath (” egg1 . jpg ”)) ;
egg2 = new Picture (FileChooser . getMediaPath (” egg2 . jpg ”)) ;
egg3 = new Picture (FileChooser . getMediaPath (” egg3 . jpg ”)) ;
egg4 = new Picture (FileChooser . getMediaPath (” egg4 . jpg ”)) ;

}
// Start out as egg1
myPict = egg1 ;

// Normal i n i t i a l i z a t i o n
super . i n i t (thisSim) ;

416
CHAPTER 16. ABSTRACTING SIMULATIONS: CREATING A

SIMULATION PACKAGE

Figure 16.12: The various egg images

// Move the egg up to the l e f t hand corner
this . moveTo (10 ,10) ;

}

How it works: The EggAgent init method works much as the BirdAgent’s
does. First, the four egg images are loaded into static methods. The egg
starts looking like the first one—just a plain ordinary egg (Figure 16.12).
The egg (remember that only one instance of EggAgent is created) is in the
upper left hand corner.

Program
Example #139 Example Java Code: EggAgent’s act method

/∗∗
∗ To act , jus t drop the Egg for 15 steps ,
∗ then be the eyes opened for f i v e steps ,
∗ then be the eyes switching back−and−f or th
∗∗/

public void act (int t) {
i f (t < 19) {

myPict = egg1 ;}

i f (t>19 && t <24) {
myPict = egg2 ;}

i f (t >23) {
int choose=randNumGen. nextInt (2) ;
i f (choose == 1) {

myPict = egg3 ;}
else {

myPict = egg4 ;}
}

} // end act ()

16.7. A TOUR OF JAVA COLLECTION CLASSES 417

* * *

How it works: The EggAgent is the only agent we have seen that never
moves at all—not aimlessly, not towards an object. For the first 19 frames,
the egg just sits there. Then, the eyes open at frame 20—that’s the egg2
image in Figure 16.12. After frame 23, the egg randomly shifts between
the final two images, where the eyes shift left-and-right.
Going Beyond the Wildebeests
And that’s it! We’ve now figured out the basic computer science behind the
wildebeests and the villagers!

There are lots of interesting things to do with even this simple bird
animation.

• Birds could start out all over the screen, and slowly move themselves
toward the egg—then all run away in the same direction. That might
have more visual impact.

• Rather than use frame numbers in the BirdAgent act() , the egg could
have a method like looksScary(). Then, instead of checking for the
frame number, the BirdAgent could ask if (egg.looksScary()) in order to
decide to run away. The code would be less complex and read more
easily.

• The birds could respond to one another, like avoiding crowds.

Perhaps the biggest idea here is that mapping a simulation to an an-
imation is just one kind of mapping that one could create. An animation
is only one kind of representation to make from a simulation. How about
playing certain sounds or MIDI phrases from different characters when
they act at different times? Music could be a result of a simulation as well
as an animation is.

Despite the interestingness of continuous simulations, they are not the
most common kinds of simulations. The most common kinds of simula-
tions, and perhaps the most useful for answering people’s questions, are
discrete event simulation. So even though we have finished our journey to
the wildebeest’s here, we are going to have one more chapter to finish our
exploration of the usefulness of simulations.

16.7 A Tour of Java Collection Classes

An overview of Java’s Collection Classes will appear in this space...

Exercises

1. Do the first exercise from the last chapter, with this new WDSimulation:
“Change the Deer so that there is no random amount that it moves–it

418
CHAPTER 16. ABSTRACTING SIMULATIONS: CREATING A

SIMULATION PACKAGE

always zips around at maximum speed.” How much harder or easier
is it?

2. PersonAgent’s act method is not quite right. Rather than asking if
there’s an infected person within range of me, it asks who the closest
person is to me and if that person is infected. Fix the act method so
that it does the right thing.

3. Using the Simulation Package developed in this chapter, create a
simulation of an ecology. Use classes WolfAgent, DeerAgent, and a new
CornAgent (that you will write), and your simulation should extend
the Simulation class.
Setup your simulation like this:

• Create a dozen deer and three wolves to start.
• Create three dozen pieces of corn.

When running your simulation, let’s consider a timestep to be about
a week. Run the simulation for 2 years (104 timesteps). Here are the
basic rules for the simulation.

• Deer can smell wolves within 20 steps and will move away from
them. (Initial max speed is 20.)

• Wolves can smell deer within 15 steps and will move to them,
kill the deer, and eat it. (Initial max speed is 25.)

• Deer can smell corn within five steps and can move to it within
a single step. If a deer lands on a corn, it eats the corn.

• If a deer goes two weeks without corn, it’s speed drops by half.
Once it eats corn, its speed goes back to maximum.

• If a deer goes four weeks without corn, it dies.
• If wolves go five weeks without a deer, their speed drops by half.

Once a wolf eats a deer, its speed goes back to maximum
• If a wolf goes ten weeks without a deer, it dies.
• If corn survives for twelve weeks, it grows two more corn plants

next to itself (any direction). Every twelve weeks, it can have
two more children.

• Store to a file the number of wolves, deer, and corn each time
step.

An important part of this exercise is to do experimentation. Run this
simulation with these rules, three times. Then try two other sets of
rules and run each of those three times, also. Your goal is to reach
equilibrium that there are roughly as many Deer, Corn, and Wolves
as you start out with at the end of the Simulation.
Things that you might want to try changing in your rules:

16.7. A TOUR OF JAVA COLLECTION CLASSES 419

• Initial counts. Should there be more Corn, or fewer Deer? Would
culling the herd help more survive? Would more Wolves create
better equilibrium?

• Ranges. Should Deer or Wolves smell only closer, or farther?
Should they not be able to jump to Corn or Deer in a single time
step?

For extra credit, implement male and female Deer. Every twelve
weeks, the female Deer can become pregnant if there is a male Deer
within smell range. (You decide if the female jumps to the male,
or the male jumps to the female.) Pregnancy lasts for six weeks,
during which time the female will die if she doesn’t get corn every
three timesteps. At the end of six weeks, a new Deer is produced
(randomly selected gender).

In addition to your program, you are to produce a report with graphs
of all nine of your runs that’s three runs of each of three sets of vari-
ables. Show all three variables Wolves, Deer, and Corn per timestep
for all three of the scenarios that you explored. Explain what you
changed in each scenario and why you think the results differed from
the other scenarios.

4. Using the Simulation Package developed in this chapter, create a
simulation of immigration behavior.

Here’s the initial setup:

• Create a World that is 400 x 400. (If your world gets crowded,
you’re welcome to make it bigger.)

• The rightmost 200 pixels represent Europe. The leftmost 100
pixels represent America.

• Create 150 People scattered across Europe.

When running the simulation, let’s consider a timestep to be about
a month. Run the simulation for 10 years (120 timesteps). Here are
the starting (overly simplistic and not historically accurate) rules.

• If a person has over five neighbors within 20 pixels for three
consecutive timesteps, then that person feels overcrowded and
decides to emigrate to America.

• There is a 10% probability for each person in Europe that they
experience crop failure each timestep. If a person experiences
crop failure, they decide to emigrate to America.

• There is only 5% chance that someone moves somewhere else in
Europe in a timestep, and if they do, they only move between
1 and 16 steps away. (And always within Europe not into the
Atlantic.)

420
CHAPTER 16. ABSTRACTING SIMULATIONS: CREATING A

SIMULATION PACKAGE

• It takes three timesteps to cross the Atlantic. 10% of those
that start the journey don’t make it across. (That’s not 10% per
timestep it’s 10% of the number of people.) Be sure to show the
people making the journey, about 33 steps per timestep. (Note
that it is easier to compute a 1/10 chance of dying each emigra-
tion timestep. That is a reasonable simplification, but it’s not
really the same thing.)

• Once a person moves to America, they move more often (20%
chance of moving each timestep, in a range of 1 to 100 pixels,
but always within America), but disease is common there. 2%
of the population in America becomes diseased (maybe changes
color?) each timestep (they don’t move when sick). 50% of those
ill get healthy again each timestep. If someone is ill for four
timesteps in success, they die.

• Store to a file the number of people in Europe, in transit, and in
America each time step.

