
Experience Report:
CS1 for Majors with Media Computation

Beth Simon, Päivi Kinnunen, Leo Porter
Computer Science and Engr. Dept
University of California, San Diego

La Jolla, CA 92093-0404
+01 858 534 5419

{bsimon, pkinnunen, leporter}@cs.ucsd.edu

Dov Zazkis
Math and Science Education
San Diego State University/

University of California, San Diego
San Diego, CA 92120

+01 619 594 4696

dzazkis@ucsd.edu

ABSTRACT
Previous reports of a media computation approach to teaching
programming have either focused on pre-CS1 courses or courses
for non-majors. We report the adoption of a media computation
context in a majors’ CS1 course at a large, selective R1 institution
in the U.S. The main goal was to increase retention of majors, but
do so by replacing the traditional CS1 course directly (fully
preparing students for the subsequent course). In this paper we
provide an experience report for instructors interested in this
approach. We compare a traditional CS1 with a media
computation CS1 in terms of desired student competencies
(analyzed via programming assignments and exams) and find the
media computation approach to focus more on problem solving
and less on language issues. In comparing student success
(analyzed via pass rates and retention rates one year later) we find
pass rates to be statistically significantly higher with media
computation both for majors and for the class as a whole. We
give examples of media computation exam questions and
programming assignments and share student and instructor
experiences including advice for the new instructor.

Categories and Subject Descriptors
K.3.2 [Computer Science Education]: Introductory
Programming – abstract programming concepts

General Terms
Human Factors, Languages.

Keywords
CS1, Media computation, Retention.

1. INTRODUCTION
The use of a contextualized approach to CS1, through media
computation has been shown to increase student retention in
introductory programming courses [2,3,7,9]. The most common
approach follows a textbook (in python or Java) from Guzdial and
Ericson [4] and has been tracked at Georgia Tech since 2003 in an
introductory course for non-majors. To our knowledge, no study
has yet reported on the use of such an approach in the standard
first course for computing majors (CS1).

Given high attrition rates in CS1 courses (15-20%, locally), an
approach that improves retention rates would be valued. But
would retention come at a cost? Can it be done without sacrificing
desired concept or Java construct competencies? Would students
really learn “the same things” they did previously, or would it
require material to be pushed into a later course?

We report on the implementation of a media computation-based
CS1 course at a large, selective R1 institution in the U.S and its
impact on computing majors. We seek to provide information and
comparisons to help guide instructors interested in adopting media
computation for a majors’ course. We compare one year’s
courses in the traditional approach with one year’s courses using
media computation – all taught by the same instructor (not a
developer of the media computation approach).

We use post hoc analysis to consider whether students in the
media computation approach received the same experience with
standard programming concepts (for loops, if-statement, objects
etc.) and their implementation/use in Java. This is accomplished
through comparison of exam questions and programming
assignments. Additionally, we report the success of majors
though both course pass rates and retention in the major a year
later. We also report general course pass rates for comparison
with previous work. Finally, we discuss both positive and
challenging aspects of the media computation approach as
experienced by the instructor and the students.

2. RELATED WORK
Media computation as a context for introductory programming
was originally designed to serve non-CS majors with a variety of
interests and backgrounds. Its design addresses three aspects
found to be barriers to students’ success in computer science:
relevancy, creativity, and social aspect of learning. These issues
are regarded to be especially relevant for females [6] and non-CS
major students [9]. The digital media-based approach introduces
programming in a context for which students commonly (and
enjoyably) already find computers useful. Open-ended
assignments supported by on-line forums (to share end products)
provide a creative outlet and counteract the stereotypes of
computing as boring and asocial [9].

[2,3,7,8] have reported lower DWF (fail) rates in various media
computation courses compared to traditional CS1 courses.
However, all of these courses were either for non-majors or
designed as a pre-majors course (CS0.5). Additionally, [3,8,9]
report an increased interest among non-CS majors towards taking
additional media computation courses.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

This work adds to the existing related work by reporting on the
use of a media computation course designed as a CS1 for majors.
Also, beyond commonly reported retention rates, we analyze the
expected competencies of students in the course.

3. BACKGROUND
In this study we compare four 10-week courses all taught by the
same instructor at the same institution. Two courses (Fall 2006,
Winter 2007) were taught with a traditional objects-early
approach with a popular textbook in Java. The other two courses
(Winter 2009, Fall 2009) were taught using a media computation
approach supported by the Java version of the Guzdial and
Ericson textbook. A prototype media computation course was
taught in Fall 2008, but is not reported here since significant
development in the course has occurred since.

