Developing a Computing Course Informed by Learning Sciences

Mark Guzdial and Andrea Forte

College of Computing/GVU, Georgia Institute of Technology, Atlanta, GA 30332-0280

Tel: 404-894-5618, Fax: 404-894-3146

Email: guzdial@cc.gatech.edu, aforte@cc.gatech.edu

Abstract: Introductory computing courses are failing in some critical ways: they are struggling to retain students and attract diverse populations. Commonly reported successful completion rates hover near 40%, the number of women in the field is rapidly falling, and minorities continue to be underrepresented. Several studies have addressed the causes of problems in introductory computing. In response, we have developed a new course, Introduction to Media Computation, that addresses the aforementioned problems using an approach informed by learning sciences research. We present here our design process and the pilot course evaluation results. The course and its evaluation serve as an exemplar of applied learning sciences research to effect significant improvement in education.

Keywords: Course design, computing education, motivation, retention, CS1

The Problem of Computer Science Education

Computer science education is in a sorry state today. In the course referred to as CS1 in the national curriculum standards document for computer science courses (ACM, 2001), it is not uncommon to find WFD (withdrawal, F or D grade) rates of 30% to 60% (Nagappan, Williams, Mirriam, Weibe, Kai, Miller, & Balik, 2003; Roumani, 2001; Hermann, Popyack, Char, Zoski, Cera, Lass & Nanjappa, 2003). The percentages of minorities such as African-American and Hispanic do not approach levels representative of the general population (National Center for Education Statistics, 2001) and the percentage of females enrolled in computer science programs is dropping nationally (AAUW, 2000; Margolis & Fisher, 2002). In the last few years, the percentage of female computer science majors has ranged from 10-15%. These problems are evident at Georgia Institute of Technology (Georgia Tech): our WFD rate for introductory computing averages 28% and the percentage of women CS majors has not only lagged behind the national average, but has also dropped in recent years and is currently below 10%.

While enrollment and completion statistics point to the existence of a problem, even more revealing is students’ dislike of computer science classes. Recent surveys and focus groups at Georgia Tech have shown that the introductory computer science (CS) course is one of the most despised courses on campus—particularly among non-majors. Students are not simply failing to learn, in some cases they actively oppose the idea of learning computer science. The problem is clearly not an issue of improving the curricular design to help learning, but an issue of changing the culture and context of learning.

Many researchers have sought to explain the problems of computer science education today, and in general, their findings are mutually supportive. Instead of focusing on solving problems that are relevant to students (AAUW, 2000), computer science courses tend to be overly tedious with an emphasis on technical detail (Margolis & Fisher, 2002). The culture of computer science is perceived as encouraging asocial behavior (Margolis & Fisher, 2002). Although students report that advanced classes do offer opportunities for creativity, there is typically little opportunity for creativity in introductory computer science courses (AAUW, 2000; Pfleeger, Teller, Castaneda, Wilson, and Lindley, 2001), which effectively conceals the enjoyable applications of computer science from non- and potential majors.

Most of the studies mentioned above have focused on accounting for the under-representation of women in computer science; we propose that addressing issues known to contribute to the gender gap in computing will prove fruitful in increasing success rates among all students, not only women. Through the design of a new introductory computer science course, Introduction to Media Computation, we attempt to offer an introductory computer science experience that overcomes many of the problems cited in the literature. In particular, we sought to create a course that would be perceived by the students to be relevant both for their future careers and their personal interests even as they are introduced to modes of thinking important in computer science (Shaffer & Resnick, 1999). Additionally, we aspired to create a creative, social context for computing by allowing students to personalize homework assignments and by establishing a collaborative classroom culture. We also explicitly wove in lessons from the learning sciences literature on how to create an effective learning environment.

In this paper, we explain the design of our course, including the objectives we set and the literature that we drew upon to create the course. We then describe our evaluation of the course and what evidence we have for the success or failure of certain design decisions. Finally, we find that our evaluation is deficient in some critical areas because of the complexity of evaluating learning, particularly in this domain and context.