Again, experiment—use these initial rules to start, and try two other
scenarios. Here are some issues that you might want to try changing
in your rules:

• Overcrowding. Maybe there are more people to start with, or it
takes more too-close neighbors to convince someone that they’re
overcrowded, or more timesteps of crowded conditions to con-
vince them to move

• Crop failures. What if crop failures were more common, or it
took multiple consecutive crop failures to convince someone to
emigrate.

• Travel. What if people didn’t die on the trip over, or if it took
longer.

• Movement. What if people moved more often, or further, in ei-
ther America or Europe.

• Disease. In America, more crowded conditions would lead to
higher probabilities of disease. What if people moved like they
do in Europe, or if they all came ashore at the same two or three
spots (e.g. Ellis Island), and then the incidence of disease was
dependent on the number of people around you.

• Wealth. Add the additional variables of wealth and cost to the
simulation and come up with reasonable rules for how this wealth
is used in the simulation. Europeans may have a normal distri-
bution of wealth, but perhaps with a wide variance. The least
wealthy are more likely to get sick, more likely to have crop fail-
ure, and are more likely to want to emigrate. The most wealthy
are the least likely to want to emigrate, are less likely to have

16.7. A TOUR OF JAVA COLLECTION CLASSES 421

crop failure, and are less likely to get sick. Once in America,
wealth still plays a factor (most of the Founding Fathers were
quite wealthy)—an interesting question is what kind of distri-
bution of wealth appears in America given the rules that you set
out and which Europeans emigrate. Wealth plays less of a role
in movement, but still plays a role in whether you get sick and
die.

Produce a report with graphs of all nine of your runs that’s three
runs of each of three sets of variables. Show all three variables—
Europeans, in-transit, and Americans per timestep for all three of
the scenarios that you explored. Explain what you changed in each
scenario and why you think the results differed from the other sce-
narios.
Note: It is particularly fun to generate this simulation as a series of
JPEG frames, then create a movie from them!

5. Using the simulation package developed in this chapter, and replac-
ing the turtle with character images, create a crowd scene simula-
tion. Start out with 100 villagers scattered around the world.
During the simulation, let’s imagine that a time step is a minute.
Run the simulation for 90 minutes.

• If there is no one around a villager (say, within 50 steps), the vil-
lager will set a heading for the closest person and take a couple
of steps that way.

• If there are three or more people too close (say within 10 steps),
a villager will get out of there (pick a random direction and move
speed distance away not a random speed, but actual speed.) (It’s
pretty hard to set a heading toward open space, but if you can
do it, go ahead!)

• In general, people are milling about. They take 1–5 steps per
time step. They have only a 10% chance of changing direc-
tion of movement. They change physical position regularly—
25% chance each time step of changing the direction they’re fac-
ing, 5% chance each time step of waving (i.e., putting hand up,
putting it down next time step). Implement any other milling–
about rules (e.g., more position changes) you’d like.

• 10 minutes into the simulation, the Nasty Bad Dude (or Dudess,
as you wish), walks into the World. The NBD doesn’t change
direction, and just walks 2–5 steps per time step. But the vil-
lagers don’t want to be anywhere near the NBD! If the NBD
is near (say, within 30), they walk exactly away (turn towards,
then turn 180, and move). Nobody ever sets a heading toward
the NBD anymore. They quietly just start milling away from the
NBD as s/he walks across the world.

422
CHAPTER 16. ABSTRACTING SIMULATIONS: CREATING A

SIMULATION PACKAGE

This simulation aches for generating JPEG movies in order to see
the resultant movie! (You may notice some similarities between this
situation and the crowd scenes in Disney’s The Hunchback of Notre
Dame.)

6. Using the simulation package developed in class, and replacing the
turtle with character images, create a stampeding crowd scene sim-
ulation.
At the beginning of the simulation, have 100 crowd members (wilde-
beests?) on the left edge of the world (within 100 pixels of the left
edge). All headings are initially set to the right edge. Have ten “ob-
stacle” agents scattered in the middle 200 pixels of the world
During the simulation, let’s imagine that a time step is a minute.
Run the simulation for 30 minutes.

• The crowd moves relentlessly from the left edge to the right,
with a minimum movement each step being 3 pixels, and a max-
imum of 10 steps.

• The crowd doesn’t want to be bumping into others. If there are
three or more people too close (say within 10 steps), a person
will get out of there (pick a random direction and move speed
distance away not a random speed, but maximum speed.) (It’s
pretty hard to set a heading toward open space, but if you can
do it, go ahead!)

• Nobody in the crowd wants to be within 10 steps of an obstacle.
If someone is heading for an obstacle, and they’re within 20 steps
of the obstacle, they’re going to turn 45 degrees to the left or
right (randomly). (What if they’re NOW heading for an obstacle,
after turning? Better turn again! Find some direction where
you’re NOT facing an obstacle!)

• People change physical position regularly—25% chance each time
step of changing the direction they’re facing, 5% chance each
time step of doing something else(waving? i.e., putting hand up,
putting it down next time step). Implement any other milling
about rules (e.g., more position changes) you’d like.

• If at the start of a timestep, you’re not facing the right edge, start
heading back that way. Change your heading by 10 degrees each
time step to head toward the right edge (e.g., if your heading is
5, and you want to be 90, change to 15).

This might sound like the charging of the wildebeests in Disney’s The
Lion King.

7. Using the simulation package developed in this chapter, and replac-
ing the turtle with character images, create a simulation of the Run-
ning of the Bulls in Pamplona.

16.7. A TOUR OF JAVA COLLECTION CLASSES 423

Setup the simulation with a world that is 800 pixels long, but only 75
wide. Create 25 runners at x = 50 in the world. Create 5 bulls at the
leftedge, x = 0

During the Simulation, let’s imagine that a time step is a minute, and
run the simulation for 30 minutes. You decide on the parameters like
max speed and ranges to create a good looking simulation.

• The runners move from the left edge to the right, but they do
wander from side-to-side some always within the lane.

• Bulls also move relentlessly from the left edge to the right, but
if a bull gets close to a runner, it moves toward that runner.

• The runners don’t want to be bumping into others. If there are
three or more people too close (say within 10 steps), a person
will get out of there (pick a random direction and move speed
distance away not a random speed, but maximum speed.)

• If a runner gets close to a bull, the runner will double their max
speed for one time step just to get ahead of the bull.

• If a bull catches a runner, the runner is then injured (maybe
dead?) and stops. All of the bulls and the rest of the runners
keep going.

• Runners change physical position regularly sometimes they’re
watching over their left, sometimes over their right, and some-
times they’re running straight ahead. You must have at least
three different positions for runners that your animations move
through.

• If at the start of a timestep, you’re not facing the right edge, start
heading back that way. Change your heading by 10 degrees each
time step to head toward the right edge (e.g., if your heading is
5, and you want to be 90, change to 15).

8. Enhance the disease propagation simulation into something much
more fiendish now.

• People, once infected (come within 10 steps of an infected per-
son), don’t turn red for two days though they do spread the dis-
ease. There is a 0.05 possibility that an infected person NEVER
becomes red but does spread the disease. Call those the “Ty-
phoid Mary” carriers.

• Healthy people, if they get within 20 steps of a visibly infected
person (someone red), turn away. But, of course, some people
are not visibly carrying the disease, but are infected.

• After 5 days of becoming infected, 25% of the people die. Their
bodies remain infected and spreading the disease, but they are

424
CHAPTER 16. ABSTRACTING SIMULATIONS: CREATING A

SIMULATION PACKAGE

red so that people can tell to avoid them. The rest of the infected
people become non-red at day 6 and become un-infected at day
7. (Yes, there is one day at the end when they are not visibly
infected, but they are still infected.)

Implement these rules and note the average number of people in-
fected (normal size world, start with 100 people and one infected)
and the average number dead over three runs. Run your simulation
for 100 time steps.
The goal is to increase the number that survive and decrease the
number of people who become infected. Implement two of the below
public health policies. Implement one of the policies, try out three
runs and compute the average infected and dead, then implement
the second policy and compute the average infected and dead. Pro-
duce a report with graphs of the number of healthy, infected, and
dead people for each of the 100 days of each run. Your report should
have 3 graphs for the original rules, then 3 graphs after the first pol-
icy implementation and a description of what happened (including
average counts of diseased and dead) and why, then 3 graphs after
both policies are implemented with a description of what happened
with counts and why.
POLICIES:

• Reduce mobility of the sick: When someone becomes visibly in-
fected (red), their speed drops in half.