The motivation for switching the introductory course for majors
came primarily from concerns about retention in the major (on
average 32% of majors were leaving the major within a year). We
selected a media computation approach based on a literature
review of the research and experiences of others using non-
traditional approaches. We sought an improved approach that
both supported a comparable level of academic rigor and “similar
enough” concepts/content coverage in the Java programming
language (enabling students to go directly into the next course).

Courses ranged in size from 47-176 with an average of 83 for the
traditional course and 131.5 for the media computation course. In
general, the structure and workload of the class was kept the
same: weekly 50 minute supporting closed labs, 8-9 programming
assignments (done using pair programming), weekly quizzes, one
midterm, one final. Another gauge of the workload of the course
comes from students’ self-reported number of hours spent
studying outside of class: the traditional course had an average of
8.8 hours/week but the media computation course was lower with
6.4 hours/week. One notable difference between the courses was
that the media computation course was taught using Peer
Instruction in lectures, and the traditional course was not (though
it often engaged students in in-class mini-activities in the same
“style” as Peer Instruction). It is hard to assess how this
difference affected student learning. However, Peer Instruction
has been shown to increase learning in physics courses [1].

4. RESULTS
We report two key issues, which inform about the differences in
the traditional verses media computation approach: desired
competencies (measured via programming assignments and exam
questions) and student success (measured via course pass rate and
retention in the major one year later).

In the analysis of desired competencies we analyze data from one
term each year (Winter) for clarity. We report on the content and
knowledge required in the assigned work, e.g. in programming
assignments and final exams. Anecdotally, the differences
between terms in each year were minimal, but the programming
assignments varied in the traditional quarters (though they were
identical in the media computation quarters).

Table 1. Course Grade Comparison

 Traditional Media Computation

Winter Term
Course Grades

x̄ =79.9%
s.d. = 12.1

x̄ = 83.4%
s.d. = 14.0

Table 2. Comparison of concepts/constructs in programming
assignments. T is traditional approach, light gray is media

approach.

PA\Week 1 2 3 4 MT 6 7 8 9

If
statements

 T T T T T T

Loops

 T T T T T T

1-D
Arrays

 T

Nested
loops

 T

2-D
Arrays

 T

Object
Use

 T T T T

Class
Design

 T T T

We do not focus our analysis on course grades, because, in
practice, there are many factors which influence course grades.
Although the average grade in the media computation course
(Table 1) in Winter 2009 was statistically significantly (two-group
t-test, p=0.0203) higher than the traditional course in Winter 2007,
this difference (3.5%) is not very meaningful in practice.
However, the similarity of course grades implies similar student
performance on the programming assignments and exam
questions analyzed in the following section.

4.1 Desired Competencies: Programming
Assignments
Although one could use a detailed analysis of textbook content
and ordering to compare a traditional CS1 with a media
computation approach, it is easy to become overwhelmed by
details and minor constructs. We choose to instead analyze
programming assignments (assigned weekly) because of the
specific emphasis the instructor took each week to have the
programming assignment engage the students deeply with the key
concepts and constructs. By looking at the ordering and coverage
of key introductory concepts in Table 2, experienced instructors
can get a high level view of some of the key differences one can
expect in teaching a media computation based CS1.

The kinds of assignments one develops for a media computation
course are notably different than in a more traditional course. The
instructor attempted to make traditional assignments as interesting
and relevant as possible, e.g. asking students to add key
movement methods in a Tetris game, Caesar cipher, managing
contacts in a cell phone, and simulating Amoeba population
growth (given a graphical interface). However, creating such
assignments (and changing them a bit each term) was highly time-
consuming. Additionally, some standard, less interesting
assignments persisted including calculating vending machine
change, finding min/max/average, managing class grades, and
implementing an Odometer class.

In contrast, developing media computation assignments was
relatively easy (could be quickly “imagined” as variations,
augmentations, or similar Picture or Sound modifications to what

Table 3. Media Computation Programming Assignments

PA Assignment

1 Draw your first name (with Turtle object)

2 Draw 5 nested shapes (Turtle)

Create a Picture with every other pixel green or black

3 Modify a picture to reduce some percent of each color
component (based on parameters)

Modify the top, middle, and bottom third of a Picture based
on three different filters (two copied in from book, one of
your own design).