Designing a New Course

We began our effort by setting course objectives at two levels. We started out with the objectives mentioned previously: to create a course that would be perceived by the students to be relevant and creative in a social context. These overall objectives defined the culture or setting for the course, within which we sought to meet the domain-specific learning objectives.

To implement the course, we drew not only upon our objectives, but also upon literature in learning sciences and computer science education research. For example, case-based reasoning (CBR) tells us that learning involves applying solutions from previous problem-solving experiences and interpreting the results (Kolodner, 1993); for this reason, we emphasized concrete experiences before providing students with ready-made abstractions. For the same reasons, we emphasized creation of assignments (homework) that would allow students to attempt and fail to solve problems that later lessons would then help explain (Schank, 1982). A decision that was based on the CS education literature was the introduction of iteration first as a set-operation; this was done to ease students’ first forays into programming concepts (Miller, 1974; 1981). These objectives and others are explained in detail below.

The course was developed at Georgia Tech; it was introduced as an alternate introductory computing course for non-Engineering and non-CS majors. Faculty in the Ivan Allen College for the Liberal Arts, College of Architecture, Dupree College of Management, and the School of Biology in the College of Sciences were consulted about specific design choices as the course was constructed. Since our course was being designed for first year undergraduates, we could not assume that students would be experts or even knowledgeable in the field of their majors; fields of study only suggested prior interests and gave some indication about career expectations.

Setting objectives: Course culture and learning

Of the issues identified in the literature on the challenges in CS education, we chose three that we felt we could improve through the design of the course and the improvement of which we believed would have an impact on student retention and success.

· Relevance: We see relevance as being closely related to the learning science concept of authenticity (Shaffer & Resnick, 1999). A common complaint of students in CS courses is that the problems being investigated in the course are not related to reality (AAUW, 2000). We believe this complaint is linked to the deficiency in traditional introductory CS courses of two kinds of authenticity identified in (Shaffer & Resnick, 1999), both of which we addressed in the design of Media Computation. First, we attempted to create “activities aligned with the outside world” – we want students to believe that the skills they learn in the course are useful for their eventual career goals, that computer science is used to solve real world problems. Undergraduate students today are more interested in higher education as a gateway to a better economic future than students thirty or more years ago (Donald, 1997). Second, we tried to ensure that course “topics are aligned with what learners want to know.” To describe communication through digital imagery, sound and text as a wildly popular application of computers is an understatement. Building on this popularity, we want students to find ways of using computation as a personally expressive medium. Rather than view computation as enabling calculation, we want to emphasize computation as enabling communication—which is the more common perspective in most of the fields represented by the majors of these students. We chose to encourage a view of the computer as a means for expression (Kay & Goldberg, 1977), to properly place the computer in a communications context and to encourage this sense of personal authenticity.

· Creativity: Female students who major in CS have described feelings of surprise when they discovered how many opportunities for creative expression there were in later CS courses, following introductory courses that were tedious and boring (Pfleeger et al., 2001). Given our objective of encouraging computation for communication and personal expression, opportunities for creativity flowed quite naturally. For example, assignments required students to create their own original visual, audio and text (html) effects using newly-learned programming concepts.

· Social context: The most common and perhaps most damaging stereotype of the CS student is the loner who works all night to complete his programming assignments (Margolis & Fisher, 2002). This is clearly a case where research on women’s perceptions’ of computer science culture are likely indicators of broader concerns. The image of the lone hacker is probably not compelling to many students. We explicitly set an objective to create a social context for learning computer science. Given our success using computer-supported collaborative learning (CSCL) environments in other CS courses (Guzdial, 2001), we relied on the CSCL approach to support collaboration in the Media Computation course.

Within these overall course objectives, we set our learning objectives. One of these was set for us. By Institute requirement, any introductory computing course at Georgia Tech must set a learning objective of familiarity with basic computer applications: Word-processing, spreadsheets, and other office applications. A second set of learning objectives was suggested by the national standards for CS curricula (ACM, 2001). Designing for national standards enabled us to consider exporting our course beyond our local context, if successful. The national standards suggested that we teach familiarity with a set of CS concepts, such as recursion and basic data structures (e.g., arrays and two-dimensional matrices). These objectives provided for a third type of authenticity as defined in (Schaffer & Resnick, 1999); it helped ensure that the methods of inquiry—the ways in which students solved communication problems—were aligned with the discipline of computer science. Instead of using off-the-shelf software to create imagery, sound, and animation, students used the tools of “real” computer scientists.