• Reduce mobility of the healthy: Decrease from the start the
speed of all people (so they don’t bump into the infected as much).

• Voluntary quarantine of the sick: When someone is visibly in-
fected, at the beginning of each step, they turn to face (640, 480).
That way, sick people will tend to move toward the lower right.

• Voluntary segregation of the sick and healthy. Visibly infected
people turn to face (640, 480), and healthy (or presumably healthy
those that are non-red) people turn to face (0, 0).

• Mandatory quarantine of the sick: At the beginning of the step
for visibly infected, they immediately move to (640, 480). They
can move some from there, but they always go back to their
quarantine spot.

• Mandatory quarantine of the sick and healthy: All visibly in-
fected move to (640, 480), and all visibly healthy people move to
(0, 0).

• Removal of the Dead (the Monty Python’s Holy Grail’s “bring out
your dead!” policy): All dead bodies immediately go to (640, 0).
(Presume that people in bioprotection suits are moving the dead
without becoming infected themselves.)

16.7. A TOUR OF JAVA COLLECTION CLASSES 425

• Scarce Vaccine (the Chosen Few policy): Five people (probably
national leaders or doctors or police) are given vaccines when
first created. They never become infected.

• The Paranoid Policy: Everyone stays away from everyone else.

9. Use the Simulation Package and your any disease simulation (in-
cluding the enhanced one from the previous exercise), and create an
animation from it.
Implement:

• Three different types of people they can be different genders,
different looks, etc.

• A difference between healthy people and sick people (but not all
people show the sickness, if you are using an enhanced disease)
That means that that each of the three different types of people
must have a different look in sickness and health.

• There must be 3 different positions of each type of people fac-
ing left, facing right, moving left, moving right. You must ro-
tate among these positions, perhaps with a probability of 0.3 of
changing position with each time step.

• Dead people should look different from healthy or sick people

That is a total 3 positions x 3 types x 2 (sick or healthy) = 18 images
that you need to have for the living people, plus one more image for
dead people.

10. (Advanced.) All of our simulations are flawed in that activity (death,
political change, infection) occurs within the timestep. That means
that the order in which agents are processed will change the simu-
lation, e.g., if a person goes from Red to Blue, then that changes the
number of Blue for his or her neighbor, or a wolf may move toward a
deer that gets eaten in the same time step by another wolf. A better
way to do this is to consider all changes before making any changes.
This is called a transaction model—all transactions occur at once.
Change the Simulation and Agent classes so that all our simulations
work, but are based on a single transaction.

17 Discrete Event Simulation

Anyone who considers arithmetical methods of producing ran-
dom digits is, of course, in a state of sin. — John von Neumann
(1903-1957)

The difference between continuous and discrete event simulations is
that the latter only represent some moments of time–the ones where some-
thing important happens. Discrete event simulations are very powerful for
describing situations such as supermarkets and factory floors.

17.1 Distributions and Events

How do we represent how real things move and act in the real world? It’s
random, yes, but there are different kinds of random.

And once we make things happen randomly, we have to make sure that
we keep true to time order–first things come first, and next things come
next. We need to sort events in time order so that we deal with things
accurately. We can also use binary trees and insertion into an ordered list
to keep track of event order.

427

A MIDI Instrument names in
JMusic

429

430 APPENDIX A. MIDI INSTRUMENT NAMES IN JMUSIC

AAH BREATHNOISE EL BASS
ABASS BRIGHT ACOUSTIC EL GUITAR
AC GUITAR BRIGHTNESS ELECTRIC BASS
ACCORDION CALLOPE ELECTRIC GRAND
ACOUSTIC BASS CELESTA ELECTRIC GUITAR
ACOUSTIC GRAND CELESTE ELECTRIC ORGAN
ACOUSTIC GUITAR CELLO ELECTRIC PIANO
AGOGO CGUITAR ELPIANO
AHHS CHARANG ENGLISH HORN
ALTO CHIFFER EPIANO
ALTO SAX CHIFFER LEAD EPIANO2
ALTO SAXOPHONE CHOIR FANTASIA
APPLAUSE CHURCH ORGAN FBASS
ATMOSPHERE CLAR FIDDLE
BAG PIPES CLARINET FINGERED BASS
BAGPIPE CLAV FLUTE
BAGPIPES CLAVINET FRENCH HORN
BANDNEON CLEAN GUITAR FRET
BANJO CONCERTINA FRET NOISE
BARI CONTRA BASS FRETLESS
BARI SAX CONTRABASS FRETLESS BASS
BARITONE CRYSTAL FRETNOISE
BARITONE SAX CYMBAL FRETS
BARITONE SAXOPHONE DGUITAR GLOCK
BASS DIST GUITAR GLOCKENSPIEL
BASSOON DISTORTED GUITAR GMSAW WAVE
BELL DOUBLE BASS GMSQUARE WAVE
BELLS DROPS GOBLIN
BIRD DRUM GT HARMONICS
BOTTLE DX EPIANO GUITAR
BOTTLE BLOW EBASS GUITAR HARMONICS
BOWED GLASS ECHO HALO
BRASS ECHO DROP HALO PAD
BREATH ECHO DROPS HAMMOND ORGAN

Table A.1: JMusic constants in JMC for MIDI program changes, Part 1

431

HARMONICA PANFLUTE SLAP
HARMONICS PBASS SLAP BASS
HARP PHONE SLOW STRINGS
HARPSICHORD PIANO SOLO VOX
HELICOPTER PIANO ACCORDION SOP
HONKYTONK PIC SOPRANO
HONKYTONK PIANO PICC SOPRANO SAX
HORN PICCOLO SOPRANO SAXOPHONE
ICE RAIN PICKED BASS SOUNDEFFECTS
ICERAIN PIPE ORGAN SOUNDFX
JAZZ GUITAR PIPES SOUNDTRACK
JAZZ ORGAN PITZ SPACE VOICE
JGUITAR PIZZ SQUARE
KALIMBA PIZZICATO STRINGS STAR THEME
KOTO POLY SYNTH STEEL DRUM
MARIMBA POLYSYNTH STEEL DRUMS
METAL PAD PSTRINGS STEEL GUITAR
MGUITAR RAIN STEELDRUM
MUSIC BOX RECORDER STEELDRUMS
MUTED GUITAR REED ORGAN STR
MUTED TRUMPET REVERSE CYMBAL STREAM
NGUITAR RHODES STRINGS
NYLON GUITAR SAW SWEEP
OBOE SAWTOOTH SWEEP PAD
OCARINA SAX SYN CALLIOPE
OGUITAR SAXOPHONE SYN STRINGS
OOH SBASS SYNTH BASS
OOHS SEA SYNTH BRASS
ORCHESTRA HIT SEASHORE SYNTH CALLIOPE
ORGAN SFX SYNTH DRUM
ORGAN2 SGUITAR SYNTH DRUMS
ORGAN3 SHAKUHACHI SYNTH STRINGS
OVERDRIVE GUITAR SHAMISEN SYNVOX
PAD SHANNAI TAIKO
PAN FLUTE SITAR TELEPHONE

Table A.2: JMusic constants in JMC for MIDI program changes, Part 2

432 APPENDIX A. MIDI INSTRUMENT NAMES IN JMUSIC

TENOR
TENOR SAX
TENOR SAXOPHONE
THUMB PIANO
THUNDER
TIMP
TIMPANI
TINKLE BELL
TOM
TOM TOM
TOM TOMS
TOMS
TREMOLO
TREMOLO STRINGS
TROMBONE
TRUMPET
TUBA
TUBULAR BELL
TUBULAR BELLS
VIBES
VIBRAPHONE
VIOLA
VIOLIN
VIOLIN CELLO
VOICE
VOX
WARM PAD
WHISTLE
WIND
WOODBLOCK
WOODBLOCKS
XYLOPHONE