4 Create a simple collage with three copies of an image, all
with at least one filter applied (one of your own design)

Modify a picture to flip horizontally and vertically a
portion of the picture

MT Create a collage using at least three Pictures with each
having at least one filter applied (a smaller assignment
during midterm week but that let students be less
constrained than the previous collage)

5 3-way chromakey (replace background, replace shirt color)

6 Re-do picture flip (4) but error check for parameters that
cause out of bounds errors

Make a new Sound by concatenating two Sounds

7 Make a song (a collage of Sounds) using at least 4 methods
(reverse, changePitch, one of a set we provided, and one of
the student’s own design)

8 Design a class (not media computation based)

was in the book), and many had highly creative and individualized
results which allowed them to be used in multiple terms with little
fear of copying from one term to the next. The weeklong
assignments used in Winter are shown in Table 3 (some
assignments had two smaller problems). We intentionally created
challenging assignments that focused students on novel problem
solving and could not be solved by copying (or making a minor
modification to) code in the book. In hindsight, traditional
assignments seemed, by comparison, contrived and much less
focused on challenging problem solving than they were on getting
students to use a specific Java construct/concept or feature.

4.2 Desired Competencies: Exam Questions
In addition to student practice with concepts and constructs in
programming assignments, in the end, the final exam plays a
major role in determining whether the student has passed the
course, and “is ready” to take the subsequent course.

4.2.1 Comparison in Concept/Construct Coverage
Although it would be interesting to repeat specific exam questions
from the traditional courses’ exams in a media approach, it
becomes practically challenging (due to the specifics of each
approach). However, in Table 4 we compare two final exams
(Winter term of each year) for coverage (in terms of % of points)
of basic concepts/constructs. In doing so, we noted some
questions (on the traditional exam) covered no
concepts/constructs (7 questions accounting for 24% of points).
These questions often tested knowledge of language issues
(semantics, rules). We additionally report the percentage of

Table 4. Comparison of concepts/construct in examination
points/marks.

Concept/Construct Traditional Media Computation

If statements 39% 41%

Loops 32% 35%

1-D Arrays 31% 43%

Nested Loops 10% 56%

2-D Arrays 6% 40%

Object use 4% 74%

Class Design 37% 7%

Language Issues 47% 6%

points on each exam where language issues were being tested
(sometimes in conjunction with concepts/constructs). Note,
percentages may add up to over 100% due to questions covering
more than one area (reported below).

It is notable that the basic constructs/concepts categorized here
occur more frequently in the media computation exam, with the
exception of class design. This may be partially due to the fact
that the traditional exam had much more emphasis on language
issues (discussed further in 4.2.2).

In general, a question that requires use of more than one construct
might be considered more challenging that one which requires
only understanding and application of one. For example, a loop
problem with an array may be more complex than a simple loop.
The addition of an if-statement to that question may make it even
more complex. In analyzing exam complexity based on required
combinations of construct/concept use, we chose to not consider
object use since it seemed to be a small part of the difficulty of the
question. Similarly, we ignore class design because it appears
primarily orthogonally to the rest of the concepts/constructs
analyzed. Using this approach we find that 83% of the points on
the media computation exam require use of two or more concepts,
compared to 37% of points on the traditional exam. Arguably,
having to employ more than one concept to solve a question does
make that question more challenging; so, the media computation
exam is notably more challenging. However, as mentioned in
introduction to this section, there was no statistically significant
difference in grade distributions between the Media computation
and traditional students.

4.2.2 Exam Question Styles
The final exam structure was very similar both years in terms of
styles of questions asked. These included code tracing questions,
select a line of code to complete a method, select a code fragment
to complete a method, select appropriate method header or
parameter list (for standard class design), explain what a code
fragment does in English [5], and write code. In the traditional
year, there were also a number of language issue questions. Such
questions asked about issues such as legal overloading, the
difference in comparing Strings with == versus .equals, details of
constructor design (including issues of aliasing with arrays), and
differences in parameter passing (call-by-value) as applied to
primitive and class type variables.

However, while question styles may have been similar, surface
features of media computation exam problems differed a great
deal from traditional exam problems. Media computation exam
questions, for example, asked students to select a picture that

would be generated (or to describe the picture generated) when a
method is called on a specific input picture. The questions
described a desired Sound (or Picture) modification to be
implemented in a method and asked students to write or select
correct lines of code to fill in template code. In Winter 2009
specific questions included blurring a Picture (by averaging the
surrounding Pixel values), morphing a grayscale Picture to black
and white, and putting a variable width “frame” around the outer
edge of a Picture. Students were asked to write code on the exam
on the following topics (not described completely):

 Write a method of the Sound class that creates a Sound by
taking a Sound and repeating it a specified number of times
(passed as a parameter).

 Write a method of the Picture class that modifies a Picture by
mirroring the right third of the image into the left third –
however, only every other column should be mirrored.