In addition to the objectives set for us, we chose one more: Students would learn to program in a setting of modification and reuse. We never planned for these students to program from a blank sheet of paper. If professionals in the fields that these non-majors will eventually join ever program, we believe it is in the context of modifying or combining existing programs. This belief was confirmed by faculty members we consulted in the non-majors’ fields. Thus, our final learning objective was the ability to develop programs when given other, related programs as starting points. In accordance with the fourth dimension of authenticity described in (Schaffer & Resnick, 1999)—assessment aligned with instruction—this instructional objective had implications for all of our assessment vehicles, such as tests, quizzes, and homework assignments. Students were never taught to program “from scratch,” and assessment was designed accordingly.

Drawing on the literature

Not only did we use the learning science literature to help us establish our objectives, we also looked to the literature for recommendations on how to accomplish our objectives. The learning science literature was extremely useful in thinking about sequencing of concepts. In addition, 30 years of research in computer science education helped us anticipate what students would find difficult and how we might ease the development of key concepts. The CS education literature was most useful in thinking about how we should design the students’ programming context to facilitate learning.

The most significant lesson that we drew from the learning sciences was to structure the content from concrete to abstract. We wanted students to relate to the content in multiple ways so that they had a variety of related experiences to draw from (Wilensky, 1991). Case-based reasoning literature emphasizes the importance of experience which, through reflection, becomes structured in memory as cases that are indexed for later reuse (Kolodner, 1993). Thus, having some experiences to draw upon is critical for learning transferable knowledge.

The implication for our course implementation was that the majority of the traditional CS concepts were moved to the end of the course. Given the expressed interests of our students, we could not imagine that many of them would have had extensive programming experiences upon entering Georgia Tech. (Our surveys in the pilot study confirmed this expectation, with only 17% reporting any previous programming background.) Rather than spend weeks at the start of the course talking about good functional decomposition for reusable programs or for advanced techniques of structuring data (such as object-oriented programming), we spent a bare minimum of time on CS and spent the first ten weeks of the course actually doing interesting and relevant programming.

The introduction of programming before CS concepts also allowed us to draw upon another learning sciences model: Failure-based learning (Schank, 1982). Rather than lecturing early on how to decompose programs into a good hierarchy of functions, we chose instead to simply assign problems whose program solutions would be most easily developed with good functional decomposition. The result was that the students struggled with the programs. When we later did introduce functional decomposition, students had a meaningful context for talking about it and experiences to reflect upon. In this way, we arranged it so that students encountered problems first, attempted solutions on their own, and were introduced to applicable computer science concepts after they had built a framework of experiences in which they could contextualize and understand the concepts.

Based on the literature on learning and teaching design (Kolodner, 1993), we chose not to teach design and debugging skills as a separate topic, but as a thread that appeared in many different topics. Concepts like tracing one’s program and procedural abstraction appear relatively early in our course, but in passing. Whenever relevant, they are mentioned, but they are not explicitly lectured upon until the end of the course. In this way, the entire course becomes an advanced organizer for the more abstract concepts at the end.

The CS education literature tells us about the specific challenges that students face in introductory programming courses. For example, we know that students have difficulty learning the concept of iteration (Soloway, Bonar, & Ehrlich, 1983), or causing a sequence of operations to repeat several times. If the same concept is introduced as a set operation, students find it much easier to learn (Miller, 1974; 1981). In other words, instead of saying “While changing this index variable in this way, access these data elements, and perform this operation,” a set operation version would be “For all data elements having these characteristics, perform this operation.” This finding had implications for how we designed our programming environment and examples. We arranged it so that set operations could be used as a transition to more complex iterations.