Table A.3: JMusic constants in JMC for MIDI program changes, Part 3

B Whole Class Listings

Utility Program
Utility #2: Turtle

/***
* Creates a Turtle on an input

*
***/

import java.awt.*;
import java.awt.event.*;
import java.awt.geom.*;
import javax.swing.*;
import java.awt.image.*;

public class Turtle {

private Picture myPicture; // the picture that we’re drawing on
private Graphics2D myGraphics;
JFrame myWindow;

private double x = 0.0, y = 0.0; // turtle is at coordinate (x, y)
private int height, width;
private double heading = 180.0; // facing this many degrees counterclockwise
private Color foreground = Color.black; // foreground color
private boolean penDown = true;

// turtles are created on pictures
public Turtle(Picture newPicture) {
myPicture = newPicture;
myGraphics = (Graphics2D) myPicture.getBufferedImage().createGraphics();
myGraphics.setColor(foreground);

433

434 APPENDIX B. WHOLE CLASS LISTINGS

height = myPicture.getHeight();
width = myPicture.getWidth();

};

// accessor methods
public double x() { return x; }
public double y() { return y; }

public double heading() { return heading; }
public void setHeading(double newhead) {
heading = newhead;

}

public void setColor(Color color) {
foreground = color;
myGraphics.setColor(foreground);

}

//Pen Stuff
public void penUp(){
penDown = false;

}

public void penDown(){
penDown = true;

}

public boolean pen(){
return penDown;

}

public float getPenWidth(){
BasicStroke bs = (BasicStroke) myGraphics.getStroke();
return bs.getLineWidth();

}

public void setPenWidth(float width){
BasicStroke newStroke = new BasicStroke(width);
myGraphics.setStroke(newStroke);

};

public void go(double x, double y) {
if (penDown)
myGraphics.draw(new Line2D.Double(this.x, this.y, x, y));

this.x = x;
this.y = y;

435

}

// draw w-by-h rectangle, centered at current location
public void spot(double w, double h) {

myGraphics.fill(new Rectangle2D.Double(x - w/2, y - h/2, w, h));
}

// draw circle of diameter d, centered at current location
public void spot(double d) {

if (d <= 1) myGraphics.drawRect((int) x, (int) y, 1, 1);
else myGraphics.fill(new Ellipse2D.Double(x - d/2, y - d/2, d, d));

}

// draw spot using jpeg/gif - fix to be at (x, y)
public void spot(String s) {

Picture spotPicture = new Picture(s);
Image image = spotPicture.getImage();

int w = image.getWidth(null);
int h = image.getHeight(null);

myGraphics.rotate(Math.toRadians(heading), x, y);
myGraphics.drawImage(image, (int) x, (int) y, null);
myGraphics.rotate(Math.toRadians(heading), x, y);

}

// draw spot using gif, left corner on (x, y), scaled of size w-by-h
public void spot(String s, double w, double h) {

Picture spotPicture = new Picture(s);
Image image = spotPicture.getImage();

myGraphics.rotate(Math.toRadians(heading), x, y);
myGraphics.drawImage(image, (int) x, (int) y,

(int) w, (int) h, null);
myGraphics.rotate(Math.toRadians(heading), x, y);

}

public void pixel(int x, int y) {
myGraphics.drawRect(x, y, 1, 1);

}

// rotate counterclockwise in degrees
public void turn(double angle) { heading = (heading + angle) % 360; }

// walk forward

436 APPENDIX B. WHOLE CLASS LISTINGS

public void forward(double d) {
double oldx = x;
double oldy = y;
x += d * -Math.cos(Math.toRadians(heading));
y += d * Math.sin(Math.toRadians(heading));
if (penDown)
myGraphics.draw(new Line2D.Double(x, y, oldx, oldy));

}

// write the given string in the current font
public void write(String s) {

FontMetrics metrics = myGraphics.getFontMetrics();
int w = metrics.stringWidth(s);
int h = metrics.getHeight();
myGraphics.drawString(s, (float) (x - w/2.0), (float) (y + h/2.0));

}

// write the given string in the given font
public void write(String s, Font f) {

myGraphics.setFont(f);
write(s);

}

}

Program
Example #140 Example Java Code: WolfDeerSimulation.java

import java . io . ∗ ; // For BufferedWriter
2

public class WolfDeerSimulation {
4

/∗ Linked l i s t s for tracking wolves and deer ∗/
6 private AgentNode wolves ;

private AgentNode deer ;
8

/∗∗ Accessors for wolves and deer ∗/
10 public AgentNode getWolves () { return wolves ;}

public AgentNode getDeer () { return deer ;}
12

/∗ A BufferedWriter for writing to ∗/
14 public BufferedWriter output ;

437

16 /∗∗
∗ Constructor to s e t output to null

18 ∗∗/
public WolfDeerSimulation () {

20 output = null ;
}

22

/∗∗
24 ∗ Open the input f i l e and s e t the BufferedWriter to speak to i t .

∗∗/
26 public void openFile (String filename){

// Try to open the f i l e
28 try {

30 // create a writer
output = new BufferedWriter (new FileWriter (filename)) ;

32

} catch (Exception ex) {
34 System . out . pr int ln (” Trouble opening the f i l e ” + filename) ;

// I f any problem , make i t null again
36 output = null ;

}
38

}
40

public void run ()
42 {

World w = new World () ;
44 w. setAutoRepaint (false) ;

46 // Start the l i s t s
wolves = new AgentNode () ;

48 deer = new AgentNode () ;

50 // create some deer
int numDeer = 20;

52 for (int i = 0 ; i < numDeer ; i ++)
{

54 deer . add (new AgentNode (new Deer (w, this))) ;
}

56

// create some wolves
58 int numWolves = 5;

for (int i = 0 ; i < numWolves ; i ++)
60 {

wolves . add (new AgentNode (new HungryWolf (w, this))) ;
62 }

64 // declare a wolf and deer
Wolf currentWolf = null ;

438 APPENDIX B. WHOLE CLASS LISTINGS

66 Deer currentDeer = null ;
AgentNode currentNode = null ;

68

// loop for a s e t number of t imesteps (50 here)
70 for (int t = 0 ; t < 50; t ++)

{
72 // loop through a l l the wolves

currentNode = (AgentNode) wolves . getNext () ;
74 while (currentNode != null)

{
76 currentWolf = (Wolf) currentNode . getAgent () ;

currentWolf . act () ;
78 currentNode = (AgentNode) currentNode . getNext () ;

}
80

// loop through a l l the deer
82 currentNode = (AgentNode) deer . getNext () ;

while (currentNode != null)
84 {

currentDeer = (Deer) currentNode . getAgent () ;
86 currentDeer . act () ;

currentNode = (AgentNode) currentNode . getNext () ;
88 }

90 // repaint the world to show the movement
w. repaint () ;

92

// Let ’ s f igure out where we stand . . .
94 System . out . pr int ln (”>>> Timestep : ”+t) ;

System . out . pr int ln (” Wolves l e f t : ”+wolves . getNext () . count ()) ;
96 System . out . pr int ln (” Deer l e f t : ”+deer . getNext () . count ()) ;

98 // I f we have an open f i l e , write the counts to i t
i f (output != null) {

100 // Try i t
try{

102 output . write (wolves . getNext () . count ()+ ” \ t ”+deer . getNext () . count ()) ;
output . newLine () ;

104 } catch (Exception ex) {
System . out . pr int ln (” Couldn ’ t write the data ! ”) ;

106 System . out . pr int ln (ex . getMessage ()) ;
// Make output null so that we don ’ t keep trying

108 output = null ;
}

110 }

112 // Wait for one second
//Thread . s l eep (1000) ;

114 }

439

116 // I f we have an open f i l e , c l o s e i t and null the variable
i f (output != null){

118 try{
output . c l ose () ; }

120 catch (Exception ex)
{System . out . pr int ln (” Something went wrong c los ing the f i l e ”) ; }

122 finally {
// No matter what , mark the f i l e as not−there

124 output = null ;}
}

126 }
}

Program
Example #141Example Java Code: Wolf.java

1 import java . awt . Color ; import java . u t i l .Random; import
java . u t i l . I terator ;