4.2.3 Ability of Media Computation Students on non-
media context questions
In Winter 2009, the instructor became particularly interested in
whether students could perform comparable tasks on non-media
context problems as they had (or were being tested on) with media
context. As a result, 13 questions accounting for 25% of the
points on the exam asked questions that could appear on a non-
media computation course final exam – that is they use basic
types (int, double, Strings) and arrays of those types. However,
these questions were only included in multiple-choice questions
(code tracing, code selection, code completion, code analysis)
where students would hopefully be less impacted by syntax (as
they might be in code writing). As shown in Table 5, students, in
general, did quite well on these questions, especially given their
extremely limited exposure to non-media context Java code.

Table 5. Percent of students correctly answering non-media
context exam questions (average by topic).

Question Correct

If statement design (2Qs) (when to use if, else-if, else,
compound if statements)

94%

Nested Loop iterator (2Qs) (trace) 92%

Class Design/language issue (5Qs) (select code) 85%

Find index of max element in array (1Q) (select code
fragment)

74%

Loop over array replacing every other element with
its index (1Q) (trace)

69%

Complex array reverse, with two iterators (1Q) (trace) 67%

4.3 Student Success: Pass Rates and
Retention
Our second key interest was in the impact of the media
computation approach on majors’ success in our CS1 course. We
measure this in two ways: the pass rate of the CS1 course itself
and the retention of majors in the major one year later (measured
as whether students were still enrolled in a CS course one year
later). Additionally, we report the general pass rate of the entire
class (both majors and non-majors) for comparison with previous
studies of non-majors.

Table 6. Student Success Measures

 Traditional

Media
Computation

Major Course
Pass Rates

86.8% (99/114) 92.9% (159/171)

Course Pass
Rates (majors
and non-majors)

80.4% (131/163) 90.1% (237/263)

Retention Rate
of Majors 1 year
later

62% (67/108) 71.1% (27/38)**

**Only reported on Winter 2009 term, Fall 2009 term data is not
yet available.

We preformed a two proportion Z-test to compare the media
computation and traditional data in the above table. This revealed
that both the overall pass rate (p=0.0021) and the pass rate for just
majors (p=0.0414) showed statistically significant improvement in
the media computation courses. The improvement in retention of
majors one year later did not prove to be statistically significant
(p=.1591). This may be due to differences in student
demographics between the Winter and Fall terms; we only had
Media Computation retention data for Winter 2009. However, if
we compare only the two Winter terms we do see statistically
significant improvement in retention (p=0.0476).

5. DISCUSSION
Based on the above analysis, it seems clear that students in a
media computation-based CS1 designed for majors do cover (and
learn) comparable materials to students in a traditional approach.
Although the order in which concepts/constructs are introduced is
notably different, analysis of exam question content shows the
media computation approach giving greater emphasis to all core
concepts, except for class design. Additionally, we find media
computation exam problems to be more complex than traditional
problems, when we define complexity as requiring the application
of more than one concept on a question.

But, in fact, something does “give” to allow the media
computation approach to focus so much more on the application
of core concepts to problem solving. It is clear from exam
analysis that student experience with language issues and features
is much reduced. Some of the specific semantics and features
missing (or notably less emphasized) include overloading, 2-D
array indexing syntax (students use 2-D arrays via an accessor
method), and parameter passing (specifically differences between
passing primitive and reference parameters). Additionally, in our
10-week course students got no experience with textual File I/O
(e.g. Scanner), nor with String methods, relatively less experience
building their own classes, including specifically the complexities
of managing array instance variables. Somewhat surprisingly
(with the greater emphasis on loops and arrays), students get little
or no experience with some standard data analysis patterns such as
find minimum or average. They also had less experience with
testing (e.g. different types of inputs) and designing test cases
since programs are often designed to work with a particular
Picture or Sound file. It should be noted that some of these issues
are, in fact, present in the textbook. But the instructor found these
often seemed a distraction from the overall problem solving focus,
and quickly dropped them (except in passing). A second note is
that an interesting chapter in the media computation textbook has

been adopted by the second 10-week course (CS1.5) and covers
File I/O, String methods, overloading (via String methods), and
ArrayLists.

So what filled in the time not spent on the above issues? The
overriding experience of the instructor was that most course time
was focused on problem solving. Each week involved the
proposal of a new problem – how would you get this effect in a
Picture or in a Sound? Then an appropriate concept or construct
is introduced to solve that problem. Students spent more time
being presented with problems, which required analysis and
thoughtful development of code (in comparison to rote
implementation to practice language features). This led to
increased student experience specifically with indexing into
arrays, performing complex array element manipulation, looping
(of all kinds), and working with complex objects (digital
representations of media). Additionally, some common
programming patterns are present – including swap (via reversing
a Picture or Sound). One important feature that is not revealed in
the previous analysis is that once students learn
concepts/constructs with Picture objects (~7 weeks), they then re-
visit them in the new context of Sound objects (~2 weeks) –
having the chance to reinforce and expand their understanding of
those concepts/constructs. But it is the, perhaps hard to define,
increased student engagement in complex problem solving that
seems most notable at the end of the day.