We also know that setting up conditional execution is complicated for introductory students (Green, 1977). Based on this finding, we decided to limit the scope of the programming that we would teach. Rather than the traditional “IF test THEN statements to execute if test is positive ELSE statements to execute if test is negative,” we would only teach the IF-THEN part, and never the ELSE. By not teaching the ELSE, we required students to use the simpler form and to make explicit each conditional test, making the program code easier to read and debug.

Implementing the Course: Media Computation Context

We chose a media computation context for our course. Students in the course would be asked to write programs to modify the colors in pictures, to manipulate and create sounds, to generate HTML from databases, and to create simple animations. As we have begun to describe with respect to authenticity, the media computation context allowed us to address our objectives and lessons from the literature.

Clearly, a media computation context is a communications context. We emphasized that point often in the class. We talked about how meteorologists stand in front of a blue screen, and then taught the algorithm for blue-screen effects. We visited CNN.com and News.Google.Com to talk about the database and networking concepts being used in these sites, before writing programs to do similar things (e.g., building web sites out of databases, or writing programs to fetch information from other web sites). We showed The Making of videos for popular movies to talk about how digital video special effects are implemented in motion pictures before implementing similar effects ourselves.

The media computation context also facilitated the creation of a concrete and personally relevant context. The course began with only a single week of how to program, and moved immediately into manipulating pictures: Removing red eye, creating grayscale images, creating negative images, and so on. The basics of iteration and conditional execution were introduced in the picture-manipulation context. We know from surveys that students began using the course lessons on their own pictures in the second week of class, thus creating a critical personal connection to programming that is missing in more traditional and abstract introductory computing courses.

After two to three weeks of pictures, the emphasis shifted to sounds: manipulating volume, splicing sounds, and reversing sounds. The basic concepts of iteration and condition were introduced again, almost as if the students had never seen them before. Our goal was to create a second context for thinking about these core concepts, to create the multiple connections that would make the experience concrete for the students (Wilensky, 1991; Kolodner, 1993).

We chose the programming language Python for the course—in particular, the implementation Jython, which is Python implemented in Java (Pedroni & Rappin, 2002). Python is used in commercial contexts, especially for Web and database development. Media-related companies such as Industrial Light & Magic, Google, and Nextel advertise their need for Python programmers. For non-major students and their faculty, real commercial use is an important part of making programming in Python relevant. From a technical perspective, using a Java-based language gave us a cross-platform multimedia library to draw upon.

More significantly, Python had features that allowed us to build a programming environment informed by the CS education literature. We built a programming interface (the Jython Environment for Students or JES) that simplified the Java media library and allowed us to express iteration as a set operation. For example, to reduce the amount of red in a picture, we were able to write programs that look like they are addressing “for all pixels in the pixels of the picture, do this.”

def decreaseRed(picture):

 for pixel in getPixels(picture):

 value = getRed(pixel)

 setRed(pixel,value * 0.8)
Later, we introduce more sophisticated iteration structures, in order to be able to do splicing of sounds and cropping and scaling of pictures. Then, the same program can be expressed like this:

def decreaseRed(picture):

 for x in range(1,getWidth(picture)):

 for y in range(1,getHeight(picture)):

 pixel=getPixel(picture,x,y)

 value = getRed(pixel)

 setRed(pixel,value * 0.8)
Programming assignments specified a problem to solve and perhaps an algorithm to use, but not which media to use. Students were welcome to use whatever media interested them. For example, one assignment required the creation of a program to generate a collage with a single image appearing at least four times with three different picture manipulations—but the students could choose the pictures, the picture manipulations, and could add as many additional pictures as they wanted. Thus, we enabled the creation of a creative context.

In addition to regular lectures, the course revolved around the class CoWeb (http://coweb.cc.gatech.edu/cs1315, a Collaborative Website) (Guzdial, 2001; Guzdial, Rick, & Kehoe, 2001). The CoWeb provided a nucleus for interaction; it was used both for course administration issues, such as assignment definitions, as well as a space for collaboration, discussion, and socializing. Question pages for every assignment were available in addition to general comment pages for each week, exam review pages, and even pages to advertise one’s favorite hangouts and musical groups. We also created gallery pages where students were encouraged to post the media creations resulting from their programming assignments. Thus, use of CoWeb enabled us to create an audience for the students’ work, which contributed to a constructionist context for learning (Papert, 1991).