3

/∗∗
5 ∗ Class that represents a wolf . The wolf c lass

∗ tracks a l l the l i v ing wolves with a linked l i s t .
7 ∗

∗ @author Barb Ericson ericson@cc . gatech . edu
9 ∗/

public class Wolf extends Turtle {
11

/////////////// f i e l d s //////////////////////
13

/∗∗ c lass constant for the co lor ∗/
15 private static final Color grey = new Color (153 ,153 ,153) ;

17 /∗∗ c lass constant for probabi l i t y o f NOT turning ∗/
protected static final double PROB OF STAY = 1/10 ;

19

/∗∗ c lass constant for top speed (max num steps can move in a timestep) ∗/
21 protected static final int maxSpeed = 40;

23 /∗∗ c lass constant for how far wolf can smell ∗/
private static final double SMELL RANGE = 50;

25

/∗∗ c lass constant for how c lo s e be fore wolf can attack ∗/
27 private static final double ATTACK RANGE = 30;

29 /∗∗ My simulation ∗/
protected WolfDeerSimulation mySim;

440 APPENDIX B. WHOLE CLASS LISTINGS

31

/∗∗ random number generator ∗/
33 protected static Random randNumGen = new Random () ;

35 ////////////////////////////// Constructors ////////////////////////

37 /∗∗
∗ Constructor that takes the model display (the or ig inal

39 ∗ pos i t ion wi l l be randomly assigned)
∗ @param modelDisplayer thing that displays the model

41 ∗ @param thisSim my simulation
∗/

43 public Wolf (ModelDisplay modelDisplayer , WolfDeerSimulation thisSim)
{

45 super (randNumGen. nextInt (modelDisplayer . getWidth ()) ,
randNumGen. nextInt (modelDisplayer . getHeight ()) ,

47 modelDisplayer) ;
i n i t (thisSim) ;

49 }

51 /∗∗ Constructor that takes the x and y and a model
∗ display to draw i t on

53 ∗ @param x the s tar t ing x pos i t ion
∗ @param y the s tar t ing y pos i t ion

55 ∗ @param modelDisplayer the thing that displays the model
∗ @param thisSim my simulation

57 ∗/
public Wolf (int x , int y , ModelDisplay modelDisplayer ,

59 WolfDeerSimulation thisSim)
{

61 // l e t the parent constructor handle i t
super (x , y , modelDisplayer) ;

63 i n i t (thisSim) ;
}

65

////////////////// methods //
67

69 /∗∗
∗ Method to i n i t i a l i z e the new wolf o b j e c t

71 ∗/
public void i n i t (WolfDeerSimulation thisSim)

73 {
// s e t the co lor o f th i s wolf

75 setColor (grey) ;

77 // turn some random direc t i on
this . turn (randNumGen. nextInt (3 6 0)) ;

79

// s e t my simulation

441

81 mySim = thisSim ;
}

83

/∗∗
85 ∗ Method to get the c l o s e s t deer within the passed distance

∗ to th i s wolf . We ’ l l search the input l i s t o f the kind
87 ∗ of o b j e c t s to compare to .

∗ @param distance the distance to look within
89 ∗ @param l i s t the l i s t o f agents to look at

∗ @return the c l o s e s t agent in the given distance or null
91 ∗/

public AgentNode getClosest (double distance , AgentNode l i s t)
93 {

// get the head of the deer linked l i s t
95 AgentNode head = l i s t ;

AgentNode curr = head ;
97 AgentNode c l o s e s t = null ;

Deer thisDeer ;
99 double c losestDistance = 999;

double currDistance = 0;
101

103 // loop through the linked l i s t looking for the c l o s e s t deer
while (curr != null)

105 {
thisDeer = (Deer) curr . getAgent () ;

107 currDistance = thisDeer . getDistance (this . getXPos () , this . getYPos ()) ;
i f (currDistance < distance)

109 {
i f (c l o s e s t == null | | currDistance < c losestDistance)

111 {
c l o s e s t = curr ;

113 c losestDistance = currDistance ;
}

115 }
curr = (AgentNode) curr . getNext () ;

117 }
return c l o s e s t ;

119 }

121 /∗∗
∗ Method to act during a time step

123 ∗ pick a random direc t i on and move some random amount up to top speed
∗/

125 public void act ()
{

127

// get the c l o s e s t deer within some s p e c i f i e d distance
129 AgentNode closeDeer = getClosest (30 ,

(AgentNode) mySim. getDeer () . getNext ()) ;

442 APPENDIX B. WHOLE CLASS LISTINGS

131

i f (closeDeer != null)
133 {

Deer thisDeer = (Deer) closeDeer . getAgent () ;
135 this . moveTo (thisDeer . getXPos () ,

thisDeer . getYPos ()) ;
137 thisDeer . die () ;

}
139

else
141 {

143 // i f the random number i s > prob of NOT turning then turn
i f (randNumGen. nextFloat () > PROB OF STAY)

145 {
this . turn (randNumGen. nextInt (3 6 0)) ;

147 }

149 // go forward some random amount
forward (randNumGen. nextInt (maxSpeed)) ;

151 }
}

153

}

Program
Example #142 Example Java Code: Deer.java

import java . awt . Color ; import java . u t i l .Random;
2

/∗∗
4 ∗ Class that represents a deer . The deer c lass

∗ tracks a l l l i v ing deer with a linked l i s t .
6 ∗

∗ @author Barb Ericson ericson@cc . gatech . edu
8 ∗/

public class Deer extends Turtle {
10

/////////////// f i e l d s //////////////////////
12

/∗∗ c lass constant for the co lor ∗/
14 private static final Color brown = new Color (116 ,64 ,35) ;

16 /∗∗ c lass constant for probabi l i ty o f NOT turning ∗/
private static final double PROB OF STAY = 1 / 5 ;

18

443

/∗∗ c lass constant for how far deer can smell ∗/
20 private static final double SMELL RANGE = 50;

22 /∗∗ c lass constant for top speed (max num steps can move in a timestep) ∗/
private static final int maxSpeed = 30;

24

/∗∗ random number generator ∗/
26 private static Random randNumGen = new Random () ;

28 /∗∗ the simulation I ’m in ∗/
private WolfDeerSimulation mySim;

30

////////////////////////////// Constructors ////////////////////////
32

/∗∗
34 ∗ Constructor that takes the model display (the or ig inal

∗ pos i t ion wi l l be randomally assigned
36 ∗ @param modelDisplayer thing which wi l l display the model

∗/
38 public Deer (ModelDisplay modelDisplayer , WolfDeerSimulation thisSim)

{
40 super (randNumGen. nextInt (modelDisplayer . getWidth ()) ,

randNumGen. nextInt (modelDisplayer . getHeight ()) ,
42 modelDisplayer) ;

i n i t (thisSim) ;
44 }

46 /∗∗ Constructor that takes the x and y and a model
∗ display to draw i t on

48 ∗ @param x the s tar t ing x pos i t ion
∗ @param y the s tar t ing y pos i t ion

50 ∗ @param modelDisplayer the thing that displays the model
∗/

52 public Deer (int x , int y , ModelDisplay modelDisplayer ,
WolfDeerSimulation thisSim)

54 {
// l e t the parent constructor handle i t

56 super (x , y , modelDisplayer) ;
i n i t (thisSim) ;

58 }

60 ////////////////// methods //

62 /∗∗
∗ Method to i n i t i a l i z e the new deer o b j e c t

64 ∗/
public void i n i t (WolfDeerSimulation thisSim)

66 {
// s e t the co lor o f th i s deer

68 setColor (brown) ;

444 APPENDIX B. WHOLE CLASS LISTINGS

70 // turn some random direc t i on
this . turn (randNumGen. nextInt (3 6 0)) ;

72

// know my simulation
74 mySim = thisSim ;

76 }

78 /∗∗
∗ Method to get the c l o s e s t wolf within the passed distance

80 ∗ to th i s deer . We ’ l l search the input l i s t o f the kind
∗ of o b j e c t s to compare to .