5.1 Instructor Experience
Teaching a media computation CS1 course was definitely a
positive experience for the instructor. One of the greatest joys
was to remove the feeling of dragging students through one Java
feature to another, including sometimes arcane issues that were
too often described to them as “you’ll really find out why you
need to do this later”. This was replaced with presenting and
solving with students interesting problems that one could share
with others (we hold an art show and post student work on a
wiki.) The content of the course itself is exciting, perhaps
ameliorating the importance of having a CS1 instructor “who is
really engaging” (and can make finding vending machine change
sound cool).

An incredible benefit to the instructor is that programming
assignments do not need to be reinvented every term to deter
plagiarism among students (because the solutions are creative –
there’s not just one). Additionally, creation of assignments was
easier, following an extension or variant of something in the book.

There are important issues that can cause trouble for an instructor
beginning to teach with media computation. Critically, students
experience language features in a dramatically different order than
“usual”. For example, this instructor accidentally required
creating and returning a Picture object long before it was
introduced in the book. Additionally, if statements aren’t covered
until week 5 or 6. It’s amazing what you can do without them.
Finally instructors should be prepared to create entirely new
exams, as questions will now ask about Pictures and Sounds.
These questions can be challenging to describe in English and
often need to provide a sample input and output image to
adequately describe the intended problem.

5.2 Student Experience
As part of a larger study, we have interviewed 39 students about
their experiences in a media computation CS1. While those
results are beyond the scope of this paper, a few positive

preliminary experiences stand out. Students mention being proud
of their work, saying “look at how cool they [pictures] looked… I
would show my parents and show my friends.”

Students also positively note the connection of homeworks with
the real world (e.g., Photoshop):

“it was something that you’d seen before and you’re just like
how does that work and then you figure out wow, that’s how it
works. It was actually pretty cool just to figure out…This is
how something in the real world that we see every day really
works and this is how it’s done.”

Others enjoyed real value from their assignments -- one student
told us his family wanted to use his Sound collage as a ringtone.

6. CONCLUSIONS
We report on our experiences implementing a CS1 course for
majors with a media computation context. We compare required
student competencies in the new course to our traditional
approach via analysis of programming assignments and exam
questions. While concepts and constructs are introduced in a non-
traditional order, they feature prominently in programming
assignments. Exam question analysis reveals increased emphasis
on core concepts of loops, arrays, if statements, and object use in
the media computation approach and less emphasis on class
design and language issues. Course pass rates (both for majors
and the class as a whole) are significantly higher in the media
computation course, though strong evidence of increased retention
of majors (one year later) cannot yet be reported.

7. ACKNOWLEDGMENTS
 This material is based upon work supported by the National
Science Foundation under NSF CNS-0933635.

8. REFERENCES
[1] Crouch C. and Mazur, E. Peer Instruction: Ten years of

experience. Am. J. Phys. 69 (9) 2001.

[2] Forte, A., Guzdial, M. 2004. Computers for Communication,
Not Calculation: Media as a Motivation and Context for
Learning. Proc. of Hawai'i International Conf. on System
Sciences, January, 2004.

[3] Forte, A., Guzdial, M. Motivation and Nonmajors in
Computer Science: Identifying Discrete Audiences for
Introductory Courses. IEEE Trans on Education, 48(2) 2005.

[4] Guzdial, M., Ericson, B. Introduction to Computing and
Programming with Java: A Multimedia Approach. Prentice
Hall, 2007.

[5] Lister, R, Simon, B., Thompson, E., Whalley, J., Prasad, C.
Not Seeing Forest for the Trees: Novice Programmers and
the SOLO Taxonomy. ITiCSE 2008.

[6] Margolis, J., and Fisher, A. Unlocking the Clubhouse:
Women in Computing. MIT Press, 2003.

[7] Rich, L, Perry, H., Guzdial, M. 2004. A CS1 Course
Designed to Address Interest of Women. SIGCSE 2004.

[8] Sloan, R., Troy, P. 2008. CS 0.5: A Better Approach to
Introductory Computer Science for Majors. SIGCSE 2008.

[9] Tew, A., Fowler, C., Guzdial, M. 2005. Tracking an
Innovation in Introductory CS Education from a Research
University to a Two-Year College. SIGCSE 2005.