In addition to providing technology to support collaboration, we encouraged teamwork by setting a liberal collaboration policy for the course. For six programming assignments, students could collaborate with whomever they wished in writing their programs. Two additional assignments were designated “take home exams,” on which no collaboration was permitted at all. In this way, we encouraged students to collaborate and work on their programs in a social context, while still assessing individual students’ learning based on their individual performance.

In examinations, students were asked to answer essay questions about CS issues (like what arrays were) and about media issues (like how MPEG-3 compression works) and were also asked to program, but not without example programs provided for modification.

After pictures, sounds, text (mostly HTML), and movies, the course shifted in the last four to five weeks into more traditional computer science concepts, which were structured as answers to students’ questions.

· During the course, many students noted that their programs were consistently slower than applications like Adobe Photoshop that performed the same functions. Why? To answer this question we introduced CS concepts relating to interpreters and compilers and algorithmic complexity.

· Students often asked if there was an easier way to write these programs—could they be done with fewer lines or more easily? We introduced functional programming and recursion as techniques for writing smaller programs, and object-oriented programming as a mechanism for writing larger programs more easily.

Course Evaluation

The course was offered for the first time in Spring 2003. 121 students enrolled in the course. 66% of the course was female. Only two students withdrew from the course. Overall, 89% of the students who originally enrolled in the course earned an A, B, or C grade. At 11%, our WFD rate compares favorably our best practice WFD rate for non-majors, which we drew from the literature: 33.6% (Nagappan et al., 2003).

Our overall evaluation method had four components. We conducted surveys at the beginning, midpoint, and end of the semester. We conducted interviews with seven volunteer women focusing on their perceptions of the course. We observed five students writing assignment programs to get a sense of their problems and strategies. (We are not reporting on observation findings here.) Finally, we also attempted to measure learning. We were concerned that we had inadvertently “watered-down” the CS content. To test for this possibility, we compared our course to two other introductory computing classes running in the same semester. One was our traditional introductory CS course (using Scheme and the TeachScheme approach (Felleisen, Findler, Flatt, & Krishnamurthi, 2001)), and the other was an Engineering-oriented introductory CS course. During the same semester, the section of the traditional CS course that we studied had a 43% WFD rate, and the Engineering course had a 19% WFD rate.

Summary of Results

Recall that our overall course objectives centered on relevance, creativity, and a social context. We present here some of the evidence that we were successful in meeting these objectives. We asked students on the midterm and final surveys about their perceptions of the course. Table 1 includes three common responses to the question “What do you like best about the course?” (Answers were coded by two individuals with nearly 90% inter-coder reliability.) It is clear that both the Engineering and Media Computation students found value in the course content. Students’ answers suggested that our efforts to positively influence the perceived relevance of CS1 content succeeded among our pilot subjects. Specific responses included references to the applicability of picture and sound manipulation to students’ “future careers,” and “everyday life” and the enjoyment they derived from the experience when they “finally get a program to work like I want it to.”

Table 1. Students’ responses on midterm survey on what they valued about their courses

	Course
	Don't like it/
Nothing
	Enjoy

Content
	Content is

Useful

	Trad. CS1
	18.2%
	12.1%
	0.0%

	Engineering
	12.9%
	16.1%
	25.8%

	Media Comp
	0.0%
	21.3%
	12.4%

Efforts to establish a creative context for computing were also successful. Survey responses, interviews and performance on homework assignments all indicated that students found the content engaging with opportunities for creative personal expression. On surveys, students reported programming on their own to reverse songs and alter their own personal photographs. Examples of students’ work from the collage programming assignment (see http://coweb.cc.gatech.edu/cs1315/2) include album covers from bands students enjoy, personal vacation photographs and pictures of pets. Often, students chose manipulations that complemented the themes they chose. Many students surpassed the minimum requirements—although this was only the third programming assignment, some of the programs written by the students exceeded 100 lines of code.