82 ∗ @param distance the distance to look within
∗ @param l i s t the l i s t o f agents to look at

84 ∗ @return the c l o s e s t agent in the given distance or null
∗/

86 public AgentNode getClosest (double distance , AgentNode l i s t)
{

88 // get the head of the deer linked l i s t
AgentNode head = l i s t ;

90 AgentNode curr = head ;
AgentNode c l o s e s t = null ;

92 Wolf thisWolf ;
double c losestDistance = 999;

94 double currDistance = 0;

96

// loop through the linked l i s t looking for the c l o s e s t deer
98 while (curr != null)

{
100 thisWolf = (Wolf) curr . getAgent () ;

currDistance = thisWolf . getDistance (this . getXPos () , this . getYPos ()) ;
102 i f (currDistance < distance)

{
104 i f (c l o s e s t == null | | currDistance < c losestDistance)

{
106 c l o s e s t = curr ;

c losestDistance = currDistance ;
108 }

}
110 curr = (AgentNode) curr . getNext () ;

}
112 return c l o s e s t ;

}
114

/∗∗
116 ∗ Method to act during a time step

∗ pick a random direc t i on and move some random amount up to top speed
118 ∗/

445

public void act ()
120 {

i f (randNumGen. nextFloat () > PROB OF STAY)
122 {

this . turn (randNumGen. nextInt (3 6 0)) ;
124 }

126 // go forward some random amount
forward (randNumGen. nextInt (maxSpeed)) ;

128

}
130

132 /∗∗
∗ Method that handles when a deer dies

134 ∗/
public void die ()

136 {
// Leave a mark on the world where I died . . .

138 this . setBodyColor (Color . red) ;

140 // Remove me from the ” l i v e ” l i s t
mySim. getDeer () . remove (this) ;

142

// ask the model display to remove th i s
144 // Think of th i s as ” ask the viewable world to remove th i s t u r t l e ”

//getModelDisplay () . remove (th i s) ;
146

System . out . pr int ln (”<SIGH!> A deer died . . . ”) ;
148 }

150

}

Program
Example #143Example Java Code: AgentNode

1 /∗∗
∗ Class to implement a linked l i s t o f Turtle−l i k e characters .

3 ∗ (Maybe ” agents ” ?)
∗∗/

5 public class AgentNode extends LLNode {
/∗∗

7 ∗ The Turtle being held
∗∗/

9 private Turtle myTurtle ;

446 APPENDIX B. WHOLE CLASS LISTINGS

11 /∗∗ Two constructors : One for creat ing the head of the l i s t
∗ , with no agent

13 ∗∗/
public AgentNode () {super () ; }

15

/∗∗
17 ∗ One constructor for creat ing a node with an agent

∗∗/
19 public AgentNode (Turtle agent){

super () ;
21 this . setAgent (agent) ;

}
23

/∗∗
25 ∗ Make a printable form

∗∗/
27 public String toString () {

return ”AgentNode with agent (”+myTurtle+”) and next : ”+
29 (AgentNode) getNext () ;

}
31

/∗∗
33 ∗ Set t er for the t u r t l e

∗∗/
35 public void setAgent (Turtle agent){

myTurtle = agent ;
37 }

39 /∗∗
∗ Getter for the t u r t l e

41 ∗∗/
public Turtle getAgent () { return myTurtle ;}

43

/∗∗
45 ∗ Remove the node where th i s t u r t l e i s found .

∗∗/
47 public void remove (Turtle myTurtle) {

// Assume we ’ re ca l l ing on the head
49 AgentNode head = this ;

AgentNode current = (AgentNode) this . getNext () ;
51

while (current != null) {
53 i f (current . getAgent () == myTurtle)

{// I f found the tur t l e , remove that node
55 head . remove (current) ;

}
57

current = (AgentNode) current . getNext () ;
59 }

447

}
61 }

Program
Example #144Example Java Code: HungryWolf

1 /∗∗
∗ A class that extends the Wolf to have a Hunger l e v e l .

3 ∗ Wolves only eat when they ’ re hungry
∗∗/

5 public class HungryWolf extends Wolf {
/∗∗

7 ∗ Number of c y c l e s be fore I ’ l l eat again
∗∗/

9 private int s a t i s f i e d ;

11 /∗∗ c lass constant for number of turns be fore hungry ∗/
private static final int MAX SATISFIED = 3;

13

////////////////////////////// Constructors ////////////////////////
15

/∗∗
17 ∗ Constructor that takes the model display (the or ig inal

∗ pos i t ion wi l l be randomly assigned)
19 ∗ @param modelDisplayer thing that displays the model

∗ @param thisSim my simulation
21 ∗/

public HungryWolf (ModelDisplay modelDisplayer , WolfDeerSimulation thisSim)
23 {

super (modelDisplayer , thisSim) ;
25 }

27 /∗∗ Constructor that takes the x and y and a model
∗ display to draw i t on

29 ∗ @param x the s tar t ing x pos i t ion
∗ @param y the s tar t ing y pos i t ion

31 ∗ @param modelDisplayer the thing that displays the model
∗ @param thisSim my simulation

33 ∗/
public HungryWolf (int x , int y , ModelDisplay modelDisplayer ,

35 WolfDeerSimulation thisSim)
{

37 // l e t the parent constructor handle i t
super (x , y , modelDisplayer , thisSim) ;

39 }

448 APPENDIX B. WHOLE CLASS LISTINGS

41 /∗∗
∗ Method to i n i t i a l i z e the hungry wolf o b j e c t

43 ∗/
public void i n i t (WolfDeerSimulation thisSim)

45 {
super . i n i t (thisSim) ;

47

s a t i s f i e d = MAX SATISFIED;
49 }

51 /∗∗
∗ Method to act during a time step

53 ∗ pick a random direc t i on and move some random amount up to top speed
∗/

55 public void act ()
{

57 // Decrease s a t i s f i e d time , unt i l hungry again
sa t i s f i ed −−;

59

// get the c l o s e s t deer within some s p e c i f i e d distance
61 AgentNode closeDeer = getClosest (30 ,

(AgentNode) mySim. getDeer () . getNext ()) ;
63

i f (closeDeer != null)
65 { // Even i f deer c lose , only eat i t i f you ’ re hungry .

i f (s a t i s f i e d <= 0)
67 {Deer thisDeer = (Deer) closeDeer . getAgent () ;

this . moveTo (thisDeer . getXPos () ,
69 thisDeer . getYPos ()) ;

thisDeer . die () ;
71 s a t i s f i e d = MAX SATISFIED;

73 }}

75 else
{

77

// i f the random number i s > prob of NOT turning then turn
79 i f (randNumGen. nextFloat () > PROB OF STAY)

{
81 this . turn (randNumGen. nextInt (3 6 0)) ;

}
83

// go forward some random amount
85 forward (randNumGen. nextInt (maxSpeed)) ;

87 }
}

89

}

449

Bibliography

[Goldberg and Robson, 1989] Goldberg, A. and Robson, D. (1989).
Smalltalk-80: The Language and Its Implementation. Addison-Wesley.

[Resnick, 1997] Resnick, M. (1997). Turtles, Termites, and Traffic Jams:
Explorations in Massively Parallel Microworlds. MIT Press, Cambridge,
MA.