The importance of the social aspect of the course came through particularly strongly. The CoWeb saw heavy use throughout the semester. In both surveys and interviews students told us how important the collaborative context was, how comfortable they felt asking questions, and about the role of the class CoWeb in their experience. Some students reported that the absence of CS majors made it easier to ask questions and seek help. Dramatic changes in attitude and self-confidence in some students were evidenced by allusions to the falsity of the “computer science stereotype,” statements that computer science is not all about “nerds” and “things that no-one could understand,” and the revelation that “programming is not scary, it’s actually pretty cool.” Two students stated that they would not remove the Jython programming environment (JES) from their computers in the hope that they would have more time to “play around with that and make neat effects” in the future.

On the final survey, we asked an open-ended question asking students to identify the one aspect of the course that should not change. 20% of the respondents indicated that collaboration or the class CoWeb was the most important aspect of the course. One student explained in detail why the social context for computing was important from a learning standpoint: “Collaboration - it helps you understand and remember the problem better… you can talk through it and work through it with others as opposed to staring at your computer screen by yourself and not learning anything.” In an interview, one student described working together with a roommate even after turning in homework to “see what we could do with it.”

The Challenge of Assessing Learning

We developed several problems that we attempted to put on all three courses’ exams and quizzes. Unfortunately, a number of issues such as different rates of development and sequencing of concepts in each course, different times and numbers of exams and quizzes, and problems equating concepts in different languages prevented us from distributing the problems as uniformly as we would have liked. In addition, those questions that did make it onto multiple exams were modified by the individual course instructors and teaching assistants.

In general, we found that the different programming languages used, the differences in directions given on exams, and the kinds of examples provided on the exams created unique conditions for each course and rendered the results fundamentally incomparable. For example, the most common problem among the Engineering students was mishandling of ELSE clauses. Media Computation students never used an ELSE clause. It is difficult to compare these results to draw conclusions about learning.

A more reliable indicator of the Media Computation students’ programming achievement might be found in students’ attempt to solve a classically difficult problem, such as The Rainfall Problem. The rainfall problem is: “Write a program that repeatedly reads in positive integers, until it reads the integer 99999. After seeing 99999, it should print out the average.” At Yale in the mid-80’s, Elliot Soloway gave this problem to several groups of students (Soloway et al., 1983). Of first semester CS students, only 14% correctly solved the problem (correct other than syntactic errors). Only 36% of second semester CS students got it correct, and only 69% of students in a junior-senior level systems programming course. This was one of the first empirical demonstrations that learning about programming was lower than what we might have expected.

Our students were not directly comparable to the Yale students. For example, we hadn’t covered the same topics (e.g., at the time of the exam, our students had only seen WHILE once in a lecture), and we had to change the wording of the problem accordingly. Nonetheless, 14 people out of 113 (12%) who took the test “got it”—by Soloway’s standards that means they had a correct solution (aside from syntactic errors). With partial credit, the average grade on the problem was 45%. The traditional CS1 course also included a variation of the rainfall problem on two of their tests, but we were unable to obtain the raw answers to code ourselves and compare. On the first test (which stipulated the use of tail recursion), the result as graded by teaching assistants was an average score of 53%. On the second test (which was open to any kind of iteration), the result was an average score of 60%.

Overall, the rainfall problem continues to be a hard problem for introductory computing students. These results do not indicate that the Media Computation students are learning programming remarkably well, but they do show that these students aren’t out of the ballpark either. Media Computation students’ actual programming achievement and learning about CS-relevant concepts remains uncertain; neither do we know how their achievement compares to that of students in other classes.

Conclusion
The results of this pilot evaluation suggest that together, the context of media computation and the course implementation successfully address some of the reasons named by students as disincentives to CS learning. The course design serves as an exemplar for applied learning sciences research to impact motivation and engagement; however, further investigation is required before conclusive statements can be made about the effectiveness of the course implementation in terms of achievement.
References

American Association of University Women (AAUW). (2000) Tech-Savvy: Educating girls in the new Computer Age. AAUW Education Foundation, New York.

ACM/IEEE Computing Curriculum 2001. (2001). http://www.acm.org/sigcse/cc2001.

J. Donald. (1997.) Improving the Environment for Learning. Jossey-Bass: San Francisco.

M. Felleisen, R.B. Findler, M. Flatt, & S. Krishnamurthi. (2001). How to Design Programs: An Introduction to Programming and Computing MIT Press, Cambridge, MA.

T.R.G. Green. (1977.) Condtional statements and comprehensibility to professional programmers. Journal of Occupational Psychology. 50:93-109.

M. Guzdial. (2001.) Use of collaborative multimedia in computer science classes. In Proceedings of the 2001 ITiCSE Conference, acm, NY.

M. Guzdial, J. Rick, and C. Kehoe. (2001.) Beyond adoption to invention: Teacher-created collaborative activities in higher education. Journal of the Learning Sciences, 10(3). 265-279.

N. Hermann, J. Popyack, B. Char, P. Zoski, C. Cera & R.N. Lass (2003). Redesigning computer programming using multi-level online modules for a mixed audience. Proceedings of the 34th SIGCSE Technical Symposium on Computer Science Education. Reno, NV.

A. Kay and A. Goldberg. (1977.) Personal Dynamic Media. IEEE Computer. 10(3), 31-41.

J. Kolodner. (1993). Case Based Reasoning. Morgan Kaufmann Publishers, San Mateo, CA.

J. Margolis and A. Fisher. (2002.) Unlocking the Clubhouse: Women in Computing. MIT Press, Cambridge, MA.

L.A. Miller. (1974.) Programming by non-programmers. International Journal of Man-Machine Studies, 6:237-260.

L.A. Miller. (1981) Natural language programming: Styles, strategies, and contrasts. IBM Systems Journal, 20(2):184-215.

Nagappan, N., Williams, L., Miriam, F., Weibe, E., Kai, Y., Miller, C., and Balik, S. (2003.) “Improving the CS1 Experience with Pair Programming,” Twenty-fourth SIGCSE Technical Symposium on Computer Science Education, 359-362. ACM: New York.

National Science Foundation. (2002). Women, Minorities, and Persons with Disabilities in Science and Engineering: 2001. NSF, Arlington, VA.

S. Papert. (1991.) Situating constructionism. In I. Harel and S. Papert (Eds.) Constructionism. 1-11. Ablex, Norwood, NJ.

S. Pedroni and N. Rappin. (2002.) Jython Essentials. O’Reilly and Associates,.

S. Pfleeger, P. Teller, S.E. Cataneda, M. Wilson, and R. Lindley.(2001.) Increasing the enrollment of women in computer science. Proceedings of the 32nd SIGCSE Technical Symposium on Computer Science Education. 386-387. ACM Press, New York.

H. Roumani. (2002.) Design guidelines for the lab component of objects-first CS1. In The Proceedings of the 33rd SIGCSE Technical Symposium on Computer Science Education. 222-226. ACM, New York.

R.C. Schank. (1982.) Dynamic Memory. Cambridge University Press: Cambridge, England.

D.W. Shaffer, and M. Resnick, (1999). "Thick" Authenticity: New Media and Authentic Learning. Journal of Interactive Learning Research, vol. 10, no. 2, pp. 195-215.

E. Soloway, J. Bonar, & K. Ehrlich. (1983.) Cognitive strategies and looping constructs: An empirical study. Communications of the ACM, 26(11): 853-860.

U. Wilensky. (1991.) Abstract meditations on the concrete and concrete implications for mathematics education. In I. Harel and S. Papert (Eds.) Constructionism. 193-203. Ablex, Norwood, NJ.

Acknowledgments

This research is supported in part by grants from the National Science Foundation (CISE EI program and DUE CCLI program), from the Al West Fund at Georgia Tech, and by the College of Computing and GVU Center. We wish to thank all the students who helped create the course materials and who helped with the evaluation, and all the students who volunteered to participate in our studies.