451

Index

*/, 38
++, 47, 91
–, 47, 91
/*, 38

abstract, 168
abstract class, 168
Abstract Data Type, 183

defined, 183
abstract methods, 168
abstract superclass, 149
Abstract Window Toolkit, 310
abstraction, 10, 218
accessor, 26
act(), 351
ActionEvent, 329, 332
ActionListener, 329, 332

use, 330
actionPerformed, 332
acyclic, 303
adapter, 329
addActionListener, 332
addChild, 226
addFirst, 197
addFirst(), 292
addFocusListener, 330
addFrame(aPicture), 79
addLast(), 292
addNote(), 43
AdjustmentEvent, 329
AdjustmentListener, 329
ADT, 183

binary tree, 284
Agent, 380

methods, 381

AgentNode, 352
agents, 69, 349, 380
aggregation, 353, 378
allWolves, 384
AmazingGraceSong, 104
AmazingGraceSongElement, 108
and, 21, 47
and (logical), 47
animations

how they work, 78
anonymous inner classes, 329
API, 56, 381
Application Program Interface, 56
array, 85

uses and characteristics, 277
ArrayIndexOutOfBoundException,

23
ArrayList, 377
association relationship, 353
associative array, 376

backtrack, 305
balanced, 286, 289
BBN Labs, 69
behavior, 9
big-Oh, 93
binary search, 278
binary search tree, 283, 286
binary tree, 283
binary trees, 415
block, 21, 48
blockingPlay, 83
bluescreen(), 63
BlueScreenNode, 205, 209
Bobrow, Danny, 69

453

454 INDEX

Boolean, 72
boolean, 392
BorderLayout, 311, 317

constants, 318
directions, 318
when to use, 322

BoxLayout, 320
when to use, 322

Branch, 205, 209
branch nodes, 206
break, 22
BufferedReader, 370
Button, 310
buttons, 309
bytes, 85

Call and response, 106
calls, 53
Canvas, 310
cascade, 62
cast, 54, 91, 194
casting, 35, 270, 359
cell animation, 295
chaining, 370
chi-square test, 398
child class, 25
children nodes, 206
Choice, 310
Chromakey, 63
chromakey(), 63
circular linked list, 295, 297
class, 20, 35, 49

abstract, 168
class diagram, 354
class hierarchy, 279
class method, 35
CLASSPATH, 216
classpath, 15
collaboration diagram, 354
collect(), 238, 253
CollectableNode, 251
Collection Classes, 377
color chooser, 326
comment, 42
compareTo(), 286
compiled, 20

compression, 85
connections, 11
constant, 360
constructor, 27, 46, 86, 91, 98
content pane, 311
continuous simulations, 349
coordinated resource, 349
costs, 304
crawls, 280
curly braces, 21
cutting in line, 194
cycles, 303

data structure
properties, 11

data structures, 8, 9
declare, 20
declaring, 20
DeerAgent, 384
delegate, 81
delegation, 81
depth, 224

definition, 224
design pattern, 293
dialog, 323

color chooser, 326
defined, 323
file chooser, 326
implementing, 323

dictionary, 376
die, 364
die(), 351
directed, 303
discourse rules, 28, 46
discrete event simulations, 349,

415
disease propagation, 379
DiseaseSimulation, 392
dot notation, 35
double, 21, 55
doubly-linked lists, 161
DrawableNode, 207

implementation, 219
drawOn, 207
drawWith, 169, 207
DrJava, 15

455

drop, 75
drop-down menu, 325
dynamic data structures, 277

Ebola virus, 399
edge

costs, 304
edges, 11, 303
Ellis Island, 407
else, 48
empty(), 183, 195
enumeration, 396
equals, 244
equation

as tree, 279
equivalent, 244
event, 328

listener, 328
event loop, 352
event queue, 349
Exception, 370
exceptions, 370
expert musicians, 108
explore, 62
extends, 29, 56

factor, 257, 265
false, 72
Feurzeig, Wally, 69
field, 49, 54
fields, 25, 46, 49, 354
FIFO list, 194, 350
file chooser, 326
file paths, 35
FileChooser, 35

getMediaPath, 35
pickAFile, 35
setMediaPath, 35

FileChooser.getMediaPath, 62
FileChooser.getMediapath, 35
FileChooser.setMediaPath, 35, 62
FileNotFoundException, 370
FileReader, 370
final, 28, 360
finally, 371
find(), 288

First In First Out list, 194
flag, 396
FlowLayout, 315, 317

defined, 317
when to use, 322

FocusEvent, 330
focusGained, 330
focusLost, 330
for, 22, 49
forward, 70, 71
Founding Fathers, 408
Frame, 310
frames, 78, 164
FrameSequence, 78

for simulations, 380
methods, 79

functions, 20

gen-spec, 173, 355
generalization, 353
generalization-specialization, 353,

378
generalization-specialization rela-

tionship, 173
generalized simulation, 380
getDistance(x,y), 74
getFirst, 188
getID(), 31
getMediaPath, 35, 62
getMessage(), 371
getSamples(), 86
getSampleValueAt, 88
getter, 26
getValue(), 87
glue areas, 320
Goldberg, Adele, 348
graph, 11, 303

acyclic, 303
costs, 304
cycles, 303
directed, 303
edges, 303
spanning tree, 304
traversal, 304
undirected, 303
vertices, 303

456 INDEX

graphical user interface (GUI), 309
graphing simulation results, 397
graphs, 295
greedy algorithm, 304
GridBag, 320
GUI, 309
GUItree, 313, 330

has-a, 353
HashMap, 377
hashtables, 376
HBranch, 206, 209

defined, 227
head, 194
head-rest, 358
head-tail, 358
hierarchy, 10
HTML page

parsing, 279
Hunchback of Notre Dame, The,

7
HungryWolf, 367

IDE, 15, 46
implement, 293, 329
implementation inheritance, 355
implements, 185
import, 42, 97
in-order traversal, 262, 280
increaseRed, 37
index variable, 51
information hiding, 56
inherited, 168
inherits, 56
inorder traversal, 290
insertAfter, 139

missing from Java LinkedList,
382

instance variable, 49, 54
instance variables, 25, 49
instances, 35, 42, 120
instrument, 98, 100
Integer

toString, 386
Integrated Development Environ-

ment, 15

Interface, 185
interface, 293, 329, 348, 361

defined, 329
ModelDisplay, 389

invokes, 53
ItemEvent, 329
ItemListener, 329

JApplet, 311
jar file, 15
Java, 8
java, 67, 216
Java 3-D, 204
Java compiler, 216
Java Development Kit, 15
Java programming style, 46
javac, 216
JavaDoc, 56

param, 160
Javadoc, 101, 135
Javanese, 73
javax.swing, 310
JButton, 310
JColorChooser, 326
JComboBox, 325
JDK, 15
JFileChooser, 326
JFrame, 310

content pane, 311
creating, 310
pack, 311
setVisible, 311

JInternalFrame, 323
JLabel, 327

creating, 311
JList, 325
JMC, 98
JMC.C4, 98
JMC.FLUTE, 100
JMC.QN, 98
JMusic, 15, 42

Javadoc, 101
Play, 83

JOptionPane, 323
JPanel, 310
JPasswordField, 327

457

JProgressBar, 325
JScrollPane, 323
JSlider, 325
JSplitPane, 310
JTabbedPane, 323
JTable, 310
JTextArea, 327
JTextField, 327
JToolbar, 323
JTree, 310

Kay, Alan, 19, 70, 348
kind-of, 25
kind-of relationships, 353
Knight Bus, 167

Label, 310
LayeredSceneElement, 159
layering, 149, 156
layout manager, 314

BoxLayout, 320
FlowLayout, 315
GridBag, 320
setLayout, 315

layout managers, 283, 309
leaf nodes, 206
left, 283
length, 54
LIFO list, 182
linked list, 10, 116, 150

images, 150
music, 108
traversal, 116, 162
uses and characteristics, 277

linked list of lists, 247
linked lists, 97, 149
LinkedList, 188, 196, 197

API, 381
in simulations, 380

Lion King, The, 7
List, 310
list, 14, 133, 150

LIFO, 182
reversing, 193

listener, 328
ActionListener, 329

lists, 309
literal, 21
LLNode, 265
Logo, 70

machine language, 20
main, 67, 144
main(), 31
Math.random(), 74, 104, 131, 361
mathematical biology, 398
matrix, 10, 51
memory, 12
memory model, 12
method, 37

abstract, 168
method signature, 55
methods, 20, 25, 45, 49
Microsoft Excel, 397
MIDI, 42

drum kit, 146
playing, 83

MIDI channels, 100
MIDI Drum Kit, 146
MIDI music, 85
MIDI note, 98
MIDI program, 98
minimal spanning tree, 304
MIT, 69
model, 19, 108, 350

ordering, 108
ModelDisplay, 389
modeled, 7
modelling, 350, 353
MouseEvent, 329
MouseListener, 329
MouseMotionListener, 329
MoveBranch, 206, 209
movies

how they work, 78
Mufasa, 7
Musical Information Data Inter-

change, 42
myPict, 223

picture in SceneGraphs, 223
mySim, 355
MySong, 144

458 INDEX

MyTurtleAnimation, 80

Nasty Bad Dude, 409
new, 21
new Picture(), 36
nextFloat(), 364
node, 133
nodes, 11
normal distribution, 361
NormalizeBranch, 263
notate(), 43
Note, 98
null, 27, 35, 53
number

converting to string, 386

O(), 93
Object, 189, 366
object, 19
object model, 352
object modelling, 353
object-oriented analysis, 353
object-oriented design, 173
object-oriented programming, 19
openFile(), 372
option pane, 323
or, 21, 47
or (logical), 47
ordered list, 415
ordering, 108
organization chart, 279
orgchart, 279
OutOfBoundsException, 54
overriding

extending simulation classes,
376

pack, 311
package, 51
Panel, 310
panels, 283
panes, 309
Papert, Seymour, 69
parent class, 25
parent node, 206
Part, 108, 132, 145

password
input, 327

PATH, 216
pausing, 359
peek(), 183, 195
penDown(), 72
penUp(), 72
persistence of vision, 78
Person, 24, 353
PersonAgent, 392
Phrase, 43, 98, 100, 108, 145
pickAFile(), 35
PictNode, 205, 209
Picture, 20

creating blank, 61, 62
picture element, 51
PictureStack, 184

definition, 185
pig Latin, 70
pile, 164
Pixar, 194
Pixel, 37
pixel, 51
Pixels [], 37
Play, 83
play(), 86
playFromMeOn(), 253
political influence, 379
PoliticalAgent, 399
PoliticalSimulation, 399
politics, 402
pop(), 183, 195
PositionedSceneElement, 153, 159
post-order traversal, 291
Potter, Harry, 167
PowerPoint, 162
pre-order traversal, 291
predator and prey, 350
previous, 161
print, 22
println, 108
printStackTrace(), 371
private, 25, 38
progress bar, 325
Prolog, 282
properties, 11

459

property, 164
protected, 51, 360

example of use, 360
PSVM, 31
public, 38, 51
public static void main, 31, 67
push(anObject), 183, 195

queue, 194, 350
defined, 194
implemented as a linked list,

196
implementing as an array, 197

Random, 361
random, 415
random number, 74
random values, 361
random(), 131
rarefaction, 85
recursion, 233, 236, 245
recursive traversal, 236, 237
recursive tree traversal, 258
refactoring, 132, 268
reference, 82
reference relationship, 353
references, 15
removeLast, 197
render, 164
renderAnimation, 210
rendering, 162
repeatNext, 139, 241
repeatNextInserting, 139
replace, 244
replay(delay), 79
representation problem, 8
reset, 302
Resnick, Mitchel, 70
resource, 349

coordinated, 349
responsibility, 203, 262
responsibility-driven design, 19,

262
duplicated code, 262

return, 62
reverse Polish notation, 291

reverse(), 87
ReverseBranch, 263
RhythmTool, 333
right, 283
rigid areas, 320
Robson, David, 348
root, 206
rotate, 204
RPN, 291
rsource

fixed, 349
run(), 352, 357
Running of the Bulls in Pamplona,

410
runtime, 271

Sample, 20
sampled sounds, 85
samples, 85
satisfied, 367
scale, 61
ScaleBranch, 247, 251
scene graph, 179, 204, 279
SceneElement, 168
SceneElementLayered, 168
SceneElementPositioned, 168
sceneRoot, 210
scenes, 149
scope, 36
Score, 100, 108, 145
self, 37
sentence diagrams, 281
sequence, 108
sequence diagram, 354
setBounds(topLeftX,topLeftY,width,height),

317
setID(), 31
setLayout(), 315
setMediaPath, 35, 62
setPenDown(false), 72
setPenUp(true), 72
setSampleValueAt, 88
setter, 26
setUp, 210

WolfAttackMovie, 210
show, 52

460 INDEX

FrameSequence, 79
Picture, 20

show(), 20, 36, 79
showFromMeOn, 116
SimplePicture, 56
Simula, 19, 348
Simulation, 380

generalized, 380
methods, 381

simulation, 7
event queue, 349
resources, 349

simulation package, 379
simulations, 348

analyzing results, 397
continuous, 349
defined, 348
discrete event, 349

singly-linked list, 161
size(), 183, 195
sleeping, 359
slider, 325
Smalltalk, 19, 70, 348
Song, 146
SongElement, 121, 132
SongNode, 133
SongPart, 141
SongPhrase, 121, 141
sort, 415
Sound, 20, 86, 91

blockingPlay, 83
getSamples, 86

sound
increasing volume, 86
playing, 86

SoundBranch, 251
SoundElement, 233
SoundNode, 249, 251
SoundSample, 86

getting and setting, 88
getValue, 87

SoundTreeExample, 248
spanning tree, 304
specialization, 353
square brackets, 23
Stack, 164, 187

stack, 164, 181, 261, 291, 305
defined, 181
implemented as a linked list,

188
implemented with array, 190
in RPN, 291
reversing a list, 193
trace, 261

stack trace, 261
Stack2, 189
StarLogo, 70
state diagram, 354
static, 35, 120
statistics, 398

chi-square test, 398
statitics

t-test, 398
stream, 108, 369
String, 26, 27

comparing, 286
string, 23

compared to arrays, 23
comparing, 244
substring, 23

string concatenation, 29, 108
structure, 9
Student, 24, 29, 353
StudentNode, 275
subclass, 25, 56, 168

extending simulation classes,
376

subclass-superclass relationship,
353

substring, 23
substrings, 23
super, 31
superclass, 25, 168

abstract, 149
Swing, 309, 310

BorderLayout, 317
BoxLayout, 320
events, 328
FlowLayout, 315
GridBag, 320
JButton, 310
JColorChooser, 326

461

JComboBox, 325
JFrame, 310
JInternalFrame, 323
JLabel, 311
JList, 325
JOptionPane, 323
JPanel, 310
JPasswordField, 327
JProgressBar, 325
JScrollPane, 323
JSlider, 325
JSplitPane, 310
JTabbedPane, 323
JTable, 310
JTextArea, 327
JTextField, 327
JToolbar, 323
listener, 329

System.err, 370
System.in, 370
System.out, 370
System.out.println, 22, 29, 32
System.out.println(), 108

t-test, 398
tabbed pane, 323
table, 10
tail, 194
text area, 327
text field, 327
TextArea, 310
TextEvent, 329
TextField, 310
TextListener, 329
The Hunchback of Notre Dame, 7
The Incredibles, 194
The Lion King, 7
this, 26, 37, 53
Thread.sleep(), 359
threshold, 63
throw, 187
time loop, 352
time order, 415
time step, 351
timestep, 351
toolbar, 323

toolkit, 309
toString, 29, 224
Toy Story, 7
translations, 204
traversal

in-order, 262
recursive, 236
scene graph, 230

traversals, 230
traverses, 162
traversing, 237
tree, 10, 133, 141, 179

balanced, 289
equation, 279
recursive traversal, 258
searching, 288
traversal, 258
traversals, 230
uses and characteristics, 277

TreeNode, 284
true, 72
try-catch, 370
turn, 70, 71
turnToFace(anotherTurtle), 74
Turtle, 70, 350
turtle, 69, 70
turtle steps, 71
type, 34
types, 20
Typhoid Mary, 411

UML, 354
unbalanced, 289
undirected, 303
unification, 282
Unified Modelling Language, 354
uniform distribution, 361
user interface

as tree, 283
user interface events, 328

VBranch, 206, 209
defined, 227

vertices, 303
View, 43
Visio, 162

462 INDEX

visited, 302
Visitor, 293
void, 26, 38, 53
VolumeChangeBranch, 263

walkBackwards, 308
WalkingDoll, 298
walkToLeft, 308
WAV files, 85
WDSimulation, 383

lineForFile, 386
setUp, 385

weave, 241
web crawler, 280
well-formed, 286
while, 22, 48
wildebeests, 7
WindowEvent, 329
WindowListener, 329
WolfAgent, 384
WolfAttackMovie, 210
WolfDeerSimulation, 350–352
World, 70, 357

in simulations, 381
write(), 370

x++, 47

